1
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 PMCID: PMC11731826 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
2
|
Liang KJ, Cheng CH, Liu CY, Hsu SC, von Leupoldt A, Jelinčić V, Chan PYS. Neural oscillations underlying the neural gating of respiratory sensations in generalized anxiety disorder. Respir Physiol Neurobiol 2024; 321:104215. [PMID: 38211904 DOI: 10.1016/j.resp.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Individuals with generalized anxiety disorder (GAD) have been shown to have altered neural gating of respiratory sensations (NGRS) using respiratory-related evoked potentials (RREP); however, corresponding neural oscillatory activities remain unexplored. The present study aimed to investigate altered NGRS in individuals with GAD using both time and time-frequency analysis. Nineteen individuals with GAD and 28 healthy controls were recruited. Paired inspiratory occlusions were delivered to elicit cortical neural activations measured from electroencephalography. The GAD group showed smaller N1 amplitudes to the first stimulus (S1), lower evoked gamma and larger evoked beta oscillations compared to controls. Both groups showed larger N1, P3, beta power and theta power in response to S1 compared to S2, suggesting a neural gating phenomenon. These findings suggest that N1, gamma and beta frequency oscillations may be indicators for altered respiratory sensation in GAD populations and that the N1, P3, beta and theta oscillations can reflect the neural gating of respiratory sensations.
Collapse
Affiliation(s)
- Kai-Jie Liang
- Department of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Department of Psychiatry, New Taipei City Municipal Tucheng Hospital
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan; Department of Psychiatry, New Taipei City Municipal Tucheng Hospital
| | | | | | - Pei-Ying S Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkuo, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Fuentes-Claramonte P, Estradé A, Solanes A, Ramella-Cravaro V, Garcia-Leon MA, de Diego-Adeliño J, Molins C, Fung E, Valentí M, Anmella G, Pomarol-Clotet E, Oliver D, Vieta E, Radua J, Fusar-Poli P. Biomarkers for Psychosis: Are We There Yet? Umbrella Review of 1478 Biomarkers. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae018. [PMID: 39228676 PMCID: PMC11369642 DOI: 10.1093/schizbullopen/sgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background and Hypothesis This umbrella review aims to comprehensively synthesize the evidence of association between peripheral, electrophysiological, neuroimaging, neuropathological, and other biomarkers and diagnosis of psychotic disorders. Study Design We selected systematic reviews and meta-analyses of observational studies on diagnostic biomarkers for psychotic disorders, published until February 1, 2018. Data extraction was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Evidence of association between biomarkers and psychotic disorders was classified as convincing, highly suggestive, suggestive, weak, or non-significant, using a standardized classification. Quality analyses used the Assessment of Multiple Systematic Reviews (AMSTAR) tool. Study Results The umbrella review included 110 meta-analyses or systematic reviews corresponding to 3892 individual studies, 1478 biomarkers, and 392 210 participants. No factor showed a convincing level of evidence. Highly suggestive evidence was observed for transglutaminase autoantibodies levels (odds ratio [OR] = 7.32; 95% CI: 3.36, 15.94), mismatch negativity in auditory event-related potentials (standardized mean difference [SMD] = 0.73; 95% CI: 0.5, 0.96), P300 component latency (SMD = -0.6; 95% CI: -0.83, -0.38), ventricle-brain ratio (SMD = 0.61; 95% CI: 0.5, 0.71), and minor physical anomalies (SMD = 0.99; 95% CI: 0.64, 1.34). Suggestive evidence was observed for folate, malondialdehyde, brain-derived neurotrophic factor, homocysteine, P50 sensory gating (P50 S2/S1 ratio), frontal N-acetyl-aspartate, and high-frequency heart rate variability. Among the remaining biomarkers, weak evidence was found for 626 and a non-significant association for 833 factors. Conclusions While several biomarkers present highly suggestive or suggestive evidence of association with psychotic disorders, methodological biases, and underpowered studies call for future higher-quality research.
Collapse
Affiliation(s)
- Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrés Estradé
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Aleix Solanes
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
| | - Valentina Ramella-Cravaro
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
| | - Maria Angeles Garcia-Leon
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Barcelona Autonomous University (UAB), Barcelona, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Conrad Molins
- Psychiatric Service, Hospital Universitari Santa Maria, Lleida, Catalonia, Spain
| | - Eric Fung
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Marc Valentí
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Gerard Anmella
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Dominic Oliver
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford OX3 7JX, UK
- OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford OX3 7JX, UK
| | - Eduard Vieta
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, UK
- OASIS Service, South London and the Maudsley NHS Foundation Trust, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Cheng CH, Hsieh YW, Chang CC, Hsiao FJ, Chen LF, Wang PN. Effects of 6-Month Combined Physical Exercise and Cognitive Training on Neuropsychological and Neurophysiological Function in Older Adults with Subjective Cognitive Decline: A Randomized Controlled Trial. J Alzheimers Dis 2024; 100:175-192. [PMID: 38848174 PMCID: PMC11307082 DOI: 10.3233/jad-231257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Background Multidomain intervention may delay or ameliorate cognitive decline in older adults at risk of Alzheimer's disease, particularly in the memory and inhibitory functions. However, no study systematically investigates the changes of brain function in cognitively-normal elderly with subjective cognitive decline (SCD) when they receive multidomain intervention. Objective We aimed to examine whether a multidomain intervention could improve neuropsychological function and neurophysiological activities related to memory and inhibitory function in SCD subjects. Methods Eight clusters with a total of 50 community-dwelling SCD older adults were single-blind, randomized into intervention group, which received physical and cognitive training, or control group, which received treatment as usual. For the neuropsychological function, a composite Z score from six cognitive tests was calculated and compared between two groups. For the neurophysiological activities, event-related potentials (ERPs) of memory function, including mismatch negativity (MMN) and memory-P3, as well as ERPs of inhibitory function, including sensory gating (SG) and inhibition-P3, were measured. Assessments were performed at baseline (T1), end of the intervention (T2), and 6 months after T2 (T3). Results For the neuropsychological function, the effect was not observed after the intervention. For the neurophysiological activities, improved MMN responses of ΔT2-T1 were observed in the intervention group versus the control group. The multidomain intervention produced a sustained effect on memory-P3 latencies of ΔT3-T1. However, there were no significant differences in changes of SG and inhibition-P3 between intervention and control groups. Conclusions While not impactful on neuropsychological function, multidomain intervention enhances specific neurophysiological activities associated with memory function.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics – BIND Lab, Chang Gung University, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Ning Wang
- Department of Neurological Institute, Division of General Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Li S, Chan SY, Higgins A, Hall MH. Sensory gating, neurocognition, social cognition and real-life functioning: a 2-year follow-up of early psychosis. Psychol Med 2023; 53:2540-2552. [PMID: 37310299 DOI: 10.1017/s0033291721004463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Diminished sensory gating (SG) is a robust finding in psychotic disorders, but studies of early psychosis (EP) are rare. It is unknown whether SG deficit leads to poor neurocognitive, social, and/or real-world functioning. This study aimed to explore the longitudinal relationships between SG and these variables. METHODS Seventy-nine EP patients and 88 healthy controls (HCs) were recruited at baseline. Thirty-three and 20 EP patients completed 12-month and 24-month follow-up, respectively. SG was measured using the auditory dual-click (S1 & S2) paradigm and quantified as P50 ratio (S2/S1) and difference (S1-S2). Cognition, real-life functioning, and symptoms were assessed using the MATRICS Consensus Cognitive Battery, Global Functioning: Social (GFS) and Role (GFR), Multnomah Community Ability Scale (MCAS), Awareness of Social Inference Test (TASIT), and the Positive and Negative Syndrome Scale (PANSS). Analysis of variance (ANOVA), chi-square, mixed model, correlation and regression analyses were used for group comparisons and relationships among variables controlling for potential confounding variables. RESULTS In EP patients, P50 ratio (p < 0.05) and difference (p < 0.001) at 24-month showed significant differences compared with that at baseline. At baseline, P50 indices (ratio, S1-S2 difference, S1) were independently associated with GFR in HCs (all p < 0.05); in EP patients, S2 amplitude was independently associated with GFS (p = 0.037). At 12-month and 24-month, P50 indices (ratio, S1, S2) was independently associated with MCAS (all p < 0.05). S1-S2 difference was a trending predictor of future function (GFS or MCAS). CONCLUSIONS SG showed progressive reduction in EP patients. P50 indices were related to real-life functioning.
Collapse
Affiliation(s)
- Shen Li
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shi Yu Chan
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Translational Neurosciences, Singapore Institute for Clinical Sciences 117609, Singapore
| | - Amy Higgins
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
6
|
P50 sensory gating, cognitive deficits and depressive symptoms in first-episode antipsychotics-naïve schizophrenia. J Affect Disord 2023; 324:153-161. [PMID: 36587903 DOI: 10.1016/j.jad.2022.12.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Sensory gating P50 (SG-P50) may be involved in the pathophysiological mechanisms of impaired cognition in schizophrenia (SCZ). Comorbid depressive symptoms are common in SCZ patients and are also found to be associated with their cognitive impairment. However, it is unclear whether SG-P50 is abnormal in first episode antipsychotics naïve (FEAN) SCZ patients with depressive symptoms. Our aimed to investigate the relationships between SG-P50, depressive symptoms and neurocognition in FEAN-SCZ patients. METHODS We recruited 103 FEAN-SCZ patients (depression: n = 63; non-depression: n = 40) and 55 healthy controls. SG-P50 was measured using the standard auditory dual-click (S1&S2) paradigm. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depression Rating Scale-17 (HDRS-17). Cognitive performance was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS Compared with non-depressive patients, depressive patients had a significantly larger S2 amplitude (p = 0.005) and a higher S2/S1 ratio at trend level (p = 0.075) after corrected. There were significant differences in the scores of CPT-IP and Mazes (NAB) between depressive and non-depressive FEAN-SCZ patients (both p values < 0.05). For all patients, the SG-P50 S2/S1 ratio was significantly correlated with HDRS-17 score (r = 0.23, p = 0.020) and MCCB-Symbol coding (r = -0.16, p = 0.043). For depressive FEAN-SCZ patients, S2 amplitude was an independent predictor of the MCCB-Mazes (NAB) (β = -0.31, t = -2.52, p = 0.015). CONCLUSIONS SG-P50 deficit may be an informational biomarker for depressive symptoms and neurocognitive impairments in FEAN-SCZ patients.
Collapse
|
7
|
Clementz BA, Parker DA, Trotti RL, McDowell JE, Keedy SK, Keshavan MS, Pearlson GD, Gershon ES, Ivleva EI, Huang LY, Hill SK, Sweeney JA, Thomas O, Hudgens-Haney M, Gibbons RD, Tamminga CA. Psychosis Biotypes: Replication and Validation from the B-SNIP Consortium. Schizophr Bull 2022; 48:56-68. [PMID: 34409449 PMCID: PMC8781330 DOI: 10.1093/schbul/sbab090] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current clinical phenomenological diagnosis in psychiatry neither captures biologically homologous disease entities nor allows for individualized treatment prescriptions based on neurobiology. In this report, we studied two large samples of cases with schizophrenia, schizoaffective, and bipolar I disorder with psychosis, presentations with clinical features of hallucinations, delusions, thought disorder, affective, or negative symptoms. A biomarker approach to subtyping psychosis cases (called psychosis Biotypes) captured neurobiological homology that was missed by conventional clinical diagnoses. Two samples (called "B-SNIP1" with 711 psychosis and 274 healthy persons, and the "replication sample" with 717 psychosis and 198 healthy persons) showed that 44 individual biomarkers, drawn from general cognition (BACS), motor inhibitory (stop signal), saccadic system (pro- and anti-saccades), and auditory EEG/ERP (paired-stimuli and oddball) tasks of psychosis-relevant brain functions were replicable (r's from .96-.99) and temporally stable (r's from .76-.95). Using numerical taxonomy (k-means clustering) with nine groups of integrated biomarker characteristics (called bio-factors) yielded three Biotypes that were virtually identical between the two samples and showed highly similar case assignments to subgroups based on cross-validations (88.5%-89%). Biotypes-1 and -2 shared poor cognition. Biotype-1 was further characterized by low neural response magnitudes, while Biotype-2 was further characterized by overactive neural responses and poor sensory motor inhibition. Biotype-3 was nearly normal on all bio-factors. Construct validation of Biotype EEG/ERP neurophysiology using measures of intrinsic neural activity and auditory steady state stimulation highlighted the robustness of these outcomes. Psychosis Biotypes may yield meaningful neurobiological targets for treatments and etiological investigations.
Collapse
Affiliation(s)
- Brett A Clementz
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - David A Parker
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Rebekah L Trotti
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Institute of Living, Hartford Healthcare Corp, Hartford, CT, USA
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ling-Yu Huang
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Olivia Thomas
- Departments of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | | | - Robert D Gibbons
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
San-Martin R, Zimiani MI, de Ávila MAV, Shuhama R, Del-Ben CM, Menezes PR, Fraga FJ, Salum C. Early Schizophrenia and Bipolar Disorder Patients Display Reduced Neural Prepulse Inhibition. Brain Sci 2022; 12:93. [PMID: 35053836 PMCID: PMC8773710 DOI: 10.3390/brainsci12010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Altered sensorimotor gating has been demonstrated by Prepulse Inhibition (PPI) tests in patients with psychosis. Recent advances in signal processing methods allow assessment of neural PPI through electroencephalogram (EEG) recording during acoustic startle response measures (classic muscular PPI). Simultaneous measurements of muscular (eye-blink) and neural gating phenomena during PPI test may help to better understand sensorial processing dysfunctions in psychosis. In this study, we aimed to assess simultaneously muscular and neural PPI in early bipolar disorder and schizophrenia patients. METHOD Participants were recruited from a population-based case-control study of first episode psychosis. PPI was measured using electromyography (EMG) and EEG in pulse alone and prepulse + pulse with intervals of 30, 60, and 120 ms in early bipolar disorder (n = 18) and schizophrenia (n = 11) patients. As control group, 15 socio-economically matched healthy subjects were recruited. All subjects were evaluated with Rating Scale, Hamilton Rating Scale for Depression, and Young Mania Rating Scale questionnaires at recruitment and just before PPI test. Wilcoxon ranked sum tests were used to compare PPI test results between groups. RESULTS In comparison to healthy participants, neural PPI was significantly reduced in PPI 30 and PPI60 among bipolar and schizophrenia patients, while muscular PPI was reduced in PPI60 and PPI120 intervals only among patients with schizophrenia. CONCLUSION The combination of muscular and neural PPI evaluations suggested distinct impairment patterns among schizophrenia and bipolar disorder patients. Simultaneous recording may contribute with novel information in sensory gating investigations.
Collapse
Affiliation(s)
- Rodrigo San-Martin
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | - Maria Inês Zimiani
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| | | | - Rosana Shuhama
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Cristina Marta Del-Ben
- Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (M.A.V.d.Á.); (R.S.); (C.M.D.-B.)
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Paulo Rossi Menezes
- Population Mental Health Research Center, Universidade de São Paulo, São Paulo 01246-903, Brazil;
- Department of Preventive Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Francisco José Fraga
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André 09210-580, Brazil;
| | - Cristiane Salum
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo 09606-045, Brazil; (R.S.-M.); (M.I.Z.)
| |
Collapse
|
9
|
Smoking as a Common Modulator of Sensory Gating and Reward Learning in Individuals with Psychotic Disorders. Brain Sci 2021; 11:brainsci11121581. [PMID: 34942883 PMCID: PMC8699526 DOI: 10.3390/brainsci11121581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Motivational and perceptual disturbances co-occur in psychosis and have been linked to aberrations in reward learning and sensory gating, respectively. Although traditionally studied independently, when viewed through a predictive coding framework, these processes can both be linked to dysfunction in striatal dopaminergic prediction error signaling. This study examined whether reward learning and sensory gating are correlated in individuals with psychotic disorders, and whether nicotine—a psychostimulant that amplifies phasic striatal dopamine firing—is a common modulator of these two processes. We recruited 183 patients with psychotic disorders (79 schizophrenia, 104 psychotic bipolar disorder) and 129 controls and assessed reward learning (behavioral probabilistic reward task), sensory gating (P50 event-related potential), and smoking history. Reward learning and sensory gating were correlated across the sample. Smoking influenced reward learning and sensory gating in both patient groups; however, the effects were in opposite directions. Specifically, smoking was associated with improved performance in individuals with schizophrenia but impaired performance in individuals with psychotic bipolar disorder. These findings suggest that reward learning and sensory gating are linked and modulated by smoking. However, disorder-specific associations with smoking suggest that nicotine may expose pathophysiological differences in the architecture and function of prediction error circuitry in these overlapping yet distinct psychotic disorders.
Collapse
|
10
|
Takeuchi N, Fujita K, Taniguchi T, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Mechanisms of Long-Latency Paired Pulse Suppression: MEG Study. Brain Topogr 2021; 35:241-250. [PMID: 34748108 DOI: 10.1007/s10548-021-00878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
Paired pulse suppression is an electrophysiological method used to evaluate sensory suppression and often applied to patients with psychiatric disorders. However, it remains unclear whether the suppression comes from specific inhibitory mechanisms, refractoriness, or fatigue. In the present study, to investigate mechanisms of suppression induced by an auditory paired pulse paradigm in 19 healthy subjects, magnetoencephalography was employed. The control stimulus was a train of 25-ms pure tones of 65 dB SPL for 2500 ms. In order to evoke a test response, the sound pressure of two consecutive tones at 2200 ms in the control sound was increased to 80 dB (Test stimulus). Similar sound pressure changes were also inserted at 1000 (CS2) and 1600 (CS1) ms as conditioning stimuli. Four stimulus conditions were used; (1) Test alone, (2) Test + CS1, (3) Test + CS1 + CS2, and (4) Test + CS2, with the four sound stimuli randomly presented and cortical responses averaged at least 100 times for each condition. The baseline-to-peak and peak-to-peak amplitudes of the P50m, N100m, and P200m components of the test response were compared among the four conditions. In addition, the response to CS1 was compared between conditions (2) and (3). The results showed significant test response suppression by CS1. While the response to CS1 was significantly suppressed when CS2 was present, it did not affect suppression of the test response by CS1. It was thus suggested that the amplitude of the response to a conditioning stimulus is not a factor to determine the inhibitory effects of the test response, indicating that suppression is due to an external influence on the excitatory pathway.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan. .,Department of Psychiatry, Okazaki City Hospital, Okazaki, 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tomoya Taniguchi
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.,Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
11
|
Jian JR, Lin YY, Connor LT, Cheng CH. Revisiting the relationship between neural correlates of sensory gating and self-reported sensory gating inventory: An MEG investigation. Neurosci Lett 2021; 766:136336. [PMID: 34758341 DOI: 10.1016/j.neulet.2021.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/13/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Accumulated evidence has revealed that bilateral superior temporal gyrus (STG), inferior frontal gyrus (IFG), and inferior parietal lobule (IPL) are involved in the processes of sensory gating (SG). However, it remains unknown which neural correlate(s) of SG specifically reflect individuals' perceptual experiences, as measured by the Sensory Gating Inventory (SGI). Thus, this study aims to investigate the relationship of SGI with cortical SG-related regions. Furthermore, we examine whether SG hemispheric asymmetry exists, which is still an inconclusive issue. METHODS Twenty-two healthy young adults performed the auditory paired-stimulus paradigm during magnetoencephalographic recordings. SG of M50 and M100 was measured as ratios (S2/S1) and differences (S1-S2). They were also evaluated with SGI, which factored into three categories of Perceptual Modulation, Distractibility, and Over-Inclusion. SG in the STG, IFG, and IPL were compared between left and right hemispheres, and were used to determine the relationship with SGI. RESULTS Only M100 SG differences (S1-S2) of the right IFG were significantly correlated with scores of Perceptual Modulation (partial r = -0.392, p = 0.040) and total SGI scores (partial r = -0.387, p = 0.041). However, we did not find significant lateralization of M50 SG and M100 SG in any studying region. CONCLUSIONS The individual's perceptual experience is specifically related to electrophysiological SG function of the right IFG.
Collapse
Affiliation(s)
- Jun-Rui Jian
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yen-Yun Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Lisa Tabor Connor
- Washington University School of Medicine, Program in Occupational Therapy & Department of Neurology, St. Louis, MO, USA
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
12
|
Arif Y, Wiesman AI, Christopher-Hayes NJ, Wilson TW. Aberrant inhibitory processing in the somatosensory cortices of cannabis-users. J Psychopharmacol 2021; 35:1356-1364. [PMID: 34694190 PMCID: PMC9659470 DOI: 10.1177/02698811211050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Delta-9 tetrahydrocannabinol (THC) is a major exogenous psychoactive agent, which acts as a partial agonist on cannabinoid (CB1) receptors. THC is known to inhibit presynaptic neurotransmission and has been repeatedly linked to acute decrements in cognitive function across multiple domains. Previous electrophysiological studies of sensory gating have shown specific deficits in inhibitory processing in cannabis-users, but to date these findings have been limited to the auditory cortices, and the degree to which these aberrations extend to other brain regions remains largely unknown. METHODS We used magnetoencephalography (MEG) and a paired-pulse somatosensory stimulation paradigm to probe inhibitory processing in 29 cannabis-users (i.e. at least four times per month) and 41 demographically matched non-user controls. MEG responses to each stimulation were imaged in both the oscillatory and time domain, and voxel time-series data were extracted to quantify the dynamics of sensory gating, oscillatory gamma activity, evoked responses, and spontaneous neural activity. RESULTS We observed robust somatosensory responses following both stimulations, which were used to compute sensory gating ratios. Cannabis-users exhibited significantly impaired gating relative to non-users in somatosensory cortices, as well as decreased spontaneous neural activity. In contrast, oscillatory gamma activity did not appear to be affected by cannabis use. CONCLUSIONS We observed impaired gating of redundant somatosensory information and altered spontaneous activity in the same cortical tissue in cannabis-users compared to non-users. These data suggest that cannabis use is associated with a decline in the brain's ability to properly filter repetitive information and impairments in cortical inhibitory processing.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I. Wiesman
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA,College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Spooner RK, Taylor BK, L’Heureux E, Schantell M, Arif Y, May PE, Morsey B, Wang T, Ideker T, Fox HS, Wilson TW. Stress-induced aberrations in sensory processing predict worse cognitive outcomes in healthy aging adults. Aging (Albany NY) 2021; 13:19996-20015. [PMID: 34410999 PMCID: PMC8436901 DOI: 10.18632/aging.203433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 01/06/2023]
Abstract
It is well recognized that not all individuals age equivalently, with functional dependence attributable, at least in part, to stress accumulated across the lifespan. Amongst these dependencies are age-related declines in cognitive function, which may be the result of impaired inhibitory processing (e.g., sensory gating). Herein, we examined the unique roles of life and biological stress on somatosensory gating dynamics in 74 adults (22-72 years old). Participants completed a sensory gating paired-pulse electrical stimulation paradigm of the right median nerve during magnetoencephalography (MEG) and data were subjected to advanced oscillatory and time-domain analysis methods. We observed separable mechanisms by which increasing levels of life and biological stress predicted higher oscillatory gating ratios, indicative of age-related impairments in inhibitory function. Specifically, elevations in life stress significantly modulated the neural response to the first stimulation in the pair, while elevations in biological stress significantly modulated the neural response to the second stimulation in the pair. In contrast, neither elevations in life nor biological stress significantly predicted the gating of time-domain neural activity in the somatosensory cortex. Finally, our study is the first to link stress-induced decline in sensory gating to cognitive dysfunction, suggesting that gating paradigms may hold promise for detecting discrepant functional trajectories in age-related pathologies in the future.
Collapse
Affiliation(s)
- Rachel K. Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Emma L’Heureux
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pamela E. May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
14
|
Sun HH, Lin MY, Nouchi R, Wang PN, Cheng CH. Neuromagnetic evidence of abnormal automatic inhibitory function in subjective memory complaint. Eur J Neurosci 2021; 53:3350-3361. [PMID: 33754412 DOI: 10.1111/ejn.15196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Subjective memory complaint (SMC), a self-perceived worsening in memory capacity concurrent with normal performance on standardized cognitive assessments, is considered a risk factor for the development of Alzheimer's disease (AD). Deficient sensory gating (SG), referring to the lack of automatic inhibition of neural responses to the second identical stimulus, has been documented in prodromal and incident AD patients. However, it remains unknown whether the cognitively normal elderly with SMC demonstrate alterations of SG function compared with those without SMC. A total of 19 healthy controls (HC) and 16 SMC subjects were included in the present study. Neural responses to the auditory paired-stimulus paradigm were recorded by the magnetoencephalography and analyzed by the distributed source imaging method of minimum norm estimate. The SG of M50 and M100 components were measured using the amplitude ratio of the second response over the first response at the cortical level. Compared to HC, subjects with SMC showed significantly increased M50 SG ratios in the inferior parietal lobule (IPL). Furthermore, M50 SG ratios in the right IPL yielded an acceptable discriminative ability to distinguish SMC from HC. However, we did not find a significant association between SG ratios and cognitive function requiring inhibitory control either in the HC or SMC group. In conclusion, although SMC subjects have intact cognitive functioning revealed by objective neuropsychological tests, their deficits in automatic inhibitory function could be detected through neurophysiological recordings. Our results suggest that altered brain function occurs in SMC prior to the obvious decline of cognitive performance.
Collapse
Affiliation(s)
- Hua-Hsuan Sun
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Mei-Yin Lin
- Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center (S.A.R.C), Tohoku University, Sendai, Japan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
15
|
Storozheva ZI, Akhapkin RV, Bolotina OV, Korendrukhina A, Novototsky-Vlasov VY, Shcherbakova IV, Kirenskaya AV. Sensorimotor and sensory gating in depression, anxiety, and their comorbidity. World J Biol Psychiatry 2021; 22:183-193. [PMID: 32420779 DOI: 10.1080/15622975.2020.1770859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Abnormal attentional and cognitive processes are thought to increase the risk for depression and anxiety. To improve understanding of brain mechanisms of anxiety and depressive disorders and condition of their comorbidity, the study of early attentional processes was provided. METHODS Participants were patients with depressive (80 s.), anxiety (69 s.), and comorbid (41 s.) disorders, and healthy volunteers (50 s.). Acoustic startle response (ASR) and P50 component of the auditory event-related potential were recorded. RESULTS In the ASR model decreased startle response amplitude at the left eye in patients with comorbid disorder was found, and ASR latency was lengthened in all clinical groups. Deficit of prepulse inhibition was unique for comorbid disorder, and might be considered as risk of evolution to more serious condition. Reduced prepulse facilitation was revealed in patients with comorbid and anxiety disorders. In P50 suppression paradigm decreased S1 response amplitude was revealed in all clinical groups, P50 latency was prolonged in depressive and comorbid patients, and P50 suppression deficit was observed in depression and anxiety groups. CONCLUSIONS The obtained results might be useful for development of integrative neural models of comorbidity of anxiety and depression, and elaboration of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Zinaida I Storozheva
- Laboratory of Clinical Neurophysiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Roman V Akhapkin
- Department of new drugs and therapies, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow Russian Federation
| | - Olga V Bolotina
- Laboratory of Clinical Neurophysiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | - Anna Korendrukhina
- Department of new drugs and therapies, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow Russian Federation
| | - Vladimir Y Novototsky-Vlasov
- Laboratory of Clinical Neurophysiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| | | | - Anna V Kirenskaya
- Laboratory of Clinical Neurophysiology, V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russian Federation
| |
Collapse
|
16
|
Cheng CH, Liu CY, Hsu SC, Tseng YJ. Reduced coupling of somatosensory gating and gamma oscillation in panic disorder. Psychiatry Res Neuroimaging 2021; 307:111227. [PMID: 33248324 DOI: 10.1016/j.pscychresns.2020.111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/31/2020] [Accepted: 10/11/2020] [Indexed: 11/22/2022]
Abstract
Previous studies have reported that patients with panic disorder (PD) exhibited an aberrant level of GABA concentration, an inhibitory neurotransmitter in the human brain. However, it remains substantially unclear whether the inhibitory function regarding the neurophysiological characteristics is altered in this disease. Sensory gating (SG) is considered as an automatic inhibitory function in the sensory cortex. In addition, brain's gamma oscillation within the sensory cortex is another index to reflect inhibitory function. Here we aimed to investigate whether the patients with PD showed altered inhibitory function in the somatosensory system, including the primary (SI) and secondary (SII) somatosensory cortices. A total of 20 healthy controls and 21 patients with PD underwent magnetoencephalographic recordings. Paired-pulse and single-pulse paradigms were used to study SG and gamma oscillations, respectively. There were no significant between-group differences in the SG function in the SI and SII. However, patients with PD demonstrated a reduced gamma power in the SI. Among the healthy individuals, strong associations between SG ratios and gamma frequency values were observed in the SI. However, such a functional relationship disappeared among the patients with PD. We suggested the reduced coupling of SG and gamma oscillation as one of the neural signatures in PD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), Taiwan
| | - Yi-Jhan Tseng
- Department of Medical Research, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| |
Collapse
|
17
|
Takeuchi N, Fujita K, Kinukawa T, Sugiyama S, Kanemoto K, Nishihara M, Inui K. Test-retest reliability of paired pulse suppression paradigm using auditory change-related response. J Neurosci Methods 2021; 352:109087. [PMID: 33508410 DOI: 10.1016/j.jneumeth.2021.109087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Sensory suppression is an important brain function for appropriate processing of information and is known to be impaired in patients with various types of mental illness. Long latency suppression which is a paradigm using change-related cortical response with repeated paired pulses embedded in a train of conditioning pulses is a factor used to measure sensory suppression. NEW METHOD The present study assessed the test-retest reliability of long-latency suppression in latency, amplitude, and suppression rate of the P50, N100, and P200 components of auditory evoked potentials in 35 healthy adults. The sound stimulus was repeats of a 25-ms pure tone at 65 dB and 2000 ms in total duration, during which the sound pressure level was increased to 80 dB twice at 1100 ms and 1700 ms. Measurements were performed twice and the validity of the findings was evaluated using intra-class correlations. RESULTS The results showed high intra-class correlation (ICC) values (>0.7) for the amplitude of all components, except for P50 (0.44), while latency also showed high ICC values (>0.66), except for P50 (0.20). In addition, the suppression rate showed good reproducibility for the N100-P200 component (0.60). COMPARISON WITH EXISTING METHOD The method can be performed with a short inspection time of approximately 5 min and provides high ICC values. In addition, it may reflect suppression mechanisms different from those relating to existing methods. CONCLUSION These results support the use of long latency suppression as a biomarker in clinical settings.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan; Department of Psychiatry, Okazaki City Hospital, Okazaki, 444-8553, Japan.
| | - Kohei Fujita
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan; Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392, Japan
| |
Collapse
|
18
|
Parker DA, Trotti RL, McDowell JE, Keedy SK, Gershon ES, Ivleva EI, Pearlson GD, Keshavan MS, Tamminga CA, Sweeney JA, Clementz BA. Auditory paired-stimuli responses across the psychosis and bipolar spectrum and their relationship to clinical features. Biomark Neuropsychiatry 2020; 3:100014. [PMID: 36644018 PMCID: PMC9837793 DOI: 10.1016/j.bionps.2020.100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background EEG responses during auditory paired-stimuli paradigms are putative biomarkers of psychosis syndromes. The initial iteration of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP1) showed unique and common patterns of abnormalities across schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar disorder with psychosis (BDP). This study replicates those findings in new and large samples of psychosis cases and extends them to an important comparison group, bipolar disorder without psychosis (BDNP). Methods Paired stimuli responses from 64-sensor EEG recording were compared across psychosis (n = 597; SZ = 225, SAD = 201, BDP = 171), BDNP (n = 66), and healthy (n = 415) subjects from the second iteration of B-SNIP. EEG activity was analyzed in voltage and in the time-frequency domain. Principal component analysis (PCA) over sensors (sPCA) was used to efficiently capture EEG voltage responses to the paired stimuli. Evoked power was calculated via a Morlet wavelet procedure. A frequency PCA divided evoked power data into three frequency bands: Low (4-17 Hz), Beta (18-32 Hz), and Gamma (33-55 Hz). Each time-course (ERP Voltage, Low, Beta, and Gamma) were then segmented into 20 ms bins and analyzed for group differences. To efficiently summarize the multiple EEG components that best captured group differences we used multivariate discriminant and correlational analyses. This approach yields a reduced set of measures that may be useful in subsequent biomarker investigations. Results Group ANOVAs identified 17 time-ranges that showed significant group differences (p < .05 after FDR correction), constructively replicating B-SNIP1 findings. Multivariate linear discriminant analysis parsimoniously selected variables that best accounted for group differences: The P50 response to S1 and S2 uniquely separated BDNP from healthy and psychosis subjects (BDNP > all other groups); the S1 N100 response separated groups along an axis of psychopathology severity (HC > BDNP > BDP > SAD > SZ); the S1 P200 response indexed psychosis psychopathology (HC/BDNP > SAD/SZ/BDP); and the preparatory period to the S2 stimulus separated SZ from other groups (SZ > SAD/BDP>HC/BDNP).Canonical correlation identified an association between the neural responses during the S1 N100, S1 N200 and S2 preparatory period and PANSS positive symptoms and social functioning. The neural responses during the S1 P50 and S1 N100 were associated with PANSS Negative/General, MADRS and Young Mania symptoms. Conclusions This study constructively replicated prior B-SNIP1 research on auditory deviations observed during the paired stimuli task in SZ, SAD and BDP. Inclusion of a group of BDNP allows for the identification of biomarkers more closely related to affective versus nonaffective clinical phenotypes and neural distinctions between BDP and BDNP. Findings have implications for nosology and future translational work given that some biomarkers are shared across all psychosis and some are unique to affective syndromes.
Collapse
Affiliation(s)
| | | | - Jennifer E. McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Georgia
| | - Sarah K. Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | - Elliot S. Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | - Elena I. Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, United States of America
| | - Godfrey D. Pearlson
- Neuroscience, Yale School of Medicine, Institute of Living, Hartford Hospital, United States of America
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, United States of America
| | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, United States of America
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, United States of America
| | - Brett A. Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Georgia, Corresponding author at: Psychology Department, 125 Jackson Street, Athens GA, 30601, Greece. (B.A. Clementz)
| |
Collapse
|
19
|
Major S, Carpenter K, Beyer L, Kwak H, Dawson G, Murias M. The Influence of Background Auditory Noise on P50 and N100 Suppression Elicited by the Paired-Click Paradigm. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Auditory sensory gating is commonly assessed using the Paired-Click Paradigm (PCP), an electroencephalography (EEG) task in which two identical sounds are presented sequentially and the brain’s inhibitory response to the second sound is measured. Many clinical populations demonstrate reduced P50 and/or N100 suppression. Testing sensory gating in children may help to identify individuals at risk for neurodevelopmental disorders earlier, including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which could lead to more optimal outcomes. Minimal research has been done with children because of the difficulty of performing lengthy EEG experiments with young children, requiring them to sit still for long periods of time. We designed a modified, potentially child-friendly version of the PCP and evaluated it in typically developing adults. The PCP was administered twice, once in a traditional silent room (silent movie condition) and once with an audible movie playing (audible movie condition) to minimize boredom and enhance behavioral compliance. We tested whether P50 and N100 suppression were influenced by the presence of the auditory background noise from the movie. N100 suppression was observed in both hemispheres in the silent movie condition and in the left hemisphere only during the audible movie condition, though suppression was attenuated in the audible movie condition. P50 suppression was not observed in either condition. N100 sensory gating was successfully elicited with an audible movie playing during the PCP, supporting the use of the modified task for future research in both children and adults.
Collapse
Affiliation(s)
- Samantha Major
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Kimberly Carpenter
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Logan Beyer
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Hannah Kwak
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Michael Murias
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Atagun MI, Drukker M, Hall MH, Altun IK, Tatli SZ, Guloksuz S, van Os J, van Amelsvoort T. Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder. Psychiatry Res Neuroimaging 2020; 300:111078. [PMID: 32361172 DOI: 10.1016/j.pscychresns.2020.111078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
The ability of the brain to reduce the amount of trivial or redundant sensory inputs is called gating function. Dysfunction of sensory gating may lead to cognitive fragmentation and poor real-world functioning. The auditory dual-click paradigm is a pertinent neurophysiological measure of sensory gating function. This meta-analysis aimed to examine the subcomponents of abnormal P50 waveforms in bipolar disorder and schizophrenia to assess P50 sensory gating deficits and examine effects of diagnoses, illness states (first-episode psychosis vs. schizophrenia, remission vs. episodes in bipolar disorder), and treatment status (medication-free vs. medicated). Literature search of PubMed between Jan 1st 1980 and March 31st 2019 identified 2091 records for schizophrenia, 362 for bipolar disorder. 115 studies in schizophrenia (4932 patients), 16 in bipolar disorder (975 patients) and 10 in first-degree relatives (848 subjects) met the inclusion criteria. P50 sensory gating ratio (S2/S1) and S1-S2 difference were significantly altered in schizophrenia, bipolar disorder and their first-degree relatives. First-episode psychosis did not differ from schizophrenia, however episodes altered P50 sensory gating in bipolar disorder. Medications improve P50 sensory gating alterations in schizophrenia significantly and at trend level in bipolar disorder. Future studies should examine longitudinal course of P50 sensory gating in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Murat Ilhan Atagun
- Department of Psychiatry, Ankara Yildirim Beyazit University Medical School, Universities Region, Ihsan Dogramaci Boulevard. No: 6, Bilkent, Cankaya, Ankara Turkey.
| | - Marjan Drukker
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| | - Mei Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Ilkay Keles Altun
- Department of Psychiatry, Bursa Higher Education Training and Education Hospital, Bursa, Turkey
| | | | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; King's Health Partners Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, United Kingdom; Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| |
Collapse
|
21
|
Spooner RK, Eastman JA, Wiesman AI, Wilson TW. Methodological considerations for a better somatosensory gating paradigm: The impact of the inter-stimulus interval. Neuroimage 2020; 220:117048. [PMID: 32544524 PMCID: PMC7593607 DOI: 10.1016/j.neuroimage.2020.117048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Sensory gating (SG) is a neurophysiological phenomenon whereby the response to the second stimulus in a repetitive pair is attenuated. This filtering of irrelevant or redundant information is thought to preserve neural resources for more behaviorally-relevant stimuli and thereby reflect the functional inhibition of sensory input. Developing a SG paradigm in which optimal suppression of sensory input is achieved requires investigators to consider numerous parameters such as stimulus intensity, time between stimulus pairs, and the inter-stimulus interval (ISI) within each pair. While these factors have been well defined for the interrogation of auditory gating, the precise parameters for eliciting optimal gating in the somatosensory domain are far less understood. To address this, we investigated the impact of varying the ISI within each identical pair of stimuli on gating using magnetoencephalography (MEG). Specifically, 25 healthy young adults underwent paired-pulse electrical stimulation of the median nerve with increasing ISIs between 100 and 1000 ms (in 100 ms increments). Importantly, for correspondence with previous studies of somatosensory gating, both time-domain and oscillatory neural responses to somatosensory stimulation were evaluated. Our results indicated that gating of somatosensory input was optimal (i.e., best suppression) for trials with an ISI of 200-220 ms, as evidenced by the smallest gating ratios and through statistical modeling estimations of optimal suppression. Importantly, this was true irrespective of whether oscillatory or evoked neural activity was used to calculate SG. Interestingly, oscillatory metrics of gating calculated using peak gamma (30-75 Hz) power and frequency revealed more robust gating (i.e., smaller ratios) than those calculated using time-domain neural responses, suggesting that high frequency oscillations may provide a more sensitive measure of SG. These findings have important implications for the development of optimal protocols and analysis pipelines to interrogate SG and inhibitory processing with a higher degree of sensitivity and accuracy.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob A Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
Long Y, Liu Z, Chan CKY, Wu G, Xue Z, Pan Y, Chen X, Huang X, Li D, Pu W. Altered Temporal Variability of Local and Large-Scale Resting-State Brain Functional Connectivity Patterns in Schizophrenia and Bipolar Disorder. Front Psychiatry 2020; 11:422. [PMID: 32477194 PMCID: PMC7235354 DOI: 10.3389/fpsyt.2020.00422] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia and bipolar disorder share some common clinical features and are both characterized by aberrant resting-state functional connectivity (FC). However, little is known about the common and specific aberrant features of the dynamic FC patterns in these two disorders. In this study, we explored the differences in dynamic FC among schizophrenia patients (n = 66), type I bipolar disorder patients (n = 53), and healthy controls (n = 66), by comparing temporal variabilities of FC patterns involved in specific brain regions and large-scale brain networks. Compared with healthy controls, both patient groups showed significantly increased regional FC variabilities in subcortical areas including the thalamus and basal ganglia, as well as increased inter-network FC variability between the thalamus and sensorimotor areas. Specifically, more widespread changes were found in the schizophrenia group, involving increased FC variabilities in sensorimotor, visual, attention, limbic and subcortical areas at both regional and network levels, as well as decreased regional FC variabilities in the default-mode areas. The observed alterations shared by schizophrenia and bipolar disorder may help to explain their overlapped clinical features; meanwhile, the schizophrenia-specific abnormalities in a wider range may support that schizophrenia is associated with more severe functional brain deficits than bipolar disorder. Together, these findings highlight the potentials of using dynamic FC as an objective biomarker for the monitoring and diagnosis of either schizophrenia or bipolar disorder.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhening Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | | | - Guowei Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Zhimin Xue
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Yunzhi Pan
- Mental Health Institute of Central South University, Changsha, China
| | - Xudong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Xiaojun Huang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Mental Health Institute of Central South University, Changsha, China
| | - Dan Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weidan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Spooner RK, Wiesman AI, Proskovec AL, Heinrichs-Graham E, Wilson TW. Rhythmic Spontaneous Activity Mediates the Age-Related Decline in Somatosensory Function. Cereb Cortex 2020; 29:680-688. [PMID: 29342238 DOI: 10.1093/cercor/bhx349] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 01/26/2023] Open
Abstract
Sensory gating is a neurophysiological process whereby the response to a second stimulus in a pair of identical stimuli is attenuated, and it is thought to reflect the capacity of the CNS to preserve neural resources for behaviorally relevant stimuli. Such gating is observed across multiple sensory modalities and is modulated by age, but the mechanisms involved are not understood. In this study, we examined somatosensory gating in 68 healthy adults using magnetoencephalography (MEG) and advanced oscillatory and time-domain analysis methods. MEG data underwent source reconstruction and peak voxel time series data were extracted to evaluate the dynamics of somatosensory gating, and the impact of spontaneous neural activity immediately preceding the stimulation. We found that gating declined with increasing age and that older adults had significantly reduced gating relative to younger adults, suggesting impaired local inhibitory function. Most importantly, older adults had significantly elevated spontaneous activity preceding the stimulation, and this effect fully mediated the impact of aging on sensory gating. In conclusion, gating in the somatosensory system declines with advancing age and this effect is directly tied to increased spontaneous neural activity in the primary somatosensory cortices, which is likely secondary to age-related declines in local GABA inhibitory function.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| |
Collapse
|
24
|
Chen TC, Hsieh MH, Lin YT, Chan PYS, Cheng CH. Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clin Neurophysiol 2020; 131:766-777. [DOI: 10.1016/j.clinph.2019.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
|
25
|
Cheng CH, Hsiao FJ, Hsieh YW, Wang PN. Dysfunction of Inferior Parietal Lobule During Sensory Gating in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2020; 12:39. [PMID: 32158387 PMCID: PMC7052059 DOI: 10.3389/fnagi.2020.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with amnestic mild cognitive impairment (aMCI) demonstrate significant cognitive deficits, especially in the memory aspect. The memory deficiency might be attributed to the difficulties in the inhibitory function to suppress redundant stimuli. Sensory gating (SG) refers to the attenuation of neural responses to the second identical stimulus in a paired-click paradigm, in which auditory stimuli are delivered in pairs with inter-stimulus intervals (ISI) of 500 ms and inter-pair intervals of 6-8 s. It is considered as an electrophysiological signal to reflect the brain's automatic response to gate out repetitive sensory inputs. However, there has been no study systematically investigating SG function in aMCI patients. Thus, the present study used magnetoencephalography (MEG) to record neuromagnetic responses to a paired-click paradigm in 23 healthy controls (HC) and 26 aMCI patients. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio was used to represent the SG function. Compared to HC, aMCI patients showed M50 SG deficits in the left inferior frontal gyrus (IFG) and right inferior parietal lobule (IPL). M100 SG defects were also observed in the right IPL. Based on the ROIs showing significant between-group SG differences, we found that a more deficient M50 SG function in the right IPL was associated with poorer performance in the immediate recall of Logic Memory (LM), Chinese Version Verbal Learning Test (CVVLT) and Digit Span Backward (DSB) Test. Furthermore, the M50 SG ratios of the right IPL together with the neuropsychological performance of LM and CVVLT demonstrated very good accuracy in the discrimination of aMCI from HC. In conclusion, compared to HC, aMCI patients showed a significant SG deficit in the right IPL, which was correlated with the auditory short-term memory function. We suggest the combination of SG in the right IPL, LM and CVVLT to be sensitive indicators to differentiate aMCI patients from HC.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Wei Hsieh
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pei-Ning Wang
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Neurology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
26
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Mao Z, Bo Q, Li W, Wang Z, Ma X, Wang C. Prepulse inhibition in patients with bipolar disorder: a systematic review and meta-analysis. BMC Psychiatry 2019; 19:282. [PMID: 31510965 PMCID: PMC6737635 DOI: 10.1186/s12888-019-2271-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 09/03/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Prepulse inhibition (PPI) is a measurement method for the sensory gating process, which helps the brain adapt to complex environments. PPI may be reduced in patients with bipolar disorder (BD). This study investigated PPI deficits in BD and pooled the effect size of PPI in patients with BD. METHODS We conducted a literature search on PPI in patients with BD from inception to July 27, 2019 in PubMed, Embase, Cochrane Library databases, and Chinese databases. No age, sex, and language restriction were set. The calculation formula was PPI = 100 - [100*((prepulse - pulse amplitude) / pulse amplitude)]. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of studies. RESULTS Ten eligible papers were identified, of which five studies including a total of 141 euthymic patients and 132 healthy controls (HC) were included in the meta-analysis. Compared with HC, euthymic patients with BD had significantly lower PPI at the 60 ms interstimulus interval (ISI) between pulse and prepulse (P = 0.476, I2 = 0.0%, SMD = - 0.32, 95% CI = - 0.54 - -0.10). Sensitivity analysis shows no significant change in the combined effect value after removing any single study. There was no publication bias using the Egger's test at 60 ms (P = 0.606). The meta-analysis of PPI at the 60 ms ISI could have significant clinical heterogeneity in mood episode state, as well as lack of data on BD I or II subtypes. CONCLUSIONS Euthymic patients with BD show PPI deficits at the 60 ms, suggesting a deficit in the early sensory gate underlying PPI. The PPI inhibition rate at a 60 ms interval is a stable index. More research is needed in the future to confirm this outcome, and to delve deeper into the mechanisms behind deficits.
Collapse
Affiliation(s)
- Zhen Mao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Weidi Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Zhimin Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No.5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
28
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Abnormal frontal generator during auditory sensory gating in panic disorder: An MEG study. Psychiatry Res Neuroimaging 2019; 288:60-66. [PMID: 31014913 DOI: 10.1016/j.pscychresns.2019.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023]
Abstract
Patients with panic disorder (PD) exhibit abnormalities in early-stage information processing, even for the nonthreatening stimuli. A previous event-related potential study reported that PD patients show a deficit in sensory gating (SG), a protective mechanism of the brain to filter out irrelevant sensory inputs. However, there is no clear understanding about the neural correlates of SG deficits in PD. Moreover, whether SG deficits, if any, are associated with clinical manifestations remain unknown. In this study, 18 patients with PD and 20 age- and gender-matched healthy controls were recruited to perform auditory paired-stimulus paradigm using magnetoencephalographic (MEG) recordings. Results showed that PD patients demonstrated significantly higher M50 SG ratios in the right inferior frontal gyrus (RIFG) and higher M100 SG ratios in both RIFG and right superior temporal gyrus (RSTG) than those of the control group. It was important to note that in the RIFG, the M50 SG ratios correlated significantly with the scores of Body Sensation Questionnaire (BSQ) and Distractibility scale of Sensory Gating Inventory among patients with PD. In conclusion, this study suggests that PD patients exhibited a deficient ability to filter out irrelevant information, and such a defect might lead to cognitive misinterpretation of somatic sensations and distractibility.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Takeuchi N, Kinukawa T, Sugiyama S, Inui K, Kanemoto K, Nishihara M. Suppression of Somatosensory Evoked Cortical Responses by Noxious Stimuli. Brain Topogr 2019; 32:783-793. [PMID: 31218521 PMCID: PMC6707979 DOI: 10.1007/s10548-019-00721-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Paired-pulse suppression refers to attenuation of neural activity in response to a second stimulus and has a pivotal role in inhibition of redundant sensory inputs. Previous studies have suggested that cortical responses to a somatosensory stimulus are modulated not only by a preceding same stimulus, but also by stimulus from a different submodality. Using magnetoencephalography, we examined somatosensory suppression induced by three different conditioning stimuli. The test stimulus was a train of electrical pulses to the dorsum of the left hand at 100 Hz lasting 1500 ms. For the pulse train, the intensity of the stimulus was abruptly increased at 1200 ms. Cortical responses to the abrupt intensity change were recorded and used as the test response. Conditioning stimuli were presented at 600 ms as pure tones, either innocuous or noxious electrical stimulation to the right foot. Four stimulus conditions were used: (1) Test alone, (2) Test + auditory stimulus, (3) Test + somatosensory stimulus, and (4) Test + nociceptive stimulus. Our results showed that the amplitude of the test response was significantly smaller for conditions (3) and (4) in the secondary somatosensory cortex contralateral (cSII) and ipsilateral (iSII) to the stimulated side as compared to the response to condition (1), whereas the amplitude of the response in the primary somatosensory cortex did not differ among the conditions. The auditory stimulus did not have effects on somatosensory change-related response. These findings show that somatosensory suppression was induced by not only a conditioning stimulus of the same somatosensory submodality and the same cutaneous site to the test stimulus, but also by that of a different submodality in a remote area.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.
| | - Tomoaki Kinukawa
- Department of Anesthesiology, Nagoya University, Nagoya, 466-8550, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, 501-1193, Japan
| | - Koji Inui
- Aichi Human Service Center, Institute of Human Developmental Research, Kasugai, 480-0392, Japan.,Department of Integrative Physiology, National Institute for Physiological Sciences, Okazak, 444-8585, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, 480-1195, Japan.,Multidisciplinary Pain Center, Aichi Medical University, Nagakute, 480-1195, Japan
| |
Collapse
|
30
|
Cheng CH, Tsai HY, Cheng HN. The effect of age on N2 and P3 components: A meta-analysis of Go/Nogo tasks. Brain Cogn 2019; 135:103574. [PMID: 31200173 DOI: 10.1016/j.bandc.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/27/2023]
Abstract
Suppressing the neural activities to non-target stimuli becomes problematic with advancing age. Go/Nogo tasks, in which subjects are instructed to respond to a certain type of stimuli (Go) and withhold responses to other types of predefined stimuli (Nogo), have been extensively employed to study the age-related alterations of cognitive inhibition. However, it remains inconclusive whether the N2 and P3 electrophysiological responses to successful inhibition to Nogo stimuli are affected by aging processes. Thus, we performed a meta-analysis of Go/Nogo studies to investigate the age effect on Nogo-N2 and Nogo-P3 activities as well as behavioral performance of commission errors. The potential moderators regarding different probabilities of Nogo trials and levels of task difficulty on the effect sizes were also assessed. There were no significant age-related differences in commission errors. However, compared to the younger group, the elderly demonstrated reduced Nogo-N2 amplitudes, particularly in the condition where Nogo probability was less than 50%. Furthermore, age-related reduction of Nogo-P3 amplitudes and prolongation of Nogo-P3 latencies were observed in the condition where Nogo probability was less than 50%. In conclusion, our data suggest that despite similar behavioral performance in the younger and older adults, neural processing of response inhibition becomes inefficient with advancing age.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Huei-Yu Tsai
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Ni Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
32
|
Hagenmuller F, Heekeren K, Roser P, Haker H, Theodoridou A, Walitza S, Rössler W, Kawohl W. Early Somatosensory Processing Over Time in Individuals at Risk to Develop Psychosis. Front Psychiatry 2019; 10:47. [PMID: 30890966 PMCID: PMC6413704 DOI: 10.3389/fpsyt.2019.00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Somatosensory evoked potentials (SEPs) enable the investigation of thalamocortical and early cortical processing. Previous studies reported alterations of SEPs in patients with schizophrenia as well as in individuals in the prodromal stage. Moreover, cannabis use as an environmental risk factor for the development of schizophrenia has been demonstrated to influence SEP parameters in individuals at risk to develop psychosis. The aim of this study was to explore the course of SEP changes and the impact of concomitant cannabis use in individuals at risk to develop psychosis who sought medical help. Methods: Median nerve SEPs including high-frequency oscillations (HFOs) superimposed on the primary cortical response (N20) were investigated using multichannel EEG in individuals (n = 54 at baseline) remaining at risk to develop psychosis at follow-up after 1 year (high-risk: n = 19; ultra-high-risk: n = 27) vs. subjects with conversion to psychosis (n = 8) and a healthy control group (n = 35). Longitudinal and cross-sectional analyses of SEP components as estimated by dipole source analysis were performed. Results: The longitudinal development of the N20 strength depended on cannabis use. In cannabis non-users, a greater decrease of N20 strengths over time was associated with more negative symptoms at baseline. At baseline, converters did not differ from subjects remaining at risk. At follow-up, converters showed increased low- and high-frequency activity than at-risk subjects and did not differ from controls. Conclusion: The results of this study lead to the suggestion that the deficits in early somatosensory processing in individuals at risk to develop psychosis may not represent a marker for a genetic risk for psychosis but rather reflect state-dependent factors such as negative symptoms. On the other hand, the transition to psychosis seems to represent an interstage between reduced sensory registration from the at-risk state and gating deficits in the chronic state.
Collapse
Affiliation(s)
- Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Patrik Roser
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| |
Collapse
|
33
|
Spooner RK, Wiesman AI, Mills MS, O'Neill J, Robertson KR, Fox HS, Swindells S, Wilson TW. Aberrant oscillatory dynamics during somatosensory processing in HIV-infected adults. Neuroimage Clin 2018; 20:85-91. [PMID: 30094159 PMCID: PMC6070689 DOI: 10.1016/j.nicl.2018.07.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
While the arrival of combination antiretroviral therapy significantly decreased the prevalence of HIV-associated dementia, between 35 and 70% of all infected adults continue to develop some form of cognitive impairment. These deficits appears to affect multiple neural subsystems, but the mechanisms and extent of damage are not fully understood. In the current study, we utilized magnetoencephalography (MEG), advanced oscillatory analysis methods, and a paired-pulse somatosensory stimulation paradigm to interrogate pre-attentive inhibitory processing in 43 HIV-infected adults and 28 demographically-matched uninfected controls. MEG responses were imaged using a beamformer, and time series data were extracted from the peak voxel in grand-averaged functional brain images to quantify the dynamics of sensory gating, oscillatory power, spontaneous power, and other neural indices. We found a significantly weakened response to the second stimulation compared to the first across groups, indicating significant sensory gating irrespective of HIV-infection. Interestingly, HIV-infected participants exhibited reduced neural responses in the 20-75 Hz gamma range to each somatosensory stimulation compared to uninfected controls, and exhibited significant alterations in peak gamma frequency in response to the second stimulation. Finally, HIV-infected participants also had significantly stronger spontaneous activity in the gamma range (i.e., 20-75 Hz) during the baseline period before stimulation onset. In conclusion, while HIV-infected participants had the capacity to efficiently gate somatosensory input, their overall oscillatory responses were weaker, spontaneous baseline activity was stronger, and their response to the second stimulation had an altered peak gamma frequency. We propose that this pattern of deficits suggests dysfunction in the somatosensory cortices, which is potentially secondary to accelerated aging.
Collapse
Affiliation(s)
- Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Mackenzie S Mills
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Kevin R Robertson
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA.
| |
Collapse
|
34
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. Long-latency suppression of auditory and somatosensory change-related cortical responses. PLoS One 2018; 13:e0199614. [PMID: 29944700 PMCID: PMC6019261 DOI: 10.1371/journal.pone.0199614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/29/2018] [Indexed: 11/19/2022] Open
Abstract
Sensory suppression is a mechanism that attenuates selective information. As for long-latency suppression in auditory and somatosensory systems, paired-pulse suppression, observed as 2 identical stimuli spaced by approximately 500 ms, is widely known, though its mechanism remains to be elucidated. In the present study, we investigated the relationship between auditory and somatosensory long-latency suppression of change-related cortical responses using magnetoencephalography. Somatosensory change-related responses were evoked by an abrupt increase in stimulus strength in a train of current-constant square wave pulses at 100 Hz to the left median nerve at the wrist. Furthermore, auditory change-related responses were elicited by an increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones. Binaural stimulation was used in Experiment 1, while monaural stimulation was used in Experiment 2. For both somatosensory and auditory stimuli, the conditioning and test stimuli were identical, and inserted at 2400 and 3000 ms, respectively. The results showed clear suppression of the test response in the bilateral parisylvian region, but not in the postcentral gyrus of the contralateral hemisphere in the somatosensory system. Similarly, the test response in the bilateral supratemporal plane (N100m) was suppressed in the auditory system. Furthermore, there was a significant correlation between suppression of right N100m and right parisylvian activity, suggesting that similar mechanisms are involved in both. Finally, a high test-retest reliability for suppression was seen with both modalities. Suppression revealed in the present study is considered to reflect sensory inhibition ability in individual subjects.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- * E-mail:
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
35
|
Cheng CH, Chan PYS, Hsu SC, Liu CY. Meta-analysis of sensorimotor gating in patients with autism spectrum disorders. Psychiatry Res 2018; 262:413-419. [PMID: 28918862 DOI: 10.1016/j.psychres.2017.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023]
Abstract
Prepulse inhibition (PPI) of startle response is a well-established neurophysiological marker of sensorimotor gating ability in psychiatric patients including those with autism spectrum disorders (ASD). PPI has been utilized as an indicator of the central inhibitory function and is potentially linked to the clinical features of this disease. However, it remains inconclusive whether ASD patients exhibit PPI deficits compared with healthy controls. The present meta-analysis aimed to explore the pooled effect sizes of PPI in ASD patients. We searched major electronic databases from 1990 to January 2017. Seven studies, consisting of 21 individual investigations with 135 healthy controls and 99 ASD patients, were obtained. The effect size, calculated as Hedges's g and 95% confidence interval, were estimated. Overall, we found ASD patients exhibited an impaired PPI compared with healthy controls (p = 0.008). Specifically, significant PPI deficits were observed among ASD children/adolescents, compared with their healthy counterparts (p = 0.019). However, differences in PPI responses were not observed among adults. Conclusively, our results reconciled the previous studies and showed that ASD children/adolescents, but not adults, exhibit reduced sensorimotor gating function compared to healthy controls. We also suggest that the parameters of PPI are particularly important and the results should be interpreted with cautions.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Cheng CH, Lin MY, Yang SH. Age Effect on Automatic Inhibitory Function of the Somatosensory and Motor Cortex: An MEG Study. Front Aging Neurosci 2018; 10:53. [PMID: 29551971 PMCID: PMC5840154 DOI: 10.3389/fnagi.2018.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/03/2023] Open
Abstract
Age-related deficiency in the top-down modulation of cognitive inhibition has been extensively documented, whereas the effects of age on a bottom-up or automatic operation of inhibitory function were less investigated. It is unknown that whether the older adults (OA)’ reduced behavioral performance and neural responses are due to the insufficient bottom-up processes. Compared to behavioral assessments which have been widely used to examine the top-down control of response inhibition, electrophysiological recordings are more suitable to probe the early-stage processes of automatic inhibitory function. Sensory gating (SG), a phenomenon of attenuated neural response to the second identical stimulus in a paired-pulse paradigm, is an indicator to assess automatic inhibitory function of the sensory cortex. On the other hand, electricity-induced beta rebound oscillation in a single-pulse paradigm reflects cortical inhibition of the motor cortex. From the neurophysiological perspective, SG and beta rebound oscillation are replicable indicators to examine the automatic inhibitory function of human sensorimotor cortices. Thus, the present study aimed to use a whole-head magnetoencephalography (MEG) to investigate the age-related alterations of SG function in the primary somatosensory cortex (SI) and of beta rebound oscillation in the primary motor cortex (MI) in 17 healthy younger and 15 older adults. The Stimulus 2/Stimulus 1 (S2/S1) amplitude ratio in response to the paired-pulse electrical stimulation to the left median nerve was used to evaluate the automatic inhibitory function of SI, and the beta rebound response in the single-pulse paradigm was used to evaluate the automatic inhibitory function of MI. Although there were no significant age-related differences found in the SI SG ratios, the MI beta rebound power was reduced and peak latency was prolonged in the OA. Furthermore, significant association between the SI SG ratio and the MI beta rebound power, which was seen in the younger adults (YA), was absent in the OA. In conclusion, our data suggested an age-related defect of association between sensorimotor cortices regarding automatic inhibitory function.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Mei-Yin Lin
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Shiou-Han Yang
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
37
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
38
|
Yakov S, Birur B, Bearden MF, Aguilar B, Ghelani KJ, Fargason RE. Sensory Reduction on the General Milieu of a High-Acuity Inpatient Psychiatric Unit to Prevent Use of Physical Restraints: A Successful Open Quality Improvement Trial. J Am Psychiatr Nurses Assoc 2018; 24:133-144. [PMID: 29039238 DOI: 10.1177/1078390317736136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Impaired sensory gating in patients with acute mental illness predisposes to overstimulation and behavioral dyscontrol. OBJECTIVE Explore use of sensory reduction interventions on a high-acuity inpatient milieu to reduce high assault/restraint rates. DESIGN A multidisciplinary team using failure mode and effect analysis to explore high restraint use between 4:00 p.m. and 7:00 p.m. observed patient/staff overstimulation contributed to behavioral escalations. The team implemented sensory reduction/integration improvements over a 5-month period to prevent excessive restraint use. RESULTS Restraint rates dropped immediately following light and sound reduction interventions and by 72% at 11 months postimplementation. Mann-Whitney statistics for unpaired 6-month comparisons, 1-year pre- and postintervention showed significant reductions: Assault rates (median pre = 1.37, post = 0.18, U = 4, p = .02); Restraint rates (median pre = 0.50, post = 0.06, U = 0, p = .002). CONCLUSION Sensory reduction during a high-stress time period on a high-acuity psychiatric unit was associated with a reduction in assaults and restraints.
Collapse
Affiliation(s)
- Svetlana Yakov
- 1 Svetlana Yakov, MD, University of Alabama at Birmingham, AL, USA
| | - Badari Birur
- 2 Badari Birur, MD, University of Alabama at Birmingham, AL, USA
| | - Melissa F Bearden
- 3 Melissa F. Bearden, MACN, OT/L, University of Alabama at Birmingham, AL, USA
| | - Barbara Aguilar
- 4 Barbara Aguilar, BSN-BC, RN, University of Alabama at Birmingham, AL, USA
| | - Kinjal J Ghelani
- 5 Kinjal J. Ghelani, MD, University of Alabama at Birmingham, AL, USA
| | - Rachel E Fargason
- 6 Rachel E. Fargason, MD, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
39
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
40
|
Takeuchi N, Sugiyama S, Inui K, Kanemoto K, Nishihara M. New paradigm for auditory paired pulse suppression. PLoS One 2017; 12:e0177747. [PMID: 28542290 PMCID: PMC5436751 DOI: 10.1371/journal.pone.0177747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
Sensory gating is a mechanism of sensory processing used to prevent an overflow of irrelevant information, with some indexes, such as prepulse inhibition (PPI) and P50 suppression, often utilized for its evaluation. In addition, those are clinically important for diseases such as schizophrenia. In the present study, we investigated long-latency paired-pulse suppression of change-related cortical responses using magnetoencephalography. The test change-related response was evoked by an abrupt increase in sound pressure by 15 dB in a continuous sound composed of a train of 25-ms pure tones at 65 dB. By inserting a leading change stimulus (prepulse), we observed suppression of the test response. In Experiment 1, we examined the effects of conditioning-test intervals (CTI) using a 25-ms pure tone at 80 dB as both the test and prepulse. Our results showed clear suppression of the test response peaking at a CTI of 600 ms, while maximum inhibition was approximately 30%. In Experiment 2, the effects of sound pressure on prepulse were examined by inserting prepulses 600 ms prior to the test stimulus. We found that a paired-pulse suppression greater than 25% was obtained by prepulses larger than 77 dB, i.e., 12 dB louder than the background, suggesting that long latency suppression requires a relatively strong prepulse to obtain adequate suppression, different than short-latency paired-pulse suppression reported in previous studies. In Experiment 3, we confirmed similar levels of suppression using electroencephalography. These results suggested that two identical change stimuli spaced by 600 ms were appropriate for observing the long-latency inhibition. The present method requires only a short inspection time and is non-invasive.
Collapse
Affiliation(s)
- Nobuyuki Takeuchi
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Shunsuke Sugiyama
- Department of Psychiatry and Psychotherapy, Gifu University, Gifu, Japan
| | - Koji Inui
- Institute of Human Developmental Research, Aichi Human Service Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kousuke Kanemoto
- Neuropsychiatric Department, Aichi Medical University, Nagakute, Japan
| | - Makoto Nishihara
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| |
Collapse
|