1
|
Szatkowski P, Gielicz A, Stępień A, Hartwich P, Kacorzyk R, Plutecka H, Ćmiel A, Trąd-Wójcik G, Sanak M, Mastalerz L. Unique effect of aspirin on local 15-oxo-eicosatetraenoic acid synthesis in asthma patients with aspirin hypersensitivity. Clin Transl Allergy 2024; 14:e70004. [PMID: 39722441 DOI: 10.1002/clt2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/06/2024] [Accepted: 10/05/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (NSAIDs-ERD) is characterized by altered arachidonic acid (AA) metabolism. Aspirin hypersensitivity is diagnosed using aspirin challenge, while induced sputum is collected to perform cell counts and to identify local biomarkers in induced sputum supernatant (ISS). This study aimed to assess the levels of a newly identified eicosanoid, 15-oxo-eicosatetraenoic acid (15-oxo-ETE), in ISS at baseline and during aspirin-induced bronchospasm in patients with NSAIDs-ERD. METHODS Oral aspirin challenge was performed in 27 patients with NSAIDs-ERD and in 17 patients with aspirin-tolerant asthma (ATA) serving as controls. Sputum was collected before and after aspirin challenge to determine eosinophil, neutrophil, macrophage, and lymphocyte counts as well as the concentration of AA metabolites via 15-lipoxygenase-1 (15-LOX-1) and 5-LOX pathways in ISS. Chromatography-tandem mass spectrometry was used to measure ISS levels of 15-oxo-ETE, 15-hydroxyeicosatetranoic acid (15-HETE), and leukotriene E4 (LTE4). RESULTS At baseline, ISS levels of 15-oxo-ETE were higher in NSAIDs-ERD than in ATA (p = 0.04). In contrast, baseline 15-HETE levels in ISS were lower in patients with NSAIDs-ERD (p = 0.03). After aspirin challenge, 15-oxo-ETE levels decreased only in patients with NSAIDs-ERD (p = 0.001) who developed bronchospasm. In both study groups, there was a reduction in sputum macrophage count after aspirin challenge (p = 0.03 and p = 0.02, respectively) irrespective of bronchospasm. CONCLUSIONS Patients with NSAIDs-ERD are characterized by higher baseline 15-oxo-ETE levels in ISS than patients with ATA. Aspirin-induced bronchospasm inhibited the local generation of 15-oxo-ETE.
Collapse
Affiliation(s)
- Piotr Szatkowski
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Gielicz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Stępień
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Patryk Hartwich
- Department of Otolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Hanna Plutecka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Gabriela Trąd-Wójcik
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Locatello LG, Tonon S, Mele V, Santini S, Miani C, Pucillo CEM. Update on the Biological and Clinical Relevance of Mast Cells in Chronic Rhinosinusitis with Nasal Polyps. Biomedicines 2024; 12:2647. [PMID: 39595211 PMCID: PMC11592168 DOI: 10.3390/biomedicines12112647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common inflammatory disorder whose complex immunopathogenesis has yet to be fully elucidated. Endotype-2 CRSwNP is the most common form of disease where eosinophils are the main drivers of inflammation. Traditional treatments for CRSwNP have centered around intranasal or systemic corticosteroids and endoscopic sinus surgery (ESS). However, recent advancements in targeted therapies have introduced novel biological agents that specifically target key inflammatory mediators such as IL-4, IL-5, and IL-13. These biologics offer promising options for patients with CRSwNP, particularly those who do not respond adequately to conventional treatments. Nonetheless, some patients do not satisfactorily respond to these drugs because of an insufficient blockade of the inflammatory process. The mast cell (MC) is another important (and somehow neglected) actor in the pathogenesis of CRSwNP, and the latest clinical and translational evidence in this field has been reviewed in the present paper.
Collapse
Affiliation(s)
- Luca Giovanni Locatello
- Department of Otorhinolaryngology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Silvia Tonon
- Department of Medicine (DMED), Immunology Section, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Vincenzo Mele
- Department of Otorhinolaryngology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Simone Santini
- Department of Otorhinolaryngology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Cesare Miani
- Department of Otorhinolaryngology, Academic Hospital “Santa Maria della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
- Department of Medicine (DMED), University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Carlo Ennio Michele Pucillo
- Department of Medicine (DMED), Immunology Section, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
- Department of Medicine (DMED), University of Udine, Via Colugna 50, 33100 Udine, Italy
| |
Collapse
|
3
|
Iwasaki N, Poposki JA, Kidoguchi M, Oka A, Klingler AI, Stevens WW, Suh LA, Bai J, Peters AT, Grammer LC, Welch KC, Smith SS, Conley DB, Bochner BS, Schleimer RP, Kern RC, Tan BK, Kato A. Analysis of human neutrophils from nasal polyps by single-cell RNA sequencing reveals roles of neutrophils in chronic rhinosinusitis. J Allergy Clin Immunol 2024:S0091-6749(24)01176-X. [PMID: 39522652 DOI: 10.1016/j.jaci.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 (T2) inflammation. Recent studies, including our own, suggest that neutrophils are also elevated in T2 nasal polyps (NP) and that elevated neutrophils display an activated phenotype. However, the actual roles of neutrophils in NP pathogenesis in T2 CRSwNP are still largely unclear. OBJECTIVE To reveal the roles and heterogeneity of neutrophils in NP tissue by single-cell RNA sequencing analysis. METHODS We developed a novel microwell-based single-cell RNA sequencing assay using granulocyte-enriched samples from 5 control sinus tissues, 5 NP tissues and patient-matched peripheral blood (PB) samples. This approach allowed for examination of differential expression of genes in NP neutrophils by the Benjamini-Hochberg algorithm and predicted the overall function of NP neutrophils by pathway and Gene Ontology enrichment analyses. RESULTS After performing all quality control steps, we successfully detected neutrophils. We identified 333 downregulated and 128 upregulated genes in NP neutrophils (1,151 cells) compared with all PB neutrophils (13,591 cells) (>1.5-fold, q < 0.05) and found commonly dysregulated genes in NP neutrophils compared with both all PB and control sinus tissue neutrophils (3,136 cells). Commonly downregulated genes in NP neutrophils were associated with the innate immune system, and upregulated genes were associated with nuclear factor-κB signaling, cytokine activity, and cellular response to oxygen-containing compounds. NP neutrophils displayed 4 clusters revealing potential heterogeneity of neutrophils in NP tissue. CONCLUSIONS Elevated neutrophils in NP tissue appear to exist in several subphenotypes that may play important pathogenic roles in CRSwNP.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Masanori Kidoguchi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko Oka
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko I Klingler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Junqin Bai
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
4
|
Jermihov A, iAkushev A, White A, Jerschow E. Updates on the Natural History and Clinical Characteristics of NSAID-ERD. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2889-2896. [PMID: 39038540 PMCID: PMC11560530 DOI: 10.1016/j.jaip.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (NSAID-ERD) is a distinct clinical syndrome characterized by nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity, asthma, and nasal polyposis. Its diagnosis is challenging owing to variable presentations and a lack of simple tests, leading to diagnostic delays. Recent research has revealed its genetic predispositions, environmental triggers, and associations with atopy and second-hand tobacco smoke exposure or smoking cessation. Despite its severity, diagnostic awareness remains low, leading to the delay in effective management. Therapeutically, NSAID-ERD necessitates multidisciplinary approaches, often combining surgical interventions with medical management, including aspirin desensitization and biologic agents. However, predictive biomarkers for treatment response remain elusive. Understanding the underlying mechanisms driving NSAID-ERD pathogenesis and identifying reliable biomarkers are crucial for enhancing diagnostic accuracy and refining targeted therapeutic strategies for this debilitating condition. This review aims to provide a thorough understanding of NSAID-ERD, covering its history, clinical features, epidemiology, diagnosis, systemic and molecular biomarkers, available treatment options, and avenues for future research.
Collapse
Affiliation(s)
- Anastasia Jermihov
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA Fort Sam Houston, Texas
| | - Alex iAkushev
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, Minn
| | - Andrew White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Elina Jerschow
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
5
|
Nordström A, Jangard M, Ryott M, Tang X, Svedberg M, Kumlin M. Mucosal LTE 4, PGD 2 and 15(S)-HETE as potential prognostic markers for polyp recurrence in chronic rhinosinusitis. Prostaglandins Other Lipid Mediat 2024; 174:106886. [PMID: 39179198 DOI: 10.1016/j.prostaglandins.2024.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Altered biosynthesis of eicosanoids is linked to type 2 inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP), but their role in recalcitrant NPs is unclear. OBJECTIVES We sought to identify endotypes that are linked to recalcitrant CRSwNP, based on eicosanoids, their biosynthetic enzymes, and receptors as well as cytokines and the presence of eosinophils and mast cells in recurrent NPs. METHODS Mucosal tissue collected at the time of sinus surgery from 54 patients with CRSwNP and 12 non-CRS controls were analysed for leukotriene (LT) E4, prostaglandin (PG) D2, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and 17 cytokines with ELISAs and Bio-Plex immunoassays. Patient subgroups were identified by cluster analysis and the probability of NP recurrence were tested with logistic regression analyses. Gene expressions were analysed with qPCR. Tryptase and eosinophil-derived neurotoxin (EDN) were measured with ELISAs as indications of the presence of mast cells and eosinophils, respectively. RESULTS Clustering of patients showed that an inflammatory signature characterised by elevated LTE4, PGD2, 15(S)-HETE and IL-13 was associated with NP recurrence. Previous NP surgery as well as aspirin-exacerbated respiratory disease were significantly more common among these patients. Expression of cyclooxygenase 1 was the only gene associated with NP recurrence. Levels of EDN, but not tryptase, were significantly higher in patients with recurrent NPs. CONCLUSION Distinguishing endotypes that include LTE4, PGD2, 15HETE and conventional biomarkers of type 2 inflammation could help predict recurrent nasal polyposis and thus identify cases of recalcitrant CRSwNP.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promoting Science, Sophiahemmet University, Stockholm, Sweden; Division of Physiological Chemistry II, Biomedicum 9A, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Iwasaki N, Poposki JA, Oka A, Kidoguchi M, Klingler AI, Suh LA, Bai J, Stevens WW, Peters AT, Grammer LC, Welch KC, Smith SS, Conley DB, Schleimer RP, Kern RC, Bochner BS, Tan BK, Kato A. Single cell RNA sequencing of human eosinophils from nasal polyps reveals eosinophil heterogeneity in chronic rhinosinusitis tissue. J Allergy Clin Immunol 2024; 154:952-964. [PMID: 38797240 PMCID: PMC11456383 DOI: 10.1016/j.jaci.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 inflammation in the United States, but the actual roles that eosinophils play in CRSwNP remain largely unclear. OBJECTIVE To reveal the roles and heterogeneity of eosinophils in nasal polyp (NP) tissue, we performed single cell RNA sequencing (scRNA-Seq) analysis of NP tissue. METHODS Sinonasal tissues (NP and control sinus tissue) and patient matched peripheral blood (PB) samples were obtained from 5 control patients and 5 patients with CRSwNP. Eosinophils were enriched before processing for scRNA-Seq. The gene expression profiles in eosinophils were determined by microwell-based scRNA-Seq technology (BD Rhapsody platform). We predicted the overall function of NP eosinophils by Gene Ontology (geneontology.org) enrichment and pathway analyses and confirmed expression of selected genes by flow cytometry. RESULTS After filtering out contaminating cells, we detected 5,542 eosinophils from control PB, 3,883 eosinophils from CRSwNP PB, 101 eosinophils from control sinus tissues (not included in further analyses), and 9,727 eosinophils from NPs by scRNA-Seq. We found that 204 genes were downregulated and 354 genes upregulated in NP eosinophils compared to all PB eosinophils (>1.5-fold, Padj < .05). Upregulated genes in NP eosinophils were associated with activation, cytokine-mediated signaling, growth factor activity, NF-κB signaling, and antiapoptotic molecules. NP eosinophils displayed 4 clusters revealing potential heterogeneity of eosinophils in NP tissue. CONCLUSIONS Elevated eosinophils in NP tissue appear to exist in several subtypes that may play important pathogenic roles in CRSwNP, in part by controlling inflammation and hyperproliferation of other cells.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Julie A Poposki
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Aiko Oka
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Masanori Kidoguchi
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Aiko I Klingler
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Lydia A Suh
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Junqin Bai
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Anju T Peters
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Leslie C Grammer
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
7
|
Scott MA, Valeris-Chacin R, Thompson AC, Woolums AR, Karisch BB. Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease. Front Immunol 2024; 15:1412766. [PMID: 39346910 PMCID: PMC11427276 DOI: 10.3389/fimmu.2024.1412766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Bovine respiratory disease (BRD) remains the leading infectious disease in beef cattle production systems. Host gene expression upon facility arrival may indicate risk of BRD development and severity. However, a time-course approach would better define how BRD development influences immunological and inflammatory responses after disease occurrences. Here, we evaluated whole blood transcriptomes of high-risk beef cattle at three time points to elucidate BRD-associated host response. Sequenced jugular whole blood mRNA from 36 cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days [D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of antimicrobial clinical treatment. Assessment of gene expression patterns over time within each BRD cohort was modeled through an autoregressive hidden Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10) identified differentially expressed genes between and across cohorts overtime. A total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the production of specialized resolving mediators (SPMs) decreased at D28 and then increased by D63 across all three cohorts. Accordingly, SPM production and alternative complement were differentially expressed between Healthy and Treated 2+ at D0, but not statistically different between the three groups by D63. Magnitude, but not directionality, of gene expression related to SPM production, alternative complement, and innate immune response signified Healthy and Treated 2+ cattle. Differences in gene expression at D63 across the three groups were related to oxygen binding and carrier activity, natural killer cell-mediated cytotoxicity, cathelicidin production, and neutrophil degranulation, possibly indicating prolonged airway pathology and inflammation weeks after clinical treatment for BRD. These findings indicate genomic mechanisms indicative of BRD development and severity over time.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Robert Valeris-Chacin
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX, United States
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX, United States
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
8
|
Bai J, Kato A, Hulse KE, Wechsler JB, Gujar V, Poposki JA, Harmon R, Iwasaki N, Wang BF, Huang JH, Stevens WW, Conley DB, Welch KC, Kern RC, Peters AT, Eisenbarth SC, Schleimer RP, Tan BK. Increased autoreactivity and maturity of EBI2+ antibody-secreting cells from nasal polyps. JCI Insight 2024; 9:e177729. [PMID: 39253973 PMCID: PMC11385095 DOI: 10.1172/jci.insight.177729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated numbers of antibody-secreting cells (ASCs) and anti-double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD-CD27-) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.
Collapse
Affiliation(s)
| | - Atsushi Kato
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Joshua B. Wechsler
- Departments of Pediatrics and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vikram Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University, Tulsa, Oklahoma, USA
| | | | | | | | - Bao-Feng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Wuhan, China
| | | | - Whitney W. Stevens
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | | | | | - Anju T. Peters
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Robert P. Schleimer
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | - Bruce K. Tan
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| |
Collapse
|
9
|
Liu C, Wang K, Liu W, Zhang J, Fan Y, Sun Y. ALOX15 + M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2024; 154:592-608. [PMID: 38705258 DOI: 10.1016/j.jaci.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.
Collapse
Affiliation(s)
- Chang Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kanghua Wang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqin Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Zhang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunping Fan
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Yueqi Sun
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
10
|
Mastalerz L, Trąd G, Szatkowski P, Ćmiel A, Gielicz A, Kacorzyk R, Plutecka H, Szaleniec J, Gawlewicz-Mroczka A, Jakieła B, Sanak M. Aspirin hypersensitivity diagnostic index (AHDI): In vitro test for diagnosing of N-ERD based on urinary 15-oxo-ETE and LTE 4 excretion. Allergy 2024. [PMID: 39180224 DOI: 10.1111/all.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND 15-oxo-eicosatetraenoic acid (15-oxo-ETE), is a product of arachidonic acid (AA) metabolism in the 15-lipoxygenase-1 (15-LOX-1) pathway. 15-oxo-ETE was overproduced in the nasal polyps of patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD). In this study we investigated the systemic biosynthesis of 15-oxo-ETE and leukotriene E4 (LTE4) and assessed their diagnostic value to identify patients with N-ERD. METHODS The study included 64 patients with N-ERD, 59 asthmatics who tolerated aspirin well (ATA), and 51 healthy controls. A thorough clinical characteristics of asthmatics included computed tomography of paranasal sinuses. Plasma and urinary 15-oxo-ETE levels, and urinary LTE4 excretion were measured using high-performance liquid chromatography and tandem mass spectrometry. Repeatability and precision of the measurements were tested. RESULTS Plasma 15-oxo-ETE levels were the highest in N-ERD (p < .001). A receiver operator characteristic (ROC) revealed that 15-oxo-ETE had certain sensitivity (64.06% in plasma, or 88.24% in urine) for N-ERD discrimination, while the specificity was rather limited. Modeling of variables allowed to construct the Aspirin Hypersensitivity Diagnostic Index (AHDI) based on urinary LTE4-to-15-oxo-ETE excretion corrected for sex and the Lund-Mackay score of chronic rhinosinusitis. AHDI outperformed single measurements in discrimination of N-ERD among asthmatics with an area under ROC curve of 0.889, sensitivity of 81.97%, specificity of 87.23%, and accuracy of 86.87%. CONCLUSIONS We confirmed 15-oxo-ETE as a second to cysteinyl leukotrienes biomarker of N-ERD. An index based on these eicosanoids corrected for sex and Lund-Mackay score has a similar diagnostic value as gold standard oral aspirin challenge in the studied group of patients with asthma.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Gabriela Trąd
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Piotr Szatkowski
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ćmiel
- Department of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Anna Gielicz
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Radosław Kacorzyk
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Krakow, Poland
| | - Hanna Plutecka
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szaleniec
- Department of Otolaryngology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Bogdan Jakieła
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sanak
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
11
|
Pérez-Pazos J, García-Sánchez A, Estravís M, Moreno-Jimenez E, Morgado N, Gómez-García M, Ramos-González J, Gil-Melcón M, Martín-García C, Muñoz-Bellido F, Sanz C, Isidoro-García M, Dávila I. Beyond type 2 asthma biomarkers: risk stratification for NSAID-exacerbated respiratory disease. ERJ Open Res 2024; 10:00909-2023. [PMID: 39104947 PMCID: PMC11299009 DOI: 10.1183/23120541.00909-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Type 2 (T2) asthma is often associated with chronic rhinosinusitis with nasal polyposis (CRSwNP). Additionally, nonsteroidal anti-inflammatory drug (NSAID) intolerance leads to NSAID-exacerbated respiratory disease (N-ERD). Previous transcriptomic data in non-CRSwNP T2 asthma patients showed differentially expressed genes. We focused on ALOX15, CLC, CYSLTR2, HRH4 and SMPD3 to investigate their role in T2 asthma. Methods The study included 100 healthy controls and 103 T2 asthma patients, divided into patients with asthma (n=54), patients with asthma and CRSwNP (n=29) and patients with N-ERD (n=20). Quantitative PCR analysis was performed on blood-derived RNA samples first to validate the five differentially expressed genes. The data were further analysed to find potential associations and biomarkers. Results Patients, regardless of stratification, exhibited significantly higher gene expression than healthy controls. The patterns of association revealed that ALOX15 was exclusively present in the non-comorbidity group, SMPD3 and CLC in the comorbidity groups, and HRH4 in all patient groups. ALOX15, CYSLTR2 and SMPD3 expression showed potential as biomarkers to confirm the diagnosis of T2 asthma using peripheral blood eosinophils as the initial criterion. Peripheral blood eosinophils combined with gene expression, especially SMPD3, may improve the diagnosis. CLC and CYSLTR2 expression play a specific role in discriminating N-ERD. Discussion We validated the transcriptomic data of five differentially expressed genes in T2 asthma. Different patterns of association were identified in patient stratification, suggesting that different molecular mechanisms underlie the spectrum of T2 asthma. Potential biomarkers were also found and used to design an algorithm with practical diagnostic utility for T2 asthma, including risk stratification for N-ERD.
Collapse
Affiliation(s)
- Jacqueline Pérez-Pazos
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, Salamanca, Spain
| | - Asunción García-Sánchez
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
| | - Miguel Estravís
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
| | - Emma Moreno-Jimenez
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Universidad de Salamanca, Microbiology and Genetics Department, Salamanca, Spain
| | - Natalia Morgado
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
| | - Manuel Gómez-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Pharmacogenetics and Precision Medicine Unit, Clinical Biochemistry Department, Salamanca, Spain
| | | | - María Gil-Melcón
- Hospital Universitario de Salamanca, Otorhinolaryngology and Head and Neck Surgery Department, Salamanca, Spain
| | - Cristina Martín-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
| | - Francisco Muñoz-Bellido
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
| | - Catalina Sanz
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Microbiology and Genetics Department, Salamanca, Spain
| | - María Isidoro-García
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Medicine Department, Salamanca, Spain
- Hospital Universitario de Salamanca, Clinical Biochemistry Department, Salamanca, Spain
- These authors shared senior authorship
| | - Ignacio Dávila
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Instituto de Salud Carlos III, Red de Enfermedades Inflamatorias – RICORS, Madrid, Spain
- Universidad de Salamanca, Biomedical and Diagnostics Sciences Department, Salamanca, Spain
- Hospital Universitario de Salamanca, Allergy Department, Salamanca, Spain
- These authors shared senior authorship
| |
Collapse
|
12
|
Luo C, Zhu Y, Zhang S, Zhou J, Mao S, Tang R, Gu Y, Tan S, Lin H, Li Z, Zhang W. Increased SERPINB2 potentiates 15LO1 expression via STAT6 signalling in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2024; 54:412-424. [PMID: 38639267 DOI: 10.1111/cea.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yuelong Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
13
|
Scadding GK, Gray C, Conti DM, McDonald M, Backer V, Scadding G, Bernal-Sprekelsen M, De Corso E, Diamant Z, Hopkins C, Jesenak M, Johansen P, Kappen J, Mullol J, Price D, Quirce S, Reitsma S, Toppila-Salmi S, Senior B, Thyssen JP, Wahn U, Hellings PW. Pre-asthma: a useful concept? A EUFOREA paper. Part 2-late onset eosinophilic asthma. FRONTIERS IN ALLERGY 2024; 5:1404735. [PMID: 38812719 PMCID: PMC11133565 DOI: 10.3389/falgy.2024.1404735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The concept of pre-diabetes has led to provision of measures to reduce disease progression through identification of subjects at risk of diabetes. We previously considered the idea of pre-asthma in relation to allergic asthma and considered that, in addition to the need to improve population health via multiple measures, including reduction of exposure to allergens and pollutants and avoidance of obesity, there are several possible specific means to reduce asthma development in those most at risk (pre- asthma). The most obvious is allergen immunotherapy (AIT), which when given for allergic rhinitis (AR) has reasonable evidence to support asthma prevention in children (2) but also needs further study as primary prevention. In this second paper we explore the possibilities for similar actions in late onset eosinophilic asthma.
Collapse
Affiliation(s)
- G. K. Scadding
- Department of Allergy & Rhinology, Royal National ENT Hospital, London, United Kingdom
- Division of Immunity and Infection, University College, London, United Kingdom
| | - C. Gray
- Paediatric Allergist, Red Cross Children's Hospital and University of Cape Town, Cape Town, South Africa
- Kidsallergy Centre, Cape Town, South Africa
| | - D. M. Conti
- The European Forum for Research and Education in Allergy and Airway Diseases Scientific Expert Team Members, Brussels, Belgium
- Escuela de Doctorado UAM, Centro de Estudios de Posgrado, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, no 2, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - M. McDonald
- The Allergy Clinic, Blairgowrie, Randburg, South Africa
| | - V. Backer
- Department of Otorhinolaryngology, Head & Neck Surgery, and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - G. Scadding
- Allergy, Royal Brompton Hospital, London, United Kingdom
| | - M. Bernal-Sprekelsen
- Otolaryngology-Department, Clinic Barcelona, Barcelona, Spain
- Otolaryngology-Department, University of Barcelona, Barcelona, Spain
| | - E. De Corso
- Otolaryngology Head and Neck Surgery, A. Gemelli University Hospital Foundation IRCCS, Rome, Italy
| | - Z. Diamant
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
| | - C. Hopkins
- Department of Rhinology and Skull Base Surgery, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom
| | - M. Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - P. Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - J. Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | - J. Mullol
- Rhinology Unit and Smell Clinic, ENT Department, Hospital Clínic, FRCB-IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Spain
| | - D. Price
- Observational and Pragmatic Research Institute, Singapore, Singapore
- Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - S. Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - S. Reitsma
- Department of Otorhinolarynogology and Head/Neck Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, Netherlands
| | - S. Toppila-Salmi
- Department of Otorhinolaryngology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
- Department of Allergy, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - B. Senior
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - J. P. Thyssen
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - U. Wahn
- Department for Pediatric Pneumology and Immunology, Charite University Medicine, Berlin, Germany
| | - P. W. Hellings
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals, Leuven, Belgium
- Laboratory of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Liu Y, Lv W, Wang W. Uncovering the Cellular Microenvironment in Chronic Rhinosinusitis via Single-Cell RNA Sequencing: Application and Future Directions. Clin Rev Allergy Immunol 2024; 66:210-222. [PMID: 38687404 DOI: 10.1007/s12016-024-08992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Chronic rhinosinusitis (CRS) is a heterogenic disease characterized by persistent mucosal inflammation of the upper airway. Researches of CRS have progressed from phenotype-based to endotype-based, looking more deeply into molecular biomarkers, signaling pathways, and immune microenvironment. Single-cell RNA sequencing is an effective tool in analyzing composition, function, and interaction of cells in disease microenvironment at transcriptome level, showing great advantage in analyzing potential biomarkers, pathogenesis, and heterogeneity of chronic airway inflammation in an unbiased manner. In this article, we will review the latest advances in scRNA-seq studies of CRS to provide new perspectives for the diagnosis and treatment of this heterogeneous disease.
Collapse
Affiliation(s)
- Yuzhuo Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Wei Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Weiqing Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
15
|
Abud EM, White AA. Mast Cells in Aspirin-Exacerbated Respiratory Disease. Curr Allergy Asthma Rep 2024; 24:73-80. [PMID: 38217825 DOI: 10.1007/s11882-024-01125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE OF REVIEW Aspirin-exacerbated respiratory disease (AERD) is a syndrome of high type 2 inflammation and is known to critically involve mast cell activation. The mast cell is an important cell in the baseline inflammatory processes in the upper and lower airway by maintaining and amplifying type 2 inflammation. But it also is prominent in the hypersensitivity reaction to COX-1 inhibition which defines this condition. RECENT FINDINGS Recent work highlights the mast cell as a focal point in AERD pathogenesis. Using AERD as a specific model of both high type 2 asthma and chronic sinusitis, the role of mast cell activity can be better understood in other aspects of airway inflammation. Further dissecting out the mechanism of COX-1-mediated mast cell activation in AERD will be an important next phase in our understanding of NSAID-induced hypersensitivity as well as AERD pathophysiology.
Collapse
Affiliation(s)
- Edsel M Abud
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA
- Scripps Research Translational Institute, Scripps Research, San Diego, USA
| | - Andrew A White
- Division of Allergy, Asthma, and Immunology, Scripps Clinic, San Diego, USA.
| |
Collapse
|
16
|
Zhang C, Wang H, Hu L, Zhang Q, Chen J, Shi L, Song X, Liu J, Xue K, Wang J, Wang D, Sun X. Lipocalin-2 promotes neutrophilic inflammation in nasal polyps and its value as biomarker. Allergol Int 2024; 73:115-125. [PMID: 37567832 DOI: 10.1016/j.alit.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common chronic inflammatory disease of the nasal cavity and paranasal sinuses. The role of neutrophils in the pathogenesis of CRSwNP has attracted more attention in recent years, due to its association with more severe disease and reduced steroid responsiveness. Lipocalin-2 (LCN2) has been found to modulate neutrophils infiltration in other neutrophilic inflammation including inflammatory bowel disease, rheumatoid arthritis, and psoriasis. The aim was to evaluate the expression and regulator role of LCN2 in neutrophilic inflammation in CRSwNP, and its role as a potential biomarker predicting non-eosinophilic CRSwNP (neCRSwNP). METHODS Bioinformatic analysis, immunostainings, real-time PCR and ELISA were used to analyze the expression and location of LCN2 in nasal tissues. The expression of proinflammatory mediators were assessed in nasal tissues and secretions. LCN2 production in human nasal epithelial cells (HNECs) and neutrophils, as well as its role in neutrophilic inflammation was evaluated by in vitro experiments. RESULTS LCN2 was mainly located in neutrophils and HNECs of nasal polyps. LCN2 expression was also significantly higher in the polyp tissue and nasal secretions from patients with neCRSwNP. The LCN2 levels were positively correlated with type 3 inflammation markers, including G-CSF, IL-8, and IL-17. LCN2 expression could be upregulated by IL-17 A and TNF-α in HNECs, and LCN2 could also promote the expression of IL-8 in dispersed polyp cells and HNECs. CONCLUSIONS LCN2 could serve as a novel biomarker predicting patients with neCRSwNP, and the increased expression of LCN2 may participate in the pathogenesis of neCRSwNP.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Li Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China; High Altitude Rhinology Research Center of Eye & ENT Hospital of Fudan University and People's Hospital of Shigatse City, Shigatse, China
| | - Qianqian Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jiani Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Le Shi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaole Song
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Juan Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Kai Xue
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jingjing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dehui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Xicai Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China; High Altitude Rhinology Research Center of Eye & ENT Hospital of Fudan University and People's Hospital of Shigatse City, Shigatse, China; Department of Otolaryngology, People's Hospital of Shigatse City, Shigatse, China.
| |
Collapse
|
17
|
Kidoguchi M, Imoto Y, Noguchi E, Nakamura T, Morii W, Adachi N, Ii R, Koyama K, Aoki S, Miyashita K, Hosokawa Y, Omura K, Tanaka Y, Tanaka K, Hida Y, Ninomiya T, Kato Y, Sakashita M, Takabayashi T, Fujieda S. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J Allergy Clin Immunol 2023; 152:1669-1676.e3. [PMID: 37768238 DOI: 10.1016/j.jaci.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease and is subdivided into eosinophilic and noneosinophilic forms. There are few reports investigating the nasal microbiome and its pathological functions in patients with CRS. OBJECTIVE We sought to analyze factors contributing to variations of the nasal microbiome in CRS, and on the basis of these factors, to elucidate whether the bacterial metabolites were related to the pathogenesis. METHODS Nasal swabs were collected, and the V3 to V4 variable region of the 16S ribosomal RNA gene was amplified and sequenced. Factors contributing to variations of the nasal microbiome in patients with CRS were compared. The most influential factor was whether CRS was eosinophilic, and we compared α- and β-diversity, bacterial species, and predictive bacterial functions between the 2 patient groups. In addition, the metabolites of the key bacteria were extracted, and we evaluated the predicted bacterial functions in airway epithelial cells. RESULTS In total, 110 patients with CRS and 33 control subjects were enrolled. On the basis of the factors of variation, it was found that patients with eosinophilic CRS (n = 65) had different microbiomes with weighted UniFrac β-diversity and lower α-diversity compared with those with noneosinophilic CRS (n = 45). A higher abundance of Fusobacterium nucleatum and an increased LPS pathway were observed in patients with noneosinophilic CRS compared with those with eosinophilic CRS. In airway epithelial cells, LPS derived from F nucleatum suppressed the expression levels of ALOX15 induced by TH2 cytokines. CONCLUSIONS The differences in the nasal microbiome may play a key role in the pathophysiology of CRS.
Collapse
Affiliation(s)
- Masanori Kidoguchi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui; Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Emiko Noguchi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki.
| | - Takako Nakamura
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki
| | - Wataru Morii
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki
| | - Naoto Adachi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui; Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki
| | - Rieko Ii
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki
| | - Keisuke Koyama
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Satoshi Aoki
- Department of Otolaryngology, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Keisuke Miyashita
- Department of Otolaryngology, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Yu Hosokawa
- Department of Otolaryngology, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Kazuhiro Omura
- Department of Otolaryngology, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Yasuhiro Tanaka
- Department of Otolaryngology, Dokkyo Medical University Saitama Medical Center, Saitama
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu
| | - Yukio Hida
- Division of Clinical Laboratory, University of Fukui Hospital, Fukui
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Yukinori Kato
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Masafumi Sakashita
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology and Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Science, University of Fukui, Fukui
| |
Collapse
|
18
|
Badrani JH, Cavagnero K, Eastman JJ, Kim AS, Strohm A, Yan C, Deconde A, Zuraw BL, White AA, Christiansen SC, Doherty TA. Lower serum 15-HETE level predicts nasal ILC2 accumulation during COX-1 inhibition in AERD. J Allergy Clin Immunol 2023; 152:1330-1335.e1. [PMID: 37543185 PMCID: PMC10938261 DOI: 10.1016/j.jaci.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is associated with high levels of cysteinyl leukotrienes, prostaglandin D2, and low levels of prostaglandin E2. Further, 15-hydroxyeicosatetraenoic acid (15-HETE) levels may have predictive value in therapeutic outcomes of aspirin desensitization. Accumulation of nasal group 2 innate lymphoid cells (ILC2s) has been demonstrated during COX-1 inhibition in AERD, although the relationships between tissue ILC2 accumulation, reaction symptom severity, and novel lipid biomarkers are unknown. OBJECTIVE We sought to determine whether novel lipid mediators are predictive of nasal ILC2 accumulation and symptom scores during COX-1 inhibitor challenge in patients with AERD. METHODS Blood and nasal scraping samples from patients with AERD were collected at baseline and COX-1 inhibitor reaction and then processed for flow cytometry for nasal ILC2s and serum for lipidomic analysis. RESULTS Eight patients with AERD who were undergoing aspirin desensitization were recruited. Of the 161 eicosanoids tested, 42 serum mediators were detected. Baseline levels of 15-HETE were negatively correlated with the change in numbers of airway ILC2s (r = -0.6667; P = .0428). Docosahexaenoic acid epoxygenase metabolite 19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid (19,20-diHDPA) was positively correlated with both changes in airway ILC2s (r = 0.7143; P = .0305) and clinical symptom scores (r = 0.5000; P = .0081). CONCLUSION Low levels of baseline 15-HETE predicted a greater accumulation of airway ILC2s in patients with AERD who were receiving COX-1 inhibition. Further, increases in the cytochrome P pathway metabolite 19,20-dihydroxy-4Z,7Z,10Z,13Z,16Z-docosapentaenoic acid (19,20-diHDPA) were associated with increased symptoms and nasal ILC2 accumulation. Future studies to assess how these mediators might control ILC2s may improve the understanding of AERD pathogenesis.
Collapse
Affiliation(s)
- Jana H Badrani
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Kellen Cavagnero
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Jacqueline J Eastman
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Alex S Kim
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Allyssa Strohm
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Carol Yan
- Department of Otolaryngology, University of California, San Diego, Calif
| | - Adam Deconde
- Department of Otolaryngology, University of California, San Diego, Calif
| | - Bruce L Zuraw
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif
| | - Andrew A White
- Divison of Allergy, Asthma and Immunology, Scripps Clinic, La Jolla, Calif
| | - Sandra C Christiansen
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Taylor A Doherty
- Section of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, Calif; Veterans Affairs San Diego Healthcare System, La Jolla, Calif.
| |
Collapse
|
19
|
Nordström A, Jangard M, Svedberg M, Ryott M, Kumlin M. Distinct eicosanoid patterns in severe recalcitrant nasal polyposis. Int Forum Allergy Rhinol 2023; 13:2043-2054. [PMID: 37179460 DOI: 10.1002/alr.23181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although altered eicosanoid levels are related to disease severity in chronic rhinosinusitis with nasal polyps (CRSwNP), identifying patients prone to recurrent nasal polyps (NPs) is still difficult. We investigated levels of nasally secreted eicosanoids before and after NP surgery in patients with or without NP recurrence (NPR) and explored potential endotypes based on pre-surgical eicosanoid levels. METHODS Levels of leukotriene (LT) E4 , LTB4 , prostaglandin (PG) D2 , PGE2 and 15(S) hydroxyeicosatetraenoic acid (15[S]-HETE) were measured in nasal secretions with specific immunoassays at pre-surgery (n = 38) and 6 and 12 months post-surgery (n = 35), with NPR identified endoscopically. Pre- and post-surgical levels were compared between patients with and without NPR. Eicosanoid patterns among patients were explored with cluster analysis and evaluated with clinical parameters. RESULTS Patients with recurrent NPs had pronounced pre-surgical levels of nasal 15(S)-HETE, PGD2 and LTE4 . From pre-surgery to 12 months post-surgery, NPR was associated with significant decreases of 15(S)-HETE and PGD2 relative to non-recurrence, whereas levels of LTE4 decreased at 6 months but increased again at 12 months. Clustering revealed three potential endotypes. Clusters 1 and 3 featured high and low eicosanoid levels, respectively. Cluster 2 had higher levels of LTE4 and PGD2 , lower levels of PGE2 and LTB4 , and more cases of recurrent NPs and previous NP surgeries. CONCLUSION Elevated nasal LTE4 12 months post-surgery in NP recurrent subjects suggests that postoperative LTE4 measurements may indicate rapid NP regrowth. A distinct nasal eicosanoid profile may be used for the identification of the most severe recalcitrant patients in need of targeted immunomodulatory therapies.
Collapse
Affiliation(s)
- Axel Nordström
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Mattias Jangard
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Michael Ryott
- Department of Otorhinolaryngology, Sophiahemmet Hospital, Stockholm, Sweden
| | - Maria Kumlin
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| |
Collapse
|
20
|
Adame MJ, Raji M, Shan Y, Zhang Y, Kuo YF, Tripple JW. Association Between Aspirin-Exacerbated Respiratory Disease and Atherosclerotic Cardiovascular Disease: A Retrospective Review of US Claims Data. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3445-3453.e6. [PMID: 37468040 DOI: 10.1016/j.jaip.2023.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) consists of chronic rhinosinusitis with nasal polyps (CRSwNP), asthma, and hypersensitivity to aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs). Asthma is associated with increased risk of atherosclerotic cardiovascular diseases (ASCVD). However, there is lack of data on association between AERD and ASCVD. OBJECTIVE To investigate the relationship between AERD and subsequent risk of ASCVD. METHODS An algorithm to find patients with AERD was generated and validated through chart review at our home institution. This algorithm was applied to a national insurance claims database to obtain data for a retrospective cohort study. Demographic and comorbidity data were obtained for propensity matching. Several methods of analysis were performed on the data. RESULTS A total of 571 patients met criteria for AERD; 3909 met criteria for asthma, CRSwNP, and no allergy to aspirin or NSAIDs (group 1); and 75,050 met criteria for asthma, CRS without nasal polyps, and no allergy to aspirin or NSAIDs (group 2). After covariate adjustment, AERD was significantly associated with ASCVD, including severe ASCVD, over groups 1 and 2 regardless of asthma severity. CONCLUSION Patients with AERD are at higher risk of ASCVD than patients with asthma and CRSwNP or CRS without nasal polyps, underscoring the need for early ASCVD screening and a consideration for aspirin desensitization or use of a nonaspirin antiplatelet agent in the setting of AERD and comorbid ASCVD.
Collapse
Affiliation(s)
- Michael J Adame
- Department of Internal Medicine, Division of Allergy and Immunology, the University of Texas Medical Branch, Galveston, Texas.
| | - Mukaila Raji
- Department of Internal Medicine, Division of Geriatrics, the University of Texas Medical Branch, Galveston, Texas
| | - Yong Shan
- Department of Biostatistics and Data Science, the University of Texas Medical Branch, Galveston, Texas
| | - Yuanyi Zhang
- Department of Biostatistics and Data Science, the University of Texas Medical Branch, Galveston, Texas
| | - Yong-Fang Kuo
- Department of Internal Medicine, Division of Geriatrics, the University of Texas Medical Branch, Galveston, Texas; Department of Biostatistics and Data Science, the University of Texas Medical Branch, Galveston, Texas
| | - Julia W Tripple
- Department of Internal Medicine, Division of Allergy and Immunology, the University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
21
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|
22
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
23
|
Stevens WW, Cahill KN. Mechanistic and clinical updates in AERD: 2021-2022. J Allergy Clin Immunol 2023; 151:1448-1456. [PMID: 36967016 PMCID: PMC10272052 DOI: 10.1016/j.jaci.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a unique and often clinically severe disease affecting a subgroup of adults with asthma and chronic rhinosinusitis with nasal polyposis. Works published in 2021-2022 confirmed the critical role of lipid mediator dysregulation and mast cell activation and expanded our understanding of basophils, macrophages, fibrin dysregulation, and the 15-lipoxygenase pathway in disease pathogenesis. Translational studies established inflammatory heterogeneity in the upper and lower airway at baseline and during aspirin-induced respiratory reactions. Clinical cohorts provided insights into the mechanistic actions of frequently utilized biologic therapies in AERD. These advances are already changing clinical care delivery and affecting patient outcomes. Despite this, further work is needed to improve clinical tools to reliably diagnose AERD and identify factors that could prevent development of the disease altogether. Additionally, the impact of inflammatory heterogeneity on clinical trajectories and the utility and safety of combination biologic and daily aspirin therapies remains unanswered.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
24
|
Ryu G, Lee E, Park SI, Park M, Hong SD, Jung YG, Kim HY. The Mechanism of Action and Clinical Efficacy of Low-Dose Long-Term Macrolide Therapy in Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:ijms24119489. [PMID: 37298439 DOI: 10.3390/ijms24119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Various chronic inflammatory airway diseases can be treated with low-dose, long-term (LDLT) macrolide therapy. LDLT macrolides can be one of the therapeutic options for chronic rhinosinusitis (CRS) due to their immunomodulatory and anti-inflammatory actions. Currently, various immunomodulatory mechanisms of the LDLT macrolide treatment have been reported, as well as their antimicrobial properties. Several mechanisms have already been identified in CRS, including reduced cytokines such as interleukin (IL)-8, IL-6, IL-1β, tumor necrosis factor-α, transforming growth factor-β, inhibition of neutrophil recruitment, decreased mucus secretion, and increased mucociliary transport. Although some evidence of effectiveness for CRS has been published, the efficacy of this therapy has been inconsistent across clinical studies. LDLT macrolides are generally believed to act on the non-type 2 inflammatory endotype of CRS. However, the effectiveness of LDLT macrolide treatment in CRS is still controversial. Here, we reviewed the immunological mechanisms related to CRS in LDLT macrolide therapy and the treatment effects according to the clinical situation of CRS.
Collapse
Affiliation(s)
- Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunkyu Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Song I Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Minhae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Sang Duk Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yong Gi Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hyo Yeol Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
25
|
Lal D, Brar T, Ramkumar SP, Li J, Kato A, Zhang L. Genetics and epigenetics of chronic rhinosinusitis. J Allergy Clin Immunol 2023; 151:848-868. [PMID: 36797169 DOI: 10.1016/j.jaci.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
Discerning the genetics and epigenetics of chronic rhinosinusitis (CRS) may optimize outcomes through early diagnostics, personalized and novel therapeutics, and early prognostication. CRS associated with cystic fibrosis and primary ciliary dyskinesia has well-characterized genetic mutations. Most CRS subjects, however, do not exhibit identifiable monogenic alterations. Clustering in related individuals is seen in CRS with nasal polyps. Spouses of subjects with CRS without nasal polyps also may be at increased risk of the same disease. These observations generate questions on genetic and environmental influences in CRS. Genome-wide association studies have identified variations and polymorphisms between CRS and control subjects in genes related to innate and adaptive immunity. Candidate gene and transcriptomics studies have investigated and identified genetic variations related to immunity, inflammation, epithelial barrier function, stress-response, antigen processing, T-cell regulation, and cytokines in CRS. Epigenetic studies have identified mechanisms through which environmental factors may affect these gene functions. However, causality is not determined for most variations. Inferences drawn from these data must be measured because most investigations report unreplicated results from small study populations. Large, replicated studies in tight cohorts across diverse populations remain a pressing need in studying CRS genetics.
Collapse
Affiliation(s)
- Devyani Lal
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz.
| | - Tripti Brar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz
| | - Shreya Pusapadi Ramkumar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz; Saint Louis University School of Medicine, St Louis, Mo
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kato
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Laidlaw TM, Boyce JA. Updates on immune mechanisms in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 151:301-309. [PMID: 36184313 PMCID: PMC9905222 DOI: 10.1016/j.jaci.2022.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Aspirin-exacerbated respiratory disease has fascinated and frustrated specialists in allergy/immunology, pulmonology, and otorhinolaryngology for decades. It generally develops in previously healthy young adults and is unremitting and challenging to treat. The classical triad of asthma, nasal polyposis, and pathognomonic respiratory reactions to aspirin and other cyclooxygenase-1 inhibitors is accompanied by high levels of mast cell activation, cysteinyl leukotriene production, platelet activation, and severe type 2 respiratory inflammation. The "unbraking" of mast cell activation and further cysteinyl leukotriene generation induced by cyclooxygenase-1 inhibition reflect an idiosyncratic dependency on cyclooxygenase-1-derived products, likely prostaglandin E2, to maintain a tenuous homeostasis. Although cysteinyl leukotrienes are clear disease effectors, little else was known about their cellular sources and targets, and the contributions from other mediators and type 2 respiratory inflammation effector cells to disease pathophysiology were unknown until recently. The applications of targeted biological therapies, single-cell genomics, and transgenic animal approaches have substantially advanced our understanding of aspirin-exacerbated respiratory disease pathogenesis and treatment and have also revealed disease heterogeneity. This review covers novel insights into the immunopathogenesis of aspirin-exacerbated respiratory disease from each of these lines of research, including the roles of lipid mediators, effector cell populations, and inflammatory cytokines, discusses unanswered questions regarding cause and pathogenesis, and considers potential future therapeutic options.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass.
| | - Joshua A Boyce
- Department of Medicine, the Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Jeff and Penny Vinik Center for Translational Immunology Research, Boston, Mass
| |
Collapse
|
27
|
Cousins K, Chen CC, Sehanobish E, Jerschow E. The role of oxylipins in NSAID-exacerbated respiratory disease (N-ERD). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:423-444. [PMID: 37236766 PMCID: PMC10591515 DOI: 10.1016/bs.apha.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyp formation, adult-onset asthma, and hypersensitivity to all cyclooxygenase-1 (COX-1) inhibitors. Oxygenated lipids are collectively known as oxylipins and are polyunsaturated fatty acids (PUFA) oxidation products. The most extensively researched oxylipins being the eicosanoids formed from arachidonic acid (AA). There are four major classes of eicosanoids including leukotrienes, prostaglandins, thromboxanes, and lipoxins. In N-ERD, the underlying inflammatory process of the upper and lower respiratory systems begins and occurs independently of NSAID consumption and is due to the overproduction of cysteinyl leukotrienes. Leukotriene mediators all induce edema, bronchoconstriction, and airway mucous secretion. Thromboxane A2 is a potent bronchoconstrictor and induces endothelial adhesion molecule expression. Elevated Prostaglandin D2 metabolites lead to vasoconstriction, additionally impaired up-regulation of prostaglandin E2 leads to symptoms seen in N-ERD as it is essential for maintaining homeostasis of inflammatory responses in the airway and has bronchoprotective and anti-inflammatory effects. A characteristic feature of N-ERD is diminished lipoxin levels, this decreased capacity to form endogenous mediators with anti-inflammatory properties could facilitate local inflammatory response and expose bronchial smooth muscle to relatively unopposed actions of broncho-constricting substances. Treatment options, such as leukotriene modifying agents, aspirin desensitization, biologic agents and ESS, appear to influence eicosanoid pathways, however more studies need to be done to further understand the role of oxylipins. Besides AA-derived eicosanoids, other oxylipins may also pay a role but have not been sufficiently studied. Identifying pathogenic N-ERD mechanism is likely to define more effective treatment targets.
Collapse
Affiliation(s)
- Kimberley Cousins
- Division of Rheumatology & Clinical Allergy and Immunology, Department of Medicine, University College of Medicine, University of Florida, Gainesville, FL, United States
| | - Chien-Chang Chen
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Esha Sehanobish
- Division of Allergy and Immunology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elina Jerschow
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
28
|
Huang Y, Chang H, Chen X, Meng J, Han M, Huang T, Yuan L, Zhang G. A cell marker-based clustering strategy (cmCluster) for precise cell type identification of scRNA-seq data. QUANTITATIVE BIOLOGY 2023. [DOI: 10.15302/j-qb-022-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
29
|
Taniguchi M, Heffler E, Olze H, White A, Côrte-Real J, Olsson P, Lazarewicz S. The Role of Omalizumab in NSAID-Exacerbated Respiratory Disease: A Narrative Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2570-2578. [PMID: 35764285 DOI: 10.1016/j.jaip.2022.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a condition characterized by the triad of chronic rhinosinusitis with nasal polyps, bronchial asthma, and hypersensitivity to nonsteroidal anti-inflammatory drugs. This article explores the current knowledge on the various pathological mechanism(s) of N-ERD-such as arachidonic acid metabolism, cysteinyl leukotrienes, prostaglandins, platelets, IgE, mast cells, eosinophils, basophils, and innate immune system-and the role of omalizumab in its management. The authors dive deep into the role of IgE in N-ERD and its potential as a therapeutic target. IgE plays a significant role in mediating allergic reactions, is intricately linked with mast cells, interacts with multiple immunopathological pathways involved in N-ERD, and tends to be elevated in patients with N-ERD. Multiple real-world studies, observational studies, and case series, as well as 2 phase III trials, have demonstrated the effectiveness of omalizumab in the management of N-ERD. For a disease with such a well-documented history, the pathophysiology of N-ERD and the most effective ways to manage it remain a mystery. With this background, the authors ask-is IgE a missing piece of the N-ERD puzzle, thus explaining the efficacy of omalizumab in the treatment of the disease?
Collapse
Affiliation(s)
- Masami Taniguchi
- Center for Immunology and Allergology, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan; Center for Clinical Research, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan.
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Heidi Olze
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Derakhshan T, Boyce JA, Dwyer DF. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis. J Allergy Clin Immunol 2022; 150:739-747. [PMID: 36205448 PMCID: PMC9547083 DOI: 10.1016/j.jaci.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mast cells (MCs) are widely recognized as central effector cells during type 2 inflammatory reactions and thought to also play a role in innate immune responses, wound healing, and potentially cancer. Circulating progenitor cells mature to MCs in peripheral tissues, where they exhibit phenotypic and functional heterogeneity. This diversity likely originates from differences in MC development imprinted by microenvironmental signals. The advent of single-cell transcriptomics reveals MC diversity beyond differences in proteases that were classically used to identify MC phenotypes. Here, we provide an overview of the current knowledge on MC progenitor differentiation and characteristics, and MC heterogeneity seen in health versus disease, that are drastically advanced through single-cell profiling technologies. This powerful approach can provide detailed cellular maps of tissues to decipher the complex cellular functions and interactions that may lead to identifying candidate factors to target in therapies.
Collapse
Affiliation(s)
- Tahereh Derakhshan
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Joshua A Boyce
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Daniel F Dwyer
- Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| |
Collapse
|
31
|
Giombi F, Carrón-Herrero A, Pirola F, Paoletti G, Nappi E, Russo E, De Virgilio A, Mercante G, Canonica GW, Spriano G, Heffler E, Malvezzi L. Prevalence of familiar link in patients affected by chronic rhinosinusitis with nasal polyposis. Int Forum Allergy Rhinol 2022; 12:1562-1565. [PMID: 35722664 PMCID: PMC10084203 DOI: 10.1002/alr.23049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Giombi
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | | | - Francesca Pirola
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Giovanni Paoletti
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Emanuele Nappi
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Elena Russo
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Armando De Virgilio
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Giuseppe Mercante
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Giorgio Walter Canonica
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Giuseppe Spriano
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Enrico Heffler
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| | - Luca Malvezzi
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090, Italy
| |
Collapse
|
32
|
Poposki JA, Klingler AI, Stevens WW, Suh LA, Tan BK, Peters AT, Abdala-Valencia H, Grammer LC, Welch KC, Smith SS, Conley DB, Kern RC, Schleimer RP, Kato A. Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 149:1666-1674. [PMID: 34953792 PMCID: PMC9081139 DOI: 10.1016/j.jaci.2021.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is well characterized by type 2 (T2) inflammation characterized by eosinophilia in Western countries. However, the presence and roles of neutrophils in T2 CRSwNP are poorly understood. OBJECTIVE We sought to clarify accumulation and inflammatory roles of neutrophils in CRSwNP in a Western population. METHODS Sinonasal tissues and nasal lavage fluids were obtained from control patients and patients with CRS, and neutrophil markers were determined by ELISA. The presence of neutrophils in tissue was determined by flow cytometry. The gene expression profiles in neutrophils were determined by RNA sequencing. RESULTS A neutrophil marker elastase was selectively elevated in nasal polyp (NP) tissue, whereas eosinophilic cationic protein (an eosinophil marker) was elevated in both uncinate and NP tissues of CRSwNP patients. Nasal lavage fluid myeloperoxidase (another neutrophil marker) was also significantly elevated in CRSwNP compared to control patients. Neutrophil markers were more greatly elevated in CRSwNP patients with recurrent disease. Flow cytometric analysis confirmed that neutrophil numbers were significantly elevated in NPs compared to control tissues. RNA sequencing analysis found that 344 genes were >3-fold and significantly elevated in NP neutrophils compared to peripheral blood neutrophils. Gene Ontology analysis suggested that the elevated genes in NP neutrophils were significantly associated with activation. Results suggest that neutrophils are accumulated in T2 NP tissues and that accumulated neutrophils are highly activated and contribute to inflammation in NPs. CONCLUSIONS Neutrophils may play a heretofore unrecognized meaningful role in the pathogenesis of CRSwNP in Western countries and may be a potentially important therapeutic target in T2 CRSwNP.
Collapse
Affiliation(s)
- Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Aiko I Klingler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
33
|
Bangert C, Villazala-Merino S, Fahrenberger M, Krausgruber T, Bauer WM, Stanek V, Campion NJ, Bartosik T, Quint T, Regelsberger G, Niederberger-Leppin V, Bock C, Schneider S, Eckl-Dorna J. Comprehensive Analysis of Nasal Polyps Reveals a More Pronounced Type 2 Transcriptomic Profile of Epithelial Cells and Mast Cells in Aspirin-Exacerbated Respiratory Disease. Front Immunol 2022; 13:850494. [PMID: 35418991 PMCID: PMC8996080 DOI: 10.3389/fimmu.2022.850494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps is affecting up to 3% of Western populations. About 10% of patients with nasal polyps also suffer from asthma and intolerance to aspirin, a syndrome called aspirin-exacerbated respiratory disease. Although eosinophilic inflammation is predominant in polyps of both diseases, phenotypic differences in the tissue-derived microenvironment, elucidating disease-specific characteristics, have not yet been identified. We sought to obtain detailed information about phenotypic and transcriptional differences in epithelial and immune cells in polyps of aspirin-tolerant and intolerant patients. Cytokine profiles in nasal secretions and serum of patients suffering from aspirin-exacerbated respiratory disease (n = 10) or chronic rhinosinusitis with nasal polyps (n = 9) were assessed using a multiplex mesoscale discovery assay. After enrichment for immune cell subsets by flow cytometry, we performed transcriptomic profiling by employing single-cell RNA sequencing. Aspirin-intolerant patients displayed significantly elevated IL-5 and CCL17 levels in nasal secretions corresponding to a more pronounced eosinophilic type 2 inflammation. Transcriptomic profiling revealed that epithelial and mast cells not only complement one another in terms of gene expression associated with the 15-lipoxygenase pathway but also show a clear type 2-associated inflammatory phenotype as identified by the upregulation of POSTN, CCL26, and IL13 in patients with aspirin-exacerbated respiratory disease. Interestingly, we also observed cellular stress responses indicated by an increase of MTRNR2L12, MTRNR2L8, and NEAT1 across all immune cell subsets in this disease entity. In conclusion, our findings support the hypothesis that epithelial and mast cells act in concert as potential drivers of the pathogenesis of the aspirin-exacerbated respiratory disease.
Collapse
Affiliation(s)
- Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Martin Fahrenberger
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Victoria Stanek
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Tina Bartosik
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Tamara Quint
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Guenther Regelsberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligence Systems, Medical University of Vienna, Vienna, Austria
| | - Sven Schneider
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 2022; 77:812-826. [PMID: 34473358 PMCID: PMC9148187 DOI: 10.1111/all.15074] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
Chronic rhinosinusitis (CRS) is a common clinical syndrome that produces significant morbidity and costs to our health system. The study of CRS has progressed from an era focused on phenotype to include endotype-based information. Phenotypic classification has identified clinical heterogeneity in CRS based on endoscopically observed features such as presence of nasal polyps, presence of comorbid or systemic diseases, and timing of disease onset. More recently, laboratory-based findings have established CRS endotype based upon specific mechanisms or molecular biomarkers. Understanding the basis of widespread heterogeneity in the manifestations of CRS is advanced by findings that the three main endotypes, Type 1, 2, and 3, orchestrate the expression of three distinct large sets of genes. The development and use of improved methods of endotyping disease in the clinic are ushering in an expansion of the use of biological therapies targeting Type 2 inflammation now and perhaps other inflammatory endotypes in the near future. The purpose of this review is to discuss the phenotypic and endotypic heterogeneity of CRS from the perspective of advancing the understanding of the pathogenesis and improvement of treatment approaches and outcomes.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bruce K Tan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert C Kern
- Department of Otolaryngology - Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Zhu Z, Wang W, Zha Y, Wang X, Wang L, Han J, Zhang J, Lv W. Transcriptomic and Lipidomic Profiles in Nasal Polyps of Glucocorticoid Responders and Non-Responders: Before and After Treatment. Front Pharmacol 2022; 12:814953. [PMID: 35095530 PMCID: PMC8793737 DOI: 10.3389/fphar.2021.814953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background: The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) and mechanisms underlying different responses to systemic glucocorticoids (GC) remain unclear. The major aim of this study was to explore the transcriptomic and oxidative lipidomic signatures and the effects of GC in patients with different clinical responses. Methods: Nasal polyp biopsies were obtained before and after 14-day oral GC treatment from 16 patients with CRSwNP, and normal nasal mucosa specimens were collected from 12 control subjects. RNA sequencing and oxidative lipidomics were performed, and differential gene expression analysis was conducted in the Responder and Non-responder groups at baseline and after treatment. Results: In the Responder group, GC significantly improved clinical symptoms and reduced tissue eosinophil infiltration. Meanwhile, GC led to a pronounced transcriptomic reversion with robust suppression of inflammatory responses and abnormal metabolism of extracellular matrix, as well as restoration of cilia function. However, non-responders were mainly characterized by epithelial hyperplasia and keratinization, with much less transcriptomic improvement after GC treatment. Higher expression of type 2 inflammatory molecules (CCL13, IGHE, CCL18, CCL23, CCR3, and CLC) with lower levels of LACRT, PPDPFL, DES, C6, MUC5B, and SCGB3A1 were related to a stronger clinical response to GC. Besides decreased prostaglandins and increased leukotrienes, increased dysregulation in other oxylipid mediators derived from polyunsaturated fatty acids was determined in nasal polyps, which was ameliorated by GC treatment. Conclusion: Systemic GC exert anti-inflammatory effects, improve tissue remodeling, restore cilia function, and ameliorate dysregulation of oxylipid mediator pathway in CRSwNP. GC-responders exhibited different transcriptomic signatures from non-responders.
Collapse
Affiliation(s)
- Zhenzhen Zhu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Zha
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaowei Wang
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lei Wang
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jinbo Han
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianmin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Lv
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Sehanobish E, Asad M, Jerschow E. New concepts for the pathogenesis and management of aspirin-exacerbated respiratory disease. Curr Opin Allergy Clin Immunol 2022; 22:42-48. [PMID: 34739410 PMCID: PMC8702488 DOI: 10.1097/aci.0000000000000795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a comprehensive summary of the current understanding of the pathogenesis of aspirin-exacerbated respiratory disease (AERD), and an update on its management. RECENT FINDINGS Elevated levels of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a newly described metabolite of arachidonic acid, have been identified in nasal polyps of AERD patients. In nasal polyps, activated basophils, and interleukin-5 -receptor-α-positive IL-5Rα+ plasma cells are associated with more severe nasal polyposis in AERD. Alveolar monocyte-derived macrophages and their persistent proinflammatory activation were suggested as putative factors contributing to AERD. Although not AERD-specific, three biological agents are now available for the management of both nasal polyposis and asthma. SUMMARY A newly downstream product of 15-lipoxygenase, 15-Oxo-ETE, was recently found to be significantly elevated in nasal polyps from AERD patients. This eicosanoid metabolite likely originates from an interplay between epithelial cells and mast cells. Nasal polyp basophils, IL-5Rα+ plasma cells, and alveolar macrophages were identified as important contributors to inflammation in AERD. Besides traditional aspirin desensitization and treatment for AERD management, several biologics for treatment of asthma are available, including three that have been approved for nasal polyposis. These biologic agents show variable rates of success in controlling AERD symptoms.
Collapse
Affiliation(s)
- Esha Sehanobish
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | | | | |
Collapse
|
37
|
Boyce JA. The role of 15 lipoxygenase 1 in asthma comes into focus. J Clin Invest 2022; 132:155884. [PMID: 34981786 PMCID: PMC8718133 DOI: 10.1172/jci155884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IL-4– and IL-13–driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2–high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.
Collapse
|
38
|
Xu Z, Huang Y, Delemarre T, Cavaliere C, Zhang N, Bachert C. Advances in chronic rhinosinusitis in 2020 and 2021. J Allergy Clin Immunol 2021; 149:854-866. [PMID: 34973298 DOI: 10.1016/j.jaci.2021.12.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023]
Abstract
Major progress has been achieved in the understanding and clinical practice of chronic rhinosinusitis, with or without nasal polyps. These advances resulted in a better understanding of the pathophysiology, the distribution into subgroups, and consequently in a better management perspective using classical approaches and biologics. Pathomechanisms, endotypes and biomarkers, and finally innovative therapeutic approaches are themes especially for the more severe forms of chronic rhinosinusitis, those with uncontrolled severe nasal polyps. Biologicals against key type 2 cytokines are gaining ground in the long-term treatment approaches of often recurrent nasal polyps, and should be integrated in care pathways making use of classical and innovative treatment pathways. These areas of interest show a fast development and will profoundly change our disease management within a decade.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China
| | - Yanran Huang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Department of ORLHNS, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tim Delemarre
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Carlo Cavaliere
- Department of Sense Organs, Sapienza University, Rome, Italy
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium; Sun Yat-sen Medical University, First Affiliated Hospital, Guangzhou, China; Division of ENT Diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
39
|
Huang Y, Zhang N, Xu Z, Zhang L, Bachert C. The development of the mucosal concept in chronic rhinosinusitis and its clinical implications. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:707-715. [PMID: 34742931 DOI: 10.1016/j.jaip.2021.10.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
In the last 2 decades, an increasing understanding of pathophysiological mechanisms in chronic rhinosinusitis opened an avenue from phenotyping to endotyping, from eosinophilic inflammation to type 2 immunity, and from the "ventilation and drainage" paradigm to the mucosal concept for therapeutic considerations. With the advent of type 2 endotyping and targeted biomarkers, precise endotype-driven therapeutic options are possible including biologics and adapted surgical approaches. We here aim to focus on the complexity and heterogeneity of the features of chronic rhinosinusitis (CRS) endotypes, especially for those with nasal polyps, including its history, latest developments, clinical associations and endotype-driven solutions. In order to better manage uncontrolled severe CRS in clinical practice, medical decisions based on a profound understanding of the pathology and immunology of this heterogeneous disease, aiding a precision-medicine based approach for patient's treatment are pivotal.
Collapse
Affiliation(s)
- Yanran Huang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium; Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China
| | - Nan Zhang
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Zhaofeng Xu
- The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China
| | - Luo Zhang
- Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China; Beijing key laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, P.R. China.
| | - Claus Bachert
- Department of Allergy, Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, P.R. China; Division of ENT diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden; The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Department of Otorhinolaryngology, International Airway Research Center, Guangzhou, China.
| |
Collapse
|
40
|
Lyly A, Laidlaw TM, Lundberg M. Pathomechanisms of AERD—Recent Advances. FRONTIERS IN ALLERGY 2021; 2:734733. [PMID: 35387030 PMCID: PMC8974777 DOI: 10.3389/falgy.2021.734733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
The pathomechanisms behind NSAID-exacerbated respiratory disease are complex and still largely unknown. They are presumed to involve genetic predisposition and environmental triggers that lead to dysregulation of fatty acid and lipid metabolism, altered cellular interactions involving transmetabolism, and continuous and chronic inflammation in the respiratory track. Here, we go through the recent advances on the topic and sum up the current understanding of the background of this illness that broadly effects the patients' lives.
Collapse
Affiliation(s)
- Annina Lyly
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Inflammation Center, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- *Correspondence: Annina Lyly
| | - Tanya M. Laidlaw
- Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Marie Lundberg
- Department of Otorhinolaryngology – Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Xu X, Li J, Zhang Y, Zhang L. Arachidonic Acid 15-Lipoxygenase: Effects of Its Expression, Metabolites, and Genetic and Epigenetic Variations on Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:684-696. [PMID: 34486255 PMCID: PMC8419644 DOI: 10.4168/aair.2021.13.5.684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Arachidonic acid 15-lipoxygenase (ALOX15) is an enzyme that can oxidize polyunsaturated fatty acids. ALOX15 is strongly expressed in airway epithelial cells, where it catalyzes the conversion of arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-HETE) involved in various airway inflammatory diseases. Interleukin (IL)-4 and IL-13 induce ALOX15 expression by activating Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription (STATs) 1/3/5/6. ALOX15 up-regulation and subsequent association with phosphatidylethanolamine-binding protein 1 (PEBP1) activate the mitogen-activated extracellular signal-regulated kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway, thus inducing eosinophil-mediated airway inflammation. In addition, ALOX15 plays a significant role in promoting the migration of immune cells, such as immature dendritic cells, activated T cells, and mast cells, and airway remodeling, including goblet cell differentiation. Genome-wide association studies have revealed multiple ALOX15 variants and their significant correlation with the risk of developing airway diseases. The epigenetic modifications of the ALOX15 gene, such as DNA methylation and histone modifications, have been shown to closely relate with airway inflammation. This review summarizes the role of ALOX15 in different phenotypes of asthma, chronic obstructive pulmonary disease, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, and nasal polyps, suggesting new treatment strategies for these airway inflammatory diseases with complex etiology and poor treatment response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
42
|
PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma. J Pers Med 2021; 11:jpm11090827. [PMID: 34575604 PMCID: PMC8468563 DOI: 10.3390/jpm11090827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Precision medicine is a promising strategy to identify biomarkers, stratify asthmatic patients according to different endotypes, and match them with the appropriate therapy. This proof-of-concept study aimed to investigate whether gene expression in peripheral blood could provide a valuable noninvasive approach for the molecular phenotyping of asthma. Methods: We performed whole-transcriptome RNA sequencing on peripheral blood of 30 non-atopic non-asthmatic controls and 30 asthmatic patients. A quantitative PCR (qPCR) validation study of PTGDR2 that encodes for CRTH2 receptor, expressed in cells involved in T2 inflammation, was developed in a cohort of 361 independent subjects: 94 non-asthmatic non-atopic controls, 187 asthmatic patients [including 82 with chronic rhinosinusitis with nasal polyposis (CRSwNP) and 24 with aspirin-exacerbated respiratory disease (AERD)], 52 with allergic rhinitis, and 28 with CRSwNP without asthma. Results: PTGDR2 was one of the most differentially overexpressed genes in asthmatic patients’ peripheral blood (p-value 2.64 × 106). These results were confirmed by qPCR in the validation study, where PTGDR2 transcripts were significantly upregulated in asthmatic patients (p < 0.001). This upregulation was mainly detected in some subgroups such as allergic asthma, asthma with CRSwNP, AERD, eosinophilic asthma, and severe persistent asthma. PTGDR2 expression was detected in different blood cell types, and its correlation with eosinophil counts showed differences in some groups of asthmatic patients. Conclusions: We found that PTGDR2 expression levels could identify asthma patients, introduce a minimally invasive biomarker for adult asthma molecular phenotyping, and add additional information to blood eosinophils. Although further studies are required, analyzing PTGDR2 expression levels in peripheral blood of asthmatics might assist in selecting patients for treatment with specific antagonists.
Collapse
|
43
|
Kohanski MA, Cohen NA, Barrett NA. Epithelial Dysregulation in Chronic Rhinosinusitis with Nasal Polyposis (CRSwNP) and Aspirin-Exacerbated Respiratory Disease (AERD). J Allergy Clin Immunol 2021; 148:1161-1164. [PMID: 34371082 DOI: 10.1016/j.jaci.2021.07.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Michael A Kohanski
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA USA.
| |
Collapse
|
44
|
Dwyer DF. Eicosanoid relay: Epithelial and mast cell transmetabolism in AERD. J Allergy Clin Immunol 2021; 147:501-503. [PMID: 33358894 DOI: 10.1016/j.jaci.2020.12.627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Daniel F Dwyer
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
45
|
Mastalerz L, Tyrak KE. Biomarkers for predicting response to long-term high dose aspirin therapy in aspirin-exacerbated respiratory disease. Clin Transl Allergy 2021; 11:e12048. [PMID: 34429873 PMCID: PMC8361815 DOI: 10.1002/clt2.12048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Aspirin-exacerbated respiratory disease (AERD) is a phenotype of asthma characterized by eosinophilic inflammation in the airways, mast cell activation, cysteinyl leukotriene overproduction, and acute respiratory reactions on exposure to cyclooxygenase-1 inhibitors. Aspirin desensitization followed by daily high-dose aspirin therapy is a safe and effective treatment option for the majority of patients with AERD. However, there is still some percentage of the population who do not derive benefits from daily aspirin use. METHODS Based on the current literature, the biomarkers, which might predict aspirin treatment outcomes in AERD patients, were evaluated. RESULTS AND CONCLUSIONS Patients with severe symptoms of chronic rhinosinusitis, type 2 asthma based on blood eosinophilia, non-neutrophilic inflammatory phenotype based on sputum cells, as well as high plasma level of 15-hydroxyeicosatetraenoic acid (15-HETE) are potentially good responders to long term high-dose aspirin therapy. Additionally, high expression of the hydroxyprostaglandin dehydrogenase gene, HPGD encoding prostaglandin-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and low expression of the proteoglycan 2 gene, PRG2 encoding constituent of the eosinophil granule in sputum cells might serve as a predictor of good response to aspirin therapy. Variations in the expression of cysteinyl leukotriene receptor 1 in the airways could additionally influence the response to long-term aspirin therapy. Arachidonic acid metabolites levels via the 5-lipoxygenase as well as via the cyclooxygenase pathways in induced sputum supernatant do not change during high dose long-term aspirin therapy and do not influence outcomes of aspirin treatment.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- 2nd Department of Internal MedicineJagiellonian University Medical CollegeCracowPoland
| | - Katarzyna E. Tyrak
- 2nd Department of Internal MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
46
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
47
|
Priyadharshini V, Jiménez-Chobillon MA, de Graaf J, Porras Gutiérrez de Velasco R, Gratziou C, Ramírez-Jiménez F, Teran LM. Transcriptome Analysis Identifies Doublesex and Mab-3 Related Transcription Factor (DMRT3) in Nasal Polyp Epithelial Cells of Patients Suffering from Non-Steroidal Anti-Inflammatory Drug-Exacerbated Respiratory Disease (AERD). Biomolecules 2021; 11:biom11081092. [PMID: 34439758 PMCID: PMC8394795 DOI: 10.3390/biom11081092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Aspirin-exacerbated respiratory disease (AERD) is a syndrome characterised by chronic rhinosinusitis, nasal polyps, asthma and aspirin intolerance. An imbalance of eicosanoid metabolism with anover-production of cysteinyl leukotrienes (CysLTs) has been associated with AERD. However, the precise mechanisms underlying AERD are unknown. Objective: To establish the transcriptome of the nasal polyp airway epithelial cells derived from AERD patients to discover gene expression patterns in this disease. Methods: Nasal airway epithelial cells were isolated from 12 AERD polyps and 8 AERD non-polyp nasal mucosa samples as controls from the same subjects. Utilising the Illumina HiSeq 2500 platform, RNA samples were sequenced. Potential gene candidate DMRT3 was selected from the differentially-expressed genes for validation. Results: Comparative transcriptome profiling of nasal epithelial cells was accomplished in AERD. A total of 20 genes had twofold mean regulation expression differences or greater. In addition, 8 genes were upregulated, including doublesex and mab-3 related transcription factor 3 (DMRT3), and 12 genes were downregulated. Differentially regulated genes comprised roles in inflammation, defence and immunity. Metabolic process and embryonic development pathways were significantly enriched. Enzyme-linked immune sorbent assay (ELISA) results of DMRT3 in AERD patients were significantly upregulated compared to controls (p = 0.03). Immunohistochemistry (IHC) of AERD nasal polyps localised DMRT3 and was predominantly released in the airway epithelia. Conclusion: Findings suggest that DMRT3 could be potentially involved in nasal polyp development in AERD patients. Furthermore, several genes are downregulated, hinting at the dedifferentiation phenomenon in AERD polyps. However, further studies are imperative to confirm the exact mechanism of polyp formation in AERD patients.
Collapse
Affiliation(s)
- V.S. Priyadharshini
- Instituto Nacional de EnfermedadesRespiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Mexico City 14080, Mexico; (V.S.P.); (M.A.J.-C.); (F.R.-J.)
| | - Marcos Alejandro Jiménez-Chobillon
- Instituto Nacional de EnfermedadesRespiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Mexico City 14080, Mexico; (V.S.P.); (M.A.J.-C.); (F.R.-J.)
| | - Jos de Graaf
- Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, D-55131 Mainz, Germany;
| | - Raúl Porras Gutiérrez de Velasco
- School of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N. Delegación Coyoacán, Mexico City 04510, Mexico;
| | - Christina Gratziou
- Smoking Cessation Centre Pulmonary Department, Evgenidio Hospital, Athens University, 20 Papadiamantopoulou Street, 11528 Athens, Greece;
| | - Fernando Ramírez-Jiménez
- Instituto Nacional de EnfermedadesRespiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Mexico City 14080, Mexico; (V.S.P.); (M.A.J.-C.); (F.R.-J.)
| | - Luis M. Teran
- Instituto Nacional de EnfermedadesRespiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Mexico City 14080, Mexico; (V.S.P.); (M.A.J.-C.); (F.R.-J.)
- School of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N. Delegación Coyoacán, Mexico City 04510, Mexico;
- Correspondence:
| |
Collapse
|
48
|
Sehanobish E, Asad M, Barbi M, Porcelli SA, Jerschow E. Aspirin Actions in Treatment of NSAID-Exacerbated Respiratory Disease. Front Immunol 2021; 12:695815. [PMID: 34305932 PMCID: PMC8297972 DOI: 10.3389/fimmu.2021.695815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin desensitization and aspirin maintenance therapy has been an effective approach. Studies have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can both trigger and suppress airway disease in N-ERD remains poorly understood. In this review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular disease, and cancer, and consider potential mechanistic pathways accounting for the effects of aspirin in N-ERD.
Collapse
Affiliation(s)
- Esha Sehanobish
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elina Jerschow
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
49
|
Stevens WW, Staudacher AG, Hulse KE, Poposki JA, Kato A, Carter RG, Suh LA, Norton JE, Huang JH, Peters AT, Grammer LC, Conley DB, Shintani-Smith S, Tan BK, Welch KC, Kern RC, Schleimer RP. Studies of the role of basophils in aspirin-exacerbated respiratory disease pathogenesis. J Allergy Clin Immunol 2021; 148:439-449.e5. [PMID: 33819512 DOI: 10.1016/j.jaci.2021.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by the triad of chronic rhinosinusitis with nasal polyps (CRSwNP), asthma, and intolerance to cyclooxygenase-1 enzyme inhibitors. The underlying mechanisms contributing to AERD pathogenesis are not fully understood, but AERD is characterized by an enhanced type 2 inflammatory phenotype. Basophils are potent type 2 effector cells, but their involvement in AERD pathophysiology remains unclear. OBJECTIVE We sought to characterize the systemic and local basophil responses in patients with AERD compared with patients with CRSwNP. METHODS Sinonasal tissues including inferior turbinate and/or nasal polyps (NPs) and peripheral blood were collected from controls, patients with AERD, and patients with CRSwNP. Expression of cell surface (CD45, FcεRI, CD203c), activation (CD63), and intracellular (2D7) markers associated with basophils was characterized using flow cytometry. Clinical data including Lund-Mackay scores and pulmonary function were obtained. RESULTS The mean number of basophils (CD45+CD203c+FcεRI+CD117-) detected in AERD NPs (147 ± 28 cells/mg tissue) was significantly elevated compared with that detected in CRSwNP NPs (69 ± 20 cells/mg tissue; P = .01). The number of circulating basophils was significantly elevated in patients with AERD (P = .04). Basophils in NPs had significantly higher CD203c and CD63 mean fluorescence intensity compared with blood in both conditions (P < .01). Basophils from AERD NPs had lower expression of the granule content marker 2D7 compared with those from matched blood (P < .01) or NPs of patients with CRSwNP (P = .06), suggesting ongoing degranulation. Basophil 2D7 mean fluorescence intensity significantly correlated with pulmonary function (r = 0.62; P = .02) and inversely correlated with sinonasal inflammation (r = -0.56; P = .004). CONCLUSIONS Increased basophil numbers and extent of ongoing degranulation in NPs of patients with AERD compared with patients with CRSwNP may contribute to the exaggerated disease pathogenesis and severity unique to AERD.
Collapse
Affiliation(s)
- Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Anna G Staudacher
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julie A Poposki
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
50
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|