1
|
Arif MI, Ru L, Wang Y. Risk factors associated with uncontrolled asthma in children - a systematic review and meta-analysis. J Asthma 2024; 61:387-395. [PMID: 37999990 DOI: 10.1080/02770903.2023.2288317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
OBJECTIVE We aim to assess the risk factors of uncontrolled asthma in children and adolescents. METHODS A systemic search was conducted from electronic databases (PubMed/Medline, Cochrane Library, and Google Scholar) from inception to July 17, 2023. All statistical analyses were conducted in Review Manager 5.4.1. Studies meeting inclusion criteria were selected. A random-effects model was used when heterogeneity was seen to pool the studies, and the result was reported in the odds ratio and the corresponding 95% confidence interval. We also used a narrative approach where it was not feasible to quantitatively assess the outcome. RESULTS Ten observational studies were used to conduct this systematic review and meta-analysis. A quantitative analysis of five factors was done. Pooled analysis showed a statistically significant risk of uncontrolled asthma in association with past hypersensitivity reactions (standardized mean difference [SMD] = 1.51 (1.16, 1.98); p = .002; I2 = 84%) and incomplete controller adherence (SMD = 3.15 (1.83, 5.41); p < .0001; I2 = 94%). While non-significant relation was seen in parental asthma (SMD = 1.23 (0.98, 1.55); p = .07; I2 = 15%), oral corticosteroid use (SMD = 0.99 (0.72, 1.36); p = .96; I2 = 81%) and education of caregivers (SMD = 0.99 (0.72, 1.36); p = .96; I2 = 81%). Some other factors were also discussed qualitatively. CONCLUSION Our study shows that some significant risk factors might cause uncontrolled asthma in children and adolescents like past hypersensitivity reactions and incomplete controller adherence.
Collapse
Affiliation(s)
- Muhammad Imran Arif
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Ru
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanan Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
3
|
Zhang L, Xu Y, Li X, Yang F, Wang C, Yu C. Multivitamin consumption and childhood asthma: a cross-sectional study of the NHANES database. BMC Pediatr 2024; 24:84. [PMID: 38297283 PMCID: PMC10829257 DOI: 10.1186/s12887-024-04540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Dietary intakes of vitamins are associated with asthma. However, previous studies mainly explored the association between a single vitamin intake and asthma, which did not take the multivitamins into consideration. Herein, this study aims to explore the overall effect of dietary multivitamins consumption on childhood asthma. METHODS Data of children and adolescents (aged 2-17 years old) were extracted from the National Health and Nutrition Examination Survey (NHANES) database in 2015-2018 in this cross-sectional study. Weighted univariate logistic regression analysis was used to screen covariates. The association between multivitamins (including vitamin A, C, D, E, B1, B2, B6, B12, K, niacin, folic acid, and choline) and childhood asthma was explored using univariate and multivariate logistic regression analyses. The evaluation indexes were odds ratio (OR) and 95% confidence interval (CI). We further introduced the Bayesian kernel machine regression (BKMR) to assess the joint effect of the twelve vitamins on childhood asthma, the impact of an individual vitamin as part of a vitamin mixture, and the potential interactions among different vitamins. RESULTS Among 4,715 eligible children and adolescents, 487 (10.3%) had asthma. After adjusting for covariates including race, family history of asthma, pregnant smoking, BMI Z-score, energy intake, breast feeding, and low birth weight, we found that for each 1-unit increase in vitamin K consumption, the odds of childhood asthma decreased 0.99 (P=0.028). The overall effect analysis reported a trend of negative relationship between the multivitamins and childhood asthma, especially at the 75th percentile and over. According to the BKMR models, when other vitamins are fixed at the median level, the odds of childhood asthma increased along with the elevated vitamin D (VD) and vitamin B2 (VB2), whereas along with the depressed vitamin C (VC). In addition, no potential interaction has been found between every two vitamins of multivitamins on childhood asthma. CONCLUSION Among children and adolescents who have high-risk of asthma, it may be beneficial to increase dietary consumption of multivitamins. Our findings recommended that children and adolescents should increase the intake of VC-rich foods, whereas control the dietary consumption of VD and VB2 in daily life.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P.R. China
| | - Yali Xu
- Department of Pediatric Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P.R. China
| | - Xuemei Li
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P.R. China
| | - Fan Yang
- Department of Pediatrics, The Fifth People's Hospital of Chongqing, No.24 Renji Road, Nanan District, Chongqing, 400062, P.R. China
| | - Chengxiu Wang
- Department of Pediatrics, The Fifth People's Hospital of Chongqing, No.24 Renji Road, Nanan District, Chongqing, 400062, P.R. China
| | - Chunmei Yu
- Department of Pediatrics, The Fifth People's Hospital of Chongqing, No.24 Renji Road, Nanan District, Chongqing, 400062, P.R. China.
| |
Collapse
|
4
|
Rusiñol L, Puig L. Multi-Omics Approach to Improved Diagnosis and Treatment of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1042. [PMID: 38256115 PMCID: PMC10815999 DOI: 10.3390/ijms25021042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Psoriasis and atopic dermatitis fall within the category of cutaneous immune-mediated inflammatory diseases (IMIDs). The prevalence of IMIDs is increasing in industrialized societies, influenced by both environmental changes and a genetic predisposition. However, the exact immune factors driving these chronic, progressive diseases are not fully understood. By using multi-omics techniques in cutaneous IMIDs, it is expected to advance the understanding of skin biology, uncover the underlying mechanisms of skin conditions, and potentially devise precise and personalized approaches to diagnosis and treatment. We provide a narrative review of the current knowledge in genomics, epigenomics, and proteomics of atopic dermatitis and psoriasis. A literature search was performed for articles published until 30 November 2023. Although there is still much to uncover, recent evidence has already provided valuable insights, such as proteomic profiles that permit differentiating psoriasis from mycosis fungoides and β-defensin 2 correlation to PASI and its drop due to secukinumab first injection, among others.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
5
|
Gilgoff R, Mengelkoch S, Elbers J, Kotz K, Radin A, Pasumarthi I, Murthy R, Sindher S, Harris NB, Slavich GM. The Stress Phenotyping Framework: A multidisciplinary biobehavioral approach for assessing and therapeutically targeting maladaptive stress physiology. Stress 2024; 27:2327333. [PMID: 38711299 PMCID: PMC11219250 DOI: 10.1080/10253890.2024.2327333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/02/2024] [Indexed: 05/08/2024] Open
Abstract
Although dysregulated stress biology is becoming increasingly recognized as a key driver of lifelong disparities in chronic disease, we presently have no validated biomarkers of toxic stress physiology; no biological, behavioral, or cognitive treatments specifically focused on normalizing toxic stress processes; and no agreed-upon guidelines for treating stress in the clinic or evaluating the efficacy of interventions that seek to reduce toxic stress and improve human functioning. We address these critical issues by (a) systematically describing key systems and mechanisms that are dysregulated by stress; (b) summarizing indicators, biomarkers, and instruments for assessing stress response systems; and (c) highlighting therapeutic approaches that can be used to normalize stress-related biopsychosocial functioning. We also present a novel multidisciplinary Stress Phenotyping Framework that can bring stress researchers and clinicians one step closer to realizing the goal of using precision medicine-based approaches to prevent and treat stress-associated health problems.
Collapse
Affiliation(s)
- Rachel Gilgoff
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Jorina Elbers
- Trauma recovery Program, HeartMath Institute, Boulder Creek, CA, USA
| | | | | | - Isha Pasumarthi
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Reanna Murthy
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Sayantani Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Cardenas A, Fadadu R, Bunyavanich S. Climate change and epigenetic biomarkers in allergic and airway diseases. J Allergy Clin Immunol 2023; 152:1060-1072. [PMID: 37741554 PMCID: PMC10843253 DOI: 10.1016/j.jaci.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif.
| | - Raj Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Cardenas A, Fadadu RP, Koppelman GH. Epigenome-wide association studies of allergic disease and the environment. J Allergy Clin Immunol 2023; 152:582-590. [PMID: 37295475 PMCID: PMC10564109 DOI: 10.1016/j.jaci.2023.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The epigenome is at the intersection of the environment, genotype, and cellular response. DNA methylation of cytosine nucleotides, the most studied epigenetic modification, has been systematically evaluated in human studies by using untargeted epigenome-wide association studies (EWASs) and shown to be both sensitive to environmental exposures and associated with allergic diseases. In this narrative review, we summarize findings from key EWASs previously conducted on this topic; interpret results from recent studies; and discuss the strengths, challenges, and opportunities regarding epigenetics research on the environment-allergy relationship. The majority of these EWASs have systematically investigated select environmental exposures during the prenatal and early childhood periods and allergy-associated epigenetic changes in leukocyte-isolated DNA and more recently in nasal cells. Overall, many studies have found consistent DNA methylation associations across cohorts for certain exposures, such as smoking (eg, aryl hydrocarbon receptor repressor gene [AHRR] gene), and allergic diseases (eg, EPX gene). We recommend the integration of both environmental exposures and allergy or asthma within long-term prospective designs to strengthen causality as well as biomarker development. Future studies should collect paired target tissues to examine compartment-specific epigenetic responses, incorporate genetic influences in DNA methylation (methylation quantitative trait locus), replicate findings across diverse populations, and carefully interpret epigenetic signatures from bulk, target tissue or isolated cells.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Epidemiology and Population Health, Stanford School of Medicine, Stanford University, Stanford, Calif
| | - Raj P Fadadu
- School of Medicine, University of California, San Francisco, Calif
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Xu C, Du L, Guo Y, Liang Y. TCN1 Expression Is Increased in Asthma. Int Arch Allergy Immunol 2023; 184:1135-1142. [PMID: 37586352 DOI: 10.1159/000531073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/19/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Asthma is a chronic disease that affects populations worldwide. The purpose of this study was to investigate the expression of TCN1 in sputum and its correlation with inflammation and lung function in asthma. METHODS We recruited 141 subjects, detected TCN1 mRNA level by quantitative reverse transcription polymerase chain reaction, detected TCN1 protein expression by Western blot, detected TCN1 protein level by enzyme-linked immunosorbent assay, and analyzed the correlation between TCN1 and fraction of exhaled nitric oxide (FeNO), IgE, EOS%, lung functions, and some Th2 cytokines. The diagnostic value of TCN1 was evaluated by receiver operating characteristics curve. The expression of TCN1 was further confirmed by human bronchial epithelial cell in vitro. RESULTS Compared with the health group, the expression of TCN1 in induced sputum cells increased in asthma group and was correlated with FeNO, IgE, and EOS%. TCN1 level was also elevated in the induced sputum supernatant of asthma patients. The protein level of TCN1 in induced sputum supernatant was correlated with FeNO, IgE and PC-20, forced expiratory volume in the first second (FEV1)%pred, FEV1/FVC, and some cytokines (IL-4, IL-5, IL-10, IL-13, MUC5AC). TCN1 was also differentially expressed in patients with different severity of asthma. Four weeks after ICS treatment, the expression of TCN1 in induced sputum supernatant increased. In vitro, the protein level of TCN1 in human bronchial epithelial cells' supernatant increased after stimulated with IL-4 and IL-13. CONCLUSION The expression of TCN1 was increased in asthma patients' sputum, and was positively correlated with some inflammatory markers, negatively correlated with lung function. TCN1 may be used as a potential biomarker for the diagnosis and treatment of asthma.
Collapse
Affiliation(s)
- Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangdong, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangdong, China
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangdong, China
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangdong, China
- Institute of Respiratory Diseases of Sun Yat-Sen University, Guangdong, China
| |
Collapse
|
9
|
Bratu D, Boda D, Caruntu C. Genomic, Epigenomic, Transcriptomic, Proteomic and Metabolomic Approaches in Atopic Dermatitis. Curr Issues Mol Biol 2023; 45:5215-5231. [PMID: 37367080 PMCID: PMC10297041 DOI: 10.3390/cimb45060331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a high prevalence in the developed countries. It is associated with atopic and non-atopic diseases, and its close correlation with atopic comorbidities has been genetically demonstrated. One of the main roles of genetic studies is to comprehend the defects of the cutaneous barrier due to filaggrin deficit and epidermal spongiosis. Recently, epigenetic studies started to analyze the influence of the environmental factors on gene expression. The epigenome is considered to be a superior second code that controls the genome, which includes alterations of the chromatin. The epigenetic changes do not alter the genetic code, however, changes in the chromatin structure could activate or inhibit the transcription process of certain genes and consequently, the translation process of the new mRNA into a polypeptide chain. In-depth analysis of the transcriptomic, metabolomic and proteomic studies allow to unravel detailed mechanisms that cause AD. The extracellular space and lipid metabolism are associated with AD that is independent of the filaggrin expression. On the other hand, around 45 proteins are considered as the principal components in the atopic skin. Moreover, genetic studies based on the disrupted cutaneous barrier can lead to the development of new treatments targeting the cutaneous barrier or cutaneous inflammation. Unfortunately, at present, there are no target therapies that focus on the epigenetic process of AD. However, in the future, miR-143 could be an important objective for new therapies, as it targets the miR-335:SOX axis, thereby restoring the miR-335 expression, and repairing the cutaneous barrier defects.
Collapse
Affiliation(s)
- Dalia Bratu
- Department of Dermatology, ‘Colentina’ Clinical Hospital, 020125 Bucharest, Romania;
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Daniel Boda
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Dermatology, ‘Ponderas’ Academic Hospital, 014142 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Constantin Caruntu
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
11
|
Bratu D, Boda D, Caruntu C. Reflectance Confocal Microscopy in Monitoring Atopic Dermatitis Treated with Topical Calcineurin Inhibitors. Healthcare (Basel) 2023; 11:healthcare11020152. [PMID: 36673521 PMCID: PMC9859267 DOI: 10.3390/healthcare11020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease associated with multiple allergies in the atopic march. It has a complex pathogenesis, related to genetic, immune, and environmental factors. Its incidence and prevalence are increasing in the last decades, especially in developed countries. It affects the quality of life due to the recurrent lesions and the associated pruritus. Thus, it is very important to use non-invasive techniques to manage and follow-up the patients with such a heterogenous disease that can have a high impact on some of them. The reflectance confocal microscope is a modern device for in vivo visualization of the epidermis and the upper dermis which could replace in some cases the cutaneous biopsy. We report a case of a patient with atopic dermatitis investigated with the confocal reflectance microscope at the beginning of the topical treatment with calcineurin inhibitors and three weeks after, with favorable evolution. Reflectance confocal microscopy allows the assessment of the dynamic changes in the skin during treatment. Moreover, it can be useful for highlighting discrete changes even in the subclinical stages of the inflammatory process. Future developments, which will lead to the definition and validation of reflectance confocal microscopy criteria for the diagnosis and staging of atopic dermatitis, could help to improve the treatment and prevention strategies of the disease.
Collapse
Affiliation(s)
- Dalia Bratu
- Department of Dermatology, ‘Colentina’ Clinical Hospital, 020125 Bucharest, Romania
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.B.); (D.B.); Tel.: +40-726-309-744 (D.B.); +40-799-929-250 (D.B.)
| | - Daniel Boda
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Ponderas’ Academic Hospital, 014142 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Correspondence: (D.B.); (D.B.); Tel.: +40-726-309-744 (D.B.); +40-799-929-250 (D.B.)
| | - Constantin Caruntu
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
12
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
13
|
Martinez A, de la Rosa R, Mujahid M, Thakur N. Structural racism and its pathways to asthma and atopic dermatitis. J Allergy Clin Immunol 2021; 148:1112-1120. [PMID: 34743832 DOI: 10.1016/j.jaci.2021.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022]
Abstract
Black, Latinx, and Indigenous people in the United States experience a disproportionate burden of asthma and atopic dermatitis. The study of these disease disparities has focused on proximal socioenvironmental exposures and on the biomechanistic (including genetic) differences between racial and ethnic groups. Although biomedical research in allergy and immunology stands to benefit from the inclusion of diverse study populations, the narrow focus on biologic mechanisms disregards the complexity of interactions across biologic and structural factors, including the effects of structural racism. Structural racism is the totality of ways in which society fosters discrimination by creating and reinforcing inequitable systems through intentional policies and practices sanctioned by government and institutions. It is embedded across multiple levels, including the economic, educational, health care, and judicial systems, which are manifested in inequity in the physical and social environment. In this review, we present a conceptual framework and pull from the literature to demonstrate how structural racism is a root cause of atopic disease disparities by way of residential segregation, socioeconomic position, and mass incarceration, which may lead to aberrations in the innate and adaptive immune response and the augmentation of physiologic stress responses, contributing to a disproportionate disease burden for racial and ethnic populations.
Collapse
Affiliation(s)
- Adali Martinez
- School of Medicine, the University of California San Francisco, San Francisco, Calif
| | | | - Mahasin Mujahid
- School of Public Health, University of California Berkeley, Berkeley, Calif
| | - Neeta Thakur
- School of Medicine, the University of California San Francisco, San Francisco, Calif.
| |
Collapse
|
14
|
Yang W, Dong Z, Li Y, Zhang Y, Fu H, Xie Y. Therapeutic efficacy of chitosan nanoparticles loaded with BCG-polysaccharide nucleic acid and ovalbumin on airway inflammation in asthmatic mice. Eur J Clin Microbiol Infect Dis 2021; 40:1623-1631. [PMID: 33666790 PMCID: PMC7934352 DOI: 10.1007/s10096-021-04183-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
In this study, immunoregulation and desensitization therapies were jointly applied in the treatment of asthma, in which chitosan (CS) nanoparticles were used. BALB/c mice were selected and mouse models of asthma were constructed. Mice were divided into 7 groups. A double-chamber plethysmograph, MTT, hematoxylin-eosin staining, and ELISA were used. The expression levels of IL-4 and IL-5 in lung tissue cells were detected. CS-BCG-PSN-OVA sustained-release vaccines significantly alleviated airway hyperresponsiveness (AHR) in asthmatic mice. The numbers of total lymphocytes and eosinophils in BALF were remarkably reduced. The expression levels of IL-4 and IL-5 in lung tissue cells of the treatment groups were dramatically decreased. CS-BCG-PSN-OVA was found in vitro to be able to inhibit OVA-induced T-cell proliferation and upregulate the proportion of CD4+CD25+Foxp3+ T cells. CS-BCG-PSN-OVA sustained-release vaccine could significantly attenuate AHR and airway inflammation in asthmatic mice. Thus, it has a promising application prospect for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Respiration, The First Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, No.158 Guang Changhou Road, Huzhou, 313000, Zhejiang, China
| | - Zhaohui Dong
- Department of Intensive Care Unit, The First Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Yujing Li
- School of Nursing, Huzhou University, Huzhou, 313000, China
| | - Yingying Zhang
- School of Nursing, Huzhou University, Huzhou, 313000, China
| | - Huanqin Fu
- Department of Respiration, The First Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, No.158 Guang Changhou Road, Huzhou, 313000, Zhejiang, China
| | - Yanping Xie
- Department of Respiration, The First Hospital of Huzhou, The First Affiliated Hospital of Huzhou University, No.158 Guang Changhou Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
15
|
Chen KD, Huang YH, Guo MMH, Chang LS, Chu CH, Bu LF, Chu CL, Lee CH, Liu SF, Kuo HC. DNA Methylation Array Identifies Golli-MBP as a Biomarker for Disease Severity in Childhood Atopic Dermatitis. J Invest Dermatol 2021; 142:104-113. [PMID: 34293355 DOI: 10.1016/j.jid.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the changes in global methylation status and its functional relevance in childhood atopic dermatitis (AD). Differences in epigenome-scale methylation events in peripheral blood associated with childhood AD were screened using DNA methylation arrays of 24 patients with AD compared with 24 control subjects. Of the 16,840 differentially methylated CpG regions between AD and control subjects, >97% CpG loci revealed hypomethylation in patients with childhood AD. Among the globally hypomethylated loci, we identified two CpG clusters within the golli-mbp locus of the MBP gene, which was functionally enriched by subnetwork enrichment analysis as an orchestrator among associated genes. The differential hypomethylation of the top-ranked cg24700313 cluster in the golli-mbp locus was validated by pyrosequencing in an independent cohort of 224 children with AD and 44 control subjects. DNA methylation was found to be negatively correlated with disease severity but showed no significant correlation with IgE levels after age adjustment. The multivariate correlation analysis represents a higher score in AD intensity with significantly increased IgE levels and decreased methylation levels in cg27400313. We concluded that methylation loss in the golli-mbp locus is an epigenetic factor associated with disease severity of childhood AD.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mindy Ming-Huey Guo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ling-Sai Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, National Cheng-Kung University, Tainan, Taiwan; Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan
| | - Li-Feng Bu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiao-Lun Chu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Contribution of Regulatory T Cell Methylation Modifications to the Pathogenesis of Allergic Airway Diseases. J Immunol Res 2021; 2021:5590217. [PMID: 34239942 PMCID: PMC8238596 DOI: 10.1155/2021/5590217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Regulatory T (Treg) cells are a subtype of CD4+ T cells that play a significant role in the protection from autoimmunity and the maintenance of immune tolerance via immune regulation. Epigenetic modifications of Treg cells (i.e., cytosine methylation at the promoter region of the transcription factor, Forkhead Box P3) have been found to be closely associated with allergic diseases, including allergic rhinitis, asthma, and food allergies. In this study, we highlighted the recent evidence on the contribution of epigenetic modifications in Treg cells to the pathogenesis of allergic diseases. Moreover, we also discussed directions for future clinical treatment approaches, with a particular emphasis on Treg cell-targeted therapies for allergic disorders.
Collapse
|
17
|
Evaluation of Sensitivity and Specificity of Interleukins 25 and 33 in Diagnosis of Pediatric Asthma. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of interleukin 25 (a member of the interleukin 17 family) and interleukin 33 (a member of the interleukin 1 family) in asthma and airway hyperresponsiveness are yet to be fully understood. The aim of this study was to investigate the roles of IL- 25 and IL- 33 in the diagnosis of pediatric asthma and their association with severity and treatment of the disease. This was a case-control study comprising 74 children with asthma as the patient group and 75 healthy children as the control group. The age of the participants ranged from 1 to 15 years. Levels of IL- 25 and IL- 33 in the serum were measured using ELISA kits. The highest positive predictive values (88.9%) occurred in IL- 25 with sensitivity and specificity of about 97.3% and 88.0% respectively, while the sensitivity and specificity of IL- 33 were about 51.4% and 66.0% respectively, with a positive predictive value of about (60.3%). The present study thus found that IL- 25 had higher diagnostic sensitivity and specificity values than IL- 33 in children with asthma. In addition, both interleukins were found to have a statistical significance regarding treatment of the disease in children.
Collapse
|
18
|
Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Curr Opin Pulm Med 2021; 26:20-26. [PMID: 31688241 DOI: 10.1097/mcp.0000000000000638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Epithelial barrier defects are being appreciated in various inflammatory disorders; however, causal underlying mechanisms are lacking. In this review, we describe the disruption of the airway epithelium with regard to upper and lower airway diseases, the role of epigenetic alterations underlying this process, and potential novel ways of interfering with dysfunctional epithelial barriers as a novel therapeutic approach. RECENT FINDINGS A defective epithelial barrier, impaired innate defence mechanisms or hampered epithelial cell renewal are found in upper and lower airway diseases. Barrier dysfunction might facilitate the entrance of foreign substances, initiating and facilitating the onset of disease. Latest data provided novel insights for possible involvement of epigenetic alterations induced by inflammation or other unknown mechanisms as a potential mechanism responsible for epithelial defects. Additionally, these mechanisms might precede disease development, and represent a novel therapeutic approach for restoring epithelial defects. SUMMARY A better understanding of the role of epigenetics in driving and maintaining epithelial defects in various inflammatory diseases, using state-of-the-art biology tools will be crucial in designing novel therapies to protect or reconstitute a defective airway epithelial barrier.
Collapse
|
19
|
Liu T, Sun Y, Bai W. The Role of Epigenetics in the Chronic Sinusitis with Nasal Polyp. Curr Allergy Asthma Rep 2020; 21:1. [PMID: 33236242 DOI: 10.1007/s11882-020-00976-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and heterogeneous inflammatory disease. The underlying epigenetic mechanisms and treatment of CRSwNP are partially understood. Of the different epigenetic changes in CRSwNP, histone deacetylases (HDACs), methylation of DNA, and the levels of miRNA are widely studied. Here, we review the human studies of epigenetic mechanisms in CRSwNP. RECENT FINDINGS The promoters of COL18A1, PTGES, PLAT, and TSLP genes are hypermethylated in CRSwNP compared with those of controls, while the promoters of PGDS, ALOX5AP, LTB4R, IL-8, and FZD5 genes are hypomethylated in CRSwNP. Promoter hypermethylation suppresses the gene expression, while promoter hypomethylation increases the gene expression. Studies have shown the elevation in the levels of HDAC2, HDAC4, and H3K4me3 in CRSwNP. In CRSwNP patients, there is also an upregulation of certain miRNAs including miR-125b, miR-155, miR-19a, miR-142-3p, and miR-21 and downregulation of miR-4492. Epigenetics takes part in the immunology of CRSwNP and may give rise to endotypes of CRSwNP. Both HDAC2 and the miRNA including miR-18a, miR-124a, and miR-142-3p may take function in the regulation of glucocorticoid resistance. HDAC inhibitors and KDM2B have shown effectiveness in decreasing nasal polyp, and DNA methyltransferase (DNMT) or HDAC inhibitors may have a potential efficacy for the treatment of CRSwNP. Recent advances in the epigenetics of CRSwNP have led to the identification of several potential therapeutic targets for this disease. The use of epigenetics may provide novel and effective biomarkers and therapies for the treatment of nasal polyp.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Sun
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
20
|
Zhang H, Liu B, Shi X, Sun X. Long noncoding RNAs: Potential therapeutic targets in cardiocerebrovascular diseases. Pharmacol Ther 2020; 221:107744. [PMID: 33181193 DOI: 10.1016/j.pharmthera.2020.107744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Cardiocerebrovascular disease is a collective term for cardiovascular and cerebrovascular diseases. Because of the complex mechanisms involved in cardiocerebrovascular diseases, limited effective treatments have been developed. With advancements in precision medicine, studies have focused on long noncoding RNAs (lncRNAs) in cerebrovascular diseases. LncRNAs, which are over 200 nucleotides long, regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs play pivotal roles in the progression of cardiocerebrovascular diseases. For example, recent studies suggested that abnormal expression of lncRNAs are closely related to the occurrence and progression of these diseases. LncRNAs regulate gene expression by specifically binding to mRNA to modulate disease progression, serving as biomarkers for the diagnosis and prognosis of cardiocerebrovascular diseases. In this review, we discuss the roles, mechanisms, and clinical value of lncRNAs in cardiocerebrovascular diseases, providing a new perspective for the diagnosis and treatment of the diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Bo Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
21
|
Genetic and Epigenetic Aspects of Atopic Dermatitis. Int J Mol Sci 2020; 21:ijms21186484. [PMID: 32899887 PMCID: PMC7554821 DOI: 10.3390/ijms21186484] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Atopic dermatitis is a heterogeneous disease, in which the pathogenesis is associated with mutations in genes encoding epidermal structural proteins, barrier enzymes, and their inhibitors; the role of genes regulating innate and adaptive immune responses and environmental factors inducing the disease is also noted. Recent studies point to the key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation, and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis (AD) differs from that observed in healthy people. This applies to the genes affecting the regulation of immune response and inflammatory processes, e.g., both affecting Th1 bias and promoting Th2 responses and the genes of innate immunity, as well as those encoding the structural proteins of the epidermis. Understanding of the epigenetic alterations is therefore pivotal to both create new molecular classifications of atopic dermatitis and to enable the development of personalized treatment strategies.
Collapse
|
22
|
Santos NCD, Gomes TN, Góis IADF, Oliveira JSD, Coelho LFL, Ferreira GP, Silva FRPD, Pereira ACTDC. Association of single nucleotide polymorphisms in TNF-α (-308G/A and -238G/A) to dengue: Case-control and meta-analysis study. Cytokine 2020; 134:155183. [PMID: 32731142 DOI: 10.1016/j.cyto.2020.155183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 01/27/2023]
Abstract
Dengue is an acute viral disease whose clinical condition is related to the interaction of factors related to the Dengue virus (DENV), environment and the host, with the immunity of the human host contributing a substantial role in the pathogenesis of DENV infection. Studies have demonstrated that single nucleotide polymorphisms (SNPs) in the promoter regions of cytokine genes such as tumor necrosis factor (TNF-α) affect transcription and/or expression; and therefore, may influence the pathogenesis of infectious diseases, such as dengue. Consequently, the objective of this study was to assess through a case-control study whether there was an association between the presence of SNPs -308G/A and -238G/A in the TNF-α gene and 158 patients with dengue and 123 controls. No association was found between the SNPs and the dengue cases in the study population. We then performed a meta-analysis, retrieving data from case-control studies in the literature for the same polymorphisms. For SNP-308G/A, the GG genotype was associated with dengue fever (DF) risk (OR = 1.24, 1.00-1.53; p = 0.05; I2 = 0%), while the GA genotype (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) and allele A (OR = 0.75, 0.60-0.93; p = 0.01; I2 = 0%) were associated with protection. The genotype GG population in the Asian continent (OR = 1.81 [1.06, 3.09], p = 0.03, I2 = 0%) and American (OR = 1.29 [1.00, 1.65], p = 0.05, I2 = 0%) was also associated with protection in the comparison between the cases versus the control group. In each comparison, the dominant model AA + GA (p < 0.00001) conferred protection. For SNP-238G/A the GA genotype was associated with risk for dengue hemorrhagic fever (DHF; OR = 2.17, 1.28-3.67; p = 0.004; I2 = 0%)), and the dominant AA + GA model (p < 0.00001) was associated with protection in each comparison. In summary, our results did not associate SNPs in the TNF-α gene to dengue in the Brazilian northeast population. However, combined literature data suggested the effect of the GG and GA genotypes of the SNP-308G/A on risk and protection, respectively, in Asian and American populations.
Collapse
Affiliation(s)
- Naiany Carvalho Dos Santos
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Thiago Nobre Gomes
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | - Iara Alda de Fontes Góis
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Gustavo Portela Ferreira
- Laboratório de Biologia de Microrganismos, Universidade Federal do Delta do Parnaíba, Parnaíba, Piauí, Brazil
| | | | | |
Collapse
|
23
|
Lee J, Papa F, Jaini PA, Alpini S, Kenny T. An Epigenetics-Based, Lifestyle Medicine-Driven Approach to Stress Management for Primary Patient Care: Implications for Medical Education. Am J Lifestyle Med 2020; 14:294-303. [PMID: 32477032 PMCID: PMC7232902 DOI: 10.1177/1559827619847436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Over 75% of patients in the primary care setting present with stress-related complaints. Curiously, patients and health care providers all too often see stress as a relatively benign sequela of many common illnesses such as heart disease, cancer, lung disease, dementia, diabetes, and mental illness. Unfortunately, various day-to-day lifestyle choices and environmental factors, unrelated to the presence of any disease, can cause stress sufficient to contribute to the development of various diseases/disorders and suboptimal health. There is evidence suggesting that counseling in stress management-oriented therapeutic interventions (as offered by lifestyle medicine-oriented practitioners) may prevent or reduce the onset, severity, duration, and/or overall burden of stress-related illnesses. Such counseling often involves considerations such as the patient's nutrition, physical activity, interest in/capacity to meditate, drug abuse/cessation, and so on. Unfortunately, lifestyle medicine-oriented approaches to stress management are rarely offered in primary care-the patient care arena wherein such counseling would likely be best received by patients. Would health care outcomes improve if primary care providers offered counseling in both stress management and positive lifestyle choices? The purpose of this article is to provide both primary care practitioners and educators in health care training programs with an introductory overview of epigenetics. An emerging field of science offering insights into how factors such as stress and lifestyle choices interact with our genes in ways that can both positively and negatively impact the various micro (eg, cellular) through macro (eg, physiologic, pathophysiologic) processes that determine our tendencies toward illness or wellness. A deeper understanding of epigenetics, as provided herein, should enable primary care providers and medical educators to more confidently advocate for the primary benefits associated with counseling in both stress reduction and the pursuit of healthy lifestyle choices.
Collapse
Affiliation(s)
- Jenny Lee
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Frank Papa
- Frank Papa, DO, PhD, Medical Education, UNT Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107; e-mail:
| | - Paresh Atu Jaini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Sarah Alpini
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| | - Tim Kenny
- Preventive Medicine, Loma Linda University, Loma Linda, California (JL)
- UNT Health Science Center, Fort Worth, Texas (FP, SA, TK)
- John Peter Smith Hospital, Fort Worth, Texas (PJ)
| |
Collapse
|
24
|
The Roadmap From Allergic Rhinitis to Asthma. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Bachmann MF, Mohsen MO, Kramer MF, Heath MD. Vaccination against Allergy: A Paradigm Shift? Trends Mol Med 2020; 26:357-368. [PMID: 32277930 DOI: 10.1016/j.molmed.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/06/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
Abstract
Since the discovery that IgE antibodies mediate allergy, decades of research have unraveled complex mechanisms associated with conventional immunotherapy and the vital protagonists that shape 'immune tolerance' to allergens. Debate exists on what should constitute the dominant effector mechanism in driving rational drug designs for next-generation immunotherapies. As vaccine technology continues to advance, the development of novel vaccines in this area of continued medical need might stand on a threshold of breakthrough inspired by experiments by Dunbar on the passive vaccination of allergic animals more than 100 years ago. In this opinion article, we discuss both novel insights into IgG antibodies as the principle effector modality induced by specific immunotherapy and advances in antigen-carrier design that may catapult allergy treatment into our modern world.
Collapse
Affiliation(s)
- Martin F Bachmann
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of BioMedical Research, Immunology RIA, Inselspital, University of Bern, Bern, Switzerland
| | - Mona O Mohsen
- Department of BioMedical Research, Immunology RIA, Inselspital, University of Bern, Bern, Switzerland; National Centre for Cancer Care & Research (NCCCR), Doha, State of Qatar
| | - Matthias F Kramer
- Allergy Therapeutics (UK) Ltd, Dominion Way, Worthing, UK; Bencard Allergie GmbH, Leopoldstrasse, Munich, Germany; Bencard Adjuvant Systems (a division of Allergy Therapeutics), Dominion Way, Worthing, UK
| | - Matthew D Heath
- Allergy Therapeutics (UK) Ltd, Dominion Way, Worthing, UK; Bencard Adjuvant Systems (a division of Allergy Therapeutics), Dominion Way, Worthing, UK.
| |
Collapse
|
26
|
Tang HHF, Sly PD, Holt PG, Holt KE, Inouye M. Systems biology and big data in asthma and allergy: recent discoveries and emerging challenges. Eur Respir J 2020; 55:13993003.00844-2019. [PMID: 31619470 DOI: 10.1183/13993003.00844-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Asthma is a common condition caused by immune and respiratory dysfunction, and it is often linked to allergy. A systems perspective may prove helpful in unravelling the complexity of asthma and allergy. Our aim is to give an overview of systems biology approaches used in allergy and asthma research. Specifically, we describe recent "omic"-level findings, and examine how these findings have been systematically integrated to generate further insight.Current research suggests that allergy is driven by genetic and epigenetic factors, in concert with environmental factors such as microbiome and diet, leading to early-life disturbance in immunological development and disruption of balance within key immuno-inflammatory pathways. Variation in inherited susceptibility and exposures causes heterogeneity in manifestations of asthma and other allergic diseases. Machine learning approaches are being used to explore this heterogeneity, and to probe the pathophysiological patterns or "endotypes" that correlate with subphenotypes of asthma and allergy. Mathematical models are being built based on genomic, transcriptomic and proteomic data to predict or discriminate disease phenotypes, and to describe the biomolecular networks behind asthma.The use of systems biology in allergy and asthma research is rapidly growing, and has so far yielded fruitful results. However, the scale and multidisciplinary nature of this research means that it is accompanied by new challenges. Ultimately, it is hoped that systems medicine, with its integration of omics data into clinical practice, can pave the way to more precise, personalised and effective management of asthma.
Collapse
Affiliation(s)
- Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia .,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Patrick G Holt
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Kathryn E Holt
- Dept of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia.,Cambridge Baker Systems Genomics Initiative, Dept of Public Health and Primary Care, University of Cambridge, Cambridge, UK.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Alan Turing Institute, London, UK
| |
Collapse
|
27
|
Mastrorilli C, Santoro A, Caffarelli C. Primary Prevention of Allergic Diseases: The Role of Early Exposure to Cow's Milk Formula. Front Pediatr 2020; 8:420. [PMID: 32850536 PMCID: PMC7399633 DOI: 10.3389/fped.2020.00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The burden of atopic disorders is continuously worsening worldwide, especially in childhood. Therefore, risk factors and preventive measures have been called into question. The age when infants introduce complementary foods, varies greatly according to traditional habits, clinical practice recommendations, and breastfeeding duration. It is still debated the impact of early exposure to cow's milk on the increase of allergic diseases, mainly food allergy, and atopic dermatitis. Many factors may play a role in this potential link, such as genetic variation, parental atopy, infant feeding regimens. Recent evidences suggest that the early introduction of complementary foods (up to 6 months of age), including cow's milk, could prevent the development of food allergies. So, several countries included this new approach into feeding guidelines. Our review will focus on the influence of early exposure to cow's milk formula on the development of allergic diseases. Some trials found that cow's milk supplementation in the first days of life could even increase the development of IgE sensitization and food allergies. Other trials did not show any efficacy on prevention of allergic disorders. Further studies are needed to understand the prospective for allergy prevention related to optimal timing of cow's milk formula introduction.
Collapse
Affiliation(s)
- Carla Mastrorilli
- UO Pediatria e Pronto Soccorso, Azienda Ospedaliero-Universitaria Consorziale Policlinico, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Angelica Santoro
- Clinica Pediatrica, Dipartimento Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Carlo Caffarelli
- Clinica Pediatrica, Dipartimento Medicina e Chirurgia, Università di Parma, Parma, Italy
| |
Collapse
|
28
|
Sestito S, D'Auria E, Baldassarre ME, Salvatore S, Tallarico V, Stefanelli E, Tarsitano F, Concolino D, Pensabene L. The Role of Prebiotics and Probiotics in Prevention of Allergic Diseases in Infants. Front Pediatr 2020; 8:583946. [PMID: 33415087 PMCID: PMC7783417 DOI: 10.3389/fped.2020.583946] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Allergic diseases have been linked to genetic and/or environmental factors, such as antibiotic use, westernized high fat and low fiber diet, which lead to early intestinal dysbiosis, and account for the rise in allergy prevalence, especially in western countries. Allergic diseases have shown reduced microbial diversity, including fewer lactobacilli and bifidobacteria, within the neonatal microbiota, before the onset of atopic diseases. Raised interest in microbiota manipulating strategies to restore the microbial balance for atopic disease prevention, through prebiotics, probiotics, or synbiotics supplementation, has been reported. We reviewed and discussed the role of prebiotics and/or probiotics supplementation for allergy prevention in infants. We searched PubMed and the Cochrane Database using keywords relating to "allergy" OR "allergic disorders," "prevention" AND "prebiotics" OR "probiotics" OR "synbiotics." We limited our evaluation to papers of English language including children aged 0-2 years old. Different products or strains used, different period of intervention, duration of supplementation, has hampered the draw of definitive conclusions on the clinical impact of probiotics and/or prebiotics for prevention of allergic diseases in infants, except for atopic dermatitis in infants at high-risk. This preventive effect on eczema in high-risk infants is supported by clear evidence for probiotics but only moderate evidence for prebiotic supplementation. However, the optimal prebiotic or strain of probiotic, dose, duration, and timing of intervention remains uncertain. Particularly, a combined pre- and post-natal intervention appeared of stronger benefit, although the definition of the optimal intervention starting time during gestation, the timing, and duration in the post-natal period, as well as the best target population, are still an unmet need.
Collapse
Affiliation(s)
- Simona Sestito
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital-University of Milan, Milan, Italy
| | - Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, Bari, Italy
| | - Silvia Salvatore
- Department of Pediatrics, Ospedale "F. Del Ponte", University of Insubria, Varese, Italy
| | - Valeria Tallarico
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ettore Stefanelli
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Flora Tarsitano
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Daniela Concolino
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.,Department of Health Sciences, School of Medicine and Surgery, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Licia Pensabene
- Pediatric Unit, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
29
|
Neophytou AM, Oh SS, Hu D, Huntsman S, Eng C, Rodríguez-Santana JR, Kumar R, Balmes JR, Eisen EA, Burchard EG. In utero tobacco smoke exposure, DNA methylation, and asthma in Latino children. Environ Epidemiol 2019; 3:e048. [PMID: 31342008 PMCID: PMC6571182 DOI: 10.1097/ee9.0000000000000048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Maternal smoking during pregnancy is a risk factor for chronic disease later in life and has been associated with variability of DNA methylation at specific cytosine-phosphate-guanine (CpG) loci. We assessed the role of DNA methylation as a potential mediator of adverse effects of in utero tobacco smoke exposures on asthma outcomes in Latino children from the US mainland and Puerto Rico. METHODS Relationships between self-reported exposure and DNA methylation at CpG loci previously reported to be associated with maternal smoking were assessed in a subsample consisting of 572 children aged 8-21 years (310 cases with asthma, 262 healthy controls), sampled from a larger asthma case-control study. Subsequently, we assessed associations between top loci and asthma-related outcomes, followed by mediation analysis for loci for which associations with outcomes were observed. RESULTS Self-reported maternal smoking was associated with a -1.5% (95% confidence interval (CI) = -2.4%, -0.6%) lower methylation at CpG locus cg05575921 on the AHRR gene; a 1% increase in DNA methylation at the same locus resulted in an odds ratio (OR) of 0.90 (95% CI = 0.83, 0.96) for the odds of asthma. The OR for the indirect effect of maternal smoking on asthma mediated through methylation at the cg05575921 locus was 1.18 (95% CI = 1.07, 1.68), compared to the OR for the total effect of exposure in the parent study of 1.48 (95% CI = 1.03, 2.11). CONCLUSIONS Our findings suggest potential mediation by DNA methylation in the association between maternal smoking during pregnancy and asthma status.
Collapse
Affiliation(s)
- Andreas M. Neophytou
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Sam S. Oh
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California
| | | | - Rajesh Kumar
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - John R. Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
- Department of Medicine, University of California, San Francisco, California
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | | |
Collapse
|
30
|
Soltaninejad H, Sadeghan AA, Hosseinkhani S, Asadollahi MA, Hosseini M, Ganjali MR. Application of intercalating molecules in detection of methylated DNA in the presence of silver ions. Methods Appl Fluoresc 2019; 7:035005. [DOI: 10.1088/2050-6120/ab025b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol 2019; 144:1242-1253.e7. [PMID: 31082457 DOI: 10.1016/j.jaci.2019.04.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND A defective epithelial barrier is found in patients with allergic rhinitis (AR) and asthma; however, the underlying mechanisms remain poorly understood. Histone deacetylase (HDAC) activity has been identified as a crucial driver of allergic inflammation and tight junction dysfunction. OBJECTIVE We investigated whether HDAC activity has been altered in patients with AR and in a mouse model of house dust mite (HDM)-induced allergic asthma and whether it contributed to epithelial barrier dysfunction. METHODS Primary nasal epithelial cells of control subjects and patients with AR were cultured at the air-liquid interface to study transepithelial electrical resistance and paracellular flux of fluorescein isothiocyanate-dextran (4 kDa) together with mRNA expression and immunofluorescence staining of tight junctions. Air-liquid interface cultures were stimulated with different concentrations of JNJ-26481585, a broad-spectrum HDAC inhibitor. In vivo the effect of JNJ-26481585 on mucosal permeability and tight junction function was evaluated in a mouse model of HDM-induced allergic airway inflammation. RESULTS General HDAC activity was greater in nasal epithelial cells of patients with AR and correlated inversely with epithelial integrity. Treatment of nasal epithelial cells with JNJ-26481585 restored epithelial integrity by promoting tight junction expression and protein reorganization. HDM-sensitized mice were treated with JNJ-26481585 to demonstrate the in vivo role of HDACs. Treated mice did not have allergic airway inflammation and had no bronchial hyperreactivity. Moreover, JNJ-26481585 treatment restored nasal mucosal function by promoting tight junction expression. CONCLUSION Our findings identify increased HDAC activity as a potential tissue-injury mechanism responsible for dysregulated epithelial cell repair, leading to defective epithelial barriers in AR. Blocking HDAC activity is a promising novel target for therapeutic intervention in patients with airway diseases.
Collapse
|
32
|
Lee YG, Reader BF, Herman D, Streicher A, Englert JA, Ziegler M, Chung S, Karpurapu M, Park GY, Christman JW, Ballinger MN. Sirtuin 2 enhances allergic asthmatic inflammation. JCI Insight 2019; 4:124710. [PMID: 30668546 PMCID: PMC6478424 DOI: 10.1172/jci.insight.124710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple antigen: dust mite, ragweed, and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA-challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment, which resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Collapse
Affiliation(s)
- Yong Gyu Lee
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Brenda F. Reader
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Derrick Herman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Adam Streicher
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Joshua A. Englert
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Mathias Ziegler
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Sangwoon Chung
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Manjula Karpurapu
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Gye Young Park
- Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W. Christman
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Megan N. Ballinger
- Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|
33
|
Sadeghan AA, Soltaninejad H, Hosseinkhani S, Hosseini M, Ganjali MR, Asadollahi MA. Fluorescence enhancement of silver nanocluster at intrastrand of a 12C-loop in presence of methylated region of sept 9 promoter. Anal Chim Acta 2018; 1038:157-165. [DOI: 10.1016/j.aca.2018.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
|
34
|
Krajewski D, Kaczenski E, Rovatti J, Polukort S, Thompson C, Dollard C, Ser-Dolansky J, Schneider SS, Kinney SRM, Mathias CB. Epigenetic Regulation via Altered Histone Acetylation Results in Suppression of Mast Cell Function and Mast Cell-Mediated Food Allergic Responses. Front Immunol 2018; 9:2414. [PMID: 30405614 PMCID: PMC6206211 DOI: 10.3389/fimmu.2018.02414] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Mast cells are highly versatile cells that perform a variety of functions depending on the immune trigger, context of activation, and cytokine stimulus. Antigen-mediated mast cell responses are regulated by transcriptional processes that result in the induction of numerous genes contributing to mast cell function. Recently, we also showed that exposure to dietary agents with known epigenetic actions such as curcumin can suppress mast cell-mediated food allergy, suggesting that mast cell responses in vivo may be epigenetically regulated. To further assess the effects of epigenetic modifications on mast cell function, we examined the behavior of bone marrow-derived mast cells (BMMCs) in response to trichostatin A (TSA) treatment, a well-studied histone deacetylase inhibitor. IgE-mediated BMMC activation resulted in enhanced expression and secretion of IL-4, IL-6, TNF-α, and IL-13. In contrast, pretreatment with TSA resulted in altered cytokine secretion. This was accompanied by decreased expression of FcεRI and mast cell degranulation. Interestingly, exposure to non-IgE stimuli such as IL-33, was also affected by TSA treatment. Furthermore, continuous TSA exposure contributed to mast cell apoptosis and a decrease in survival. Further examination revealed an increase in I-κBα and a decrease in phospho-relA levels in TSA-treated BMMCs, suggesting that TSA alters transcriptional processes, resulting in enhancement of I-κBα transcription and decreased NF-κB activation. Lastly, treatment of wild-type mice with TSA in a model of ovalbumin-induced food allergy resulted in a significant attenuation in the development of food allergy symptoms including decreases in allergic diarrhea and mast cell activation. These data therefore suggest that the epigenetic regulation of mast cell activation during immune responses may occur via altered histone acetylation, and that exposure to dietary substances may induce epigenetic modifications that modulate mast cell function.
Collapse
Affiliation(s)
- Dylan Krajewski
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Edwin Kaczenski
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Stephanie Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Chelsea Thompson
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Catherine Dollard
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States.,Northampton High School, Northampton, MA, United States
| | - Jennifer Ser-Dolansky
- Baystate Medical Center, Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Sallie S Schneider
- Baystate Medical Center, Pioneer Valley Life Sciences Institute, Springfield, MA, United States
| | - Shannon R M Kinney
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| | - Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
| |
Collapse
|
35
|
Soltaninejad H, Asadollahi MA, Hosseinkhani S, Hosseini M, Ganjali MR. Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop. Methods Appl Fluoresc 2018; 6:045009. [DOI: 10.1088/2050-6120/aae176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 2018; 142:765-772. [PMID: 30040975 PMCID: PMC6167012 DOI: 10.1016/j.jaci.2018.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerationational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions.
Collapse
Affiliation(s)
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
37
|
Saco TV, Breitzig MT, Lockey RF, Kolliputi N. Epigenetics of Mucus Hypersecretion in Chronic Respiratory Diseases. Am J Respir Cell Mol Biol 2018; 58:299-309. [PMID: 29096066 DOI: 10.1165/rcmb.2017-0072tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma, chronic obstructive pulmonary disease, and cystic fibrosis are three chronic pulmonary diseases that affect an estimated 420 million individuals across the globe. A key factor contributing to each of these conditions is mucus hypersecretion. Although management of these diseases is vastly studied, researchers have only begun to scratch the surface of the mechanisms contributing to mucus hypersecretion. Epigenetic regulation of mucus hypersecretion, other than microRNA post-translational modification, is even more scarcely researched. Detailed study of epigenetic mechanisms, such as DNA methylation and histone modification, could not only help to better the understanding of these respiratory conditions but also reveal new treatments for them. Because mucus hypersecretion is such a complex event, there are innumerable genes involved in the process, which are beyond the scope of a single review. Therefore, the purpose of this review is to narrow the focus and summarize specific epigenetic research that has been conducted on a few aspects of mucus hypersecretion in asthma, chronic obstructive pulmonary disease, cystic fibrosis, and some cancers. Specifically, this review emphasizes the contribution of DNA methylation and histone modification of particular genes involved in mucus hypersecretion to identify possible targets for the development of future therapies for these conditions. Elucidating the role of epigenetics in these respiratory diseases may provide a breath of fresh air to millions of affected individuals around the world.
Collapse
Affiliation(s)
- Tara V Saco
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
38
|
Kidoguchi M, Noguchi E, Nakamura T, Ninomiya T, Morii W, Yoshida K, Morikawa T, Kato Y, Imoto Y, Sakashita M, Takabayashi T, Fujieda S. DNA Methylation of Proximal PLAT Promoter in Chronic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy 2018; 32:374-379. [DOI: 10.1177/1945892418782236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Nasal polyps (NP) are characterized by pseudocysts derived from stromal tissue edema and cause persistent infections in patients with chronic rhinosinusitis (CRS). A low level of tissue-type plasminogen activator (gene name PLAT) is considered a cause of stromal tissue edema because of insufficient plasmin activation in NP; however, the mechanism regulating PLAT gene expression levels is still unclear. The epigenetic mechanism regulating the PLAT gene expression has been studied in other tissues. Objective We aimed to investigate the methylation levels in the proximal PLAT promoter and their effects on gene expression in NP tissue. Methods We investigated the methylation levels at 3 CpG sites in the proximal PLAT promoter regions (−618, −121, and −105 with respect to the transcription initiation site) by bisulfite pyrosequencing and their effects on the gene expression by quantitative real-time polymerase chain reaction (qPCR) in 20 paired samples of NP and inferior turbinate tissue (IT) from patients with CRS. Results The DNA methylation levels at all CpG sites were higher ( P < .01), and the PLAT expression was lower ( P < .001) in NP compared with IT. The methylation changes at the −618 site showed a negative correlation with the gene expression changes between NP and IT ( r = −.65, P < .01). Conclusions Hypermethylation of PLAT promoter may downregulate the gene expression in NP, leading to excessive fibrin deposition by aberrant coagulation cascade. DNA methylation of proximal PLAT promoter may contribute to NP growth and have a potential as a new therapeutic target.
Collapse
Affiliation(s)
- Masanori Kidoguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takako Nakamura
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Wataru Morii
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kanako Yoshida
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Taiyo Morikawa
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| |
Collapse
|
39
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Tantilipikorn P, Sookrung N, Muangsomboon S, Lumyongsatien J, Bedavanija A, Suwanwech T. Endotyping of Chronic Rhinosinusitis With and Without Polyp Using Transcription Factor Analysis. Front Cell Infect Microbiol 2018; 8:82. [PMID: 29637046 PMCID: PMC5880998 DOI: 10.3389/fcimb.2018.00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
Inflammation of the nose and paranasal sinus or rhinosinusitis (RS) is a significant global health problem that is both very common and very costly to treat. Previous reports reveal variability in histology and mechanism of inflammation in patients with chronic rhinosinusitis with and without polyp (CRScNP and CRSsNP, respectively). There are various methods and hypothesis that try to explain this variability. Accordingly, the aim of this study was to investigate the incidence of each type of sinonasal inflammation among patients diagnosed with CRScNP or CRSsNP using transcription factor analysis (TFA). This study included mucosa specimens from nose/paranasal sinuses from patients with chronic rhinitis (CR), CRSsNP, or CRScNP that were obtained at the Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand during the June 2009 to May 2012 study period. TFA was employed to measure the following transcription factors: T-box transcription factor (T-bet) for Th1, GATA binding protein 3 (GATA-3) for Th2, retinoic acid-related orphan receptor C (RORC) for Th17, and forkhead box P3 (FOXP3) for Treg. Forty-one subjects (22 males, 19 females) were enrolled, with a mean age of 45.93 ± 13 years. Twenty-six patients were diagnosed with CRScNP, 7 with CRSsNP, and 8 with CR (controls). The majority of CRScNP specimens (76.9%) had eosinophil count greater than 100 cells/high-power field (HPF). Mean eosinophil count was 930.08 ± 1,399 cells/HPF (range: 17-5,570). Th2 transcription factor (GATA-3) was statistically significantly higher in the CRScNP group than in the CRS and control groups (p < 0.001); whereas, Treg transcription factor (FOXP3) was statistically significantly lower in the CRScNP group than in the CRSsNP and control groups (p < 0.001). The transcription factors for Th1 and Th17 (T-bet and RORC, respectively) were not significantly different among the three groups. The result of transcription factor analysis revealed hyperfunction of Th2 in patients with CRScNP, which might result in hypereosinophilic infliltration in the polyps. One explanation for this finding is the decreased activity of Treg. Although environment-host interaction is the most probable hypothesis, the etiology of aberrant adaptive immunity needs to be elucidated.
Collapse
Affiliation(s)
- Pongsakorn Tantilipikorn
- Division of Rhinology and Allergy, Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Soranart Muangsomboon
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jate Lumyongsatien
- Division of Rhinology and Allergy, Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anan Bedavanija
- Division of Rhinology and Allergy, Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Triphoom Suwanwech
- Division of Rhinology and Allergy, Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
41
|
Kernaleguen M, Daviaud C, Shen Y, Bonnet E, Renault V, Deleuze JF, Mauger F, Tost J. Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods Mol Biol 2018. [PMID: 29524144 DOI: 10.1007/978-1-4939-7774-1_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and disease-associated investigations. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered as the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here we provide two detailed protocols based on commercial kits for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. If only DNA methylation is of interest, sequencing libraries can be constructed from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For samples with significant levels of hydroxymethylation such as stem cells or brain tissue, we describe the protocol of oxidative bisulfite sequencing (OxBs-seq), which in its current version uses a post-bisulfite adaptor tagging (PBAT) approach. Two methylomes need to be generated: a classic methylome following bisulfite conversion and analyzing both methylated and hydroxymethylated cytosines and a methylome analyzing only methylated cytosines, respectively. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocols have been successfully applied to different human samples and yield robust and reproducible results.
Collapse
Affiliation(s)
- Magali Kernaleguen
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France
| | - Yimin Shen
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France
| | - Eric Bonnet
- Laboratory for Bio-analysis, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France.,Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, Paris, France
| | - Florence Mauger
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Evry, France.
| |
Collapse
|
42
|
Daviaud C, Renault V, Mauger F, Deleuze JF, Tost J. Whole-Genome Bisulfite Sequencing Using the Ovation® Ultralow Methyl-Seq Protocol. Methods Mol Biol 2018; 1708:83-104. [PMID: 29224140 DOI: 10.1007/978-1-4939-7481-8_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation has become a subject of intensive research for many complex diseases. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies can be considered the gold standard for a comprehensive and quantitative analysis of cytosine methylation throughout the genome. Several approaches including tagmentation- and post bisulfite adaptor tagging (PBAT)-based WGBS have been devised. Here, we provide a detailed protocol based on a commercial kit for the preparation of libraries for WGBS from limited amounts of input DNA (50-100 ng) using the classical approach of WGBS by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. The converted library is then amplified with an optimal number of PCR cycles to ensure high sequence diversity and low duplicate rates. Spike-in of unmethylated DNA allows for the precise estimation of bisulfite conversion rates. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human samples as well as DNA extracted from plant tissues and yields robust and reproducible results.
Collapse
Affiliation(s)
- Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, Paris, 75010, France
| | - Florence Mauger
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jean-François Deleuze
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
- Laboratory for Bioinformatics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, Paris, 75010, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
43
|
Review: Environmental impact on ocular surface disorders: Possible epigenetic mechanism modulation and potential biomarkers. Ocul Surf 2017; 15:680-687. [DOI: 10.1016/j.jtos.2017.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/02/2017] [Accepted: 05/28/2017] [Indexed: 12/27/2022]
|
44
|
Yue H, Yan W, Ji X, Gao R, Ma J, Rao Z, Li G, Sang N. Maternal Exposure of BALB/c Mice to Indoor NO2 and Allergic Asthma Syndrome in Offspring at Adulthood with Evaluation of DNA Methylation Associated Th2 Polarization. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097011. [PMID: 28935613 PMCID: PMC5903874 DOI: 10.1289/ehp685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Fetal stress has been proposed to be associated with diseases in both children and adults. Epidemiological studies suggest that maternal exposure to nitrogen dioxide (NO2) contributes to increased morbidity and mortality of offspring with allergic asthma later in life. OBJECTIVES We aimed to test whether maternal NO2 exposure causes allergic asthma-related consequences in offspring absent any subsequent lung provocation and whether this exposure enhances the likelihood of developing allergic asthma or the intensity of developed allergic airway disease following postnatal allergic sensitization and challenge. In addition, if such consequences and enhancements occurred, we sought to determine the mechanism(s) of these responses. METHODS Pregnant BALB/c mice were exposed to either NO2 (2.5 ppm, 5 h/day) or air daily throughout the gestation period. Offspring were sacrificed on postnatal days (PNDs) 1, 7, 14, 21, and 42, and remaining offspring were sensitized by ovalbumin (OVA) injection followed by OVA aerosol challenge during postnatal wk 7-9. We analyzed the lung histopathology, inflammatory cell infiltration, airway hyper-responsiveness (AHR), immune responses, and gene methylation under different treatment conditions. RESULTS Maternal exposure to NO2 caused a striking increase in inflammatory cell infiltration and the release of type 2 cytokines in the lungs of offspring at PNDs 1 and 7; however, these alterations were reversed during postnatal development. Following OVA sensitization and challenge, the exposure enhanced the levels of allergic asthma-characterized OVA-immunoglobulin (Ig) E, AHR, and airway inflammation in adult offspring. Importantly, differentiation of T-helper (Th) 2 cells and demethylation of the interleukin-4 (IL4) gene occurred during the process. CONCLUSIONS Maternal exposure to indoor environmental NO2 causes allergic asthma-related consequences in offspring absent any subsequent lung provocation and potentiates the symptoms of allergic asthma in adult offspring following postnatal allergic sensitization and challenge; this response is associated with the Th2-based immune response and DNA methylation of the IL4 gene. https://doi.org/10.1289/EHP685.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, People's Republic of China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
45
|
Lee KH, Song Y, O'Sullivan M, Pereira G, Loh R, Zhang GB. The Implications of DNA Methylation on Food Allergy. Int Arch Allergy Immunol 2017; 173:183-192. [PMID: 28848217 DOI: 10.1159/000479513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Food allergy is a major clinical and public health concern worldwide. The risk factors are well defined, however, the mechanisms by which they affect immune development remain largely unknown, and unfortunately the effective treatment or prevention of food allergy is still being researched. Recent studies show that the genes that are critical for the development of food allergy are regulated through DNA methylation. Environmental factors can affect host DNA methylation status and subsequently predispose people to food allergy. DNA methylation is therefore an important mediator of gene-environment interactions in food allergy and key to understanding the mechanisms underlying the allergic development. Indeed, the modification and identification of the methylation levels of specific genetic loci have gained increasing attention for therapeutic and diagnostic application in combating food allergy. In this review, we summarize and discuss the recent developments of DNA methylation in food allergy, including the pathogenesis, therapy, and diagnosis. This review will also summarize and discuss the environmental factors that affect DNA methylation levels in food allergy.
Collapse
Affiliation(s)
- Khui Hung Lee
- School of Public Health, Curtin University of Technology, Bentley WA, Australia
| | | | | | | | | | | |
Collapse
|
46
|
The effects of early life adversity on the immune system. Psychoneuroendocrinology 2017; 82:140-154. [PMID: 28549270 DOI: 10.1016/j.psyneuen.2017.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/23/2022]
Abstract
Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes.
Collapse
|
47
|
Hou TY, Chen MR, Chou YC, Kan PC, Tsai YT, Cha TL. Impact of Enhancer of Zeste Homolog 2 on T Helper Cell-Mediated Allergic Rhinitis. Front Immunol 2017; 8:790. [PMID: 28740493 PMCID: PMC5502279 DOI: 10.3389/fimmu.2017.00790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/22/2017] [Indexed: 11/13/2022] Open
Abstract
Enhancer of zeste homolog 2 (Ezh2) has been shown to play a role in the differentiation of T helper (Th) 1 and 2 cells in mice studies using Ezh2-deficient T cells. However, the results have been inconsistent, and the function of Ezh2 in human Th1 and Th2 cell differentiation and its association with disease remains controversial. We measured the expression of Ezh2 in Th1 and Th2 cells in peripheral blood mononuclear cells after acute challenge with house dust mite using flow cytometry in patients with allergic rhinitis (AR) and controls. The role of Ezh2 was further explored by adding the p38 inhibitor to see if this affected allergen-induced Th1 and Th2 differentiation. The expression of Ezh2 in the Th1 and Th2 cells was significantly lower in the patients than in the controls and was negatively correlated with serum IL-17A levels in the patients. Ex vivo allergen challenge resulted in rapid Th2 cell differentiation, which was negatively associated with the Ezh2 expression in Th2 cells. Inhibiting p38 activity increased the expression of Ezh2 in Th2 cells and reduced the number of differentiated Th2 cells. Our findings suggest that Ezh2 expression is potentially associated with AR development.
Collapse
Affiliation(s)
- Tsung-Yun Hou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Rong Chen
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chieh Kan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ta Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
48
|
Danielewicz H. Hits and defeats of genome-wide association studies of atopy and asthma. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
49
|
Klar K, Perchermeier S, Bhattacharjee S, Harb H, Adler T, Istvanffy R, Loffredo-Verde E, Oostendorp RA, Renz H, Prazeres da Costa C. Chronic schistosomiasis during pregnancy epigenetically reprograms T-cell differentiation in offspring of infected mothers. Eur J Immunol 2017; 47:841-847. [DOI: 10.1002/eji.201646836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/03/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Kathrin Klar
- Institute of Medical Microbiology, Immunology and Hygiene; Technische Universität München; Munich Germany
| | - Sophie Perchermeier
- Institute of Medical Microbiology, Immunology and Hygiene; Technische Universität München; Munich Germany
| | - Sonakshi Bhattacharjee
- Institute of Medical Microbiology, Immunology and Hygiene; Technische Universität München; Munich Germany
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics; Philipps University Marburg; Marburg Germany
| | - Thure Adler
- Helmholtz Zentrum München; Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH); Neuherberg Germany
| | - Rouzanna Istvanffy
- III. Medizinische Klinik und Poliklinik; Klinikum Rechts der Isar; Technische Universität München; Munich Germany
| | - Eva Loffredo-Verde
- Institute of Medical Microbiology, Immunology and Hygiene; Technische Universität München; Munich Germany
| | - Robert A. Oostendorp
- III. Medizinische Klinik und Poliklinik; Klinikum Rechts der Isar; Technische Universität München; Munich Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics; Philipps University Marburg; Marburg Germany
| | - Clarissa Prazeres da Costa
- Institute of Medical Microbiology, Immunology and Hygiene; Technische Universität München; Munich Germany
| |
Collapse
|
50
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|