1
|
de Oliveira FF, Miraldo MC, de Castro-Neto EF, de Almeida SS, de Andrade Matas SL, Bertolucci PHF, da Graça Naffah-Mazzacoratti M. Anthropometric and Demographic Features Affect the Interpretation of Cerebrospinal Fluid Biomarkers in Patients with Different Dementia Syndromes and Cognitively Healthy Adults. Neuromolecular Med 2024; 26:43. [PMID: 39487345 DOI: 10.1007/s12017-024-08810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Clinical distinction between dementia with Lewy bodies (DLB) and late-onset Alzheimer's disease (AD) is difficult, while several features might affect the analyses of biomarkers. This study aimed to verify associations of anthropometric and demographic features with cerebrospinal fluid biomarkers, their ratios, and restructured traditional regression formulas in patients with DLB and AD, as well as in cognitively healthy controls. Consecutive outpatients with DLB were paired with outpatients with AD according to sex, dementia stage, and cognitive status, and with controls according to sex and age to investigate associations of sex, age, dementia duration, total sleep time, body mass index, alcohol use, smoking, sanitation, and APOE-ε4 alleles on the measurement of cerebrospinal fluid α-synuclein, biomarker ratios, and restructured traditional regression formulas involving amyloid-β (Aβ42,Aβ40,Aβ38), tau, and phospho-tau Thr181. Overall, 81 participants were included with DLB (n = 27;11 APOE-ε4 +) or AD (n = 27;12 APOE-ε4 +), and controls (n = 27;4 APOE-ε4 +); two thirds were women. Cerebrospinal fluid evidence of amyloidosis and tauopathy was more prevalent among women with AD, while Aβ42/Aβ38 could also discriminate men with DLB from men with AD. Restructured traditional regression formulas had higher diagnostic accuracy for women with AD. Aging, higher body mass index, and APOE-ε4 alleles were associated with amyloidosis in DLB, while only in AD were higher body mass index associated with lower tau pathology load, and more alcohol use associated with higher phospho-tau Thr181/Aβ42. These findings confirm the effects of anthropometric and demographic features on cerebrospinal fluid biomarkers, and also differences in aberrant amyloidosis and tauopathy between DLB and AD.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil.
| | - Marjorie Câmara Miraldo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Eduardo Ferreira de Castro-Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Luiz de Andrade Matas
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Paulo Henrique Ferreira Bertolucci
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| | - Maria da Graça Naffah-Mazzacoratti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, CEP 04023-900, Brazil
| |
Collapse
|
2
|
Reus LM, Jansen IE, Tijms BM, Visser PJ, Tesi N, van der Lee SJ, Vermunt L, Peeters CFW, De Groot LA, Hok-A-Hin YS, Chen-Plotkin A, Irwin DJ, Hu WT, Meeter LH, van Swieten JC, Holstege H, Hulsman M, Lemstra AW, Pijnenburg YAL, van der Flier WM, Teunissen CE, del Campo Milan M. Connecting dementia risk loci to the CSF proteome identifies pathophysiological leads for dementia. Brain 2024; 147:3522-3533. [PMID: 38527854 PMCID: PMC11449142 DOI: 10.1093/brain/awae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095 CA, USA
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Niccoló Tesi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical and Statistical Methods group (Biometris), Wageningen University and Research, Wageningen, 6708 PB Wageningen, The Netherlands
| | - Lisa A De Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Marta del Campo Milan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, 28003 Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08005 Barcelona, Spain
| |
Collapse
|
3
|
Lebrun A, Leprince Y, Lagarde J, Olivieri P, Moussion M, Noiray C, Bottlaender M, Sarazin M. How fiber bundle alterations differ in presumed LATE and amnestic Alzheimer's disease. Alzheimers Dement 2024; 20:6922-6934. [PMID: 39193664 PMCID: PMC11485326 DOI: 10.1002/alz.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Typical Alzheimer's disease (AD) and limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE) are two neurodegenerative diseases that present with a similar initial amnestic clinical phenotype but are associated with distinct proteinopathies. METHODS We investigated white matter (WM) fiber bundle alterations, using fixel-based analysis, a state-of-the-art diffusion magnetic resonance imaging model, in early AD, presumed LATE, and controls. We also investigated regional cortical atrophy. RESULTS Both amnestic AD and presumed LATE patients exhibited WM alterations in tracts of the temporal and limbic lobes and in callosal fibers connecting superior frontal gyri. In addition, presumed LATE patients showed alterations in callosal fibers connecting the middle frontal gyri and in the cerebello-thalamo-cortical tract. Cortical thickness was reduced in regions connected by the most altered tracts. DISCUSSION These findings, the first to describe WM fiber bundle alterations in presumed LATE, are consistent with results on cortical atrophy and with the staging system of tau or TDP-43 accumulation. HIGHLIGHTS Fixel-based analysis revealed white matter (WM) fiber bundle alterations in presumed limbic-predominant age-related TAR DNA-binding protein 43 encephalopathy (LATE) patients identified by isolated episodic/limbic amnesia, the absence of positive Alzheimer's disease (AD) biomarkers, and no other neurological diagnosis after 2 years of follow-up. Presumed LATE and amnestic AD shared similar patterns of WM alterations in fiber bundles of the limbic and temporal lobes, in congruence with their similar limbic cognitive phenotype. Presumed LATE differed from AD by the alteration of the callosal fibers connecting the middle frontal gyri and of the cerebello-thalamo-cortical tract. WM fiber bundle alterations were consistent with results on regional cortical atrophy. The different anatomical patterns of WM degeneration could provide information on the propagation pathways of distinct proteinopathies.
Collapse
Affiliation(s)
- Aurélie Lebrun
- Université Paris‐SaclayUNIACT, NeuroSpin, CEAGif‐sur‐YvetteFrance
- Université Paris‐Saclay, BioMapsService Hospitalier Frédéric Joliot, CEA, CNRS, InsermOrsayFrance
| | - Yann Leprince
- Université Paris‐SaclayUNIACT, NeuroSpin, CEAGif‐sur‐YvetteFrance
| | - Julien Lagarde
- Université Paris‐Saclay, BioMapsService Hospitalier Frédéric Joliot, CEA, CNRS, InsermOrsayFrance
- Department of Neurology of Memory and LanguageGHU Paris Psychiatrie & NeurosciencesHôpital Sainte‐AnneParisFrance
- Université Paris‐CitéParisFrance
| | - Pauline Olivieri
- Department of Neurology of Memory and LanguageGHU Paris Psychiatrie & NeurosciencesHôpital Sainte‐AnneParisFrance
| | - Martin Moussion
- Department of Neurology of Memory and LanguageGHU Paris Psychiatrie & NeurosciencesHôpital Sainte‐AnneParisFrance
- Centre d'Evaluation Troubles Psychiques et VieillissementGHU Paris Psychiatrie & NeurosciencesHôpital Sainte AnneParisFrance
| | - Camille Noiray
- Department of Neurology of Memory and LanguageGHU Paris Psychiatrie & NeurosciencesHôpital Sainte‐AnneParisFrance
- Université Paris‐CitéParisFrance
| | - Michel Bottlaender
- Université Paris‐SaclayUNIACT, NeuroSpin, CEAGif‐sur‐YvetteFrance
- Université Paris‐Saclay, BioMapsService Hospitalier Frédéric Joliot, CEA, CNRS, InsermOrsayFrance
| | - Marie Sarazin
- Université Paris‐Saclay, BioMapsService Hospitalier Frédéric Joliot, CEA, CNRS, InsermOrsayFrance
- Department of Neurology of Memory and LanguageGHU Paris Psychiatrie & NeurosciencesHôpital Sainte‐AnneParisFrance
- Université Paris‐CitéParisFrance
| |
Collapse
|
4
|
Verberk IMW, Jutte J, Kingma MY, Vigneswaran S, Gouda MMTEE, van Engelen M, Alcolea D, Arranz J, Fortea J, Lleó A, Chevalier C, Marizzoni M, van de Giessen EM, Lemstra AW, Pijnenburg YAL, van der Flier WM, den Braber A, Wilson D, Schut MC, van Harten AC, Teunissen CE. Development of thresholds and a visualization tool for use of a blood test in routine clinical dementia practice. Alzheimers Dement 2024; 20:6115-6132. [PMID: 39096164 PMCID: PMC11497719 DOI: 10.1002/alz.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION We developed a multimarker blood test result interpretation tool for the clinical dementia practice, including phosphorylated (P-)tau181, amyloid-beta (Abeta)42/40, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). METHODS We measured the plasma biomarkers with Simoa (n = 1199), applied LASSO regression for biomarker selection and receiver operating characteristics (ROC) analyses to determine diagnostic accuracy. We validated our findings in two independent cohorts and constructed a visualization approach. RESULTS P-tau181, GFAP, and NfL were selected. This combination had area under the curve (AUC) = 83% to identify amyloid positivity in pre-dementia stages, AUC = 87%-89% to differentiate Alzheimer's or controls from frontotemporal dementia, AUC = 74%-76% to differentiate Alzheimer's or controls from dementia with Lewy bodies. Highly reproducible AUCs were obtained in independent cohorts. The resulting visualization tool includes UpSet plots to visualize the stand-alone biomarker results and density plots to visualize the biomarker results combined. DISCUSSION Our multimarker blood test interpretation tool is ready for testing in real-world clinical dementia settings. HIGHLIGHTS We developed a multimarker blood test interpretation tool for clinical dementia practice. Our interpretation tool includes plasma biomarkers P-tau, GFAP, and NfL. Our tool is particularly useful for Alzheimer's and frontotemporal dementia diagnosis.
Collapse
Affiliation(s)
- Inge M. W. Verberk
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jolien Jutte
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Maurice Y. Kingma
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Sinthujah Vigneswaran
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Mariam M. T. E. E. Gouda
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marie‐Paule van Engelen
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Javier Arranz
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of NeurologyHospital de la Santa Creu i Sant Pau – Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Claire Chevalier
- Memory Centre, Division of Geriatrics and RehabilitationUniversity Hospitals of Geneva and University of GenevaGenevaSwitzerland
| | - Moira Marizzoni
- Laboratory of Biological PsychiatryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Elsmarieke M. van de Giessen
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Afina W. Lemstra
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Public Health, Methodology & Digital HealthAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Anouk den Braber
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Martijn C. Schut
- Translational Artificial Intelligence Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public HealthAmsterdamThe Netherlands
| | - Argonde C. van Harten
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
- Alzheimer Center, Department of NeurologyAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory MedicineAmsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
5
|
Lozano-Tovar S, Nuccetelli M, Placidi F, Izzi F, Sancesario G, Bernardini S, Biagio Mercuri N, Liguori C. CSF dynamics of orexin and β-amyloid 42 levels in narcolepsy and Alzheimer's disease patients: a controlled study. Neurosci Lett 2024; 837:137914. [PMID: 39032802 DOI: 10.1016/j.neulet.2024.137914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
β-amyloid42 (Aβ42) in Alzheimer's disease (AD) and orexin in narcolepsy are considered crucial biomarkers for diagnosis and therapeutic targets. Recently, orexin and Aβ cerebral dynamics have been studied in both pathologies, but how they interact with each other remains further to be known. In this study, we investigated the reliability of using the correlation between orexin-A and Aβ42 CSF levels as a candidate marker to explain the chain of events leading to narcolepsy or AD pathology. In order to test the correlation between these biomarkers, patients diagnosed with AD (n = 76), narcolepsy type 1 (NT1, n = 17), narcolepsy type 2 (NT2, n = 23) and healthy subjects (n = 91) were examined. Patients and healthy subjects underwent lumbar puncture between 8:00 and 10:00 am at the Neurology Unit of the University Hospital of Rome "Tor Vergata". CSF levels of Aβ42, total-tau, phosphorylated-tau, and orexin-A were assessed. The results showed that CSF levels of Aβ42 were significantly lower (p < 0.001) in AD (332.28 ± 237.36 pg/mL) compared to NT1 (569.88 ± 187.00 pg/mL), NT2 (691.00 ± 292.63 pg/mL) and healthy subjects (943.68 ± 198.12 pg/mL). CSF orexin-A levels were statistically different (p < 0.001) between AD (148.01 ± 29.49 pg/mL), NT1 (45.94 ± 13.63 pg/mL), NT2 (104.92 ± 25.55 pg/mL) and healthy subjects (145.18 ± 27.01 pg/mL). Moderate-severe AD patients (mini mental state examination < 21) showed the highest CSF orexin-A levels, whereas NT1 patients showed the lowest CSF orexin-A levels. Correlation between CSF levels of Aβ42 and orexin-A was found only in healthy subjects (r = 0.26; p = 0.01), and not in narcolepsy or AD patients. This lack of correlation in both diseases may be explained by the pathology itself since the correlation between these two biomarkers is evident only in the healthy subjects. This study adds to the present literature by further documenting the interplay between orexinergic neurotransmission and cerebral Aβ dynamics, possibly sustained by sleep.
Collapse
Affiliation(s)
- Susana Lozano-Tovar
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Circuito Ciudad Universitaria Avenida, C.U., Mexico City 04510, Mexico
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giuseppe Sancesario
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
6
|
Rabl M, Zullo L, Lewczuk P, Kornhuber J, Karikari TK, Blennow K, Zetterberg H, Bavato F, Quednow BB, Seifritz E, von Gunten A, Clark C, Popp J. Plasma neurofilament light, glial fibrillary acid protein, and phosphorylated tau 181 as biomarkers for neuropsychiatric symptoms and related clinical disease progression. Alzheimers Res Ther 2024; 16:165. [PMID: 39054505 PMCID: PMC11270946 DOI: 10.1186/s13195-024-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS One hundred and fifty-one participants with normal cognition (n = 76) or mild cognitive impairment (n = 75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Different regression and ROC analyses were used to address the associations of interest. RESULTS None of the three plasma biomarker was associated with NPS at baseline. Higher GFAP levels were associated with the presence of NPS at follow-up (OR = 2.8, p = .002) and both, higher NfL and higher GFAP with an increase in the NPI-Q severity score over time (β = 0.25, p = .034 and β = 0.30, p = .013, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.72 to 0.88, p = .002) and AD pathology (AUC 0.78 to 0.87, p = .010), but not of cognitive decline (AUC 0.79 to 0.85, p = .081). CONCLUSION Plasma NfL and GFAP are both associated with future NPS and NPS severity change. Considering the presence of NPS along with blood-based AD-biomarkers may improve the prediction of clinical progression of NPS over time and inform clinical decision-making in non-demented older people.
Collapse
Affiliation(s)
- Miriam Rabl
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich, 8032, Switzerland.
| | - Leonardo Zullo
- Old-Age Psychiatry Service, Department of Psychiatry, Lausanne University Hospital, Lausanne, 1005, Switzerland
- Leenaards Memory Clinic, Lausanne University Hospital, Lausanne, 1005, Switzerland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, 15-269, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 41, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 41, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 41, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1E 6BT, UK
- UK Dementia Research Institute at University College London, London, W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, 999077, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Francesco Bavato
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich, 8032, Switzerland
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, 8032, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, 8057, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich, 8032, Switzerland
| | - Armin von Gunten
- Old-Age Psychiatry Service, Department of Psychiatry, Lausanne University Hospital, Lausanne, 1005, Switzerland
| | - Christopher Clark
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich, 8032, Switzerland
| | - Julius Popp
- Department of Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Lenggstrasse 31, Zurich, 8032, Switzerland
- Old-Age Psychiatry Service, Department of Psychiatry, Lausanne University Hospital, Lausanne, 1005, Switzerland
| |
Collapse
|
7
|
Dicarlo M, Pignataro P, Zecca C, Dell'Abate MT, Urso D, Gnoni V, Giugno A, Borlizzi F, Zerlotin R, Oranger A, Colaianni G, Colucci S, Logroscino G, Grano M. Irisin Levels in Cerebrospinal Fluid Correlate with Biomarkers and Clinical Dementia Scores in Alzheimer Disease. Ann Neurol 2024; 96:61-73. [PMID: 38780366 DOI: 10.1002/ana.26946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Irisin, released by muscles during exercise, was recently identified as a neuroprotective factor in mouse models of Alzheimer disease (AD). In a cohort of AD patients, we studied cerebrospinal fluid (CSF) and plasma irisin levels, sex interactions, and correlations with disease biomarkers. METHODS Correlations between CSF and plasma irisin levels and AD biomarkers (amyloid β 1-42, hyperphosphorylated tau, and total tau [t-tau]) and Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB) were analyzed in a cohort of patients with Alzheimer dementia (n = 82), mild cognitive impairment (n = 44), and subjective memory complaint (n = 20) biologically characterized according to the recent amyloid/tau/neurodegeneration classification. RESULTS CSF irisin was reduced in Alzheimer dementia patients (p < 0.0001), with lower levels in female patients. Moreover, CSF irisin correlated positively with Aβ42 in both female (r = 0.379, p < 0.001) and male (r = 0.262, p < 0.05) patients, and negatively with CDR-SOB (r = -0.234, p < 0.05) only in female patients. A negative trend was also observed between CSF irisin and t-tau levels in all patients (r = -0.144, p = 0.082) and in the female subgroup (r = -0.189, p = 0.084). INTERPRETATION The results highlight the relationship between irisin and biomarkers of AD pathology, especially in females. Our findings also offer perspectives toward the use of irisin as a marker of the AD continuum. ANN NEUROL 2024;96:61-73.
Collapse
Affiliation(s)
- Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| | - Patrizia Pignataro
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience, University of Bari "A. Moro", Bari, Italy
| | - Chiara Zecca
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Maria Teresa Dell'Abate
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Francesco Borlizzi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari "A. Moro", Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "A. Moro" at "Pia Fondazione Card G. Panico" Hospital, Tricase, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| |
Collapse
|
8
|
McInvale JJ, Canoll P, Hargus G. Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in Alzheimer's disease and frontotemporal dementia. Brain Pathol 2024; 34:e13231. [PMID: 38246596 PMCID: PMC11189780 DOI: 10.1111/bpa.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024] Open
Abstract
Neurodegenerative diseases are increasing in prevalence and comprise a large socioeconomic burden on patients and their caretakers. The need for effective therapies and avenues for disease prevention and monitoring is of paramount importance. Fluid biomarkers for neurodegenerative diseases have gained a variety of uses, including informing participant selection for clinical trials, lending confidence to clinical diagnosis and disease staging, determining prognosis, and monitoring therapeutic response. Their role is expected to grow as disease-modifying therapies start to be available to a broader range of patients and as prevention strategies become established. Many of the underlying molecular mechanisms of currently used biomarkers are incompletely understood. Animal models and in vitro systems using cell lines have been extensively employed but face important translatability limitations. Induced pluripotent stem cell (iPSC) technology, where a theoretically unlimited range of cell types can be reprogrammed from peripheral cells sampled from patients or healthy individuals, has gained prominence over the last decade. It is a promising avenue to study physiological and pathological biomarker function and response to experimental therapeutics. Such systems are amenable to high-throughput drug screening or multiomics readouts such as transcriptomics, lipidomics, and proteomics for biomarker discovery, investigation, and validation. The present review describes the current state of biomarkers in the clinical context of neurodegenerative diseases, with a focus on Alzheimer's disease and frontotemporal dementia. We include a discussion of how iPSC models have been used to investigate and test biomarkers such as amyloid-β, phosphorylated tau, neurofilament light chain or complement proteins, and even nominate novel biomarkers. We discuss the limitations of current iPSC methods, mentioning alternatives such as coculture systems and three-dimensional organoids which address some of these concerns. Finally, we propose exciting prospects for stem cell transplantation paradigms using animal models as a preclinical tool to study biomarkers in the in vivo context.
Collapse
Affiliation(s)
- Julie J. McInvale
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
- Medical Scientist Training Program, Columbia UniversityNew YorkNew YorkUSA
| | - Peter Canoll
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Gunnar Hargus
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
9
|
Rabl M, Zullo L, Lewczuk P, Kornhuber J, Karikari TK, Blennow K, Zetterberg H, Bavato F, Quednow BB, Seifritz E, von Gunten A, Clark C, Popp J. Plasma neurofilament light, glial fibrillary acid protein, and phosphorylated tau 181 as biomarkers for neuropsychiatric symptoms and related clinical disease progression. RESEARCH SQUARE 2024:rs.3.rs-4116836. [PMID: 38562890 PMCID: PMC10984087 DOI: 10.21203/rs.3.rs-4116836/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS Higher GFAP levels were associated with NPS at baseline (β=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (β=0.29, p=.007 and β=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (β=0.23, p=.035 and β=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.
Collapse
Affiliation(s)
- Miriam Rabl
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| | - Leonardo Zullo
- Department of Psychiatry, Old Age Psychiatry Service, Lausanne University Hospital
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg
| | - Francesco Bavato
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| | - Armin von Gunten
- Department of Psychiatry, Old Age Psychiatry Service, Lausanne University Hospital
| | - Christopher Clark
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| | - Julius Popp
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich
| |
Collapse
|
10
|
Chamberland É, Moravveji S, Doyon N, Duchesne S. A computational model of Alzheimer's disease at the nano, micro, and macroscales. Front Neuroinform 2024; 18:1348113. [PMID: 38586183 PMCID: PMC10995318 DOI: 10.3389/fninf.2024.1348113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Mathematical models play a crucial role in investigating complex biological systems, enabling a comprehensive understanding of interactions among various components and facilitating in silico testing of intervention strategies. Alzheimer's disease (AD) is characterized by multifactorial causes and intricate interactions among biological entities, necessitating a personalized approach due to the lack of effective treatments. Therefore, mathematical models offer promise as indispensable tools in combating AD. However, existing models in this emerging field often suffer from limitations such as inadequate validation or a narrow focus on single proteins or pathways. Methods In this paper, we present a multiscale mathematical model that describes the progression of AD through a system of 19 ordinary differential equations. The equations describe the evolution of proteins (nanoscale), cell populations (microscale), and organ-level structures (macroscale) over a 50-year lifespan, as they relate to amyloid and tau accumulation, inflammation, and neuronal death. Results Distinguishing our model is a robust foundation in biological principles, ensuring improved justification for the included equations, and rigorous parameter justification derived from published experimental literature. Conclusion This model represents an essential initial step toward constructing a predictive framework, which holds significant potential for identifying effective therapeutic targets in the fight against AD.
Collapse
Affiliation(s)
- Éléonore Chamberland
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Seyedadel Moravveji
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Nicolas Doyon
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Radiologie et Médecine Nucléaire, Université Laval, Québec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
11
|
Fernandes M, Maio S, Eusebi P, Placidi F, Izzi F, Spanetta M, De Masi C, Lupo C, Calvello C, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. Cerebrospinal-fluid biomarkers for predicting phenoconversion in patients with isolated rapid-eye movement sleep behavior disorder. Sleep 2024; 47:zsad198. [PMID: 37542734 DOI: 10.1093/sleep/zsad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Indexed: 08/07/2023] Open
Abstract
STUDY OBJECTIVES Patients with isolated rapid-eye-movement sleep behavior disorder (iRBD) have an increased risk of developing neurodegenerative diseases. This study assessed cerebrospinal-fluid (CSF) biomarkers of neurodegeneration and blood-brain barrier (BBB) alteration in patients with iRBD compared to controls and ascertain whether these biomarkers may predict phenoconversion to alpha-synucleinopathies (Parkinson's Disease (PD), Dementia with Lewy bodies (DLB), Multiple System Atrophy (MSA)). METHODS Patients and controls underwent between 2012 and 2016 a neurological assessment, a lumbar puncture for CSF biomarker analysis (β-amyloid42 - Aβ42; total-tau, and phosphorylated tau), and BBB alteration (CSF/serum albumin ratio). All patients with iRBD were followed until 2021 and then classified into patients who converted to alpha-synucleinopathies (iRBD converters, cRBD) or not (iRBD non-converters, ncRBD). RESULTS Thirty-four patients with iRBD (mean age 67.12 ± 8.14) and 33 controls (mean age 64.97 ± 8.91) were included. At follow-up (7.63 ± 3.40 years), eight patients were ncRBD and 33 patients were cRBD: eleven converted to PD, 10 to DLB, and two to MSA. Patients with iRBD showed lower CSF Aβ42 levels and higher CSF/serum albumin ratio than controls. Cox regression analysis showed that the phenoconversion rate increases with higher motor impairment (hazard ratio [HR] = 1.23, p = 0.032). CSF Aβ42 levels predicted phenoconversion to DLB (HR = 0.67, p = 0.038) and BBB alteration predicted phenoconversion to PD (HR = 1.20, p = 0.038). DISCUSSION This study showed that low CSF Aβ42 levels and high BBB alteration may predict the phenoconversion to DLB and PD in patients with iRBD, respectively. These findings highlight the possibility to discriminate phenoconversion in iRBD patients through CSF biomarkers; however, further studies are needed.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Silvia Maio
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Paolo Eusebi
- Department of Medicine, Neurology Clinic, University Hospital of Perugia, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Claudia De Masi
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Clementina Lupo
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| |
Collapse
|
12
|
van der Ende EL, In ‘t Veld SGJG, Hanskamp I, van der Lee S, Dijkstra JIR, Hok-A-Hin YS, Blujdea ER, van Swieten JC, Irwin DJ, Chen-Plotkin A, Hu WT, Lemstra AW, Pijnenburg YAL, van der Flier WM, del Campo M, Teunissen CE, Vermunt L. CSF proteomics in autosomal dominant Alzheimer's disease highlights parallels with sporadic disease. Brain 2023; 146:4495-4507. [PMID: 37348871 PMCID: PMC10629764 DOI: 10.1093/brain/awad213] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) offers a unique opportunity to study pathophysiological changes in a relatively young population with few comorbidities. A comprehensive investigation of proteome changes occurring in ADAD could provide valuable insights into AD-related biological mechanisms and uncover novel biomarkers and therapeutic targets. Furthermore, ADAD might serve as a model for sporadic AD, but in-depth proteome comparisons are lacking. We aimed to identify dysregulated CSF proteins in ADAD and determine the degree of overlap with sporadic AD. We measured 1472 proteins in CSF of PSEN1 or APP mutation carriers (n = 22) and age- and sex-matched controls (n = 20) from the Amsterdam Dementia Cohort using proximity extension-based immunoassays (PEA). We compared protein abundance between groups with two-sided t-tests and identified enriched biological pathways. Using the same protein panels in paired plasma samples, we investigated correlations between CSF proteins and their plasma counterparts. Finally, we compared our results with recently published PEA data from an international cohort of sporadic AD (n = 230) and non-AD dementias (n = 301). All statistical analyses were false discovery rate-corrected. We detected 66 differentially abundant CSF proteins (65 increased, 1 decreased) in ADAD compared to controls (q < 0.05). The most strongly upregulated proteins (fold change >1.8) were related to immunity (CHIT1, ITGB2, SMOC2), cytoskeletal structure (MAPT, NEFL) and tissue remodelling (TMSB10, MMP-10). Significant CSF-plasma correlations were found for the upregulated proteins SMOC2 and LILR1B. Of the 66 differentially expressed proteins, 36 had been measured previously in the sporadic dementias cohort, 34 of which (94%) were also significantly upregulated in sporadic AD, with a strong correlation between the fold changes of these proteins in both cohorts (rs = 0.730, P < 0.001). Twenty-nine of the 36 proteins (81%) were also upregulated among non-AD patients with suspected AD co-pathology. This CSF proteomics study demonstrates substantial biochemical similarities between ADAD and sporadic AD, suggesting involvement of the same biological processes. Besides known AD-related proteins, we identified several relatively novel proteins, such as TMSB10, MMP-10 and SMOC2, which have potential as novel biomarkers. With shared pathophysiological CSF changes, ADAD study findings might be translatable to sporadic AD, which could greatly expedite therapy development.
Collapse
Affiliation(s)
- Emma L van der Ende
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sjors G J G In ‘t Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iris Hanskamp
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Janna I R Dijkstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elena R Blujdea
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center and Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28003 Madrid, Spain
- Barcelonabeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Reus LM, Boltz T, Francia M, Bot M, Ramesh N, Koromina M, Pijnenburg YAL, den Braber A, van der Flier WM, Visser PJ, van der Lee SJ, Tijms BM, Teunissen CE, Loohuis LO, Ophoff RA. Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559021. [PMID: 37808647 PMCID: PMC10557608 DOI: 10.1101/2023.09.26.559021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Genomic studies of molecular traits have provided mechanistic insights into complex disease, though these lag behind for brain-related traits due to the inaccessibility of brain tissue. We leveraged cerebrospinal fluid (CSF) to study neurobiological mechanisms in vivo , measuring 5,543 CSF metabolites, the largest panel in CSF to date, in 977 individuals of European ancestry. Individuals originated from two separate cohorts including cognitively healthy subjects (n=490) and a well-characterized memory clinic sample, the Amsterdam Dementia Cohort (ADC, n=487). We performed metabolite quantitative trait loci (mQTL) mapping on CSF metabolomics and found 126 significant mQTLs, representing 65 unique CSF metabolites across 51 independent loci. To better understand the role of CSF mQTLs in brain-related disorders, we performed a metabolome-wide association study (MWAS), identifying 40 associations between CSF metabolites and brain traits. Similarly, over 90% of significant mQTLs demonstrated colocalized associations with brain-specific gene expression, unveiling potential neurobiological pathways.
Collapse
|
14
|
Del Campo M, Vermunt L, Peeters CFW, Sieben A, Hok-A-Hin YS, Lleó A, Alcolea D, van Nee M, Engelborghs S, van Alphen JL, Arezoumandan S, Chen-Plotkin A, Irwin DJ, van der Flier WM, Lemstra AW, Teunissen CE. CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease. Nat Commun 2023; 14:5635. [PMID: 37704597 PMCID: PMC10499811 DOI: 10.1038/s41467-023-41122-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB (n = 109), Alzheimer´s disease (AD, n = 235) and cognitively unimpaired controls (n = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Lisa Vermunt
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Juliette L van Alphen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Sanaz Arezoumandan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Fernandes M, Chiaravalloti A, Nuccetelli M, Placidi F, Izzi F, Camedda R, Bernardini S, Sancesario G, Schillaci O, Mercuri NB, Liguori C. Sleep Dysregulation Is Associated with 18F-FDG PET and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:845-854. [PMID: 37662614 PMCID: PMC10473116 DOI: 10.3233/adr-220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sleep impairment has been commonly reported in Alzheimer's disease (AD) patients. The association between sleep dysregulation and AD biomarkers has been separately explored in mild cognitive impairment (MCI) and AD patients. Objective The present study investigated cerebrospinal-fluid (CSF) and 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) biomarkers in MCI and AD patients in order to explore their association with sleep parameters measured with polysomnography (PSG). Methods MCI and AD patients underwent PSG, 18F-FDG-PET, and CSF analysis for detecting and correlating these biomarkers with sleep architecture. Results Thirty-five patients were included in the study (9 MCI and 26 AD patients). 18F-FDG uptake in left Brodmann area 31 (owing to the posterior cingulate cortex) correlated negatively with REM sleep latency (p = 0.013) and positively with REM sleep (p = 0.033). 18F-FDG uptake in the hippocampus was negatively associated with sleep onset latency (p = 0.041). Higher CSF orexin levels were associated with higher sleep onset latency (p = 0.042), Non-REM stage 1 of sleep (p = 0.031), wake after sleep onset (p = 0.028), and lower sleep efficiency (p = 0.045). CSF levels of Aβ42 correlated negatively with the wake bouts index (p = 0.002). CSF total-tau and phosphorylated tau levels correlated positively with total sleep time (p = 0.045) and time in bed (p = 0.031), respectively. Conclusion Sleep impairment, namely sleep fragmentation, REM sleep dysregulation, and difficulty in initiating sleep correlates with AD biomarkers, suggesting an effect of sleep on the pathological processes in different AD stages. Targeting sleep for counteracting the AD pathological processes represents a timely need for clinicians and researchers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Sancesario
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
16
|
Chen X, Onur OA, Richter N, Fassbender R, Gramespacher H, Befahr Q, von Reutern B, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Dronse J. Concordance of Intrinsic Brain Connectivity Measures Is Disrupted in Alzheimer's Disease. Brain Connect 2023; 13:344-355. [PMID: 34269605 DOI: 10.1089/brain.2020.0918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Recently, a new resting-state functional magnetic resonance imaging (rs-fMRI) measure to evaluate the concordance between different rs-fMRI metrics has been proposed and has not been investigated in Alzheimer's disease (AD). Methods: 3T rs-fMRI data were obtained from healthy young controls (YC, n = 26), healthy senior controls (SC, n = 29), and AD patients (n = 35). The fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were analyzed, followed by the calculation of their concordance using Kendall's W for each brain voxel across time. Group differences in the concordance were compared globally, within seven intrinsic brain networks, and on a voxel-by-voxel basis with covariates of age, sex, head motion, and gray matter volume. Results: The global concordance was lowest in AD among the three groups, with similar differences for the single metrics. When comparing AD to SC, reductions of concordance were detected in each of the investigated networks apart from the limbic network. For SC in comparison to YC, lower global concordance without any network-level difference was observed. Voxel-wise analyses revealed lower concordance in the right middle temporal gyrus in AD compared to SC and lower concordance in the left middle frontal gyrus in SC compared to YC. Lower fALFF were observed in the right angular gyrus in AD in comparison to SC, but ReHo and DC showed no group differences. Conclusions: The concordance of resting-state measures differentiates AD from healthy aging and may represent a novel imaging marker in AD.
Collapse
Affiliation(s)
- Xiangliang Chen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Oezguer A Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Befahr
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Boris von Reutern
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
| | - Heidi I L Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry and Neuropsychology, Alzheimer Centre, Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Department of Neurology, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Toniolo S, Di Lorenzo F, Bernardini S, Mercuri NB, Sancesario GM. Blood-Brain Barrier Dysfunction and Aβ42/40 Ratio Dose-Dependent Modulation with the ApoE Genotype within the ATN Framework. Int J Mol Sci 2023; 24:12151. [PMID: 37569528 PMCID: PMC10418506 DOI: 10.3390/ijms241512151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023] Open
Abstract
The definition of Alzheimer's disease (AD) now considers the presence of the markers of amyloid (A), tau deposition (T), and neurodegeneration (N) essential for diagnosis. AD patients have been reported to have increased blood-brain barrier (BBB) dysfunction, but that has not been tested within the ATN framework so far. As the field is moving towards the use of blood-based biomarkers, the relationship between BBB disruption and AD-specific biomarkers requires considerable attention. Moreover, other factors have been previously implicated in modulating BBB permeability, including age, gender, and ApoE status. A total of 172 cognitively impaired individuals underwent cerebrospinal fluid (CSF) analysis for AD biomarkers, and data on BBB dysfunction, demographics, and ApoE status were collected. Our data showed that there was no difference in BBB dysfunction across different ATN subtypes, and that BBB damage was not correlated with cognitive impairment. However, patients with BBB disruption, if measured with a high Qalb, had low Aβ40 levels. ApoE status did not affect BBB function but had a dose-dependent effect on the Aβ42/40 ratio. These results might highlight the importance of understanding dynamic changes across the BBB in future studies in patients with AD.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3AZ, UK
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Francesco Di Lorenzo
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Non-Invasive Brain Simulation Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| | - Sergio Bernardini
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
| | - Giulia Maria Sancesario
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy (G.M.S.)
- Biobank Unit, IRCSS Santa Lucia Foundation, 00179 Rome, Italy
| |
Collapse
|
18
|
Hok‐A‐Hin YS, Bolsewig K, Ruiters DN, Lleó A, Alcolea D, Lemstra AW, van der Flier WM, Teunissen CE, del Campo M. Thimet oligopeptidase as a potential CSF biomarker for Alzheimer's disease: A cross-platform validation study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12456. [PMID: 37502019 PMCID: PMC10369371 DOI: 10.1002/dad2.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aβ) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aβ+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. METHODS We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aβ+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aβ+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aβ40 (Rho > 0.540) but not Aβ42. DISCUSSION Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers.
Collapse
Affiliation(s)
- Yanaika S. Hok‐A‐Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Katharina Bolsewig
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Daimy N. Ruiters
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau ‐ Hospital de Sant PauUniversitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Department of Epidemiology and Data ScienceVU University Medical CentersAmsterdamThe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam NeuroscienceVU University Medical Center, Amsterdam UMCAmsterdamThe Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
- Bareclonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
| |
Collapse
|
19
|
de Oliveira FF, Miraldo MC, de Castro-Neto EF, de Almeida SS, Matas SLDA, Bertolucci PHF, Naffah-Mazzacoratti MDG. Differential associations of clinical features with cerebrospinal fluid biomarkers in dementia with Lewy bodies and Alzheimer's disease. Aging Clin Exp Res 2023:10.1007/s40520-023-02452-5. [PMID: 37264166 DOI: 10.1007/s40520-023-02452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
AIM To explore associations of cerebrospinal fluid biomarkers of neurodegeneration and amyloidosis with caregiver burden, cognition and functionality in dementia with Lewy bodies (DLB) paired with late-onset Alzheimer's disease (AD) and healthy older people. METHODS Consecutive outpatients with DLB were matched with outpatients with AD according to sex, cognitive scores and dementia stage, and with cognitively healthy controls according to age and sex to investigate associations of cerebrospinal fluid amyloid-β (Aβ42,Aβ40,Aβ38), tau, phospho-tau Thr181, ubiquitin, α-synuclein and neurofilament light with caregiver burden, functionality, reverse digit span, a clock drawing test, Mini-Mental State Examination (MMSE) and Severe MMSE, adjusted for sex, age, education, dementia duration and APOE-ε4 alleles. RESULTS Overall, 27 patients with DLB (78.98 ± 9.0 years-old; eleven APOE-ε4 +) were paired with 27 patients with AD (81.50 ± 5.8 years-old; twelve APOE-ε4 +) and 27 controls (78.98 ± 8.7 years-old; four APOE-ε4 +); two-thirds were women. In AD, Aβ42/Aβ38 and Aβ42 were lower, while tau/Aβ42 and phospho-tau Thr181/Aβ42 were higher; α-synuclein/Aβ42 was lower in DLB and higher in AD. The following corrected associations remained significant: in DLB, instrumental functionality was inversely associated with tau/phospho-tau Thr181 and tau/Aβ42, and reverse digit span associated with α-synuclein; in AD, instrumental functionality was inversely associated with neurofilament light, clock drawing test scores inversely associated with phospho-tau Thr181/Aβ42 and α-synuclein/Aβ42, and Severe MMSE inversely associated with tau/Aβ42 and tau/phospho-tau Thr181. CONCLUSIONS Cerebrospinal fluid phospho-tau Thr181 in DLB was similar to AD, but not Aβ42. In associations with test scores, biomarker ratios were superior to isolated biomarkers, while worse functionality was associated with axonal degeneration only in AD.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil.
| | - Marjorie Câmara Miraldo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil
| | - Eduardo Ferreira de Castro-Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil
| | - Sandro Soares de Almeida
- Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sandro Luiz de Andrade Matas
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil
| | - Paulo Henrique Ferreira Bertolucci
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil
| | - Maria da Graça Naffah-Mazzacoratti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, Vila Clementino, São Paulo, SP, 04023-900, Brazil
| |
Collapse
|
20
|
Dronse J, Ohndorf A, Richter N, Bischof GN, Fassbender R, Behfar Q, Gramespacher H, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Onur OA. Serum cortisol is negatively related to hippocampal volume, brain structure, and memory performance in healthy aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1154112. [PMID: 37251803 PMCID: PMC10213232 DOI: 10.3389/fnagi.2023.1154112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Elevated cortisol levels have been frequently reported in Alzheimer's disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, high cortisol levels have been shown to impair memory performance and increase the risk of developing AD in healthy individuals. We investigated the associations between serum cortisol levels, hippocampal volume, gray matter volume and memory performance in healthy aging and AD. Methods In our cross-sectional study, we analyzed the relationships between morning serum cortisol levels, verbal memory performance, hippocampal volume, and whole-brain voxel-wise gray matter volume in an independent sample of 29 healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD. Results Cortisol levels were significantly elevated in patients with AD as compared to HS, and higher cortisol levels were correlated with worse memory performance in AD. Furthermore, higher cortisol levels were significantly associated with smaller left hippocampal volumes in HS and indirectly negatively correlated to memory function through hippocampal volume. Higher cortisol levels were further related to lower gray matter volume in the hippocampus and temporal and parietal areas in the left hemisphere in both groups. The strength of this association was similar in HS and AD. Conclusion In AD, cortisol levels are elevated and associated with worse memory performance. Furthermore, in healthy seniors, higher cortisol levels show a detrimental relationship with brain regions typically affected by AD. Thus, increased cortisol levels seem to be indirectly linked to worse memory function even in otherwise healthy individuals. Cortisol may therefore not only serve as a biomarker of increased risk for AD, but maybe even more importantly, as an early target for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Ohndorf
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Behfar
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Palliative Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heidi I. L. Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health Witten/Herdecke University, Witten, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Eikelboom WS, Singleton EH, van den Berg E, de Boer C, Coesmans M, Goudzwaard JA, Vijverberg EGB, Pan M, Gouw C, Mol MO, Gillissen F, Fieldhouse JLP, Pijnenburg YAL, van der Flier WM, van Swieten JC, Ossenkoppele R, Kors JA, Papma JM. The reporting of neuropsychiatric symptoms in electronic health records of individuals with Alzheimer's disease: a natural language processing study. Alzheimers Res Ther 2023; 15:94. [PMID: 37173801 PMCID: PMC10176879 DOI: 10.1186/s13195-023-01240-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Neuropsychiatric symptoms (NPS) are prevalent in the early clinical stages of Alzheimer's disease (AD) according to proxy-based instruments. Little is known about which NPS clinicians report and whether their judgment aligns with proxy-based instruments. We used natural language processing (NLP) to classify NPS in electronic health records (EHRs) to estimate the reporting of NPS in symptomatic AD at the memory clinic according to clinicians. Next, we compared NPS as reported in EHRs and NPS reported by caregivers on the Neuropsychiatric Inventory (NPI). METHODS Two academic memory clinic cohorts were used: the Amsterdam UMC (n = 3001) and the Erasmus MC (n = 646). Patients included in these cohorts had MCI, AD dementia, or mixed AD/VaD dementia. Ten trained clinicians annotated 13 types of NPS in a randomly selected training set of n = 500 EHRs from the Amsterdam UMC cohort and in a test set of n = 250 EHRs from the Erasmus MC cohort. For each NPS, a generalized linear classifier was trained and internally and externally validated. Prevalence estimates of NPS were adjusted for the imperfect sensitivity and specificity of each classifier. Intra-individual comparison of the NPS classified in EHRs and NPS reported on the NPI were conducted in a subsample (59%). RESULTS Internal validation performance of the classifiers was excellent (AUC range: 0.81-0.91), but external validation performance decreased (AUC range: 0.51-0.93). NPS were prevalent in EHRs from the Amsterdam UMC, especially apathy (adjusted prevalence = 69.4%), anxiety (adjusted prevalence = 53.7%), aberrant motor behavior (adjusted prevalence = 47.5%), irritability (adjusted prevalence = 42.6%), and depression (adjusted prevalence = 38.5%). The ranking of NPS was similar for EHRs from the Erasmus MC, although not all classifiers obtained valid prevalence estimates due to low specificity. In both cohorts, there was minimal agreement between NPS classified in the EHRs and NPS reported on the NPI (all kappa coefficients < 0.28), with substantially more reports of NPS in EHRs than on NPI assessments. CONCLUSIONS NLP classifiers performed well in detecting a wide range of NPS in EHRs of patients with symptomatic AD visiting the memory clinic and showed that clinicians frequently reported NPS in these EHRs. Clinicians generally reported more NPS in EHRs than caregivers reported on the NPI.
Collapse
Affiliation(s)
- Willem S Eikelboom
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Ellen H Singleton
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Esther van den Berg
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Casper de Boer
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michiel Coesmans
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Jeannette A Goudzwaard
- Department of Internal Medicine, Section of Geriatrics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Everard G B Vijverberg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michel Pan
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Cornalijn Gouw
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Freek Gillissen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jay L P Fieldhouse
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Rik Ossenkoppele
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
22
|
Hok-A-Hin YS, Del Campo M, Boiten WA, Stoops E, Vanhooren M, Lemstra AW, van der Flier WM, Teunissen CE. Neuroinflammatory CSF biomarkers MIF, sTREM1, and sTREM2 show dynamic expression profiles in Alzheimer's disease. J Neuroinflammation 2023; 20:107. [PMID: 37147668 PMCID: PMC10163795 DOI: 10.1186/s12974-023-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND There is a need for novel fluid biomarkers tracking neuroinflammatory responses in Alzheimer's disease (AD). Our recent cerebrospinal fluid (CSF) proteomics study revealed that migration inhibitory factor (MIF) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1) increased along the AD continuum. We aimed to assess the potential use of these proteins, in addition to sTREM2, as CSF biomarkers to monitor inflammatory processes in AD. METHODS We included cognitively unimpaired controls (n = 67, 63 ± 9 years, 24% females, all amyloid negative), patients with mild cognitive impairment (MCI; n = 92, 65 ± 7 years, 47% females, 65% amyloid positive), AD (n = 38, 67 ± 6 years, 8% females, all amyloid positive), and DLB (n = 50, 67 ± 6 years, 5% females, 54% amyloid positive). MIF, sTREM1, and sTREM2 levels were measured by validated immunoassays. Differences in protein levels between groups were tested with analysis of covariance (corrected for age and sex). Spearman correlation analysis was performed to evaluate the association between these neuroinflammatory markers with AD-CSF biomarkers (Aβ42, tTau, pTau) and mini-mental state examination (MMSE) scores. RESULTS MIF levels were increased in MCI (p < 0.01), AD (p < 0.05), and DLB (p > 0.05) compared to controls. Levels of sTREM1 were specifically increased in AD compared to controls (p < 0.01), MCI (p < 0.05), and DLB patients (p > 0.05), while sTREM2 levels were increased specifically in MCI compared to all other groups (all p < 0.001). Neuroinflammatory proteins were highly correlated with CSF pTau levels (MIF: all groups; sTREM1: MCI, AD and DLB; sTREM2: controls, MCI and DLB). Correlations with MMSE scores were observed in specific clinical groups (MIF in controls, sTREM1 in AD, and sTREM2 in DLB). CONCLUSION Inflammatory-related proteins show diverse expression profiles along different AD stages, with increased protein levels in the MCI stage (MIF and sTREM2) and AD stage (MIF and sTREM1). The associations of these inflammatory markers primarily with CSF pTau levels indicate an intertwined relationship between tau pathology and inflammation. These neuroinflammatory markers might be useful in clinical trials to capture dynamics in inflammatory responses or monitor drug-target engagement of inflammatory modulators.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Walter A Boiten
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | - Afina W Lemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, VU University Medical Centers, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Lagarde J, Olivieri P, Tonietto M, Rodrigo S, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Could tau-PET imaging contribute to a better understanding of the different patterns of clinical progression in Alzheimer's disease? A 2-year longitudinal study. Alzheimers Res Ther 2023; 15:91. [PMID: 37138309 PMCID: PMC10155356 DOI: 10.1186/s13195-023-01237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Monitoring the progression of Tau pathology makes it possible to study the clinical diversity of Alzheimer's disease. In this 2-year longitudinal PET study, we aimed to determine the progression of [18F]-flortaucipir binding and of cortical atrophy, and their relationships with cognitive decline. METHODS Twenty-seven AD patients at the mild cognitive impairment/mild dementia stages and twelve amyloid-negative controls underwent a neuropsychological assessment, 3 T brain MRI, and [18F]-flortaucipir PET imaging (Tau1) and were monitored annually over 2 years with a second brain MRI and tau-PET imaging after 2 years (Tau2). We analyzed the progression of tau standardized uptake value ratio (SUVr) and grey matter atrophy both at the regional and voxelwise levels. We used mixed effects models to explore the relations between the progression of SUVr values, cortical atrophy, and cognitive decline. RESULTS We found an average longitudinal increase in tau SUVr values, except for the lateral temporoparietal cortex where the average SUVr values decreased. Individual analyses revealed distinct profiles of SUVr progression according to temporoparietal Tau1 uptake: high-Tau1 patients demonstrated an increase in SUVr values over time in the frontal lobe, but a decrease in the temporoparietal cortex and a rapid clinical decline, while low-Tau1 patients displayed an increase in SUVr values in all cortical regions and a slower clinical decline. Cognitive decline was strongly associated with the progression of regional cortical atrophy, but only weakly associated with SUVr progression. CONCLUSIONS Despite a relatively small sample size, our results suggest that tau-PET imaging could identify patients with a potentially "more aggressive" clinical course characterized by high temporoparietal Tau1 SUVr values and a rapid clinical progression. In these patients, the paradoxical decrease in temporoparietal SUVr values over time could be due to the rapid transition to ghost tangles, for which the affinity of the radiotracer is lower. They could particularly benefit from future therapeutic trials, the neuroimaging outcome measures of which deserve to be discussed.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
- Université Paris-Cité, 75006, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Sébastian Rodrigo
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Centre d'Evaluation Troubles Psychiques Et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Bâtiment Magnan, , 1 Rue Cabanis, 75014, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, 91140, Gif Sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
- Université Paris-Cité, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, 91401, Orsay, Inserm, France
| |
Collapse
|
24
|
Delabar JM, Lagarde J, Fructuoso M, Mohammad A, Bottlaender M, Doran E, Lott I, Rivals I, Schmitt FA, Head E, Sarazin M, Potier MC. Increased plasma DYRK1A with aging may protect against neurodegenerative diseases. Transl Psychiatry 2023; 13:111. [PMID: 37015911 PMCID: PMC10073199 DOI: 10.1038/s41398-023-02419-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid β burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ammara Mohammad
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Michel Bottlaender
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Eric Doran
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Ira Lott
- School of Medicine, Department of Pediatrics, University of California, Irvine, CA, 92697, USA
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, PSL Research University, Paris, 75005, France
| | - Frederic A Schmitt
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
| | - Elizabeth Head
- Department of Neurology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, 75013, France
- Paris-Saclay University, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, 91400, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
25
|
Jessen F, Wolfsgruber S, Kleineindam L, Spottke A, Altenstein S, Bartels C, Berger M, Brosseron F, Daamen M, Dichgans M, Dobisch L, Ewers M, Fenski F, Fliessbach K, Freiesleben SD, Glanz W, Görß D, Gürsel S, Janowitz D, Kilimann I, Kobeleva X, Lohse A, Maier F, Metzger C, Munk M, Preis L, Sanzenbacher C, Spruth E, Rauchmann B, Vukovich R, Yakupov R, Weyrauch AS, Ziegler G, Schmid M, Laske C, Perneczky R, Schneider A, Wiltfang J, Teipel S, Bürger K, Priller J, Peters O, Ramirez A, Boecker H, Heneka MT, Wagner M, Düzel E. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimers Dement 2023; 19:487-497. [PMID: 35451563 DOI: 10.1002/alz.12674] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/22/2022] [Accepted: 02/17/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION It is uncertain whether subjective cognitive decline (SCD) in individuals who seek medical help serves the identification of the initial symptomatic stage 2 of the Alzheimer's disease (AD) continuum. METHODS Cross-sectional and longitudinal data from the multicenter, memory clinic-based DELCODE study. RESULTS The SCD group showed slightly worse cognition as well as more subtle functional and behavioral symptoms than the control group (CO). SCD-A+ cases (39.3% of all SCD) showed greater hippocampal atrophy, lower cognitive and functional performance, and more behavioral symptoms than CO-A+. Amyloid concentration in the CSF had a greater effect on longitudinal cognitive decline in SCD than in the CO group. DISCUSSION Our data suggests that SCD serves the identification of stage 2 of the AD continuum and that stage 2, operationalized as SCD-A+, is associated with subtle, but extended impact of AD pathology in terms of neurodegeneration, symptoms and clinical progression.
Collapse
Affiliation(s)
- Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Luca Kleineindam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
| | - Moritz Berger
- Institute for Medical Biometry, University of Bonn, Bonn, Germany
| | | | - Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Radiology, University of Bonn, Bonn, Germany
| | - Martin Dichgans
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Friederike Fenski
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | | | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Doreen Görß
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Selim Gürsel
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, München, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Xenia Kobeleva
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Andrea Lohse
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Coraline Metzger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Matthias Munk
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lukas Preis
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Carolin Sanzenbacher
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Eike Spruth
- Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, München, Germany
| | - Ruth Vukovich
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Anne-Sophie Weyrauch
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, University of Bonn, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, München, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Katharina Bürger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Henning Boecker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Radiology, University of Bonn, Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
26
|
Lei D, Mao C, Li J, Huang X, Sha L, Liu C, Dong L, Xu Q, Gao J. CSF biomarkers for early-onset Alzheimer's disease in Chinese population from PUMCH dementia cohort. Front Neurol 2023; 13:1030019. [PMID: 36698871 PMCID: PMC9868908 DOI: 10.3389/fneur.2022.1030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is one of the highly concerned degenerative disorders in recent decades. Though vast amount of researches has been done in various aspects, early-onset subtype, however, needs more investigation in diagnosis for its atypical manifestations and progression process. Fundamental CSF biomarkers of early-onset AD are explored in PUMCH dementia cohort to depict its laboratory characteristics. Materials and methods A total of 125 individuals (age of onset <65 years old) from PUMCH dementia cohort were recruited consecutively and classified into AD, non-AD dementia, and control groups. Levels of amyloid-β 42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) were measured using ELISA INNOTEST (Fujirebio, Ghent, Belgium). Students' t-test or non-parametric test are used to evaluate the differences between groups. Area under curve (AUC) of receiver operating characteristic (ROC) curve was introduced to prove the diagnostic powers of corresponding markers. Logistic regression is used to establish diagnostic model to combine several markers together to promote the diagnostic power. Results The average of all three biomarkers and two calculated ratios (t-tau/Aβ42, p-tau/Aβ42) were statistically different in the AD group compared with the other two groups (Ps < 0.01). From our data, we were able to provide cutoff values (Aβ42 < 570.9 pg/mL; p-tau > 56.49 pg/mL; t-tau > 241.6 pg/mL; t-tau/Aβ42 > 0.529; p-tau/Aβ42 > 0.0846) with acceptable diagnostic accuracy compared to other studies. Using a combination of biomarkers and logistic regression (area under curve 0.951), we were able to further improve diagnostic efficacy. Discussion Our study supports the diagnostic usefulness of biomarkers and defined cutoff values to diagnose early-onset AD. We showed that the ratios of t-tau/Aβ42 and p-tau/Aβ42 are more sensitive than relying on Aβ42 levels alone, and that we can further improve diagnostic accuracy by combining biomarkers.
Collapse
Affiliation(s)
- Dan Lei
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chenhui Mao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinying Huang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longze Sha
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caiyan Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liling Dong
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jing Gao ✉
| |
Collapse
|
27
|
Panikkar D, Vivek S, Crimmins E, Faul J, Langa KM, Thyagarajan B. Pre-Analytical Variables Influencing Stability of Blood-Based Biomarkers of Neuropathology. J Alzheimers Dis 2023; 95:735-748. [PMID: 37574735 PMCID: PMC11520930 DOI: 10.3233/jad-230384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Sample collection and preanalytical protocols may significantly impact the results of large-scale epidemiological studies incorporating blood-based biomarkers of neuropathology. OBJECTIVE To evaluate the stability and assay variability of several blood-based biomarkers of neuropathology for common preanalytical conditions. METHODS We collected serum and plasma samples from 41 participants and evaluated the effect of processing delay of up to 72 h when stored at 4∘C, three freeze-thaw cycles, and a combination of 48-h processing delay when stored at 4∘C and three freeze-thaw cycles on biomarker stability. Using the Simoa assay (Quanterix Inc.), we measured amyloid-β 40 (Aβ40), amyloid-β 42 (Aβ42), neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau 181 (p-tau-181). RESULTS We found that Aβ40 and Aβ42 levels significantly decreased after a 24-h processing delay in both plasma and serum samples, and a single freeze-thaw cycle (p < 0.0001). Nevertheless, serum Aβ42/40 ratio remained stable with a processing delay up to 48 h while plasma Aβ42/40 ratio showed only small but significant increase with a delay up to 72 h. Both plasma and serum GFAP and NfL levels were only modestly affected by processing delay and freeze-thaw cycles. Plasma p-tau-181 levels notably increased with a 24-, 48-, and 72-h processing delay, but remained stable in serum. Intra-individual variation over two weeks was minimal for all biomarkers and their levels were substantially lower in serum when compared with plasma. CONCLUSION These results suggest that standardizing preanalytical variables will allow robust measurements of biomarkers of neuropathology in population studies.
Collapse
Affiliation(s)
- Daniel Panikkar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sithara Vivek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Eileen Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jessica Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M. Langa
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Rabl M, Clark C, Dayon L, Bowman GL, Popp J. Blood plasma protein profiles of neuropsychiatric symptoms and related cognitive decline in older people. J Neurochem 2023; 164:242-254. [PMID: 36281546 DOI: 10.1111/jnc.15715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
Neuropsychiatric symptoms (NPS) severely affect patients and their caregivers, and are associated with worse long-term outcomes. This study tested the hypothesis that altered protein levels in blood plasma could serve as biomarkers of NPS; and that altered protein levels are associated with persisting NPS and cognitive decline over time. We performed a cross-sectional and longitudinal study in older subjects with cognitive impairment and cognitively unimpaired in a memory clinic setting. NPS were recorded through the Neuropsychiatric Inventory Questionnaire (NPI-Q) while cognitive and functional impairment was assessed using the clinical dementia rating sum of boxes (CDR-SoB) score at baseline and follow-up visits. Shotgun proteomic analysis based on liquid chromatography-mass spectrometry was conducted in blood plasma samples, identifying 420 proteins. The presence of Alzheimer's Disease (AD) pathology was determined by cerebrospinal fluid biomarkers. Eighty-five subjects with a mean age of 70 (±7.4) years, 62% female and 54% with mild cognitive impairment or mild dementia were included. We found 15 plasma proteins with altered baseline levels in participants with NPS (NPI-Q score > 0). Adding those 15 proteins to a reference model based on clinical data (age, CDR-SoB) significantly improved the prediction of NPS (from receiver operating characteristic area under the curve [AUC] 0.75 to AUC 0.91, p = 0.004) with a specificity of 89% and a sensitivity of 74%. The identified proteins additionally predicted both persisting NPS and cognitive decline at follow-up visits. The observed associations were independent of the presence of AD pathology. Using proteomics, we identified a panel of specific blood proteins associated with current and future NPS, and related cognitive decline in older people. These findings show the potential of untargeted proteomics to identify blood-based biomarkers of pathological alterations relevant for NPS and related clinical disease progression.
Collapse
Affiliation(s)
- Miriam Rabl
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gene L Bowman
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
29
|
Ouanes S, Rabl M, Clark C, Kirschbaum C, Popp J. Persisting neuropsychiatric symptoms, Alzheimer's disease, and cerebrospinal fluid cortisol and dehydroepiandrosterone sulfate. Alzheimers Res Ther 2022; 14:190. [PMID: 36529757 PMCID: PMC9762003 DOI: 10.1186/s13195-022-01139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Neuropsychiatric symptoms are important treatment targets in the management of dementia and can be present at very early clinical stages of neurodegenerative diseases. Increased cortisol has been reported in Alzheimer's disease (AD) and has been associated with faster cognitive decline. Elevated cortisol output has been observed in relation to perceived stress, depression, and anxiety. Dehydroepiandrosterone sulfate (DHEAS) has known anti-glucocorticoid effects and may counter the effects of cortisol. OBJECTIVES We aimed to examine whether CSF cortisol and DHEAS levels were associated with (1) neuropsychiatric symptoms at baseline, (2) changes in neuropsychiatric symptoms over 3 years, and (3) whether these associations were related to or independent of AD pathology. METHODS One hundred and eighteen participants on a prospective study in a memory clinic setting, including patients with cognitive impairment (n = 78), i.e., mild cognitive impairment or mild dementia, and volunteers with normal cognition (n = 40), were included. Neuropsychiatric symptoms were assessed using the Neuropsychiatric Inventory Questionnaire (NPI-Q). CSF cortisol and DHEAS, as well as CSF AD biomarkers, were obtained at baseline. Neuropsychiatric symptoms were re-assessed at follow-up visits 18 and 36 months from baseline. We constructed linear regression models to examine the links between baseline neuropsychiatric symptoms, the presence of AD pathology as indicated by CSF biomarkers, and CSF cortisol and DHEAS. We used repeated-measures mixed ANCOVA models to examine the associations between the neuropsychiatric symptoms' changes over time, baseline CSF cortisol and DHEAS, and AD pathology. RESULTS Higher CSF cortisol was associated with higher NPI-Q severity scores at baseline after controlling for covariates including AD pathology status (B = 0.085 [0.027; 0.144], p = 0.027; r = 0.277). In particular, higher CSF cortisol was associated with higher baseline scores of depression/dysphoria, anxiety, and apathy/indifference. Elevated CSF cortisol was also associated with more marked increase in NPI-Q scores over time regardless of AD status (p = 0.036, η2 = 0.207), but this association was no longer significant after controlling for BMI and the use of psychotropic medications. CSF DHEAS was associated neither with NPI-Q scores at baseline nor with their change over time. Cortisol did not mediate the association between baseline NPI-Q and changes in clinical dementia rating sum of boxes over 36 months. CONCLUSION Higher CSF cortisol may reflect or contribute to more severe neuropsychiatric symptoms at baseline, as well as more pronounced worsening over 3 years, independently of the presence of AD pathology. Our findings also suggest that interventions targeting the HPA axis may be helpful to treat neuropsychiatric symptoms in patients with dementia.
Collapse
Affiliation(s)
- Sami Ouanes
- grid.8515.90000 0001 0423 4662Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland ,grid.413548.f0000 0004 0571 546XDepartment of Psychiatry, Hamad Medical Corporation, PO BOX 3050, Doha, Qatar
| | - Miriam Rabl
- grid.412004.30000 0004 0478 9977Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry, Minervastrasse 145, P.O. Box 341, 8032 Zurich, Switzerland
| | - Christopher Clark
- grid.412004.30000 0004 0478 9977Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry, Minervastrasse 145, P.O. Box 341, 8032 Zurich, Switzerland
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Biopsychology, Technische Universität Dresden, Andreas Schubert Bau, Dresden, Germany
| | - Julius Popp
- grid.8515.90000 0001 0423 4662Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland ,grid.412004.30000 0004 0478 9977Centre for Gerontopsychiatric Medicine, Department of Geriatric Psychiatry, University Hospital of Psychiatry, Minervastrasse 145, P.O. Box 341, 8032 Zurich, Switzerland
| |
Collapse
|
30
|
Tarawneh R, Kasper RS, Sanford J, Phuah C, Hassenstab J, Cruchaga C. Vascular endothelial-cadherin as a marker of endothelial injury in preclinical Alzheimer disease. Ann Clin Transl Neurol 2022; 9:1926-1940. [PMID: 36342663 PMCID: PMC9735377 DOI: 10.1002/acn3.51685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Endothelial dysfunction is an early and prevalent pathology in Alzheimer disease (AD). We here investigate the value of vascular endothelial-cadherin (VEC) as a cerebrospinal fluid (CSF) marker of endothelial injury in preclinical AD. METHODS Cognitively normal participants (Clinical Dementia Rating [CDR] 0) from the Knight Washington University-ADRC were included in this study (n = 700). Preclinical Alzheimer's Cognitive Composite (PACC) scores, CSF VEC, tau, p-tau181, Aβ42/Aβ40, neurofilament light-chain (NFL) levels, and magnetic resonance imaging (MRI) assessments of white matter injury (WMI) were obtained from all participants. A subset of participants underwent brain amyloid imaging using positron emission tomography (amyloid-PET) (n = 534). Linear regression examined associations of CSF VEC with PACC and individual cognitive scores in preclinical AD. Mediation analyses examined whether CSF VEC mediated effects of CSF amyloid and tau markers on cognition in preclinical AD. RESULTS CSF VEC levels significantly correlated with PACC and individual cognitive scores in participants with amyloid (A+T±N±; n = 558) or those with amyloid and tau pathologies (A+T+N±; n = 259), after adjusting for covariates. CSF VEC also correlated with CSF measures of amyloid, tau, and neurodegeneration and global amyloid burden on amyloid-PET scans in our cohort. Importantly, our findings suggest that CSF VEC mediates associations of CSF Aβ42/Aβ40, p-tau181, and global amyloid burden with cognitive outcomes in preclinical AD. INTERPRETATION Our results support the utility of CSF VEC as a marker of endothelial injury in AD and highlight the importance of endothelial injury as an early pathology that contributes to cognitive impairment in even the earliest preclinical stages.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Center for Memory and AgingUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Rachel S. Kasper
- Department of NeurologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Jessie Sanford
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
| | - Chia‐Ling Phuah
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
- Department of NeurologyWashington University in St LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of PsychologyWashington University in St LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St LouisSt. LouisMissouriUSA
- NeuroGenomics and Informatics CenterWashington University in St LouisMissouriUSA
| |
Collapse
|
31
|
Del Campo M, Peeters CFW, Johnson ECB, Vermunt L, Hok-A-Hin YS, van Nee M, Chen-Plotkin A, Irwin DJ, Hu WT, Lah JJ, Seyfried NT, Dammer EB, Herradon G, Meeter LH, van Swieten J, Alcolea D, Lleó A, Levey AI, Lemstra AW, Pijnenburg YAL, Visser PJ, Tijms BM, van der Flier WM, Teunissen CE. CSF proteome profiling across the Alzheimer's disease spectrum reflects the multifactorial nature of the disease and identifies specific biomarker panels. NATURE AGING 2022; 2:1040-1053. [PMID: 37118088 PMCID: PMC10292920 DOI: 10.1038/s43587-022-00300-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/28/2022] [Indexed: 04/30/2023]
Abstract
Development of disease-modifying therapies against Alzheimer's disease (AD) requires biomarkers reflecting the diverse pathological pathways specific for AD. We measured 665 proteins in 797 cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment with abnormal amyloid (MCI(Aβ+): n = 50), AD-dementia (n = 230), non-AD dementias (n = 322) and cognitively unimpaired controls (n = 195) using proximity ligation-based immunoassays. Here we identified >100 CSF proteins dysregulated in MCI(Aβ+) or AD compared to controls or non-AD dementias. Proteins dysregulated in MCI(Aβ+) were primarily related to protein catabolism, energy metabolism and oxidative stress, whereas those specifically dysregulated in AD dementia were related to cell remodeling, vascular function and immune system. Classification modeling unveiled biomarker panels discriminating clinical groups with high accuracies (area under the curve (AUC): 0.85-0.99), which were translated into custom multiplex assays and validated in external and independent cohorts (AUC: 0.8-0.99). Overall, this study provides novel pathophysiological leads delineating the multifactorial nature of AD and potential biomarker tools for diagnostic settings or clinical trials.
Collapse
Affiliation(s)
- Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain.
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
| | - Carel F W Peeters
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Mathematical & Statistical Methods group (Biometris), Wageningen University & Research, Wageningen, The Netherlands
| | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Mirrelijn van Nee
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - William T Hu
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - John van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel Alcolea
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alberto Lleó
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Pieter J Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Department of Epidemiology & Data Science, Amsterdam Public Health research institute, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Fernandes M, Manfredi N, Aluisantonio L, Franchini F, Chiaravalloti A, Izzi F, Di Santo S, Schillaci O, Mercuri NB, Placidi F, Liguori C. Cognitive functioning, cerebrospinal fluid Alzheimer's disease biomarkers and cerebral glucose metabolism in late-onset epilepsy of unknown aetiology: A prospective study. Eur J Neurosci 2022; 56:5384-5396. [PMID: 35678770 DOI: 10.1111/ejn.15734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Epilepsy is increasing, being more common in older adults, with more than 20% of late-onset cases with unknown aetiology (LOEU). Although epilepsy was associated with cognitive impairment, few studies evaluated the trajectories of cognitive decline in patients with LOEU. The present study aimed at assessing biomarkers of Alzheimer's disease (AD) in patients with LOEU and evaluating their cognitive performance for 12 months. For this study, 55 patients diagnosed with LOEU and 21 controls were included. Participants underwent cognitive evaluation and cerebrospinal fluid (CSF) biomarker analysis (ß-amyloid42 , tau proteins) before starting anti-seizure medication and then repeated the cognitive evaluation at the 12-month follow-up. A subgroup of LOEU patients and controls also performed 18 F-fluoro-2-deoxy-D-glucose positron emission tomography (18 F-FDG PET) before starting anti-seizure medication. At baseline, LOEU patients showed lower Mini-Mental State Examination (MMSE) score, worse cognitive performance in several domains, lower β-amyloid42 and higher tau proteins CSF levels than controls. Significantly reduced glucose consumption was observed in the right posterior cingulate cortex and left praecuneus areas in LOEU patients than controls, and this finding correlated with memory impairment. In the longitudinal analysis, a significant decrease in MMSE and an increase in verbal fluency scores were found in LOEU patients. These findings evidence that LOEU patients have a significant cognitive impairment, and alteration of cerebral glucose consumption and CSF AD biomarkers than controls. Moreover, they showed a progressive global cognitive decline at follow-up, although verbal fluency was preserved. Further studies are needed to better understand the pathophysiological aspects of LOEU and its association with AD.
Collapse
Affiliation(s)
- Mariana Fernandes
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Natalia Manfredi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Lavinia Aluisantonio
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Izzi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fabio Placidi
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Epilepsy Centre, Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
33
|
Neuropsychiatric symptoms in patients with possible vascular cognitive impairment, does sex matter? CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100152. [PMID: 36324391 PMCID: PMC9616441 DOI: 10.1016/j.cccb.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
Manifestations of neuropsychiatric symptoms in patients with VCI differ by sex. In women the presence of apathy was associated with higher risk of clinical progression. In men depression and aberrant motor behavior were associated with higher risk of progression. Management strategies of NPS could benefit from sex-specific approaches.
Background Neuropsychiatric symptoms (NPS) are common in patients with vascular cognitive impairment (VCI). We aimed to establish sex differences in the manifestation of NPS in memory clinic patients with possible VCI and identify which NPS are determinants of clinical progression in women and men separately. Methods We included 718 memory clinic patients (age 68 ± 8; 45% women) with cognitive complaints and vascular brain lesions on MRI (i.e. possible VCI). NPS were measured using the 12-item Neuropsychiatric Inventory. Clinical progression after two years (women 18%, men 14%) was defined as increase in CDR ≥1 or institutionalization (available n = 589 without advanced dementia at baseline). The association between NPS and clinical progression was assessed with Cox proportional hazard models stratified by sex, adjusted for age and clinical diagnosis and in a second model additionally for manifestations of vascular brain lesions. Results Men more often presented with agitation (29% versus 17%, p<.05) and irritability (58% versus 45%, p<.05), the other 10 NPS (delusions, hallucinations, depression, anxiety, euphoria, apathy, disinhibition, aberrant motor behavior, nighttime disturbances and appetite & eating abnormalities) did not differ between sexes. In women the presence of apathy (HR 2.1[1.1;4.3]) was associated with higher risk of clinical progression. In men the presence of depression (HR 2.7[1.4;5.1]) and aberrant motor behavior (HR 2.1[1.1;3.8]) were associated with increased risk of clinical progression. Conclusion Manifestations of NPS in patients with possible VCI differ by sex. Different NPS are associated with future clinical progression in men and women. Management strategies of NPS could benefit from sex-specific approaches.
Collapse
|
34
|
Hok-A-Hin YS, Dijkstra AA, Rábano A, Hoozemans JJ, Castillo L, Seelaar H, van Swieten JC, Pijnenburg YAL, Teunissen CE, Del Campo M. Apolipoprotein L1 is increased in frontotemporal lobar degeneration post-mortem brain but not in ante-mortem cerebrospinal fluid. Neurobiol Dis 2022; 172:105813. [PMID: 35820647 DOI: 10.1016/j.nbd.2022.105813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022] Open
Abstract
AIMS Frontotemporal Dementia (FTD) is caused by frontal-temporal lobar degeneration (FTLD), characterized mainly by brain protein aggregates of tau (FTLD-Tau) or TDP-43 (FTLD-TDP). The clinicopathological heterogeneity makes ante-mortem diagnosis of these pathological subtypes challenging. Our proteomics study showed increased Apolipoprotein L1 (APOL1) levels in CSF from FTD patients, which was prominently expressed in FTLD-Tau. We aimed to understand APOL1 expression in FTLD post-mortem brain tissue and to validate its potential as a CSF biomarker for FTD and its pathological subtypes. METHODS APOL1 levels were analyzed in the frontal cortex of FTLD (including FTLD-Tau and FTLD-TDP) and non-demented controls by immunohistochemistry (FTLD total = 18 (12 FTLD-Tau and 6 FTLD-TDP); controls = 9), western blot (WB), and a novel prototype ELISA (FTLD total = 44 (21 FTLD-Tau and 23 FTLD-TDP); controls = 9). The association of APOL1 immunoreactivity with phosphorylated Tau (pTau) and TDP-43 (pTDP-43) immunoreactivity was assessed. CSF APOL1 was analyzed in confirmed FTD patients (n = 27, including 12 FTLD-Tau and 15 FTLD-TDP) and controls (n = 15) using the same ELISA. RESULTS APOL1 levels were significantly increased in FTLD post-mortem tissue compared to controls as measured by immunohistochemistry, WB, and ELISA. However, no differences between the pathological subtypes were observed. APOL1 immunoreactivity was present in neuronal and glial cells but did not co-localize with pTau or pTDP-43. CSF APOL1 levels were comparable between FTD patients and controls and between pathological subtypes. CONCLUSION APOL1 is upregulated in FTLD pathology irrespective of the subtypes, indicating a role of this novel protein in FTD pathophysiology. The APOL1 levels detected in brain tissue were not mirrored in the CSF, limiting its potential as a specific FTD biofluid-based biomarker using our current immunoassay.
Collapse
Affiliation(s)
- Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands.
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Alberto Rábano
- CIEN Tissue Bank, Alzheimer's Centre Reina Sofía-CIEN Foundation, Madrid, Spain
| | - Jeroen J Hoozemans
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Lucía Castillo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Centre Amsterdam and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, VU University Medical Centers, the Netherlands; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo- CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
35
|
Polcher A, Wolfsgruber S, Peters O, Frölich L, Wiltfang J, Kornhuber J, Hüll M, Rüther E, Lewczuk P, Maier W, Jessen F, Wagner M. A Comparison of Operational Definitions for Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:1663-1678. [PMID: 35811516 PMCID: PMC9484125 DOI: 10.3233/jad-215548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Consideration of many tests from different cognitive domains in defining mild cognitive impairment (MCI) is clinical routine, but guidelines for a neuropsychological operationalization of MCI are lacking. Objective: Among different operational MCI criteria, to identify those which are best in predicting either conversion to dementia, or a biomarker profile indicative for Alzheimer’s disease (AD). Methods: Memory-clinic patients without dementia (N = 558; mean age = 66; up to 3 years of follow-up; n = 360 with baseline CSF biomarkers) were included in an observational study using most liberal criteria of cognitive impairment. Four operational definitions of MCI were retrospectively applied: 1) amnestic MCI (word list delayed recall), 2) CERAD total score, 3) comprehensive criteria and 4) base rate corrected CERAD. We compared their accuracy in predicting incident all-cause dementia or AD dementia within three years, or a concurrent CSF Aβ42/tau-ratio indicative of AD. Results: The four definitions overlapped considerably, classified 35–58% of the original sample as impaired and were associated with markedly increased PPVs regarding incident all-cause dementia (39–46% versus 26% of the original sample), AD dementia and AD biomarker positivity. The base-rate corrected MCI definition had the highest prognostic accuracy. Conclusion: he operational criteria examined seem suitable to specify MCI in memory clinic settings, as they identify subjects at high risk of clinical progression. Depending on the neuropsychological battery in use, one or several of these criteria could help to calibrate the clinical judgment of test results, reduce false-positive decisions, and define risk-enriched groups for clinical trials.
Collapse
Affiliation(s)
- Alexandra Polcher
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), University of Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Science Department, University of Aveiro, Aveiro, Portugal
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hüll
- Center for Geriatric Medicine and Gerontology, University of Freiburg, Germany
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), University of Göttingen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, and Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Biasłystok, and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Germany
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
36
|
Kazui H, Hashimoto M, Takeda S, Chiba Y, Goto T, Fuchino K. Evaluation of Patients With Cognitive Impairment Due to Suspected Idiopathic Normal-Pressure Hydrocephalus at Medical Centers for Dementia: A Nationwide Hospital-Based Survey in Japan. Front Neurol 2022; 13:810116. [PMID: 35693019 PMCID: PMC9184737 DOI: 10.3389/fneur.2022.810116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Treatment of idiopathic normal-pressure hydrocephalus (iNPH) requires collaboration between dementia specialists and neurosurgeons. The role of dementia specialists is to differentiate patients with iNPH from patients with other dementia diseases and to determine if other dementia diseases are comorbid with iNPH. We conducted a nationwide hospital-based questionnaire survey on iNPH in medical centers for dementia (MCDs). Methods We developed a questionnaire to assess how physicians in MCDs evaluate and treat patients with cognitive impairment due to suspected iNPH and the difficulties these physicians experience in the evaluation and treatment of patients. The questionnaire was sent to all 456 MCDs in Japan. Results Questionnaires from 279 MCDs were returned to us (response rate: 61.2%). Patients underwent cognitive tests, evaluation of the triad symptoms of iNPH, and morphological neuroimaging examinations in 96.8, 77.8, and 98.2% of the MCDs, respectively. Patients with suspected iNPH were referred to other hospitals (e.g., hospitals with neurosurgery departments) from 78.9% of MCDs, and cerebrospinal fluid (CSF) tap test was performed in 44 MCDs (15.8%). iNPH guidelines (iNPHGLs) and disproportionately enlarged subarachnoid space hydrocephalus (DESH), a specific morphological finding, were used and known in 39.4% and 38% of MCDs, respectively. Logistic regression analysis with “Refer the patient to other hospitals (e.g., hospitals with neurosurgery departments) when iNPH is suspected.” as the response variable and (a) using the iNPHGLs, (b) knowledge of DESH, (c) confidence regarding DESH, (d) difficulty with performing brain magnetic resonance imaging, (e) knowledge of the methods of CSF tap test, (f) absence of physician who can perform lumbar puncture, and (g) experience of being told by neurosurgeons that referred patients are not indicated for shunt surgery as explanatory variables revealed that the last two factors were significant predictors of patient referral from MCDs to other hospitals. Conclusion Sufficient differential or comorbid diagnosis using CSF tap test was performed in a few MCDs. Medical care for patients with iNPH in MCDs may be improved by having dementia specialists perform CSF tap tests and share the eligibility criteria for shunt surgery with neurosurgeons.
Collapse
Affiliation(s)
- Hiroaki Kazui
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Mamoru Hashimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | | | | | | | | |
Collapse
|
37
|
Sun L, Guo C, Song Y, Sheng J, Xiao S. Blood BMP6 Associated with Cognitive Performance and Alzheimer’s Disease Diagnosis: A Longitudinal Study of Elders. J Alzheimers Dis 2022; 88:641-651. [DOI: 10.3233/jad-220279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Bone morphogenetic protein (BMP) plays important roles in the pathology of Alzheimer’s disease (AD). Objective: We sought blood BMP6 involved in the processes underlying cognitive decline and detected them in association with AD. Methods: A total of 309 participants in Shanghai Mental Health Center (SMHC) and 547 participants in Alzheimer’s disease Neuroimaging Initiative (ADNI) cohort were included. Blood BMP6 and cognitive functions were measured in all subjects of both cohorts at baseline, and in 482 subjects of ADNI cohort after one year. A total of 300 subjects in ADNI cohort were detected cerebrospinal fluid (CSF) tau biomarker, and 244 received 1-year follow-up. Results: AD patients had lower levels of blood BMP6 compared to normal controls, and BMP6 was positively associated with cognitive functions. Longitudinal BMP6 combing with APOE genotype could distinguish probable AD from normal controls. The influence of blood BMP6 on cognition was modulated by tau pathology. Conclusion: Blood BMP6 was associated with cognitive performance and identified as a potential predictor for probable AD.
Collapse
Affiliation(s)
- Lin Sun
- Alzheimer’s Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Chunni Guo
- Department of Neurology, First People’s Hospital of Shanghai, Shanghai, P.R. China
| | - Yan Song
- Department of Neurology, First People’s Hospital of Shanghai, Shanghai, P.R. China
| | - Jianhua Sheng
- Alzheimer’s Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Shifu Xiao
- Alzheimer’s Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | |
Collapse
|
38
|
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79:101654. [PMID: 35636691 DOI: 10.1016/j.arr.2022.101654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and cases are rising worldwide. The effort to fight this disease is hampered by a lack of disease-modifying treatments and the absence of an early, accurate diagnostic tool. Neuropathology begins years or decades before symptoms occur and, upon onset of symptoms, diagnosis can take a year or more. Such delays postpone treatment and make research into the early stages of the disease difficult. Ideally, clinicians require a minimally invasive test that can detect AD in its early stages, before cognitive symptoms occur. Advances in proteomic technologies have facilitated the study of promising biomarkers of AD. Over the last two years (2019-2021) studies have identified and validated many species which can be measured in cerebrospinal fluid (CSF), plasma, or in both fluids, and which have a high predictive value for AD. We herein discuss proteins which have been highlighted as promising biomarkers of AD in the last two years, and consider implications for future research within the research framework of the amyloid (A), tau (T), neurodegeneration (N) scoring system. We review recently identified species of amyloid and tau which may improve diagnosis when used in combination with current measures such as amyloid-beta-42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau). In addition, several proteins have been identified as likely proxies for neurodegeneration, including neurofilament light (NfL), synaptosomal-associated protein 25 (SNAP-25) and neurogranin (NRGN). Finally, proteins originating from diverse processes such as neuroinflammation, lipid transport and mitochondrial dysfunction could aid in both AD diagnosis and patient stratification.
Collapse
|
39
|
Fernandes M, Mari L, Chiaravalloti A, Paoli B, Nuccetelli M, Izzi F, Giambrone MP, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Placidi F, Liguori C. 18F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J Neurol 2022; 269:5356-5367. [PMID: 35608659 PMCID: PMC9468130 DOI: 10.1007/s00415-022-11182-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Introduction Dysregulation of cerebral glucose consumption, alterations in cerebrospinal fluid (CSF) biomarkers, and cognitive impairment have been reported in patients with obstructive sleep apnoea (OSA). On these bases, OSA has been considered a risk factor for Alzheimer’s disease (AD). This study aimed to measure cognitive performance, CSF biomarkers, and cerebral glucose consumption in OSA patients and to evaluate the effects of continuous positive airway pressure (CPAP) treatment on these biomarkers over a 12-month period. Methods Thirty-four OSA patients and 34 controls underwent 18F-fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET), cognitive evaluation, and CSF analysis. A subgroup of 12 OSA patients treated with beneficial CPAP and performing the 12-month follow-up was included in the longitudinal analysis, and cognitive evaluation and 18F-FDG PET were repeated. Results Significantly reduced glucose consumption was observed in the bilateral praecuneus, posterior cingulate cortex, and frontal areas in OSA patients than controls. At baseline, OSA patients also showed lower β-amyloid42 and higher phosphorylated-tau CSF levels than controls. Increased total tau and phosphorylated tau levels correlated with a reduction in brain glucose consumption in a cluster of different brain areas. In the longitudinal analysis, OSA patients showed an improvement in cognition and a global increase in cerebral 18F-FDG uptake. Conclusions Cognitive impairment, reduced cerebral glucose consumption, and alterations in CSF biomarkers were observed in OSA patients, which may reinforce the hypothesis of AD neurodegenerative processes triggered by OSA. Notably, cognition and brain glucose consumption improved after beneficial CPAP treatment. Further studies are needed to evaluate the long-term effects of CPAP treatment on these AD biomarkers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Luisa Mari
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Barbara Paoli
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | | | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.,IRCSS Santa Lucia Foundation, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy.,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome "Tor Vergata", Rome, Italy. .,Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
40
|
Fernandes M, Chiaravalloti A, Manfredi N, Placidi F, Nuccetelli M, Izzi F, Camedda R, Bernardini S, Schillaci O, Mercuri NB, Liguori C. Nocturnal Hypoxia and Sleep Fragmentation May Drive Neurodegenerative Processes: The Compared Effects of Obstructive Sleep Apnea Syndrome and Periodic Limb Movement Disorder on Alzheimer’s Disease Biomarkers. J Alzheimers Dis 2022; 88:127-139. [DOI: 10.3233/jad-215734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Sleep disorders may cause dysregulation of cerebral glucose metabolism and synaptic functions, as well as alterations in cerebrospinal fluid (CSF) biomarker levels. Objective: This study aimed at measuring sleep, CSF Alzheimer’s disease (AD) biomarkers, and cerebral glucose consumption in patients with obstructive sleep apnea syndrome (OSAS) and patients with periodic limb movement disorder (PLMD), compared to controls. Methods: OSAS and PLMD patients underwent 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET), polysomnographic monitoring, and lumbar puncture to quantify CSF levels of amyloid-β42 (Aβ42), total tau, and phosphorylated tau. All patients were compared to controls, who were not affected by sleep or neurodegenerative disorders. Results: Twenty OSAS patients, 12 PLMD patients, and 15 controls were included. Sleep quality and sleep structure were altered in both OSAS and PLMD patients when compared to controls. OSAS and PLMD patients showed lower CSF Aβ42 levels than controls. OSAS patients showed a significant increase in glucose uptake in a wide cluster of temporal-frontal areas and cerebellum, as well as a reduced glucose consumption in temporal-parietal regions compared to controls. PLMD patients showed increased brain glucose consumption in the left parahippocampal gyrus and left caudate than controls. Conclusion: Sleep dysregulation and nocturnal hypoxia present in OSAS patients, more than sleep fragmentation in PLMD patients, were associated with the alteration in CSF and 18F-FDG PET AD biomarkers, namely reduction of CSF Aβ42 levels and cerebral glucose metabolism dysregulation mainly in temporal areas, thus highlighting the possible role of sleep disorders in driving neurodegenerative processes typical of AD pathology.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Natalia Manfredi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
- IRCSS Santa Lucia Foundation, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Sleep Medicine Centre, University of Rome “Tor Vergata”, Rome, Italy
- Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
41
|
Lagarde J, Olivieri P, Tonietto M, Tissot C, Rivals I, Gervais P, Caillé F, Moussion M, Bottlaender M, Sarazin M. Tau-PET imaging predicts cognitive decline and brain atrophy progression in early Alzheimer's disease. J Neurol Neurosurg Psychiatry 2022; 93:459-467. [PMID: 35228270 DOI: 10.1136/jnnp-2021-328623] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore whether regional tau binding measured at baseline is associated with the rapidity of Alzheimer's disease (AD) progression over 2 years, as assessed by the decline in specified cognitive domains, and the progression of regional brain atrophy, in comparison with amyloid-positron emission tomography (PET), MRI and cerebrospinal fluid (CSF) biomarkers. METHODS Thirty-six patients with AD (positive CSF biomarkers and amyloid-PET) and 15 controls underwent a complete neuropsychological assessment, 3T brain MRI, [11C]-PiB and [18F]-flortaucipir PET imaging, and were monitored annually over 2 years, with a second brain MRI after 2 years. We used mixed effects models to explore the relations between tau-PET, amyloid-PET, CSF biomarkers and MRI at baseline and cognitive decline and the progression of brain atrophy over 2 years in patients with AD. RESULTS Baseline tau-PET was strongly associated with the subsequent cognitive decline in regions that are usually associated with each cognitive domain. No significant relationship was observed between the cognitive decline and initial amyloid load, regional cortical atrophy or CSF biomarkers. Baseline tau tracer binding in the superior temporal gyrus was associated with subsequent atrophy in an inferomedial temporal volume of interest, as was the voxelwise tau tracer binding with subsequent cortical atrophy in the superior temporal, parietal and frontal association cortices. CONCLUSIONS These results suggest that tau tracer binding is predictive of cognitive decline in AD in domain-specific brain areas, which provides important insights into the interaction between tau burden and neurodegeneration, and is of the utmost importance to develop new prognostic markers that will help improve the design of therapeutic trials.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France .,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Matteo Tonietto
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Cecile Tissot
- McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, INSERM, UMRS 1158 Neurophysiologie Respiratoire Expérimentale et Clinique, 10 rue Vauquelin, Paris, France
| | - Philippe Gervais
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| | - Martin Moussion
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Centre d'évaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France.,Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif sur Yvette, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.,Université de Paris, Paris, France.,Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, Orsay, France
| |
Collapse
|
42
|
Florean I, Penolazzi B, Menichelli A, Pastore M, Cattaruzza T, Mazzon G, Manganotti P. Using the ATN system as a guide for the neuropsychological assessment of Alzheimer's disease. J Clin Exp Neuropsychol 2022; 43:926-943. [PMID: 35166171 DOI: 10.1080/13803395.2022.2036327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Many studies have attempted to determine whether Alzheimer's disease (AD) in-vivo biomarkers can predict neuropsychological performance since pathophysiological changes precede cognitive changes by several years. Nonetheless, neuropsychological measures can also detect cognitive deterioration in cognitively normal individuals with AD-positive biomarkers. Recent studies have investigated whether cognitive measures can be used as a proxy for biomarkers. This is a crucial issue since biomarker analysis is expensive, invasive, and not yet widespread in clinical practice. However, these studies have so far considered only one or two classes of AD biomarkers. Here, we aim at preliminarily evaluating whether and which neuropsychological measures can discriminate individuals that have been classified according to the full scheme of biomarkers known as ATN system. This scheme groups biomarkers as a function of the three main AD-related pathologic processes they measure (i.e., β-amyloidosis, tauopathy, and neurodegeneration) to provide an unbiased and descriptive definition of the Alzheimer's continuum. METHOD Biomarkers and neuropsychological data from 78 patients (70.01 ± 9.15 years; 38 females) with suspected cognitive decline were extracted from a medical database. Participants' biomarker profiles were classified into the following ATN categories: normal AD biomarkers; Alzheimer's continuum; non-AD pathologic change. Data were analyzed using a Bayesian approach, to guarantee reliable result interpretation of data stemming from small samples. RESULTS The discrimination ability of each neuropsychological measure varied depending on the pairs of ATN categories compared. The best-discriminating predictor in the Alzheimer's continuum vs. normal biomarkers comparison was the figure naming ability. In contrast, in the Alzheimer's continuum vs. non-AD pathologic change comparison the best predictor was the wordlist forgetting rate. CONCLUSIONS Although the study was exploratory in nature, the proposed methodological approach may have the potential to identify the best neuropsychological measures for estimating AD neuropathological changes, leading to a more biologically informed use of neuropsychological assessment.
Collapse
Affiliation(s)
- Irene Florean
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Alina Menichelli
- Rehabilitation Unit, Department of Medicine, Surgery and Health Sciences, Maggiore City Hospital Asugi, Trieste, Italy
| | - Massimiliano Pastore
- Department of Developmental and Social Psychology, University of Padua, Padua, Italy
| | - Tatiana Cattaruzza
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital Asugi, University of Trieste, Trieste, Italy
| | - Giulia Mazzon
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital Asugi, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital Asugi, University of Trieste, Trieste, Italy
| |
Collapse
|
43
|
Richter N, David LS, Grothe MJ, Teipel S, Dietlein M, Tittgemeyer M, Neumaier B, Fink GR, Onur OA, Kukolja J. Age and Anterior Basal Forebrain Volume Predict the Cholinergic Deficit in Patients with Mild Cognitive Impairment due to Alzheimer’s Disease. J Alzheimers Dis 2022; 86:425-440. [DOI: 10.3233/jad-210261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Early and severe neuronal loss in the cholinergic basal forebrain is observed in Alzheimer’s disease (AD). To date, cholinomimetics play a central role in the symptomatic treatment of AD dementia. Although basic research indicates that a cholinergic deficit is present in AD before dementia, the efficacy of cholinomimetics in mild cognitive impairment (MCI) remains controversial. Predictors of cholinergic impairment could guide individualized therapy. Objective: To investigate if the extent of the cholinergic deficit, measured using positron emission tomography (PET) and the tracer 11C-N-methyl-4-piperidyl acetate (MP4A), could be predicted from the volume of cholinergic basal forebrain nuclei in non-demented AD patients. Methods: Seventeen patients with a high likelihood of MCI due to AD and 18 age-matched cognitively healthy adults underwent MRI-scanning. Basal forebrain volume was assessed using voxel-based morphometry and a cytoarchitectonic atlas of cholinergic nuclei. Cortical acetylcholinesterase (AChE) activity was measured using MP4A-PET. Results: Cortical AChE activity and nucleus basalis of Meynert (Ch4 area) volume were significantly decreased in MCI. The extent of the cholinergic deficit varied considerably across patients. Greater volumes of anterior basal forebrain nuclei (Ch1/2 area) and younger age (Spearman’s rho (17) = –0.596, 95% -CI [–0.905, –0.119] and 0.593, 95% -CI [0.092, 0.863])) were associated with a greater cholinergic deficit. Conclusion: Data suggest that less atrophy of the Ch1/2 area and younger age are associated with a more significant cholinergic deficit in MCI due to AD. Further investigations are warranted to determine if the individual response to cholinomimetics can be inferred from these measures.
Collapse
Affiliation(s)
- Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
| | - Lara-Sophia David
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Movement Disorders Group, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Markus Dietlein
- Department of Nuclear Medicine, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
| | - Bernd Neumaier
- Max-Planck-Institute for Metabolism Research, Cologne, Cologne, Germany
- Nuclear Chemistry, Institute of Neuroscience and Medicine (INM-5), Research Center Jülich, Jülich, Germany
- Institute for Radiochemistry and Experimental Molecular Imaging, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Juraj Kukolja
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
44
|
Poos JM, van den Berg E, Visch-Brink E, Eikelboom WS, Franzen S, van Hemmen J, Pijnenburg YAL, Satoer D, Dopper EGP, van Swieten JC, Papma JM, Seelaar H, Jiskoot LC. Exploring Abstract Semantic Associations in the Frontotemporal Dementia Spectrum in a Dutch Population. Arch Clin Neuropsychol 2022; 37:104-116. [PMID: 33856423 PMCID: PMC8763124 DOI: 10.1093/arclin/acab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the differential ability of the "Test Relaties Abstracte Concepten" (TRACE), a Dutch test for abstract semantic knowledge, in frontotemporal dementia (FTD). METHODS The TRACE was administered in patients with behavioral variant FTD (bvFTD; n = 16), nonfluent variant (nfvPPA; n = 10), logopenic variant (lvPPA; n = 10), and semantic variant primary progressive aphasia (svPPA; n = 9), and controls (n = 59). We examined group differences, performed correlational analyses with other neuropsychological tests and investigated discriminative ability. We compared the TRACE with a semantic association test for concrete stimuli (SAT). RESULTS All patient groups, except nfvPPA, performed worse on the TRACE than controls (p < .01). svPPA patients performed worse than the other patient groups (p < .05). The TRACE discriminated well between patient groups, except nfvPPA, versus controls (all p < .01) and between svPPA versus other patient groups with high sensitivity (75-100%) and specificity (86%-92%). In bvFTD and nfvPPA the TRACE correlated with language tests (ρ > 0.6), whereas in svPPA the concrete task correlated (ρ ≥ 0.75) with language tests. Patients with bvFTD, nfvPPA and lvPPA performed lower on the TRACE than the SAT (p < .05), whereas patients with svPPA were equally impaired on both tasks (p = .2). DISCUSSION We demonstrated impaired abstract semantic knowledge in patients with bvFTD, lvPPA, and svPPA, but not nfvPPA, with svPPA patients performing worse than the other subtypes. The TRACE was a good classifier between each patient group versus controls and between svPPA versus other patient groups. This highlights the value of incorporating semantic tests with abstract stimuli into standard neuropsychological assessment for early differential diagnosis of FTD subtypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - L C Jiskoot
- Corresponding author at: Dr. Molewaterplein 40, Room: Nf-331, 3015 GD Rotterdam, the Netherlands. Tel.: 0031650031894. E-mail address:
| |
Collapse
|
45
|
Differential associations between neocortical tau pathology and blood flow with cognitive deficits in early-onset vs late-onset Alzheimer's disease. Eur J Nucl Med Mol Imaging 2022; 49:1951-1963. [PMID: 34997294 PMCID: PMC9016024 DOI: 10.1007/s00259-021-05669-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022]
Abstract
Purpose Early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD) differ in neuropathological burden and type of cognitive deficits. Assessing tau pathology and relative cerebral blood flow (rCBF) measured with [18F]flortaucipir PET in relation to cognition may help explain these differences between EOAD and LOAD. Methods Seventy-nine amyloid-positive individuals with a clinical diagnosis of AD (EOAD: n = 35, age-at-PET = 59 ± 5, MMSE = 23 ± 4; LOAD: n = 44, age-at-PET = 71 ± 5, MMSE = 23 ± 4) underwent a 130-min dynamic [18F]flortaucipir PET scan and extensive neuropsychological assessment. We extracted binding potentials (BPND) and R1 (proxy of rCBF) from parametric images using receptor parametric mapping, in medial and lateral temporal, parietal, occipital, and frontal regions-of-interest and used nine neuropsychological tests covering memory, attention, language, and executive functioning. We first examined differences between EOAD and LOAD in BPND or R1 using ANOVA (region-of-interest analysis) and voxel-wise contrasts. Next, we performed linear regression models to test for potential interaction effects between age-at-onset and BPND/R1 on cognition. Results Both region-of-interest and voxel-wise contrasts showed higher [18F]flortaucipir BPND values across all neocortical regions in EOAD. By contrast, LOAD patients had lower R1 values (indicative of more reduced rCBF) in medial temporal regions. For both tau and flow in lateral temporal, and occipitoparietal regions, associations with cognitive impairment were stronger in EOAD than in LOAD (EOAD BPND − 0.76 ≤ stβ ≤ − 0.48 vs LOAD − 0.18 ≤ stβ ≤ − 0.02; EOAD R1 0.37 ≤ stβ ≤ 0.84 vs LOAD − 0.25 ≤ stβ ≤ 0.16). Conclusions Compared to LOAD, the degree of lateral temporal and occipitoparietal tau pathology and relative cerebral blood-flow is more strongly associated with cognition in EOAD. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05669-6.
Collapse
|
46
|
Boomsma JMF, Exalto LG, Barkhof F, Leeuwis AE, Prins ND, Scheltens P, Teunissen CE, Weinstein HC, Biessels GJ, van der Flier WM, On-behalf-of-the-TRACE-VCI-study-group. Vascular Cognitive Impairment and cognitive decline; a longitudinal study comparing different types of vascular brain injury - The TRACE-VCI study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100141. [PMID: 36324410 PMCID: PMC9616348 DOI: 10.1016/j.cccb.2022.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
Memory clinic patients with vascular cognitive impairment show a diverse population. Cognitive decline over time was shown for all types of vascular brain injury. Little differences were found in cognitive trajectories depending on type of vascular brain injury.
Background Little is known about the trajectories of cognitive decline in relation to different types of vascular brain injury in patients presenting at a memory clinic with Vascular Cognitive Impairment (VCI). Methods We included 472 memory clinic patients (age 68 (±8.2) years, 44% female, MMSE 25.9 (±2.8), 210 (44.5%) dementia) from the prospective TRACE-VCI cohort study with possible VCI, defined as cognitive complaints and vascular brain injury on MRI and at least 1 follow-up cognitive assessment (follow-up time 2.5 (±1.4) years, n = 1172 assessments). Types of vascular brain injury considered lacune(s) (≥1; n = 108 patients (23%)), non-lacunar infarct(s) (≥1; n = 54 (11%)), white matter hyperintensities (WMH) (none/mild versus moderate/severe (n = 211 patients (45%)) and microbleed(s) (≥1; n = 202 patients (43%)). We assessed cognitive functioning at baseline and follow-up, including the Rey Auditory Verbal Learning Test (RAVLT), Trail Making Test (TMT) A and B, category naming task and MMSE. The association of different types of vascular brain injury with cognitive decline was evaluated with linear mixed models, including one type of vascular brain injury (dichotomized), time and vascular brain injury*time, adjusted for sex, age, dementia status (yes/no), education (Verhage scale) and medial temporal lobe atrophy (MTA) score (dichotomized as ≥ 1.5). Results Across the population, performance declined over time on all tests. Linear mixed models showed that lacune(s) were associated with worse baseline TMTA (Beta(SE)) (8.3 (3.8), p = .03) and TMTB (25.6 (10.3), p = .01), albeit with a slower rate of decline on MMSE, RAVLT and category naming. By contrast, patients with non-lacunar infarct(s) showed a steeper rate of decline on TMTB (29.6 (7.7), p = .00), mainly attributable to patients with dementia (62.9 (15.5), p = .00). Conclusion Although different types of vascular brain injury have different etiologies and different patterns, they show little differences in cognitive trajectories depending on type of vascular brain injury.
Collapse
|
47
|
Liguori C, Stefani A, Fernandes M, Cerroni R, Mercuri NB, Pierantozzi M. Biomarkers of Cerebral Glucose Metabolism and Neurodegeneration in Parkinson's Disease: A Cerebrospinal Fluid-Based Study. JOURNAL OF PARKINSON'S DISEASE 2021; 12:537-544. [PMID: 34864690 DOI: 10.3233/jpd-212936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several biomarkers have been evaluated in Parkinson's disease (PD); cerebrospinal fluid (CSF) levels of lactate may reflect cerebral metabolism function and CSF amyloid-β42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) concentrations may detect an underlying neurodegenerative process. OBJECTIVE CSF levels of lactate, Aβ42, t-tau, and p-tau were measured in patients with mild to moderate PD. CSF levels of dopamine (DA) and its metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) were also assessed, exploring their relations with the other CSF biomarkers. METHODS 101 drug-naive PD patients and 60 controls were included. Participants underwent clinical assessments and CSF biomarker analysis. Patients were divided into subgroups according to their Hoehn & Yahr stage (PD-1, PD-2, PD-3). RESULTS PD patients showed higher lactate levels (M = 1.91; p = 0.03) and lower Aβ42 (M = 595; p < 0.001) and DA levels (M = 0.32; p = 0.04) than controls (Mlactate = 1.72; MAβ42 = 837; MDA = 0.50), while no significant differences were found in t-tau, p-tau and DOPAC concentrations. Considering the subgroup analysis, PD-3 group had higher lactate (M = 2.12) and t-tau levels (M = 333) than both PD-1 (Mlactate = 1.75, p = 0.006; Mt - tau = 176, p = 0.008) and PD-2 groups (Mlactate = 1.91, p = 0.01; Mt - tau = 176, p = 0.03), as well as the controls (Mlactate = 1.72, p = 0.04; Mt - tau = 205, p = 0.04). PD-2 group showed higher lactate levels than PD-1 group (p = 0.04) and controls (p = 0.03). Finally, CSF lactate levels negatively correlated with DA (r = -0.42) and positively with t-tau CSF levels (r = 0.33). CONCLUSION This CSF-based study shows that lactate levels in PD correlated with both clinical disease progression and neurodegeneration biomarkers, such as tau proteins and DA. Further studies should explore the clinical potential of measuring CSF biomarkers for better understanding the role of brain energy metabolism in PD, for research and therapeutic options.
Collapse
Affiliation(s)
- Claudio Liguori
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Alessandro Stefani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Mariana Fernandes
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Rocco Cerroni
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| |
Collapse
|
48
|
Eikelboom WS, van den Berg E, Singleton EH, Baart SJ, Coesmans M, Leeuwis AE, Teunissen CE, van Berckel BNM, Pijnenburg YAL, Scheltens P, van der Flier WM, Ossenkoppele R, Papma JM. Neuropsychiatric and Cognitive Symptoms Across the Alzheimer Disease Clinical Spectrum: Cross-sectional and Longitudinal Associations. Neurology 2021; 97:e1276-e1287. [PMID: 34413181 PMCID: PMC8480405 DOI: 10.1212/wnl.0000000000012598] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/29/2021] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives To investigate the prevalence and trajectories of neuropsychiatric symptoms (NPS) in relation to cognitive functioning in a cohort of β-amyloid–positive (A+) individuals across the Alzheimer disease (AD) clinical spectrum. Methods In this single-center observational study, we included all individuals who visited the Alzheimer Center Amsterdam and had a clinical diagnosis of subjective cognitive decline (SCD), mild cognitive impairment (MCI), or probable AD dementia and were A+. We measured NPS with the Neuropsychiatric Inventory (NPI), examining total scores and the presence of specific NPI domains. Cognition was assessed across 5 cognitive domains and with the Mini-Mental State Examination (MMSE). We examined trajectories including model-based trends for NPS and cognitive functioning over time. We used linear mixed models to relate baseline NPI scores to cognitive functioning at baseline (whole-sample) and longitudinal time points (subsample n = 520, mean 1.8 [SD 0.7] years follow-up). Results We included 1,524 A+ individuals from the Amsterdam Dementia Cohort with A+ SCD (n = 113), A+ MCI (n = 321), or A+ AD dementia (n = 1,090). NPS were prevalent across all clinical AD stages (≥1 NPS 81.4% in SCD, 81.2% in MCI, 88.7% in dementia; ≥1 clinically relevant NPS 54.0% in SCD, 50.5% in MCI, 66.0% in dementia). Cognitive functioning showed a uniform gradual decline; while in contrast, large intraindividual heterogeneity of NPS was observed over time across all AD groups. At baseline, we found associations between NPS and cognition in dementia that were most pronounced for NPI total scores and MMSE (range β = −0.18 to −0.11, false discovery rate [FDR]–adjusted p < 0.05), while there were no cross-sectional relationships in SCD and MCI (range β = −0.32 to 0.36, all FDR-adjusted p > 0.05). There were no associations between baseline NPS and cognitive functioning over time in any clinical stage (range β = −0.13 to 0.44, all FDR-adjusted p > 0.05). Discussion NPS and cognitive symptoms are both prevalent across the AD clinical spectrum, but show a different evolution during the course of the disease.
Collapse
Affiliation(s)
- Willem S Eikelboom
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Esther van den Berg
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Ellen H Singleton
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Sara J Baart
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Michiel Coesmans
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Annebet E Leeuwis
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Charlotte E Teunissen
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Bart N M van Berckel
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Yolande A L Pijnenburg
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Philip Scheltens
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Wiesje M van der Flier
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Rik Ossenkoppele
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden
| | - Janne M Papma
- From the Departments of Neurology (W.S.E., E.v.d.B., J.M.P.), Biostatistics (S.J.B.), and Psychiatry (M.C.), Erasmus MC, University Medical Center, Rotterdam; Department of Neurology, Alzheimer Center Amsterdam (E.H.S., A.E.L., Y.A.L.P., P.S., W.M.v.d.F., R.O.), Neurochemistry Laboratory, Department of Clinical Chemistry (C.E.T.), and Department of Radiology and Nuclear Medicine (B.N.M.v.B.), Amsterdam University Medical Centers, the Netherlands; and Clinical Memory Research Unit (R.O.), Lund University, Malmö, Sweden.
| |
Collapse
|
49
|
Gouw AA, Hillebrand A, Schoonhoven DN, Demuru M, Ris P, Scheltens P, Stam CJ. Routine magnetoencephalography in memory clinic patients: A machine learning approach. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12227. [PMID: 34568539 PMCID: PMC8449227 DOI: 10.1002/dad2.12227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION We report the routine application of magnetoencephalography (MEG) in a memory clinic, and its value in the discrimination of patients with Alzheimer's disease (AD) dementia from controls. METHODS Three hundred sixty-six patients visiting our memory clinic underwent MEG recording. Source-reconstructed MEG data were visually assessed and evaluated in the context of clinical findings and other diagnostic markers. We analyzed the diagnostic accuracy of MEG spectral measures in the discrimination of individual AD dementia patients (n = 40) from subjective cognitive decline (SCD) patients (n = 40) using random forest models. RESULTS Best discrimination was obtained using a combination of relative theta and delta power (accuracy 0.846, sensitivity 0.855, specificity 0.837). The results were validated in an independent cohort. Hippocampal and thalamic regions, besides temporal-occipital lobes, contributed considerably to the model. DISCUSSION MEG has been implemented successfully in the workup of memory clinic patients and has value in diagnostic decision-making.
Collapse
Affiliation(s)
- Alida A. Gouw
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Deborah N. Schoonhoven
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Matteo Demuru
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Peterjan Ris
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, VU University medical center, Amsterdam UMCAmsterdamThe Netherlands
| | - Cornelis J. Stam
- Department of Clinical Neurophysiology and MEG CenterNeuroscience Campus AmsterdamVU University Medical CenterAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
50
|
Karami A, Darreh-Shori T, Schultzberg M, Eriksdotter M. CSF and Plasma Cholinergic Markers in Patients With Cognitive Impairment. Front Aging Neurosci 2021; 13:704583. [PMID: 34512307 PMCID: PMC8426513 DOI: 10.3389/fnagi.2021.704583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the most prevalent form of dementia with symptoms of deteriorating cognitive functions and memory loss, partially as a result of a decrease in cholinergic neurotransmission. The disease is incurable and treatment with cholinesterase inhibitors (ChEIs) is symptomatic. Choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (ACh), has been proven recently to be present in both cerebrospinal fluid (CSF) and plasma. As ChAT plays a role in regulating the extracellular ACh levels, it may have an impact on prognosis and cognitive performance in AD patients. Objectives To measure ChAT activity and its protein concentration in CSF and plasma from patients with AD, mild cognitive impairment (MCI), or Subjective cognitive impairment (SCI). Methods Plasma and CSF samples were obtained from 21 AD, 32 MCI, and 30 SCI patients. The activity and protein levels of ChAT and acetylcholinesterase (AChE), the enzyme catalyzing the hydrolysis of ACh, were analyzed using an integrated activity and protein concentration ELISA-like assay. A Cholinergic Index was calculated as the ratio of ChAT to AChE activities in CSF. The data were analyzed in relation to dementia biomarkers and cognitive performance of the patients. Results The CSF ChAT activity was significantly higher (55–67%) in MCI patients compared to AD and SCI cases. The CSF Cholinergic Index was 41 and 22% lower in AD patients than in MCI and SCI subjects, respectively. This index correlated positively with the Aβ42/p-tau ratio in CSF in SCI but negatively with that in AD and MCI. The ChAT activity and protein levels in plasma exhibited significant differences with the pattern of AD>>MCI>SCI. Conclusion This is the first study investigating soluble levels of the key cholinergic enzyme, ChAT, in both plasma and CSF of individuals at different clinical stages of dementia. Although further validation is needed, the overall pattern of the results suggests that in the continuum of AD, the cholinergic signaling exhibits an inverse U-shape dynamic of changes in the brain that greatly differs from the changes observed in the plasma compartment.
Collapse
Affiliation(s)
- Azadeh Karami
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden
| | - Marianne Schultzberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Solna, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Campus Flemingsberg, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|