1
|
Carucci L, Nocerino R, Coppola S, Bedogni G, Capasso P, Giglio V, Berni Canani R. Factors influencing the natural history of non-IgE-mediated gastrointestinal food allergies in paediatric age: a prospective multicentre cohort study. BMJ Paediatr Open 2025; 9:e003203. [PMID: 39922601 PMCID: PMC11808895 DOI: 10.1136/bmjpo-2024-003203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/12/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND We aimed at identifying the factors influencing the natural history of non-IgE-mediated gastrointestinal food allergies (non-IgE-GIFA), a group of common paediatric conditions including food protein-induced: enteropathy (FPE), allergic proctocolitis (FPIAP), enterocolitis syndrome (FPIES), and motility disorders (FPIMD). METHODS Prospective multicentre cohort study involving paediatric patients (both sexes, aged ≤14 y) with non-IgE-GIFA diagnosed and followed for 24 months at a Tertiary Centre for Paediatric Allergy, Gastroenterology and Nutrition. Anamnestic and clinical data were collected from all enrolled patients. RESULTS 123 non-IgE-GIFA patients were enrolled (56% male, median age (IQR) 150 (60-300) days): FPE (39%), FPIES (17%), FPIAP (16%) and FPIMD (28%). 42% of patients had multiple food allergies (FAs) at baseline, and 64% had a positive family history of allergy. Male sex (OR = 2.24, 95% CI 1.07 to 4.71) and every 1 month of diagnostic delay (OR=1.09, 95% CI 1.01 to 1.18) were positively associated with the occurrence of multiple FAs. At 24-month follow-up, 54% of patients acquired immune tolerance. This rate was higher in FPIAP (75%), when compared with FPIMD (62%), FPE (54%) and FPIES (24%). The odds of 24-month immune tolerance acquisition rate was lower in children with family history of allergy (OR=0.41, 95% CI 0.19 to 0.89) and in those with multiple FAs at baseline (OR=0.24, 95% CI 0.11 to 0.51). At 24-month follow-up, the rate of patients with allergic march was 0.46 (95% CI 0.38 to 0.55, n=57/123), without differences comparing the four phenotypes. The presence of multiple FAs at baseline was associated with an increased risk of developing allergic march (OR=2.22, 95% CI 1.07 to 4.61) at 24-month follow-up. CONCLUSIONS The results of the study suggest the potential role of modifiable and non-modifiable risk factors influencing the natural history of paediatric patients affected by non-IgE-GIFA.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- ImmunoNutritionLab, CEINGE Advanced Biotechnologies, Napoli, Campania, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- ImmunoNutritionLab, CEINGE Advanced Biotechnologies, Napoli, Campania, Italy
| | - Giorgio Bedogni
- Department of Primary Health Care, Internal Medicine Unit addressed to Frailty and Aging, AUSL Romagna, Ospedale Santa Maria delle Croci, Ravenna, Emilia-Romagna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Emilia-Romagna, Italy
| | - Pasqualina Capasso
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- ImmunoNutritionLab, CEINGE Advanced Biotechnologies, Napoli, Campania, Italy
| | - Veronica Giglio
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- ImmunoNutritionLab, CEINGE Advanced Biotechnologies, Napoli, Campania, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Napoli, Campania, Italy
- ImmunoNutritionLab, CEINGE Advanced Biotechnologies, Napoli, Campania, Italy
| |
Collapse
|
2
|
Hu P, Sun J, Gao R, Li K, Liu J, Pan X, Jin Z, Mao Y, Yang J, Yu R, Qi C. Harnessing the power of breast milk: how Lactiplantibacillus plantarum FN029 from rural western China mitigates severe atopic dermatitis in mice through retinol metabolism activation. Food Funct 2025. [PMID: 39912208 DOI: 10.1039/d4fo04300f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2025]
Abstract
Tongwei and Wuxi represent a rural county in western China and an industrialized city in the east, respectively. The study compared breast milk and the corresponding infant gut microbiota from 35 healthy mothers in Tongwei and 28 in Wuxi, uncovering significant differences in microbial alpha and beta diversity. A unique strain, Lactiplantibacillus plantarum FN029, characteristically transmitted from breast milk to the infant gut in Tongwei, was identified. Oral administration of FN029 to weaned BALB/c mice significantly alleviated atopic dermatitis severity caused by calcipotriol and ovalbumin. This reduction was paralleled by a decrease in mast cells and eosinophils in ear tissue and reduced levels of IL-4, IL-12, IL-33, IFN-γ, the IL-4/IFN-γ ratio, and IgE in plasma, along with an upsurge in regulatory T cells in the spleen. RNA sequencing revealed that FN029 activated the retinol metabolism pathway and the Wnt signaling pathway, enhancing immature dendritic cells and regulatory T cells. Metabolomics analysis indicated an increase in retinyl beta-glucuronide, a biomarker of vitamin A reserves. The mRNA expression of retinol-metabolizing enzymes was inversely related to the IL-4/IFN-γ ratio. FN029 also altered ileum microbiota without a direct link to atopic dermatitis improvement. In conclusion, L. plantarum FN029, a probiotic from Tongwei breast milk, fostered T regulatory cell conversion and immune balance by activating the retinol pathway, thereby improving severe atopic dermatitis in mice.
Collapse
Affiliation(s)
- Pengyue Hu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Jin Sun
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Ruijuan Gao
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Kexin Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Jiayi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Xiaonan Pan
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Zilu Jin
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| | - Yuejian Mao
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy(Group) Co. Ltd, Hohhot, Inner Mongolia, China
| | - Jing Yang
- Global R&D Innovation Center, Inner Mongolia Mengniu Dairy(Group) Co. Ltd, Hohhot, Inner Mongolia, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Jiangnan University, Wuxi 214002, PR China
| | - Ce Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Meyer R, Groetch M, Santos A, Venter C. The evolution of nutritional care in children with food allergies - With a focus on cow's milk allergy. J Hum Nutr Diet 2025; 38:e13391. [PMID: 39587736 PMCID: PMC11589409 DOI: 10.1111/jhn.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024]
Abstract
Cow's milk allergy (CMA) remains one of the most common and complex paediatric food allergies. In the last decade, our understanding has advanced in terms of immunoglobulin E (IgE)-mediated CMA and focus is now also paid to non-IgE-mediated CMA, particularly in some Western countries where incidence rates are high. We have had significant progress in the last 10 years in relation to our understanding of existing supportive tests for IgE-mediated CMA, with the advancement of newer tests, such as the basophil activation test (BAT), which have shown great promise. However, little advancement has been made in terms of tests for non-IgE-mediated CMA, and controversy still exists around symptoms. Our understanding of the natural history of CMA has also advanced with more awareness of different phenotypes. While the mainstay of management remains cow's milk elimination, the importance of supporting breastfeeding and avoidance of unwarranted cow's milk elimination diets in breastfeeding mothers has been highlighted. For non-breastfed children, there has been some advancement in the formulas offered for the management of CMA, including the recognition of hydrolysed rice-based formulas and increased demand for nutritionally complete plant-based options, some of which are currently being assessed. The addition of pro, pre and synbiotics is considered safe to use, although research and guidance on routine use remain absent. Knowledge of tolerance induction from studies on the early introduction of peanuts has also highlighted the importance of a more active approach to managing CMA with the use of milk ladders, primarily in non-IgE-mediated CMA and baked milk (BM) introduction in IgE-mediated CMA. In addition, modulation of the microbiome and diet diversity during complementary feeding has been a major advancement in the last 10 years. While data on poor growth and feeding difficulties in children with CMA has not changed much, increased rates of obesity are now also reported. Finally, novel approaches, including oral immunotherapy, the use of milk ladders and earlier consideration of BM, have advanced somewhat in the last decade, although the risks and benefits of these novel approaches require further research. While CMA remains a complicated allergy to diagnose and manage, the evolution of science has advanced our knowledge and brought some novel innovations, which combined have enhanced our practice.
Collapse
Affiliation(s)
- Rosan Meyer
- Department of Nutrition and DieteticsUniversity of WinchesterWinchesterUK
- Department of MedicineKU LeuvenLeuvenBelgium
| | - Marion Groetch
- Department of Pediatrics, Icahn School of Medicine at Mount SinaiDivision of Pediatric Allergy and ImmunologyNew YorkNew YorkUSA
| | - Alexandra Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, King's College LondonFaculty of Life Sciences and MedicineLondonUK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Children's Allergy Service, Evelina London Children's HospitalGuy's and St Thomas’ HospitalLondonUK
| | - Carina Venter
- Section of Allergy and ImmunologyUniversity of Colorado/Children's Hospital ColoradoBoulderColoradoUSA
| |
Collapse
|
4
|
Crabtree D, Seidler K, Barrow M. Pathophysiological mechanisms of gut dysbiosis and food allergy and an investigation of probiotics as an intervention for atopic disease. Clin Nutr ESPEN 2025; 65:189-204. [PMID: 39571752 DOI: 10.1016/j.clnesp.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have associated reduced bacterial diversity and abundance and food allergy. This mechanistic review investigated the link between gut dysbiosis and food allergy with a focus on the role of short-chain fatty acids (SCFAs) in modulating T-cells. T-cell differentiation poses an opportunity to direct the immune cells towards an anergic regulatory T cell (Treg) or allergic T helper 2 (Th2) response. Probiotic intervention to prevent and/or treat atopic disease symptoms through this mechanistic pathway was explored. METHODOLOGY A narrative review was conducted following a three-stage systematic literature search of EMBASE and Medline databases. Ninety-six of 571 papers were accepted and critically appraised using ARRIVE and SIGN50 forms. Thematic analysis identified key pathophysiological mechanisms within the narrative of included papers. RESULTS Preclinical studies provided compelling evidence for SCFAs' modulation of T-cell differentiation, which may act through G-protein coupled receptors 41, 43 and 109a and histone deacetylase inhibition. Foxp3 transcription factor was implicated in the upregulation of Tregs. Human probiotic intervention studies aimed at increasing SCFAs and Tregs and preventing atopic disease showed inconclusive results. However, evidence for probiotic intervention in children with cow's milk protein allergy (CMPA) was more promising and warrants further investigation. CONCLUSION Preclinical evidence suggests that the mechanism of gut dysbiosis and reduced SCFAs may skew T-cell differentiation towards a Th2 response, thus inducing allergy symptoms. Probiotic trials were inconclusive: probiotics were predominantly unsuccessful in the prevention of allergic disease, however, may be able to modulate food allergy symptoms in infants with CMPA.
Collapse
Affiliation(s)
- Danielle Crabtree
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| |
Collapse
|
5
|
Podder I, Pesqué D, Carrón N, González Torres PI, Pujol RM, Giménez‐Arnau AM. Gut microbial alteration in chronic spontaneous urticaria unresponsive to second generation antihistamines and its correlation with disease characteristics- a cross-sectional case-control study. Clin Transl Allergy 2025; 15:e70027. [PMID: 39809718 PMCID: PMC11732700 DOI: 10.1002/clt2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Gut microbial involvement has been speculated in chronic spontaneous urticaria (CSU). The aim of the study was to compare the gut microbiome composition and diversity in CSU patients uncontrolled with second-generation antihistamines (sgAHs) and healthy individuals, as well as to explore any association between gut microbiome and disease characteristics. METHODS A cross-sectional case-control study including 20 CSU patients unresponsive to standard doses of sgAHs, and 15 age-and-sex matched healthy controls was conducted. Clinico-demographic profile, laboratory investigations and stool analysis were conducted in all study participants. 16S RNA gene sequencing and DNA isolation was performed for all stool samples, followed by bioinformatic analysis. RESULTS The CSU patients (mean age 39.5 ± 9.3, M:F 1:4) and healthy controls (mean age 35 ± 13, M:F 1:2) were statistically comparable. The median (IQR) duration of CSU was 42 months (7-81). Concomitant angioedema and concomitant symptomatic dermographism were present in 30% and 20% CSU patients, respectively. At inclusion, 60% patients were receiving add-on omalizumab, while the remaining 40% were on up-dosed sgAHs. Stool microbial analysis revealed increased diversity and higher microbial richness in CSU patients compared with healthy individuals. CSU patients showed reduced load of short-chain fatty acid (SCFA) producing microbiota and increased load of opportunistic pathogens. The Firmicutes/Bacteroides (F/B) ratio was higher in CSU patients. Among CSU patients, higher Bacteroides and reduced Firmicutes count were associated with higher disease activity and poor control; however, there was no link with the type of therapy. CONCLUSION Gut microbial dysbiosis is seen in CSU and is linked with disease control.
Collapse
Affiliation(s)
- Indrashis Podder
- Department of DermatologyCollege of Medicine and Sagore Dutta HospitalKolkataWest BengalIndia
- Hospital del Mar Research InstituteBarcelonaSpain
| | - David Pesqué
- Department of DermatologyHospital del Mar Research InstituteBarcelonaSpain
- Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | | | - Ramon M. Pujol
- Department of DermatologyHospital del Mar Research InstituteBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Ana M. Giménez‐Arnau
- Department of DermatologyHospital del Mar Research InstituteBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| |
Collapse
|
6
|
Xu H, Duan X, Wang Y, Geng W. Amelioration Effect of Lactobacillus kefiranofaciens ZW3 on Ovalbumin-Induced Allergic Symptoms in BALB/c Mice. Foods 2024; 14:16. [PMID: 39796306 PMCID: PMC11720023 DOI: 10.3390/foods14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
Previous studies have shown that supplementation with specific probiotics can be used to alleviate allergy symptoms. The purpose of this study was to evaluate the anti-allergic effects of Lactobacillus kefiranofaciens ZW3 (ZW3) in ovalbumin (OVA)-induced allergic mice. The mice were divided into six groups: the food allergy group, positive group (Lactobacillus rhamnosus GG), low-dose ZW3 group, middle-dose ZW3 group, high-dose ZW3 group, and the control group involving healthy mice. BALB/c mice were intraperitoneally injected with OVA/complete Freund's adjuvant (CFA) for allergy sensitization. Probiotics were administered orally once every two days in the probiotic-treated groups. The allergic score, serum OVA-sIgE, body mass, thymus, and spleen indexes were detected on day 22, and the relative mRNA expression of inflammatory cytokines was detected via RT-qPCR. The results suggest that the body weight and thymus index returned to normal levels; allergy scores, serum OVA-sIgE, IL-4, IL-5, and IL-10 expression decreased; and IFN-γ and IL-2 increased significantly in the ZW3 group compared with the allergy group. Furthermore, ZW3 decreased Muribaculaceae and Ruminococcaceae abundance and increased Lachnospiraceae abundance in the intestinal flora. In summary, ZW3 induced anti-allergic effects by increasing Th1 cytokines and decreasing Th2 cytokines, which can remarkably ameliorate the symptoms of an ovalbumin-induced food allergy.
Collapse
Affiliation(s)
| | | | | | - Weitao Geng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (H.X.); (X.D.); (Y.W.)
| |
Collapse
|
7
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Lamminpää I, Niccolai E, Amedei A. Probiotics as adjuvants to mitigate adverse reactions and enhance effectiveness in Food Allergy Immunotherapy. Scand J Immunol 2024; 100:e13405. [PMID: 39407442 DOI: 10.1111/sji.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2023] [Revised: 08/04/2024] [Accepted: 08/18/2024] [Indexed: 11/21/2024]
Abstract
In the past decades, food allergies became increasingly dominant since early childhood, leading to a lower quality of life and to increasing costs addressed by the health care system. Beside standard avoidance of specific allergens and drug treatments following allergen exposure, a great deal of research has lately focused on Food Allergy Allergen Immunotherapy (FA-AIT). SCIT and EPIT (Subcutaneous and Epicutaneous Immunotherapy), OIT (Oral Immunotherapy), and SLIT (Sublingual Immunotherapy) consist in gradual exposure to allergens to desensitize and achieve tolerance once therapy has ended. Although promising, FA-AIT may bring acute local and systemic adverse reactions. To enhance efficacy, safety and convenience of AIT, the quest of potential adjuvants to mitigate the adverse reactions becomes crucial. Immunomodulatory activities, such as that of increasing the regulatory T cells and decreasing the IgE, have been observed in specific probiotics' strains and multiple studies elucidated the role of gut microbiota as a major interplayer among the host and its immune system. In this review, the microbiome modulation is shown as potential AIT adjuvant, nevertheless the need of more clinical studies in the near future is pivotal to assess the efficacy of targeted bacterial therapies and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Florence, Italy
| |
Collapse
|
9
|
Luo X, Wang H, Liu H, Chen Y, Tian L, Ji Q, Xie D. Effects of probiotics on the prevention and treatment of children with allergic rhinitis: a meta-analysis of randomized controlled trials. Front Pediatr 2024; 12:1352879. [PMID: 39421038 PMCID: PMC11484092 DOI: 10.3389/fped.2024.1352879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/14/2023] [Accepted: 07/30/2024] [Indexed: 10/19/2024] Open
Abstract
Background and aim Recent studies have demonstrated the anti-allergic effects of probiotics in humans. However, their role in preventing and treating pediatric allergic rhinitis has not been thoroughly investigated. This study aimed to systematically review the efficacy and preventive effects of probiotics on pediatric allergic rhinitis. Methods We systematically searched PubMed, Embase, the Cochrane Central Register of Controlled Trials, and Web of Science databases for all relevant studies on probiotics and pediatric allergic rhinitis. Studies meeting the inclusion criteria were included, data were extracted, and meta-analyses were performed. Results A total of 28 studies with 4,765 participants were included in this study. The pooled results showed that the use of probiotics was associated with a significant improvement in total nose symptom scores (SMD, -2.27; 95% CI, -3.26 to -1.29; P < 0.00001), itchy nose scores (SMD, -0.44; 95% CI, -0.80 to -0.07; P = 0.02), sneezing scores (SMD, -0.47; 95% CI, -0.84 to -0.10; P = 0.01), eye symptoms (SMD, -3.77; 95% CI, -5.47 to -2.07; P < 0.00001), and Pediatric Rhinoconjunctivitis Quality of Life Questionnaire (SMD, -2.52; 95% CI, -4.12 to -0.92; P < 00001). However, the use of probiotics was not associated with the incidence of allergic rhinitis (RR, 0.9; 95% CI, 0.74-1.08; P = 0.26). Conclusions The present study demonstrated that probiotics were effective and safe for improving pediatric allergic rhinitis symptoms and quality of life. However, probiotics could not prevent pediatric allergic rhinitis.
Collapse
Affiliation(s)
- Xinyi Luo
- The First Affiliated Hospital of Chengdu Medical College Clinical Medical College, Chengdu, Sichuan, China
| | - Huan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huixia Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qing Ji
- Department of Otolaryngology, Chengdu First People’s Hospital, Chengdu, Sichuan, China
| | - Dengpiao Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Farnetano M, Carucci L, Coppola S, Oglio F, Masino A, Cozzolino M, Nocerino R, Berni Canani R. Gut microbiome features in pediatric food allergy: a scoping review. FRONTIERS IN ALLERGY 2024; 5:1438252. [PMID: 39386092 PMCID: PMC11461474 DOI: 10.3389/falgy.2024.1438252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024] Open
Abstract
Increasing evidence suggests that alterations in the gut microbiome (GM) play a pivotal role in the pathogenesis of pediatric food allergy (FA). This scoping review analyzes the current evidence on GM features associated with pediatric FAs and highlights the importance of the GM as a potential target of intervention for preventing and treating this common condition in the pediatric age. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, we searched PubMed and Embase using the keywords (gut microbiome OR dysbiosis OR gut microbiota OR microbiome signatures) AND (food allergy OR IgE-mediated food allergy OR food protein-induced allergic proctocolitis OR food protein-induced enterocolitis OR non-IgE food allergy OR cow milk allergy OR hen egg allergy OR peanut allergy OR fish allergy OR shellfish allergy OR tree nut allergy OR soy allergy OR wheat allergy OR rice allergy OR food sensitization). We included 34 studies reporting alterations in the GM in children affected by FA compared with healthy controls. The GM in pediatric FAs is characterized by a higher abundance of harmful microorganisms (e.g., Enterobacteriaceae, Clostridium sensu stricto, Ruminococcus gnavus, and Blautia spp.) and lower abundance of beneficial bacteria (e.g., Bifidobacteriaceae, Lactobacillaceae, some Bacteroides species). Moreover, we provide an overview of the mechanisms of action elicited by these bacterial species in regulating immune tolerance and of the main environmental factors that can modulate the composition and function of the GM in early life. Altogether, these data improve our knowledge of the pathogenesis of FA and can open the way to innovative diagnostic, preventive, and therapeutic strategies for managing these conditions.
Collapse
Affiliation(s)
- Margherita Farnetano
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Marica Cozzolino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Nocerino R, Carucci L, Coppola S, Oglio F, Masino A, Agizza A, Paparo L, Berni Canani R. The journey toward disease modification in cow milk protein allergy. Immunol Rev 2024; 326:191-202. [PMID: 39046826 DOI: 10.1111/imr.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/27/2024]
Abstract
Cow milk protein allergy (CMPA) is one of the most common food allergies in the pediatric age worldwide. Prevalence, persistence, and severity of this condition are on the rise, with a negative impact on the health-related quality of life of the patients and families and on the costs related to its management. Another relevant issue is that CMPA in early life may be the first stage of the "allergic march," leading to the occurrence of other atopic manifestations later in life, especially asthma, atopic eczema, urticaria, and rhinoconjunctivitis. Thus, "disease modification" options that are able to modulate the disease course of pediatric patients affected by CMPA would be very welcomed by affected families and healthcare systems. In this review, we report the most relevant progress on this topic.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Alessandra Agizza
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Laboratory Medicine, ASL Benevento, Benevento, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Maurer M, Kolkhir P, Pereira MP, Siebenhaar F, Witte-Händel E, Bergmann KC, Bonnekoh H, Buttgereit T, Fluhr JW, Frischbutter S, Grekowitz EM, Herzog L, Kiefer LA, Krause K, Magerl M, Muñoz M, Neisinger S, Nojarov N, Prins S, Pyatilova P, Ramanauskaité A, Scheffel J, Terhorst-Molawi D, Treudler R, Weller K, Zuberbier T, Metz M. Disease modification in chronic spontaneous urticaria. Allergy 2024; 79:2396-2413. [PMID: 39044706 DOI: 10.1111/all.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating, inflammatory skin condition characterized by infiltrating immune cells. Available treatments are limited to improving the signs and symptoms. There is an unmet need to develop therapies that target disease-driving pathways upstream of mast cell activation to inhibit or delay the progression of CSU and associated comorbidities. Here, we aim to define disease modification due to a treatment intervention and criteria that disease-modifying treatments (DMTs) must meet in CSU. We have defined disease modification in CSU as a favorable treatment-induced change in the underlying pathophysiology and, therefore, the disease course, which is clinically beneficial and enduring. A DMT must fulfil the following criteria: (1) prevents or delays the progression of CSU, (2) induces long-term, therapy-free clinical remission, which is the sustained absence of CSU signs and symptoms without the need for treatment, and (3) affects the underlying mechanism of CSU, as demonstrated by an effect on disease-driving signals and/or a biomarker. DMTs in CSU should slow disease progression, achieve long-lasting disease remission, target disease-driving mechanisms, reduce mast cell-activating IgE autoantibodies, target cytokine profile polarization, and normalize the gut microbiome and barrier. Treating CSU at the immune system level could provide valuable alternatives to pharmacotherapy in CSU management. Specific DMTs in CSU are yet to be developed, but some show potential benefits, such as inhibitors of Bruton's Tyrosine Kinase, IL-4 and IL-13. Future therapies could prevent CSU signs and symptoms, achieve long-term clinical benefits after discontinuing treatment, and prevent associated concomitant disorders.
Collapse
Affiliation(s)
- Marcus Maurer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Pavel Kolkhir
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Manuel P Pereira
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Frank Siebenhaar
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Ellen Witte-Händel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karl-Christian Bergmann
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Hanna Bonnekoh
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Thomas Buttgereit
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Joachim W Fluhr
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Stefan Frischbutter
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Eva Maria Grekowitz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Leonie Herzog
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Lea Alice Kiefer
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karoline Krause
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Markus Magerl
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Melba Muñoz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Sophia Neisinger
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Nicole Nojarov
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Samantha Prins
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Polina Pyatilova
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Aisté Ramanauskaité
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jörg Scheffel
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Regina Treudler
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Karsten Weller
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Torsten Zuberbier
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Martin Metz
- Urticaria Center of Reference and Excellence (UCARE), Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| |
Collapse
|
13
|
Bognanni A, Firmino RT, Arasi S, Chu DK, Chu AW, Waffenschmidt S, Agarwal A, Dziechciarz P, Horvath A, Mihara H, Roldan Y, Terracciano L, Martelli A, Starok A, Said M, Shamir R, Ansotegui IJ, Dahdah L, Ebisawa M, Galli E, Kamenwa R, Lack G, Li H, Pawankar R, Warner A, Wong GWK, Bozzola M, Assa'Ad A, Dupont C, Bahna S, Spergel J, Venter C, Szajewska H, Nowak-Wegrzyn AH, Vandenplas Y, Papadopoulos NG, Waserman S, Fiocchi A, Schünemann HJ, Brożek JL. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) guideline update - XI - Milk supplement/replacement formulas for infants and toddlers with CMA - Systematic review. World Allergy Organ J 2024; 17:100947. [PMID: 39310372 PMCID: PMC11415968 DOI: 10.1016/j.waojou.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Background Cow's milk allergy (CMA) is the most complex and common food allergy in infants. Elimination of cow's milk from the diet and replacement with a specialized formula for infants with cow's milk allergy who cannot be breastfed is an established approach to minimize the risk of severe allergic reactions while avoiding nutritional deficiencies. Given the availability of multiple options, such as extensively hydrolyzed cow's milk-based formula (eHF-CM), aminoacid formula (AAF), hydrolyzed rice formula (HRF), and soy formula (SF), there is some uncertainty regarding which formula might represent the most suitable choice with respect to health outcomes. The addition of probiotics to a specialized formula has also been proposed as a potential approach to possibly increase the benefit. We systematically reviewed specialized formulas for infants with CMA to inform the updated World Allergy Organization (WAO) DRACMA guidelines. Objective To systematically review and synthesize the available evidence about the use of specialized formulas for the management of individuals with CMA. Methods We searched from inception PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), and the websites of selected allergy organizations, for randomized and non-randomized trials of any language investigating specialized formulas with or without probiotics. We included all studies irrespective of the language of the original publication. The last search was conducted in January 2024. We synthesized the identified evidence quantitatively or narratively as appropriate and summarized it in the evidence profiles. We conducted this review following the PRISMA, Cochrane methods, and the GRADE approach. Results We identified 3558 records including 14 randomized trials and 7 observational studies. Very low certainty evidence suggested that in infants with IgE-mediated CMA, eHF-CM, compared with AAF, might have higher probability of outgrowing CMA (risk ratio (RR) 2.32; risk difference (RD) 25 more per 100), while showing potentially lower probability of severe vomiting (RR 0.12, 95% CI 0.02 to 0.88; RD 23 fewer per 100, 95% CI 3 to 26) and developing food protein-induced enterocolitis syndrome (FPIES) (RR 0.15, 95% CI 0.03 to 0.82; RD 34 fewer per 100, 95% CI 7 to 39). We also found, however, that eHF-CM might be inferior to AAF in supporting a physiological growth, with respect to both weight (-5.5% from baseline, 95%CI -9.5% to -1.5%) and length (-0.7 z-score change, 95%CI -1.15 to -0.25) (very low certainty). We found similar effects for eHF-CM, compared with AAF, also in non-IgE CMA. When compared with SF, eHF-CM might favor weight gain for IgE CMA infants (0.23 z-score change, 95%CI 0.01 to 0.45), and tolerance acquisition (RR 1.86, 95%CI 1.03 to 3.37; RD 27%, 95%CI 1%-74%) for non-IgE CMA (both at very low certainty of the evidence (CoE)). The comparison of eHF-CM vs. HRF, and HRF vs. SF, showed no difference in effect (very low certainty). For IgE CMA patients, low certainty evidence suggested that adding probiotics (L. rhamnosus GG, L. casei CRL431 and B. lactis Bb-12) might increase the probability of developing CMA tolerance (RR 2.47, 95%CI 1.03 to 5.93; RD 27%, 95%CI 1%-91%), and reduce the risk of severe wheezing (RR 0.12, 95%CI 0.02 to 0.95; RD -23%, 95%CI -8% to -0.4%). However, in non-IgE CMA infants, the addition of probiotics (L. rhamnosus GG) showed no significant effect, as supported by low to very low CoE. Conclusions Currently available studies comparing eHF-CM, AAF, HRF, and SF provide very low certainty evidence about their effects in infants with IgE-mediated and non-IgE-mediated CMA. Our review revealed several limitations in the current body of evidence, primarily arising from concerns related to the quality of studies, the limited size of the participant populations and most importantly the lack of diversity and standardization in the compared interventions. It is therefore imperative for future studies to be methodologically rigorous and investigate a broader spectrum of available interventions. We encourage clinicians and researchers to review current World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines for suggestions on how to use milk replacement formulas in clinical practice and what additional research would be the most beneficial.
Collapse
Affiliation(s)
- Antonio Bognanni
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Clinical Epidemiology and Research Center (CERC), Humanitas University & Humanitas Research Hospital, Pieve Emanuele, Milano, Italy
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
| | - Ramon T. Firmino
- Academic Unit of Biological Sciences, Federal University of Campina Grande, Patos, Paraíba, Brazil
| | - Stefania Arasi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Derek K. Chu
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - Alexandro W.L. Chu
- Department of Medicine, Evidence in Allergy Group, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Siw Waffenschmidt
- Institute for Quality and Efficiency in Health Care, Cologne, Germany
| | - Arnav Agarwal
- Department of Medicine, Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Hanako Mihara
- Clinical Development Infectious Disease, Moderna Japan Co., Ltd., Japan
| | | | - Luigi Terracciano
- Pediatric Primary Care, National Pediatric Health Care System, Milan, Italy
- Italian Society of Preventive and Social Pediatrics (SIPPS), Italy
| | - Alberto Martelli
- Italian Society of Allergy and Pediatric Immunology (SIAIP), Italy
| | | | - Maria Said
- Allergy & Anaphylaxis Australia, Sydney, Australia
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Faculty of Medical and Health Sciences, Tel Aviv University, Israel
| | - Ignacio J. Ansotegui
- Department of Allergy & Immunology, Hospital Quironsalud Bizkaia, Erandio, Bilbao, Spain
| | - Lamia Dahdah
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Kanagawa, Japan
| | - Elena Galli
- Pediatric Allergy Unit, Research Center, San Pietro Hospital - Fatebenefratelli, Rome, Italy
| | - Rose Kamenwa
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Nairobi, Kenya
| | - Gideon Lack
- Department of Women and Children's Health/Peter Gorer Department of Immunobiology, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
- Evelina London Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, United Kingdom
| | - Haiqi Li
- Department of Primary Child Care, Children's Hospital, Chongqing Medical University, China
| | - Ruby Pawankar
- Department of Pediatrics. Nippon Medical School, Tokyo, Japan
| | | | - Gary Wing Kin Wong
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Martin Bozzola
- Pediatric Allergy and Immunology Section, Dept of Pediatrics, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Amal Assa'Ad
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Sami Bahna
- Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, USA
| | - Jonathan Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, USA
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Carina Venter
- Section of Allergy and Clinical Immunology, University of Colorado, USA
- Children's Hospital Colorado. Denver, Colorado, USA
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Anna H. Nowak-Wegrzyn
- Department of Pediatrics, Hassenfeld Children's Hospital, New York University, Grossman School of Medicine, New York, NY, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Yvan Vandenplas
- Vrije Universiteit Brussel (VUB), UZ Brussel, Belgium
- KidZ Health Castle, Brussels, Belgium
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, University of Athens, Athens, Greece
- Lydia Becker Institute, University of Manchester, Manchester, United Kingdom
| | - Susan Waserman
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| | - Alessandro Fiocchi
- Translational Research in Pediatric Specialties Area, Division of Allergy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Holger J. Schünemann
- Clinical Epidemiology and Research Center (CERC), Humanitas University & Humanitas Research Hospital, Pieve Emanuele, Milano, Italy
| | - Jan L. Brożek
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nat Rev Immunol 2024; 24:577-595. [PMID: 38565643 DOI: 10.1038/s41577-024-01014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ying Ka Lam
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Conway AE, Greenhawt M, Abrams EM, Shaker MS. Food allergy prevention through the decades: An ounce of humility is worth a pound of cure. JOURNAL OF FOOD ALLERGY 2024; 6:3-14. [PMID: 39257599 PMCID: PMC11382770 DOI: 10.2500/jfa.2024.6.230018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 09/12/2024]
Abstract
Food allergy prevention has undergone a significant transformation over the past 3 decades. This review provides an overview of the evolution of food allergy prevention, highlighting changes in guidance, cost-effectiveness of prevention, the role of shared decision-making, and the emergence of oral immunotherapy for those in whom primary prevention fails. Changes to food allergy prevention over recent decades can be conceptualized into five epochs, which have followed a general trend of loosening restrictions on the allergen introduction timeline. These epochs are characterized by significant maternal and infant dietary restrictions in the "universal avoidance epoch"(-1990), loosened maternal diet restrictions in the "infant avoidance epoch" (1990-2000), a time-bound allergen introduction schedule in the "stratified avoidance epoch" (2000-2010), retraction of recommendations in the "corrective retraction epoch" (2010-2015), and endorsement of early allergen introduction in the "early introduction epoch" (2015-present), the start of which is marked by the 2015 Learning Early About Peanut study. In hindsight, it is clear that certain recommendations from previous decades were not the best course of action. A no-screening early introduction approach to food allergy prevention is both cost-effective and beneficial to patient quality of life.
Collapse
Affiliation(s)
| | - Matthew Greenhawt
- Section of Allergy and Clinical Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Elissa M Abrams
- Section of Allergy and Clinical Immunology, Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Marcus S Shaker
- From the Dartmouth Geisel School of Medicine, Hanover, New Hampshire
- Section of Allergy and Immunology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
16
|
Chen HY, Zhou YC, Liu Y, Huang JY, Liu H, Liu CF, Liu WH, Liu GM, Liu QM. Fermented Gracilaria lemaneiformis polysaccharides alleviate food allergy by regulating Treg cells and gut microbiota. Int J Biol Macromol 2024; 269:132215. [PMID: 38729482 DOI: 10.1016/j.ijbiomac.2024.132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.
Collapse
Affiliation(s)
- Hui-Ying Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yu-Chen Zhou
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Yan Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Jia-Yu Huang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China
| | - Chen-Feng Liu
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei 230031, Anhui, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China; Xiamen Ocean Vocational college, Xiamen, Fujian 361102, China.
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen 361021, Fujian, China.
| |
Collapse
|
17
|
Calle CG, Díaz‐Vásquez C, Córdova‐Calderón W, Gómez de la Torre J, Matos‐Benavides E, Toribio‐Dionicio C. Clinical characteristics, laboratory findings, and tolerance acquisition in infants with cow's milk protein allergy in a private center in Lima, Peru for the period 2021-2022. Immun Inflamm Dis 2024; 12:e1246. [PMID: 38668747 PMCID: PMC11048966 DOI: 10.1002/iid3.1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2023] [Revised: 03/11/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Cow's milk protein allergy (CMPA) remains relatively understudied in Latin America. METHODS In this observational study, we enrolled 64 patients with a median age of 3 months, of whom 60% were male. Patients included had a history of IgE-mediated reactions with IgE sensitization or non-IgE-mediated reactions or symptoms following exposure to cow's milk. They underwent skin prick test, ImmunoCAP, fecal calprotectin (FC), and fecal eosinophil-derived neurotoxin (EDN), in addition to double-blinded placebo-controlled oral food challenges (DBPCFC), with clinical evolution and tolerance acquisition observed over 1 year. RESULTS Malnutrition was present in 78.1% of patients, and 87.5% had a family history of atopy, with 51.6% receiving exclusive breastfeeding. Gastrointestinal manifestations were prevalent in 90.6% of patients, followed by dermatological manifestations (10.9%), with only 2 experiencing anaphylaxis. IgE-mediated CMPA was observed in only six patients. In those with non-IgE-mediated CMPA, FC had a median of 284 mg/dL (IQR: 138.5-415.5), while EDN had a median of 508.5 mg/dL (IQR: 160.25-868). One year after diagnosis, median FC significantly decreased (p < 0.0001), and malnutrition prevalence reduced to 17.1%. Moreover, 81% of patients acquired tolerance following DBPCFC, with 52% utilizing nutritional replacement formulas at diagnosis. Notably, 94% of those extensively hydrolyzed casein-based formulas achieved tolerance (p = 0.08). CONCLUSION Our findings provide a foundational framework for future investigations into CMPA diagnosis, tolerance acquisition, and the utilization of hypoallergenic formulas tailored to the unique characteristics of our region.
Collapse
Affiliation(s)
- César Galván Calle
- Asthma Allergy and ImmunologyInstituto Nacional de Salud del Niño – BreñaBreñaLimaPeru
- Instituto latinoamericano de AlergiasAsma e Inmunologia (ILAAI)LinceLimaPeru
- Emedic SaludSan IsidroLimaPeru
| | - Cecilia Díaz‐Vásquez
- Pediatrics UnitInstituto Nacional de Salud del Niño – San BorjaSan BorjaLimaPeru
| | - Wilmer Córdova‐Calderón
- Asthma Allergy and ImmunologyInstituto Nacional de Salud del Niño – BreñaBreñaLimaPeru
- Instituto latinoamericano de AlergiasAsma e Inmunologia (ILAAI)LinceLimaPeru
| | | | - Edgar Matos‐Benavides
- Asthma Allergy and ImmunologyInstituto Nacional de Salud del Niño – BreñaBreñaLimaPeru
- Instituto latinoamericano de AlergiasAsma e Inmunologia (ILAAI)LinceLimaPeru
| | | |
Collapse
|
18
|
Lin M, Yanjun C. Research progress on the mechanism of probiotics regulating cow milk allergy in early childhood and its application in hypoallergenic infant formula. Front Nutr 2024; 11:1254979. [PMID: 38419849 PMCID: PMC10900986 DOI: 10.3389/fnut.2024.1254979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Some infants and young children suffer from cow's milk allergy (CMA), and have always mainly used hypoallergenic infant formula as a substitute for breast milk, but some of these formulas can still cause allergic reactions. In recent years, it has been found that probiotic nutritional interventions can regulate CMA in children. Scientific and reasonable application of probiotics to hypoallergenic infant formula is the key research direction in the future. This paper discusses the mechanism and clinical symptoms of CMA in children. This review critically ex- amines the issue of how probiotics use intestinal flora as the main vector to combine with the immune system to exert physiological functions to intervene CMA in children, with a particular focus on four mechanisms: promoting the early establishment of intestinal microecological balance, regulating the body's immunity and alleviating allergic response, enhancing the intestinal mucosal barrier function, and destroying allergen epitopes. Additionally, it overviews the development process of hypoallergenic infant formula and the research progress of probiotics in hypoallergenic infant formula. The article also offers suggestions and outlines potential future research directions and ideas in this field.
Collapse
Affiliation(s)
| | - Cong Yanjun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, College of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
19
|
Di Costanzo M, Vella A, Infantino C, Morini R, Bruni S, Esposito S, Biasucci G. Probiotics in Infancy and Childhood for Food Allergy Prevention and Treatment. Nutrients 2024; 16:297. [PMID: 38257190 PMCID: PMC10819136 DOI: 10.3390/nu16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Food allergy represents a failure of oral tolerance mechanisms to dietary antigens. Over the past few years, food allergies have become a growing public health problem worldwide. Gut microbiota is believed to have a significant impact on oral tolerance to food antigens and in initiation and maintenance of food allergies. Therefore, probiotics have also been proposed in this field as a possible strategy for modulating both the gut microbiota and the immune system. In recent years, results from preclinical and clinical studies suggest a promising role for probiotics in food allergy prevention and treatment. However, future studies are needed to better understand the mechanisms of action of probiotics in food allergies and to design comparable study protocols using specific probiotic strains, defined doses and exposure times, and longer follow-up periods.
Collapse
Affiliation(s)
- Margherita Di Costanzo
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Adriana Vella
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Claudia Infantino
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Riccardo Morini
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Simone Bruni
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (A.V.); (C.I.); (R.M.); (S.B.); (S.E.)
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
20
|
Zhu L, Jian X, Zhou B, Liu R, Muñoz M, Sun W, Xie L, Chen X, Peng C, Maurer M, Li J. Gut microbiota facilitate chronic spontaneous urticaria. Nat Commun 2024; 15:112. [PMID: 38168034 PMCID: PMC10762022 DOI: 10.1038/s41467-023-44373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic spontaneous urticaria (CSU) comes with gut dysbiosis, but its relevance remains elusive. Here we use metagenomics sequencing and short-chain fatty acids metabolomics and assess the effects of human CSU fecal microbial transplantation, Klebsiella pneumoniae, Roseburia hominis, and metabolites in vivo. CSU gut microbiota displays low diversity and short-chain fatty acids production, but high gut Klebsiella pneumoniae levels, negatively correlates with blood short-chain fatty acids levels and links to high disease activity. Blood lipopolysaccharide levels are elevated, link to rapid disease relapse, and high gut levels of conditional pathogenic bacteria. CSU microbiome transfer and Klebsiella pneumoniae transplantation facilitate IgE-mediated mast cell(MC)-driven skin inflammatory responses and increase intestinal permeability and blood lipopolysaccharide accumulation in recipient mice. Transplantation of Roseburia hominis and caproate administration protect recipient mice from MC-driven skin inflammation. Here, we show gut microbiome alterations, in CSU, may reduce short-chain fatty acids and increase lipopolysaccharide levels, respectively, and facilitate MC-driven skin inflammation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runqiu Liu
- Department of Dermatology, the First people's Hospital of Yancheng, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Wan Sun
- BGI, Complex building, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Lu Xie
- Bioinformatics Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Furong Labratory, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Carucci L, Coppola S, Carandente R, Canani RB. Targeting Food Allergy with Probiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:79-93. [PMID: 39060732 DOI: 10.1007/978-3-031-58572-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/28/2024]
Abstract
The globally dramatic increase in food allergy prevalence and severity is demanding effective preventive and therapeutic strategies. Food allergy derives from a defect of immune tolerance mechanisms. Immune tolerance is modulated by gut microbiome composition and function, and gut microbiome dysbiosis has been associated with the development of food allergy. Selected probiotic strains could regulate immune tolerance mechanisms. The mechanisms are multiple and are still not completely defined. Increasing evidence is providing useful information on the choice of optimal bacterial species/strains, dosage, and timing for intervention. The increased knowledge on the crucial role played by postbiotic gut microbiome-derived metabolites, such as butyrate, is also opening the way to a post- biotic approach in the stimulation of immune tolerance.
Collapse
Affiliation(s)
- Laura Carucci
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Rosilenia Carandente
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science at the University of Naples Federico II, Naples, Italy.
| |
Collapse
|
22
|
Shibata R, Itoh N, Nakanishi Y, Kato T, Suda W, Nagao M, Iwata T, Yoshida H, Hattori M, Fujisawa T, Shimojo N, Ohno H. Gut microbiota and fecal metabolites in sustained unresponsiveness by oral immunotherapy in school-age children with cow's milk allergy. Allergol Int 2024; 73:126-136. [PMID: 38182280 DOI: 10.1016/j.alit.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Oral immunotherapy (OIT) can ameliorate cow's milk allergy (CMA); however, the achievement of sustained unresponsiveness (SU) is challenging. Regarding the pathogenesis of CMA, recent studies have shown the importance of gut microbiota (Mb) and fecal water-soluble metabolites (WSMs), which prompted us to determine the change in clinical and gut environmental factors important for acquiring SU after OIT for CMA. METHODS We conducted an ancillary cohort study of a multicenter randomized, parallel-group, delayed-start design study on 32 school-age children with IgE-mediated CMA who underwent OIT for 13 months. We defined SU as the ability to consume cow's milk exceeding the target dose in a double-blind placebo-controlled food challenge after OIT followed by a 2-week-avoidance. We longitudinally collected 175 fecal specimens and clustered the microbiome and metabolome data into 29 Mb- and 12 WSM-modules. RESULTS During OIT, immunological factors improved in all participants. However, of the 32 participants, 4 withdrew because of adverse events, and only 7 were judged SU. Gut environmental factors shifted during OIT, but only in the beginning, and returned to the baseline at the end. Of these factors, milk- and casein-specific IgE and the Bifidobacterium-dominant module were associated with SU (milk- and casein-specific IgE; OR for 10 kUA/L increments, 0.67 and 0.66; 95%CI, 0.41-0.93 and 0.42-0.90; Bifidobacterium-dominant module; OR for 0.01 increments, 1.40; 95%CI, 1.10-2.03), and these associations were observed until the end of OIT. CONCLUSIONS In this study, we identified the clinical and gut environmental factors associated with SU acquisition in CM-OIT.
Collapse
Affiliation(s)
- Ryohei Shibata
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoka Itoh
- Department of Pediatrics, National Hospital Organization Kanagawa National Hospital, Kanagawa, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mizuho Nagao
- Allergy Center, National Hospital Organization Mie National Hospital, Mie, Japan
| | - Tsutomu Iwata
- The Graduate School of Tokyo Kasei University, Saitama, Japan
| | - Hideo Yoshida
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Mie, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
23
|
Poto R, Fusco W, Rinninella E, Cintoni M, Kaitsas F, Raoul P, Caruso C, Mele MC, Varricchi G, Gasbarrini A, Cammarota G, Ianiro G. The Role of Gut Microbiota and Leaky Gut in the Pathogenesis of Food Allergy. Nutrients 2023; 16:92. [PMID: 38201921 PMCID: PMC10780391 DOI: 10.3390/nu16010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Food allergy (FA) is a growing public health concern, with an increasing prevalence in Western countries. Increasing evidence suggests that the balance of human gut microbiota and the integrity of our intestinal barrier may play roles in the development of FA. Environmental factors, including industrialization and consumption of highly processed food, can contribute to altering the gut microbiota and the intestinal barrier, increasing the susceptibility to allergic sensitization. Compositional and functional alterations to the gut microbiome have also been associated with FA. In addition, increased permeability of the gut barrier allows the translocation of allergenic molecules, triggering Th2 immune responses. Preclinical and clinical studies have highlighted the potential of probiotics, prebiotics, and postbiotics in the prevention and treatment of FA through enhancing gut barrier function and promoting the restoration of healthy gut microbiota. Finally, fecal microbiota transplantation (FMT) is now being explored as a promising therapeutic strategy to prevent FA in both experimental and clinical studies. In this review article, we aim to explore the complex interplay between intestinal permeability and gut microbiota in the development of FA, as well as depict potential therapeutic strategies.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - William Fusco
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
| | - Pauline Raoul
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Cristiano Caruso
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, Clinical Nutrition Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (G.V.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence, 80131 Naples, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (E.R.); (M.C.); (F.K.); (P.R.); (C.C.); (M.C.M.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOSD DH Internal Medicine and Digestive Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
24
|
Liu Y, Liu J, Du M, Yang H, Shi R, Shi Y, Zhang S, Zhao Y, Lan J. Short-chain fatty acid - A critical interfering factor for allergic diseases. Chem Biol Interact 2023; 385:110739. [PMID: 37805176 DOI: 10.1016/j.cbi.2023.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Allergy is a growing global public health problem with a high socio-economic impact. The incidence of allergic diseases is increasing year by year, which has attracted more and more attention. In recent years, a number of epidemiological investigations and gut microbiota studies have shown that gut microbiota dysbiosis is associated with an increased prevalence of various allergic diseases, such as food allergy, asthma, allergic rhinitis, and atopic dermatitis. However, the underlying mechanisms are complex and have not been fully clarified. Metabolites are one of the main ways in which the gut microbiota functions. Short-chain fatty acids (SCFAs) are the main metabolites of intestinal flora fermentation and are beneficial to human health. Studies have shown that SCFAs play an important role in maintaining intestinal homeostasis and regulating immune responses by recognizing receptors and inhibiting histone deacetylases, and are key molecules involved in the occurrence and development of allergic diseases. In addition, research on the regulation of gut microbiota and the application of SCFAs in the treatment of allergic diseases is also emerging. This article reviews the clinical and experimental evidence on the correlation between SCFAs and allergic diseases and the potential mechanisms by which SCFAs regulate allergic diseases. Furthermore, SCFAs as therapeutic targets for allergic diseases are also summarized and prospected.
Collapse
Affiliation(s)
- Yue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jin Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Mi Du
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hu Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ruiwen Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yilin Shi
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shengben Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yajun Zhao
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Jing Lan
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China.
| |
Collapse
|
25
|
Fu HY, Yu HD, Bai YP, Yue LF, Wang HM, Li LL. Effect and safety of probiotics for treating urticaria: A systematic review and meta-analysis. J Cosmet Dermatol 2023; 22:2663-2670. [PMID: 37221968 DOI: 10.1111/jocd.15782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND To assess the effect and safety of probiotics for treating urticaria. METHODS Randomized controlled trial (RCT) papers on the probiotics treatment published before May 2019 were retrieved from various databases like PubMed, EMbase, MEDLINE (Ovid), SCI-Hub, Springer, ClinicalKey, VIP, and CNKI. The treatment plan that we include are oral administration of single probiotic, multiple probiotics, and the combination of probiotics and antihistamines. Meta-analysis of the data was performed by RevMan 5.3 software. RESULTS A total of nine RCT papers were included: four papers for oral administration of single probiotic, three papers for oral administration of multiple probiotics, and two papers for oral administration of a probiotic combined with antihistamines. The results of meta-analysis showed that the therapeutic effect of the probiotic group was significantly higher than the control group (placebo or antihistamines) (RR = 1.09, 95% CI: 1.03-1.16, p = 0.006). And compared with the placebo group, the therapeutic effect of single probiotic group was significantly improved (RR = 1.11, 95% CI: 1.01-1.21, p = 0.03). Regarding therapeutic effect, there was no statistically significant difference between the multiple probiotics group and placebo group (RR = 1.00, 95% CI: 0.94 ~ 1.07, p = 0.91); the therapeutic effect of single probiotic combined antihistamine group was significantly higher than the antihistamine group (RR = 1.13, 95% CI: 1.07-1.19, p < 0.0001). Regarding the incidence of adverse reactions, there was no significant difference between the probiotic group and the control group (p = 0.46). CONCLUSION The treatment plan of oral administration of probiotics has significant therapeutic effects on urticaria, but the therapeutic effects of the administration of multiple probiotics and the safety of probiotic therapy are still not yet obvious. Some large-scale, multi-centered RCT studies are needed in the future for clarification.
Collapse
Affiliation(s)
- Hong-Yu Fu
- Department of Emergency, The Dongcheng District First People's Hospital of Beijing Municipality, Beijing city, China
| | - Hong-da Yu
- Department of Dermatology & STD, Beijing Dongzhimen Hospital, Beijing city, China
| | - Yan-Ping Bai
- Department of Dermatology & STD, Beijing Dongzhimen Hospital, Beijing city, China
| | - Li-Feng Yue
- Department of Encephalopathy, Beijing Dongzhimen Hospital, Beijing city, China
| | - Hong-Mei Wang
- Department of Emergency, The Dongcheng District First People's Hospital of Beijing Municipality, Beijing city, China
| | - Ling-Ling Li
- Department of Dermatology & STD, Beijing Dongzhimen Hospital, Beijing city, China
| |
Collapse
|
26
|
Wei Y, Peng J, Wang S, Ding Z, Chen G, Sun J. Probiotics and the Potential of Genetic Modification as a Possible Treatment for Food Allergy. Nutrients 2023; 15:4159. [PMID: 37836443 PMCID: PMC10574749 DOI: 10.3390/nu15194159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Food allergy is a common condition that affects millions of people worldwide. It is caused by an abnormal immune response to harmless food antigens, which is influenced by genetics and environmental factors. Modulating the gut microbiota and immune system with probiotics or genetically modified probiotics confers health benefits to the host and offers a novel strategy for preventing and treating food allergy. This systematic review aims to summarize the current proof of the role of probiotics in food allergy and propose a promising future research direction of using probiotics as a possible strategy of treatment for food allergy.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jing Peng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Siyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Guixi Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
27
|
Kubota S, Sugiura S, Takahashi M, Kadota Y, Takasato Y, Matsui T, Kitamura K, Tochio T, Ito K. Kestose Increases the Relative Abundance of Faecalibacterium spp. and Nominally Increases Cow Milk Tolerant Dose in Children with Cow's Milk Allergy - Preliminary Results. Pol J Microbiol 2023; 72:299-306. [PMID: 37725897 PMCID: PMC10508972 DOI: 10.33073/pjm-2023-030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
A single-arm study was conducted with 10 children aged 2-12 years with severe cow's milk allergy (CMA) requiring complete allergen elimination. Subjects were administered kestose, a prebiotic, at 1 or 2 g/day for 12 weeks. Results of a subsequent oral food challenge (OFC) showed a statistically significant increase in the total dose of cow's milk ingestion (1.6 ml vs. 2.7 ml, p = 0.041). However, the overall evaluation of the OFC results, TS/Pro (total score of Anaphylaxis Scoring Aichi (ASCA)/cumulative dose of protein), showed no statistically significant improvement, although the values were nominally improved in seven out of 10 subjects. The 16S rDNA analysis of fecal samples collected from the subjects revealed a statistically significant increase in the proportion of Faecalibacterium spp. (3.8 % vs. 6.8%, p = 0.013), a type of intestinal bacterium that has been reported to be associated with food allergy. However, no statistically significant correlation was found between Faecalibacterium spp. abundance and the results of the OFC.
Collapse
Affiliation(s)
- Shohei Kubota
- Aichi Children's Health and Medical Center, Obu-shi, Japan
- Saiseikai Yokohamashi Tobu Hospital, Yokohama-shi, Japan
| | - Shiro Sugiura
- Aichi Children's Health and Medical Center, Obu-shi, Japan
| | | | | | | | - Teruaki Matsui
- Aichi Children's Health and Medical Center, Obu-shi, Japan
| | | | - Takumi Tochio
- B Food Science Co., Ltd., Chita-shi, Japan
- Fujita Health University, Toyoake-shi, Japan
| | - Komei Ito
- Aichi Children's Health and Medical Center, Obu-shi, Japan
- Nagoya University Graduate School of Medicine, Nagoya-shi, Japan
| |
Collapse
|
28
|
Nocerino R, Coppola S, Carucci L, de Giovanni di Santa Severina AF, Oglio F, de Michele R, di Sessa I, Masino A, Bedogni G, Berni Canani R. The step-down approach in children with cow's milk allergy: Results of a randomized controlled trial. Allergy 2023; 78:2477-2486. [PMID: 37087638 DOI: 10.1111/all.15750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND The Step-Down Approach for Cow's Milk Allergy (SDACMA) trial evaluated the tolerability and the rate of immune tolerance acquisition in CMA children starting dietary treatment with amino acid-based formula (AAF) and then switching to EHCF containing the probiotic Lacticaseibacillus rhamnosus GG (EHCF + LGG). METHODS Randomized controlled trial involving IgE-mediated CMA children receiving AAF from at least 4 weeks. EHCF + LGG tolerance was evaluated by the results of double-blind placebo-controlled food challenge (DBPCFC). Subjects tolerating EHCF + LGG were randomly allocated to remain on AAF, or to switch to EHCF + LGG. Immune tolerance acquisition to cow's milk proteins was evaluated with DBPCFC after 12 months of treatment. Allergy screening tests and body growth were also monitored. RESULTS Sixty IgE-mediated CMA children were enrolled. The proportion of children treated with AAF who resulted tolerant to the first exposure of EHCF + LGG was 0.98 (exact 95% CI 0.91-0.99). The rate of the immune tolerance acquisition to cow milk proteins after 12 months treatment was higher in the EHCF + LGG (0.48, 95% exact CI 0.29-0.67, n/N = 14/29) than in the AAF group (0.03, 95% exact CI 0.001-0.17, n/N = 1/30). There was an absolute benefit increase (ABI) of tolerance rate equal to 0.45 (95% CI 0.23-0.63, Newcombe method 10) for EHCF + LGG versus AAF, corresponding to a NNT of 2 (2-4, Bender's method). A normal body growth pattern was observed in the two study groups. CONCLUSION In IgE-mediated CMA children the step-down from AAF to EHCF + LGG is well tolerated and could facilitate the immune tolerance acquisition.
Collapse
Affiliation(s)
- Rita Nocerino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Anna Fiorenza de Giovanni di Santa Severina
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Roberta de Michele
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ilaria di Sessa
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonio Masino
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giorgio Bedogni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Department of Primary Health Care, Internal Medicine Unit addressed to Frailty and Aging, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Kansu A, Urganci N, Bukulmez A, Kutluk G, Gulcu Taskin D, Sahin Keskin L, Igde M, Molon L, Dogan Y, Sekerel BE, Yuksek M, Bostanci I, Gerenli N, Polat E, Dalgic B, Ayyildiz H, Usta M, Basturk A, Yuce Kirmemis O, Tuna Kirsaclioglu C, Gulerman HF, Alptekin Sarioglu A, Erdogan S. Growth, tolerance and safety outcomes with use of an extensively hydrolyzed casein-based formula in infants with cow's milk protein allergy. Front Pediatr 2023; 11:1230905. [PMID: 37601126 PMCID: PMC10433168 DOI: 10.3389/fped.2023.1230905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To evaluate growth, tolerance and safety outcomes with use of an extensively hydrolyzed casein-based formula (eHCF) in infants with cow's milk protein allergy (CMPA). Methods A total of 226 infants (mean ± SD age: 106.5 ± 39.5 days, 52.7% were girls) with CMPA who received eHCF comprising at least half of the daily dietary intake were included. Data on anthropometrics [weight for age (WFA), length for age (LFA) and weight for length (WFL) z-scores] were recorded at baseline (visit 1), while data on infant feeding and stool records, anthropometrics and Infant Feeding and Stool Patterns and Formula Satisfaction Questionnaires were recorded at visit 2 (on Days 15 ± 5) and visit 3 (on Days 30 ± 5). Results From baseline to visit 2 and visit 3, WFA z-scores (from -0.60 ± 1.13 to -0.54 ± 1.09 at visit 2, and to -0.44 ± 1.05 at visit 3, p < 0.001) and WFL z-scores (from -0.80 ± 1.30 to -0.71 ± 1.22 at visit 2, and to -0.64 ± 1.13 at visit 3, p = 0.002) were significantly increased. At least half of infants never experienced irritability or feeding refusal (55.7%) and spit-up after feeding (50.2%). The majority of mothers were satisfied with the study formula (93.2%), and wished to continue using it (92.2%). Conclusions In conclusion, eHCF was well-accepted and tolerated by an intended use population of infants ≤ 6 months of age with CMPA and enabled adequate volume consumption and improved growth indices within 30 days of utilization alongside a favorable gastrointestinal tolerance and a high level of parental satisfaction.
Collapse
Affiliation(s)
- Aydan Kansu
- Department of Pediatric Gastroenterology, School of Medicine, Ankara University, Ankara, Turkey
| | - Nafiye Urganci
- Clinic of Pediatric Gastroenterology, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Bukulmez
- Department of Pediatrics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Gunsel Kutluk
- Clinic of Pediatric Gastroenterology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Didem Gulcu Taskin
- Clinic of Pediatric Gastroenterology, Adana City Training and Research Hospital, Adana, Turkey
| | - Lutfiye Sahin Keskin
- Clinic of Pediatric Gastroenterology, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Mahir Igde
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Lutfi Molon
- Department of Pediatrics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Yasar Dogan
- Department of Pediatric Gastroenterology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Bulent Enis Sekerel
- Department of Pediatric Allergy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ilknur Bostanci
- Clinic of Pediatric Immunology and Allergy, Health Sciences University Dr. Sami Ulus Gynecology, Obstetrics and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Nelgin Gerenli
- Clinic of Pediatric Gastroenterology, Istanbul Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Esra Polat
- Clinic of Pediatric Gastroenterology, Istanbul Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Buket Dalgic
- Department of Pediatric Gastroenterology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasret Ayyildiz
- Clinic of Pediatric Gastroenterology, Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Merve Usta
- Clinic of Pediatric Gastroenterology, Istanbul Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Basturk
- Department of Pediatric Gastroenterology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ozlem Yuce Kirmemis
- Clinic of Pediatric Gastroenterology, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ceyda Tuna Kirsaclioglu
- Department of Pediatric Gastroenterology, School of Medicine, Ankara University, Ankara, Turkey
| | - Hacer Fulya Gulerman
- Department of Pediatric Gastroenterology, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | | | - Simge Erdogan
- Abbott Nutrition, Abbott Laboratories, Istanbul, Turkey
| |
Collapse
|
30
|
Coppola S, Carucci L, Oglio F, Di Sarra C, Ozen G, Berni Canani R. Nutritional Strategies for the Prevention and Management of Cow's Milk Allergy in the Pediatric Age. Nutrients 2023; 15:3328. [PMID: 37571266 PMCID: PMC10421120 DOI: 10.3390/nu15153328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Cow's milk allergy (CMA) is one of the most common pediatric food allergies. The prevalence and severity of CMA have increased dramatically in the last decades, under the pressure of environmental factors in genetically predisposed individuals. Among the environmental influences, nutritional factors play a crucial role. Diet is the most modifiable factor, representing a potential target for the prevention and treatment of CMA. In this review, we report the most scientific-based nutritional strategies for preventing and managing pediatric CMA. In addition, we propose the most complete supplement of compounds able to prevent nutrient deficiencies in CMA pediatric patients and to positively influence the disease course.
Collapse
Affiliation(s)
- Serena Coppola
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia Di Sarra
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
| | - Gulsum Ozen
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy; (S.C.); (L.C.); (F.O.); (C.D.S.); (G.O.)
- Immunonutrition Lab at the CEINGE Advanced Biotechnologies Research Center, University of Naples Federico II, 80131 Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples Federico II, 80131 Naples, Italy
- Task Force for Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
31
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
32
|
Dahiya D, Nigam PS. Nutraceuticals Prepared with Specific Strains of Probiotics for Supplementing Gut Microbiota in Hosts Allergic to Certain Foods or Their Additives. Nutrients 2023; 15:2979. [PMID: 37447306 DOI: 10.3390/nu15132979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Certain nutrients cause discomfort, sensitivity reaction, and an intolerance for certain foods or their ingredients when ingested by some consumers. Food reactions and gut inflammation-related problems are increasing worldwide. The primary form of management would be the avoidance of such foods, followed by treatment of their symptoms. Adopting a nutritional-therapeutic approach and establishing practices for the inclusion of functional foods and nutraceuticals in the diet could improve the ecology of gut microbiota and alleviate inflammation in the GIT. For this purpose, specific species of microorganisms characterized as probiotic strains have been studied to produce functional food and fermented beverage products. Commercially sold, such items are labelled as probiotic products, displaying the name/s of strain/s and the viable numbers of them contained in the portion size of the products. The importance of the growth of probiotic functional foods is that they can be consumed as a source of nutrition and their intake helps in the subsistence and recuperation of friendly gut bacteria. Probiotics have been reported for their role in ameliorating the risk of food reactions. Probiotic administration has been implemented for its role as an auxiliary improvement and for the prevention of food sensitivities common among pediatric patients. Probiotic products based on non-dairy substrates have potential as nutraceuticals for lactose intolerant consumers who are allergic to dairy milk products. Therefore, the aim of this article is to review GRAS microbial species characterized as probiotics up to the level of their specific strain's name and/or number. These have been used to produce nutraceuticals that are sources of beneficial bacteria for easing discomfort and allergic reactions by maintaining an inflammation-free gut.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
33
|
Huang M, Shao H, Wang Z, Chen H, Li X. Specific and nonspecific nutritional interventions enhance the development of oral tolerance in food allergy. Crit Rev Food Sci Nutr 2023; 64:10303-10318. [PMID: 37313721 DOI: 10.1080/10408398.2023.2222803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
The goal of food allergy (FA) prevention and treatment is to induce oral tolerance (OT). Appropriate nutritional interventions are essential to induce OT to food allergens. This review introduces the mechanism of OT and the importance of early nutritional interventions, and then firstly summarizes specific nutritional factors to induce the development of OT of FA, including proteins, vitamins, fatty acids, saccharides and probiotics. The regulatory mechanism mainly induces the development of tolerance by increasing local or systemic protective regulatory T cells (Tregs) to suppress FA, while the gut microbiota may also be changed to maintain intestinal homeostasis. For allergens-specific OT, the disruption to the structure of proteins and epitopes is critical for the induction of tolerance by hydrolyzed and heated proteins. Vitamins (vitamin A, D), fatty acids, saccharides and probiotics as allergens nonspecific OT also induce the development of OT through immunomodulatory effects. This review contributes to our understanding of OT in FA through nutritional interventions. Nutritional interventions play an important role in the induction of OT, and offer promising approaches to reduce allergy risk and alleviate FA. Moreover, due to the importance and diversity of nutrition, it must be the future trend of induction of OT in FA.
Collapse
Affiliation(s)
- Meijia Huang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Huming Shao
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Zhongliang Wang
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| | - Xin Li
- School of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, P.R. China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
34
|
Cela L, Brindisi G, Gravina A, Pastore F, Semeraro A, Bringheli I, Marchetti L, Morelli R, Cinicola B, Capponi M, Gori A, Pignataro E, Piccioni MG, Zicari AM, Anania C. Molecular Mechanism and Clinical Effects of Probiotics in the Management of Cow's Milk Protein Allergy. Int J Mol Sci 2023; 24:9781. [PMID: 37372929 DOI: 10.3390/ijms24129781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cow's milk protein allergy (CMPA) is the most common food allergy (FA) in infancy, affecting approximately 2% of children under 4 years of age. According to recent studies, the increasing prevalence of FAs can be associated with changes in composition and function of gut microbiota or "dysbiosis". Gut microbiota regulation, mediated by probiotics, may modulate the systemic inflammatory and immune responses, influencing the development of allergies, with possible clinical benefits. This narrative review collects the actual evidence of probiotics' efficacy in the management of pediatric CMPA, with a specific focus on the molecular mechanisms of action. Most studies included in this review have shown a beneficial effect of probiotics in CMPA patients, especially in terms of achieving tolerance and improving symptoms.
Collapse
Affiliation(s)
- Ludovica Cela
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Gravina
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Francesca Pastore
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Semeraro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Ivana Bringheli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Lavinia Marchetti
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Rebecca Morelli
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Bianca Cinicola
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Capponi
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Elia Pignataro
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| | - Caterina Anania
- Department of Maternal Infantile and Urological Science, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
35
|
Xu Z, Bai H, Ma X, Wu Y, Wu Z, Yang A, Mao W, Li X, Chen H. Cytological evaluation by Caco-2 and KU812 of non-allergenic peptides from simulated digestion of infant formula in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
|
36
|
Miniello VL, Miniello A, Ficele L, Skublewska-D'Elia A, Dargenio VN, Cristofori F, Francavilla R. Gut Immunobiosis and Biomodulators. Nutrients 2023; 15:2114. [PMID: 37432248 DOI: 10.3390/nu15092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
The human gastrointestinal (GI) tract hosts complex and dynamic populations of microorganisms (gut microbiota) in advantageous symbiosis with the host organism through sophisticated molecular cross-talk. The balance and diversification within microbial communities (eubiosis) are crucial for the immune and metabolic homeostasis of the host, as well as for inhibiting pathogen penetration. In contrast, compositional dysregulation of the microbiota (dysbiosis) is blamed for the determinism of numerous diseases. Although further advances in the so-called 'omics' disciplines are needed, dietary manipulation of the gut microbial ecosystem through biomodulators (prebiotics, probiotics, symbionts, and postbiotics) represents an intriguing target to stabilize and/or restore eubiosis. Recently, new approaches have been developed for the production of infant formulas supplemented with prebiotics (human milk oligosaccharides [HMOs], galacto-oligosaccharides [GOS], fructo-oligosaccharides [FOS]), probiotics, and postbiotics to obtain formulas that are nutritionally and biologically equivalent to human milk (closer to the reference).
Collapse
Affiliation(s)
- Vito Leonardo Miniello
- Nutrition Unit, Department of Pediatrics, "Giovanni XXIII" Children Hospital, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Andrea Miniello
- Department of Emergency and Organ Transplantation, School of Allergology and Clinical Immunology, University of Bari Aldo Moro, Policlinico di Bari, 70126 Bari, Italy
| | - Laura Ficele
- Nutrition Unit, Department of Pediatrics, "Giovanni XXIII" Children Hospital, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Aleksandra Skublewska-D'Elia
- Nutrition Unit, Department of Pediatrics, "Giovanni XXIII" Children Hospital, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children's Hospital 'Giovanni XXIII', University of Bari Aldo Moro, 70126 Bari, Italy
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children's Hospital 'Giovanni XXIII', University of Bari Aldo Moro, 70126 Bari, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children's Hospital 'Giovanni XXIII', University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
37
|
Wilsey MJ, Florio J, Beacker J, Lamos L, Baran JV, Oliveros L, Sriaroon P, Brown JM, Vanderhoof JA. Extensively Hydrolyzed Formula Improves Allergic Symptoms in the Short Term in Infants with Suspected Cow’s Milk Protein Allergy. Nutrients 2023; 15:nu15071677. [PMID: 37049517 PMCID: PMC10096968 DOI: 10.3390/nu15071677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Although extensively hydrolyzed formula is widely accepted for managing cow’s milk protein allergy (CMPA) long-term, there is a lack of evidence on its short-term efficacy. This study’s objective was to investigate the short-term symptom changes (within 3–6 weeks) of infants diagnosed with CMPA and managed with extensively hydrolyzed formula containing Lactobacillus rhamnosus at their subsequent physician visit. Healthcare providers treating 202 patients diagnosed with CMPA under six months old completed de-identified surveys, which were then analyzed in this prospective study. After their first visit, the patients were started on extensively hydrolyzed formula, and their baseline symptoms were scored on a severity scale of 0–3. Patients were then reevaluated at their next follow-up visit to assess changes in symptom severity. The study found statistically significant improvements in gastrointestinal (93%), skin (83%), respiratory (73%), and uncategorized symptoms (90%). These symptom improvements were consistent across different follow-up visit durations. This study is the largest prospective analysis conducted in the United States evaluating short-term change in CMPA symptoms severity in infants under six months old using extensively hydrolyzed formula. These findings suggest that extensively hydrolyzed formula is associated with clinical symptom relief, which is often noticeable by the next follow-up visit. However, additional randomized control trials are needed to validate these results.
Collapse
|
38
|
Yamamoto-Hanada K, Sato M, Toyokuni K, Irahara M, Hiraide-Kotaki E, Harima-Mizusawa N, Morita H, Matsumoto K, Ohya Y. Combination of heat-killed Lactiplantibacillus plantarum YIT 0132 (LP0132) and oral immunotherapy in cow's milk allergy: a randomised controlled trial. Benef Microbes 2023; 14:17-30. [PMID: 36815492 DOI: 10.3920/bm2022.0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/24/2023]
Abstract
Safer and more effective cow milk (CM)-oral immunotherapy that does not induce allergic reactions has not yet been standardised. We sought to explore the efficacy and feasibility of a combination of heat-killed Lactiplantibacillus plantarum YIT 0132 (LP0132) and oral immunotherapy for treating IgE-mediated cow milk allergy (CMA). We conducted a 24-week, double-blind, randomised (1:1), two-arm, parallel-group, placebo-controlled, phase 2 trial of LP0132 intervention for treating IgE-mediated CMA in children aged 1-18 years (n=60) from January 29, 2018 to July 12, 2019 in Tokyo, Japan. Participants were randomly assigned to the LP0132 group receiving citrus juice fermented with LP0132 or to the control group receiving citrus juice without. Both groups received low-dose slow oral immunotherapy with CM. The primary outcome was improved tolerance to CM, proven by the CM challenge test at 24 weeks. Secondary outcomes were changes in serum biomarkers of serum-specific β-lactoglobulin-IgE (sIgE) and β-lactoglobulin-IgG4 (sIgG4). Exploratory outcomes included changes in serum cytokine levels and gut microbiota composition. A total of 61 participants were included. Finally, 31 children were assigned to the LP0132 group and 30 to the control group, respectively. After the intervention, 41.4 and 37.9% of the participants in the LP0132 and control groups, respectively, showed improved tolerance to CM. In serum biomarkers after the intervention, the sIgG4 level was significantly higher, and interleukin (IL)-5 and IL-9 were significantly lower, in the LP0132 group than in the control group. In the gut microbiome, the α-diversity and Lachnospiraceae increased significantly in the LP0132 group, and Lachnospiraceae after the intervention was significantly higher in the LP0132 group than in the control group. In conclusion, low-dose oral immunotherapy with modulating gut microbiota might be a safer and more effective approach for treating cow's milk allergy.
Collapse
Affiliation(s)
- K Yamamoto-Hanada
- Allergy Center, National Center for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - M Sato
- Allergy Center, National Center for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - K Toyokuni
- Allergy Center, National Center for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - M Irahara
- Allergy Center, National Center for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - E Hiraide-Kotaki
- Yakult Central Institute for Microbiological Research, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - N Harima-Mizusawa
- Yakult Central Institute for Microbiological Research, 5-11 Izumi, Kunitachi, Tokyo 186-8650, Japan
| | - H Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - K Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| | - Y Ohya
- Allergy Center, National Center for Child Health and Development, 2-10-1 Okura, 1578535 Tokyo, Japan
| |
Collapse
|
39
|
‘Early Introduction’ of Cow’s Milk for Children with IgE-Mediated Cow’s Milk Protein Allergy: A Review of Current and Emerging Approaches for CMPA Management. Nutrients 2023; 15:nu15061397. [PMID: 36986127 PMCID: PMC10057913 DOI: 10.3390/nu15061397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
IgE-mediated cow’s milk protein allergy (CMPA) is one of the most prevalent food allergies in early childhood. Though the cornerstone of management involves the strict avoidance of milk products while awaiting natural tolerance, research increasingly shows that the rates of resolution are slowing down. Therefore, there is a need to explore alternative pathways to promote tolerance to cow’s milk in pediatric populations. This review aims to combine and appraise the scientific literature regarding the three CMPA management methods: avoidance, the milk ladder, and oral immunotherapy (OIT) and their outcomes in terms of efficacy, safety, and immunological effects. Cow’s milk (CM) avoidance virtually protects against allergic reaction until natural tolerance occurs, with hypoallergenic substitutes available in the market, but accidental ingestion represents the main issue for this strategy. Introduction to baked milk using the milk ladder was designed, with most CMPA patients successfully completing the ladder. Similar to baked milk treatment, many OIT protocols also demonstrated decreased IgE and increased IgG4 levels post protocol, as well as a reduction in wheal size diameter. Though these strategies are shown to be safe and effective in CMPA, future clinical trials should compare the safety and effectiveness of these three management strategies.
Collapse
|
40
|
Lemoine A, Tounian P, Adel-Patient K, Thomas M. Pre-, pro-, syn-, and Postbiotics in Infant Formulas: What Are the Immune Benefits for Infants? Nutrients 2023; 15:1231. [PMID: 36904230 PMCID: PMC10004767 DOI: 10.3390/nu15051231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The first objective of infant formulas is to ensure the healthy growth of neonates and infants, as the sole complete food source during the first months of life when a child cannot be breastfed. Beyond this nutritional aspect, infant nutrition companies also try to mimic breast milk in its unique immuno-modulating properties. Numerous studies have demonstrated that the intestinal microbiota under the influence of diet shapes the maturation of the immune system and influences the risk of atopic diseases in infants. A new challenge for dairy industries is, therefore, to develop infant formulas inducing the maturation of immunity and the microbiota that can be observed in breastfed delivered vaginally, representing reference infants. Streptococcus thermophilus, Lactobacillus reuteri DSM 17938, Bifidobacterium breve (BC50), Bifidobacterium lactis Bb12, Lactobacillus fermentum (CECT5716), and Lactobacillus rhamnosus GG (LGG) are some of the probiotics added to infant formula, according to a literature review of the past 10 years. The most frequently used prebiotics in published clinical trials are fructo-oligosaccharides (FOSs), galacto-oligosaccharides (GOSs), and human milk oligosaccharides (HMOs). This review sums up the expected benefits and effects for infants of pre-, pro-, syn-, and postbiotics added to infant formula regarding the microbiota, immunity, and allergies.
Collapse
Affiliation(s)
- Anaïs Lemoine
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| | - Patrick Tounian
- Pediatric Nutrition and Gastroenterology, Trousseau Hospital, Assistance Publique—Hôpitaux de Paris, Sorbonne Université, F-75012 Paris, France
| | - Karine Adel-Patient
- Département Médicaments et Technologies pour la Santé (DMTS), SPI/Laboratoire d’Immuno-Allergie Alimentaire, Université Paris-Saclay, CEA, INRAe, F-91190 Gif-sur-Yvette, France
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, F-75571 Paris, France
| |
Collapse
|
41
|
Martínez-Robles S, González-Ballesteros E, Reyes-Esparza J, Trejo-Teniente I, Jaramillo-Loranca BE, Téllez-Jurado A, Vázquez-Valadez VH, Angeles E, Vargas Hernández G. Effect of β - hydroxy - γ -aminophosphonate (β - HPC) on the hydrolytic activity of Nocardia brasiliensis as determined by FT-IR spectrometry. Front Microbiol 2023; 14:1089156. [PMID: 36778890 PMCID: PMC9909415 DOI: 10.3389/fmicb.2023.1089156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
The use of immunomodulatory and metabolic modulating drugs has been considered a better strategy to improve the efficacy of conventional treatments against pathogens and metabolic diseases. L-carnitine is relevant in fatty acid metabolism and energy production by β-oxidation, but it also has a beneficial therapeutic immunomodulatory effect. The β-hydroxy-γ-aminophosphonate (β-HPC) was developed, synthesized and studied in different pathologies as a more soluble and stable analog than L-carnitine, which has been studied in bacterial physiology and metabolism; therefore, we set out to investigate the direct effect of β-HPC on the metabolism of N. brasiliensis, which causes actinomycetoma in Mexico and is underdiagnosed. To analyze the effect of β-HPC on the metabolic capacity of the bacterium for the hydrolysis of substrate casein, L-tyrosine, egg yolk, and tween 80, Fourier transform infrared spectroscopy (FT-IR) was employed. It was found that β-HPC increases the metabolic activity of N. brasiliensis associated with increased growth and increased hydrolysis of the substrates tested. By the effect of β-HPC, it was observed that, in the hydrolysis of L-tyrosine, the aromatic ring and functional groups were degraded. At 1515 cm-1, any distinctive signal or peak for this amino acid was missing, almost disappearing at 839, 720, 647, and 550 cm-1. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, and CO. In casein, hydrolysis is enhanced in the substrate, which is evident by the presence of NH, OH, amide, COO, and P = O signals, characteristic of amino acids, in addition to the increase of the amide I and II bands. In Tween 80 the H-C = and C = C signals disappear and the ether signals are concentrated, it was distinguished by the intense band at 1100 cm-1. Egg yolk showed a large accumulation of phosphate groups at 1071 cm-1, where phosvitin is located. FT-IR has served to demonstrate that β-HPC is a hydrolysis enhancer. Furthermore, by obtaining the spectrum of N. brasiliensis, we intend to use it as a quick comparison tool with other spectra related to actinobacteria. Eventually, FT-IR may serve as a species identification option.
Collapse
Affiliation(s)
- Sandra Martínez-Robles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico,Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,*Correspondence: Sandra Martínez-Robles,
| | - Erik González-Ballesteros
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Isaí Trejo-Teniente
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | | | - Alejandro Téllez-Jurado
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Enrique Angeles
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Genaro Vargas Hernández
- Programa Educativo del Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Zempoala, Mexico,Genaro Vargas Hernández,
| |
Collapse
|
42
|
Pezeshki PS, Nowroozi A, Razi S, Rezaei N. Asthma and Allergy. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
|
43
|
Belyaeva IA, Namazova-Baranova LS, Bombardirova EP, Turti TV. World Trends in Infant Formulas Composition Enhancement. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
This article provides the overview of the major strategies for infant formulas composition enhancement via modern technologies and trends in minimizing technology-related loads on the environment. Potential modifications of quantitative and qualitative characteristics of milk formulas nutrients have been determined. We also covered product contents changing over age, as well as the perspectives of using animal milk in formulas. The relevance of adding biologically active substances and living microorganisms (probiotics), their safety, and efficacy are discussed.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Leyla S. Namazova-Baranova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
44
|
Wright K, Feeney M, Yerlett N, Meyer R. Nutritional Management of Children with Food Allergies. CURRENT TREATMENT OPTIONS IN ALLERGY 2022. [DOI: 10.1007/s40521-022-00320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Abstract
Purpose of the Review
The purpose of the review is to review the evidence for the nutritional management of paediatric food allergy and provide a practical approach for healthcare professionals working in this area.
Recent Findings
Dietary elimination remains the mainstay for management of food allergies in children. However, the elimination of food allergens increases the risk for growth faltering, micronutrient deficiencies and feeding difficulties. Breastmilk remains the ideal source of nutrition for infants, but when not available, the vast majority will tolerate an extensively hydrolysed formula, and rice hydrolysate has also been suggested as a suitable alternative. Only in severe cases, including anaphylaxis, eosinophilic oesophagitis and growth faltering, is an amino acid formula indicated. The early introduction of peanut and egg and avoiding the delay in the introduction of other allergens, when not already allergic, has been highlighted by recent studies.
Summary
Whilst the elimination of allergens increases the risk of developing poor growth, micronutrient deficiencies and feeding difficulties, optimal, early dietary input, including advice on active introduction of allergens and alternative feeds, ideally from a registered dietitian/nutritionist, may be prevent and improve outcomes.
Collapse
|
45
|
Paquete AT, Martins R, Connolly MP, Meulle M, Pastor N, Benoist G, Tounian P. Cost-effectiveness of infant hypoallergenic formulas to manage cow's milk protein allergy in France. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2022; 11:2154418. [PMID: 36518150 PMCID: PMC9744214 DOI: 10.1080/20016689.2022.2154418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinician's choice of hypoallergenic formulas in the first-line management of cow's milk protein allergy (CMPA) should be informed by evidence on clinical efficacy and cost-effectiveness. OBJECTIVE We compare the cost-effectiveness of amino acid-based formula (AAF), extensively hydrolyzed casein formula with Lactobacillus rhamnosus Gorbach Goldin (EHCF+LGG), extensively hydrolyzed whey formula (EHWF), and rice hydrolyzed formula (RHF) in non-breastfed children in France. METHODS Immunotolerance and atopic manifestations' prevalence were based on a prospective non-randomized study with a 36-month follow-up. Resource utilization was sourced from a survey of French clinicians, and unit costs were based on national data. Costs and health consequences were discounted at 2.5% annually. Results were reported using the Collective and French National Health Insurance perspectives. RESULTS Children receiving EHCF+LGG were predicted to require less healthcare resources, given their reduced prevalence of CMPA symptoms at 3 years. In the base case, EHCF+LGG led to savings of at least €674 per child compared to AAF, EHWF, and RHF at 3 years, from both perspectives. Nutrition had the highest economic burden in CMPA, driven by hypoallergenic formulas and dietetic replacements costs. Results were robust to one-way and probabilistic sensitivity analyses. CONCLUSIONS EHCF+LGG was associated with more symptom-free time, higher immune tolerance, and lower costs.
Collapse
Affiliation(s)
- Ana Teresa Paquete
- Health Economics Unit, Health Economics Consultants, Global Market Access Solutions, St-Prex, Switzerland
| | - Rui Martins
- Health Economics Unit, Health Economics Consultants, Global Market Access Solutions, St-Prex, Switzerland
- Unit of PharmacoEpidemiology & PharmacoEconomics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Mark P. Connolly
- Health Economics Unit, Health Economics Consultants, Global Market Access Solutions, St-Prex, Switzerland
- Unit of PharmacoEpidemiology & PharmacoEconomics, Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marie Meulle
- Benckiser Healthcare France, Reckitt Benckiser, Paris, France
| | - Nítida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, 47721, Evansville, IN, USA
| | - Grégoire Benoist
- Department of Pediatrics, CHU Ambroise Paré, APHP, 92100, Boulogne-Billancourt, France
| | - Patrick Tounian
- Pediatric Nutrition and Gastroenterology Department, Trousseau hospital, APHP, Sorbonne University, Paris, France
| |
Collapse
|
46
|
Indrio F, Gutierrez Castrellon P, Vandenplas Y, Cagri Dinleyici E, Francavilla R, Mantovani MP, Grillo A, Beghetti I, Corvaglia L, Aceti A. Health Effects of Infant Formula Supplemented with Probiotics or Synbiotics in Infants and Toddlers: Systematic Review with Network Meta-Analysis. Nutrients 2022; 14:5175. [PMID: 36501205 PMCID: PMC9739048 DOI: 10.3390/nu14235175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
Supplementation of infant and follow-up formula with probiotics or synbiotics has become a common practice. In 2011 and 2017, the evidence regarding the impact of these interventions was analysed systematically. Recently new evidence was published. To evaluate through a systematic review with network meta-analysis the evidence on the impact of infant formula supplemented with probiotics or synbiotics for healthy infants and 36-month-old toddlers. RCTs published between 1999-2019 for infant formulas supplemented with probiotics alone or synbiotics in healthy infants and toddlers were identified. Data analysis included clinical (gastrointestinal symptoms, risk reduction of infectious diseases, use of antibiotics, weight/height gain and frequency of adverse events) and non-clinical outcomes (changes in faecal microbiota and immune parameters). A random effect model was used. Hedges' standard mean difference (SMD) and risk ratio (RR) were calculated. Rank analysis was performed to evaluate the superiority of each intervention. Twenty-six randomised controlled trials with 35 direct comparisons involving 1957 children receiving probiotic-supplemented formula and 1898 receiving control formula were reviewed. The mean duration of intervention was 5.6 ± 2.84 months. Certain strains demonstrated a reduction in episodes of colic, number of days with fever and use of antibiotics; however, there was considerable heterogeneity which reduced the level of certainty of effect. No significant effects were observed on weight, height or changes in faecal proportions of Bifidobacteria, Lactobacillus, Bacteroides or Clostridia. Although there is some evidence that may support a potential benefit of probiotic or synbiotic supplementation of infant formulas, variation in the quality of existing trials and the heterogeneity of the data preclude the establishment of robust recommendations.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Medical and Surgical Science Pediatric Section, University of Foggia, 71100 Foggia, Italy
| | - Pedro Gutierrez Castrellon
- Centro de Investigación Translacional en Ciencias de la Salud, Hospital General Dr. Manuel Gea González, 14080 Ciudad de México, Mexico
| | - Yvan Vandenplas
- UZ Brussel, KidZ Health Castle, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26480, Turkey
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Assunta Grillo
- Department of Medical and Surgical Science Pediatric Section, University of Foggia, 71100 Foggia, Italy
| | - Isadora Beghetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Neonatal Intensive Care Unit, IRCCS AOUBO, 40138 Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Neonatal Intensive Care Unit, IRCCS AOUBO, 40138 Bologna, Italy
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Neonatal Intensive Care Unit, IRCCS AOUBO, 40138 Bologna, Italy
| |
Collapse
|
47
|
Coppola S, Carucci L, De Michele R, Berni Canani R. The potential role of preventive and therapeutic immunonutrition strategies for pediatric food allergy: A mini-review. Front Nutr 2022; 9:1050554. [DOI: 10.3389/fnut.2022.1050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Food allergy (FA) represents one of the main chronic conditions of the pediatric population. The gut microbiome (GM)-immune system axis is a milestone in affecting FA susceptibility. The dynamic and bidirectional crosstalk between the GM and immune system starts early in life, and it is deeply modulated during the first 1,000 days of life. Nutritional factors during this crucial period mainly influence the proper GM-immune system development and function across the lifespan, with potential beneficial or detrimental effects on health status. Immunonutrition strategies, applied from conception, could represent an innovative target for prevention and treatment of pediatric FA. Here we described the potential role of preventive and therapeutic immunonutrition strategies for pediatric FA, highlighting putative future perspectives in this field.
Collapse
|
48
|
Schneider R, Sant'Anna A. Using probiotics in paediatric populations. Paediatr Child Health 2022; 27:482-502. [PMID: 36583073 PMCID: PMC9792287 DOI: 10.1093/pch/pxac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
This statement defines probiotics and reviews the most recent literature on their use in paediatrics. Many studies have examined the potential benefit of probiotics, but significant variation in the strains and doses of probiotics used, the patient populations studied, and in study design, have led to heterogeneous results. Present evidence suggests that probiotics can decrease mortality and lower incidence of necrotizing enterocolitis in preterm and low birth weight neonates. Probiotics may also be beneficial in reducing feeding intolerance. In infants, probiotics may be considered to reduce symptoms of colic. In older children, probiotics can be considered to prevent antibiotic-associated diarrhea and Clostridium difficile -associated diarrhea. Probiotic supplements used in conjunction with standard therapy can help with Helicobacter pylori eradication and decrease the side effects of treatment. Lactobacillus species can be considered to treat irritable bowel syndrome. Probiotics can also be considered to help prevent atopic dermatitis and eczema. To optimize paediatric policy and practice, large, quality studies are needed to determine what types and combinations of probiotics are most efficacious.
Collapse
Affiliation(s)
- Rilla Schneider
- Canadian Paediatric Society, Nutrition and Gastroenterology Committee, Ottawa, Ontario, Canada
| | - Ana Sant'Anna
- Canadian Paediatric Society, Nutrition and Gastroenterology Committee, Ottawa, Ontario, Canada
| |
Collapse
|
49
|
Schneider R, Sant'Anna A. L’utilisation des probiotiques dans la population pédiatrique. Paediatr Child Health 2022; 27:482-502. [PMID: 36583070 PMCID: PMC9792288 DOI: 10.1093/pch/pxac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Accepted: 04/25/2022] [Indexed: 12/28/2022] Open
Abstract
Le présent document de principes définit les probiotiques et fournit une analyse des publications scientifiques les plus récentes sur leur utilisation en pédiatrie. De nombreuses études ont évalué les avantages potentiels des probiotiques, mais en raison des variations importantes dans les souches et les doses utilisées, des populations de patients étudiées et des méthodologies privilégiées, les résultats sont hétérogènes. Selon les données probantes à jour, les probiotiques peuvent réduire le taux de mortalité et l’incidence d’entérocolite nécrosante chez les nouveau-nés prématurés et de petit poids à la naissance. Ils peuvent également être bénéfiques pour réduire l’intolérance alimentaire. Chez les nourrissons, on peut envisager de les utiliser pour limiter les symptômes de coliques, et chez les enfants plus âgés, pour prévenir la diarrhée associée aux antibiotiques ou au Clostridium difficile . Les suppléments de probiotiques utilisés conjointement avec un traitement standard peuvent contribuer à éradiquer l’Helicobacter pylori et à atténuer les effets secondaires du traitement. On peut envisager d’utiliser des espèces de Lactobacillus pour traiter le syndrome du côlon irritable ou de recourir à des probiotiques pour contribuer à prévenir la dermatite atopique et l’eczéma. Afin d’optimiser les politiques et les pratiques en pédiatrie, de vastes études de qualité devront être réalisées pour déterminer les types et les combinaisons de probiotiques les plus efficaces.
Collapse
Affiliation(s)
- Rilla Schneider
- Société canadienne de pédiatrie, comité de nutrition et de gastroentérologie, Ottawa (Ontario)Canada
| | - Ana Sant'Anna
- Société canadienne de pédiatrie, comité de nutrition et de gastroentérologie, Ottawa (Ontario)Canada
| |
Collapse
|
50
|
D'Auria E, Acunzo M, Salvatore S, Grazi R, Agosti M, Vandenplas Y, Zuccotti G. Biotics in atopic diseases: state of the art and future perspectives. Minerva Pediatr (Torino) 2022; 74:688-702. [PMID: 36149096 DOI: 10.23736/s2724-5276.22.07010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Prevalence of allergic diseases has growing in recent decades, being a significant burden for patients and their families. Different environmental factors, acting in early life, can significantly affect the timing and diversity of bacterial colonization and the immune system development. Growing evidence points to a correlation between early life microbial perturbation and development of allergic diseases. Besides, changes in the microbiota in one body site may influence other microbiota communities at distance by different mechanisms, including microbial-derived metabolites, mainly the short chain fatty acids (SCFA). Hence, there has been an increasing interest on the role of "biotics" (probiotics, prebiotics, symbiotics and postbiotics) in shaping dysbiosis and modulating allergic risk. Systemic type 2 inflammation is emerging as a common pathogenetic pathway of allergic diseases, intertwining communication with the gut mcirobiota. The aim of this review was to provide an update overview of the current knowledge of biotics in prevention and treatment of allergic diseases, also addressing research gaps which need to be filled.
Collapse
Affiliation(s)
- Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy -
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Silvia Salvatore
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Roberta Grazi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Department of Pediatrics, University of Insubria, F. Del Ponte Hospital, Varese, Italy
| | - Yvan Vandenplas
- KidZ Health Castle, Free University of Brussels, Brussels, Belgium
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| |
Collapse
|