1
|
Morimoto H, Kanatsu-Shinohara M, Shinohara T. WIN18,446 enhances spermatogonial stem cell homing and fertility after germ cell transplantation by increasing blood-testis barrier permeability. J Reprod Dev 2023; 69:347-355. [PMID: 37899250 PMCID: PMC10721852 DOI: 10.1262/jrd.2023-074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Tokyo 100-0004, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Tamayo SO, Cupitra NI, Narvaez-Sanchez R. Vascular adaptation to cancer beyond angiogenesis: The role of PTEN. Microvasc Res 2023; 147:104492. [PMID: 36709859 DOI: 10.1016/j.mvr.2023.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.
Collapse
Affiliation(s)
- Sofia Ortiz Tamayo
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
3
|
Tan Y, Zhang X, Cheang WS. Isoflavones daidzin and daidzein inhibit lipopolysaccharide-induced inflammation in RAW264.7 macrophages. Chin Med 2022; 17:95. [PMID: 35974408 PMCID: PMC9380348 DOI: 10.1186/s13020-022-00653-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background Inflammation contributes to various diseases and soybeans and legumes are shown to reduce inflammation. However, the bioactive ingredients involved and mechanisms are not completely known. We hypothesized that soy isoflavones daidzin and daidzein exhibit anti-inflammatory effect in lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cell model and that activation mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways may mediate the effect. Methods Cell viability and nitric oxide (NO) level were determined by 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Griess reagent respectively. ELISA kits and Western blotting respectively assessed the generations of pro-inflammatory cytokines and protein expressions of signaling molecules. p65 nuclear translocation was determined by immunofluorescence assay. Results The in vitro results showed that both isoflavones did not affect cell viability at the concentrations being tested and significantly reduced levels of NO, pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inflammatory indicators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW264.7 cells. Daidzin and daidzein partially suppressed MAPK signaling pathways, reducing the phosphorylation of p38 and ERK; whilst phosphorylation of JNK was mildly but not significantly decreased. For the involvement of NF-κB signaling pathways, daidzin only reduced the phosphorylation of p65 whereas daidzein effectively inhibited the phosphorylation of IKKα/β, IκBα and p65. Daidzin and daidzein inhibited p65 nuclear translocation, comparable with dexamethasone (positive control). Conclusion This study supports the anti-inflammatory effects of isoflavones daidzin and daidzein, which were at least partially mediated through inactivation of MAPK and/or NF-κB signaling pathways in macrophages.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Xutao Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
4
|
Reactive Oxygen Species and Oxidative Stress in Vascular-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7906091. [PMID: 35419169 PMCID: PMC9001081 DOI: 10.1155/2022/7906091] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) refers to the enhancement of oxidation and the decreased of related antioxidant enzymes activity under pathological conditions, resulting in relatively excess reactive oxygen species (ROS), causing cytotoxicity, which leads to tissue damage and is linked to neurodegenerative diseases, cardiovascular diseases, diabetes, cancers, and many other pathologies. As an important intracellular signaling molecule, ROS can regulate numerous physiological actions, such as vascular reactivity and neuronal function. According to several studies, the uncontrolled production of ROS is related to vascular injury. The growing evidence revealing how traditional risk factors translate into ROS and lead to vasculitis and other vascular diseases. In this review, we sought to mainly discuss the role of ROS and antioxidant mechanisms in vascular-related diseases, especially cardiovascular and common macrovascular diseases.
Collapse
|
5
|
Gao J, Hao Y, Piao X, Gu X. Aldehyde Dehydrogenase 2 as a Therapeutic Target in Oxidative Stress-Related Diseases: Post-Translational Modifications Deserve More Attention. Int J Mol Sci 2022; 23:ijms23052682. [PMID: 35269824 PMCID: PMC8910853 DOI: 10.3390/ijms23052682] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) has both dehydrogenase and esterase activity; its dehydrogenase activity is closely related to the metabolism of aldehydes produced under oxidative stress (OS). In this review, we recapitulate the enzyme activity of ALDH2 in combination with its protein structure, summarize and show the main mechanisms of ALDH2 participating in metabolism of aldehydes in vivo as comprehensively as possible; we also integrate the key regulatory mechanisms of ALDH2 participating in a variety of physiological and pathological processes related to OS, including tissue and organ fibrosis, apoptosis, aging, and nerve injury-related diseases. On this basis, the regulatory effects and application prospects of activators, inhibitors, and protein post-translational modifications (PTMs, such as phosphorylation, acetylation, S-nitrosylation, nitration, ubiquitination, and glycosylation) on ALDH2 are discussed and prospected. Herein, we aimed to lay a foundation for further research into the mechanism of ALDH2 in oxidative stress-related disease and provide a basis for better use of the ALDH2 function in research and the clinic.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.G.); (Y.H.)
- Correspondence:
| |
Collapse
|
6
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:ijms23052445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
|
7
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, Wang JC, Chiu YL, Lin CY, Hsu YJ. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J 2020; 34:9498-9511. [PMID: 32463165 DOI: 10.1096/fj.201902550rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies aldehydes by converting them to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress. Increased oxidative stress plays a pivotal role in abdominal aortic aneurysm (AAA) pathogenesis. Reactive oxygen species (ROS) promote degradation of the extracellular matrix (ECM) and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by an ALDH2 activator could have therapeutic potential for limiting AAA development. We hypothesized that ALDH2 deficiency could increase the risk for AAA by decreasing ROS elimination and that an ALDH2 activator could provide an alternative option for AAA treatment. The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database was used. Human aortic smooth muscle cells (HASMCs) were used for the in vitro experiments. Gene-targeted ALDH2*2 KI knock-in mice on a C57BL/6J background and apolipoprotein E knockout (ApoE KO) mice were obtained. An animal model of AAA was constructed using osmotic minipumps to deliver 1000 ng/kg/min angiotensin II (AngII) for 28 days. Patients with AAA had significantly lower ALDH2 expression levels than normal subjects. ALDH2*2 KI mice were susceptible to AngII administration, exhibiting significantly increased AAA incidence rates and increased aortic diameters. Alda-1, an ALDH2 activator, reduced AngII-induced ROS production, NF-kB activation, and apoptosis in HASMCs. Alda-1 attenuated AngII-induced aneurysm formation and decreased aortic expansion in ApoE KO mice. We concluded that ALDH2 deficiency is associated with the development of AAAs in humans and a murine disease model. ALDH2 deficiency increases susceptibility to AngII-induced AAA formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation. Alda-1 was shown to attenuate the progression of experimental AAA in a murine model.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Kvandova M, Filippou K, Steven S, Oelze M, Kalinovic S, Stamm P, Frenis K, Vujacic-Mirski K, Sakumi K, Nakabeppu Y, Bagheri Hosseinabadi M, Dovinova I, Epe B, Münzel T, Kröller-Schön S, Daiber A. Environmental aircraft noise aggravates oxidative DNA damage, granulocyte oxidative burst and nitrate resistance in Ogg1-/- mice. Free Radic Res 2020; 54:280-292. [PMID: 32326776 DOI: 10.1080/10715762.2020.1754410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Large epidemiological studies point towards a link between the incidence of arterial hypertension, ischaemic heart disease, metabolic disease and exposure to traffic noise, supporting the role of noise exposure as an independent cardiovascular risk factor. We characterised the underlying molecular mechanisms leading to noise-dependent adverse effects on the vasculature and myocardium in an animal model of aircraft noise exposure and identified oxidative stress and inflammation as central players in mediating vascular and cardiac dysfunction. Here, we studied the impact of noise-induced oxidative DNA damage on vascular function in DNA-repair deficient 8-oxoguanine glycosylase knockout (Ogg1-/-) mice.Methods and results: Noise exposure (peak sound levels of 85 and mean sound level of 72 dB(A) applied for 4d) caused oxidative DNA damage (8-oxoguanine) and enhanced NOX-2 expression in C57BL/6 mice with synergistic increases in Ogg1-/- mice (shown by immunohistochemistry). A similar pattern was found for oxidative burst of blood leukocytes and other markers of oxidative stress (4-hydroxynonenal, 3-nitrotyrosine) and inflammation (cyclooxygenase-2). We observed additive impairment of noise exposure and genetic Ogg1 deficiency on endothelium-independent relaxation (nitroglycerine), which may be due to exacerbated oxidative DNA damage leading to leukocyte activation and oxidative aldehyde dehydrogenase inhibition.Conclusions: The finding that chronic noise exposure causes oxidative DNA damage in mice is worrisome since these potential mutagenic lesions could contribute to cancer progression. Human field studies have to demonstrate whether oxidative DNA damage is also found in urban populations with high levels of noise exposure as recently shown for workers with high occupational noise exposure.
Collapse
Affiliation(s)
- Miroslava Kvandova
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Konstantina Filippou
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Oelze
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Paul Stamm
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Katie Frenis
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Ksenija Vujacic-Mirski
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Kunihiko Sakumi
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Ima Dovinova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Swenja Kröller-Schön
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology I, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
10
|
Yao F, Abdel-Rahman AA. Aldehyde Dehydrogenase Inhibition Ameliorates Cardiac Dysfunction and Exacerbates Hypotension Caused by Alcohol in Female Rats. Alcohol Clin Exp Res 2020; 44:45-55. [PMID: 31693194 PMCID: PMC6980931 DOI: 10.1111/acer.14225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aldehyde dehydrogenase 2 (ALDH2) protects against alcohol-evoked cardiac dysfunction in male rodents, but its role in the estrogen (E2 )-dependent hypersensitivity of female rats to alcohol-evoked myocardial oxidative stress and dysfunction is not known. METHODS We addressed this question by studying the effect of cyanamide (ALDH2 inhibitor) on cardiac function, blood pressure, alcohol-metabolizing enzyme (alcohol dehydrogenase, cytochrome P450 2E1, catalase, and ALDH2) activities, and cardiac redox status (reactive oxygen species, ROS; malondialdehyde, MDA) in the absence or presence of ethanol (EtOH) in female sham-operated (SO) and ovariectomized (OVX) rats. RESULTS Cyanamide attenuated the EtOH-evoked myocardial dysfunction (reduced dP/dtmax and LVDP) in SO rats. EtOH, cyanamide, or their combination did not alter dP/dtmax or LVDP in OVX rats. Cyanamide induced cardiac oxidative stress and abrogated the subsequent alcohol-evoked increases in ROS and MDA levels in SO rats. Neither EtOH nor cyanamide influenced ROS or MDA levels in OVX rats. Importantly, cyanamide exaggerated EtOH-evoked hypotension in SO and uncovered this hypotensive response in OVX rats, which implicates ALDH2 in the vasodilating effect of EtOH. CONCLUSIONS Contrary to our hypothesis, cyanamide attenuated the E2 -dependent cardiac dysfunction caused by alcohol, likely by preconditioning the heart to oxidative stress, while exacerbating the vasodilating effect of alcohol. The latter might predispose to syncope when cyanamide and alcohol are combined in females.
Collapse
Affiliation(s)
- Fanrong Yao
- From the, Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- From the, Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
11
|
Kim DK, Cho YE, Song BJ, Kawamoto T, Metcalfe DD, Olivera A. Aldh2 Attenuates Stem Cell Factor/Kit-Dependent Signaling and Activation in Mast Cells. Int J Mol Sci 2019; 20:ijms20246216. [PMID: 31835486 PMCID: PMC6940998 DOI: 10.3390/ijms20246216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) metabolizes endogenous and exogenous aldehydes and protects cells against oxidative injury. Inactivating genetic polymorphisms in humans are common and associate with alcohol flush reactions. However, whether mast cell Aldh2 activity impacts normal mast cell responses is unknown. Using bone marrow-derived mast cells from Aldh2 knockout mice, we found evidence for a role of mast cell Aldh2 in Kit-mediated responses. Aldh2-deficient mast cells showed enhanced Kit tyrosine kinase phosphorylation and activity after stimulation with its ligand (stem cell factor) and augmentation of downstream signaling pathways, including Stat4, MAPKs, and Akt. The activity of the phosphatase Shp-1, which attenuates Kit activity, was reduced in Aldh2−/− mast cells, along with an increase in reactive oxygen species, known to regulate Shp-1. Reduced Shp-1 activity concomitant with sustained Kit signaling resulted in greater proliferation following Kit engagement, and increased mediator and cytokine release when Aldh2−/− mast cells were co-stimulated via Kit and FcεRI. However, FcεRI-mediated signaling and responses were unaffected. Therefore, our findings reveal a functional role for mast cell intrinsic Aldh2 in the control of Kit activation and Kit-mediated responses, which may lead to a better understanding of mast cell reactivity in conditions related to ALDH2 polymorphisms.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Correspondence: (D.-K.K.); (A.O.)
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, MD 20892, USA; (Y.-E.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH, Bethesda, MD 20892, USA; (Y.-E.C.); (B.-J.S.)
| | - Toshihiro Kawamoto
- Occupational Health Research and Development Center, Japan Industrial Safety and Health Association, Tokyo 108-0014, Japan;
| | - Dean D. Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
- Correspondence: (D.-K.K.); (A.O.)
| |
Collapse
|
12
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
13
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
14
|
Wei G, Liang T, Wei C, Nong X, Lu Q, Zhao J. Daidzin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents LPS‐induced bone loss in vivo. J Cell Biochem 2018; 120:5304-5314. [DOI: 10.1002/jcb.27806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Gejin Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
- Department of Orthopedics, No.303 hospital of PLA Guangxi China
| | - Tihong Liang
- Department of Orthopedics Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Chengming Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Xiaolian Nong
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Qiteng Lu
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Jinmin Zhao
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| |
Collapse
|
15
|
Lai CL, Xing JP, Liu XH, Qi J, Zhao JQ, Ji YR, Yang WX, Yan PJ, Luo CY, Ruan LF. Relationships of Inflammatory Factors and Risk Factors with Different Target Organ Damage in Essential Hypertension Patients. Chin Med J (Engl) 2018; 130:1296-1302. [PMID: 28524828 PMCID: PMC5455038 DOI: 10.4103/0366-6999.206343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is an inflammatory disease. Inflammation was considered to play a role in the whole process of AS. This study aimed to analyze the relationships of inflammatory factors and risk factors with different target organ damages (TOD) in essential hypertension (EH) patients and to explore its clinical significance. METHODS A total of 294 EH patients were selected and divided into four groups according to their conditions of TOD. Forty-eight healthy subjects were selected as control. The clinical biochemical parameters, serum amyloid A, serum tryptase, and lipoprotein-associated phospholipase A2 (Lp-PLA2) in each group were detected, and the related risk factors were also statistically analyzed. RESULTS Fibrinogen (Fbg) was the most significant independent risk factor in acute coronary syndrome (ACS) group (odds ratio [OR]: 22.242, 95% confidence interval [CI]: 6.458-76.609, P< 0.001) with the largest absolute value of the standardized partial regression coefficient B' (b': 1.079). Lp-PLA2 was the most significant independent risk factor in stroke group (OR: 13.699, 95% CI: 5.236-35.837, P< 0.001) with b' = 0.708. Uric acid (UA) was the most significant independent risk factor in renal damage group (OR: 15.307, 95% CI: 4.022-58.250, P< 0.001) with b' = 1.026. CONCLUSIONS Fbg, Lp-PLA2, and UA are the strongest independent risk factors toward the occurrence of ACS, ischemic stroke, and renal damage in EH patients, thus exhibiting the greatest impacts on the occurrence of ACS, ischemic stroke, and renal damage in EH patients, respectively.
Collapse
Affiliation(s)
- Chun-Lin Lai
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Jin-Ping Xing
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Xiao-Hong Liu
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Jie Qi
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Jian-Qiang Zhao
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - You-Rui Ji
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Wu-Xiao Yang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Pu-Juan Yan
- Postgraduate School of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chun-Yan Luo
- Postgraduate School of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Lu-Fang Ruan
- Postgraduate School of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| |
Collapse
|
16
|
SREBP1c mediates the effect of acetaldehyde on Cidea expression in Alcoholic fatty liver Mice. Sci Rep 2018; 8:1200. [PMID: 29352167 PMCID: PMC5775393 DOI: 10.1038/s41598-018-19466-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022] Open
Abstract
Cell death inducing DNA fragmentation factor-alpha-like A (Cidea) is a member of cell death-inducing DFF45-like effector (CIDE) protein. The initial function of CIDE is the promotion of cell death and DNA fragmentation in mammalian cells. Cidea was recently reported to play critical roles in the development of hepatic steatosis. The purpose of present study is to determine the effect of chronic alcohol intake on Cidea expression in the livers of mice with alcoholic fatty liver disease. Cidea expression was significantly increased in the liver of alcohol-induced fatty liver mice. While, knockdown of Cidea caused lipid droplets numbers reduction. Next, we detected the activity of ALDH2 reduction and the concentration of serum acetaldehyde accumulation in our alcohol-induced fatty liver mice. Cidea expression was elevated in AML12 cells exposed to 100uM acetaldehyde. Interestingly, Dual-luciferase reporter gene assay showed that 100 uM acetaldehyde led to the activation of Cidea reporter gene plasmid which containing SRE element. What’s more, the knockdown of SREBP1c suppressed acetaldehyde-induced Cidea expression. Overall, our findings suggest that Cidea is highly associated with alcoholic fatty liver disease and Cidea expression is specifically induced by acetaldehyde, and this up-regulation is most likely mediated by SREBP1c.
Collapse
|
17
|
Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J. Melatonin, mitochondria and hypertension. Cell Mol Life Sci 2017; 74:3955-3964. [PMID: 28791422 PMCID: PMC11107636 DOI: 10.1007/s00018-017-2613-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
Melatonin, due to its multiple means and mechanisms of action, plays a fundamental role in the regulation of the organismal physiology by fine tunning several functions. The cardiovascular system is an important site of action as melatonin regulates blood pressure both by central and peripheral interventions, in addition to its relation with the renin-angiotensin system. Besides, the systemic management of several processes, melatonin acts on mitochondria regulation to maintain a healthy cardiovascular system. Hypertension affects target organs in different ways and cellular energy metabolism is frequently involved due to mitochondrial alterations that include a rise in reactive oxygen species production and an ATP synthesis decrease. The discussion that follows shows the role played by melatonin in the regulation of mitochondrial physiology in several levels of the cardiovascular system, including brain, heart, kidney, blood vessels and, particularly, regulating the renin-angiotensin system. This discussion shows the putative importance of using melatonin as a therapeutic tool involving its antioxidant potential and its action on mitochondrial physiology in the cardiovascular system.
Collapse
Affiliation(s)
- Ovidiu C Baltatu
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of São Paulo, 862 Botucatu St, 5th Floor, São Paulo, SP, 04023-901, Brazil
| | - Luciana A Campos
- Center of Innovation, Technology and Education (CITE) at Anhembi Morumbi University-Laureate International Universities, 500 Dr. Altino Bondensan Ave, São José dos Campos, SP, 12247-016, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1524, room 115/118, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
18
|
Liu LT, Liang L, Wang W, Yan CQ, Zhang J, Xiao YC, Ye L, Zhao MX, Huang QS, Bian JJ, Shi ZF, Ke X, Zhang ZR. Isolariciresinol-9'-O-α-L-arabinofuranoside protects against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells via a PI3K/Akt/Bad‑dependent pathway. Mol Med Rep 2017; 17:488-494. [PMID: 29115459 DOI: 10.3892/mmr.2017.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/18/2017] [Indexed: 11/06/2022] Open
Abstract
Isolariciresinol-9'-O-α-L-arabinofuranoside (MWS‑19) isolated from Pinus massoniana Lamb. Fresh pine needles is the major ingredient of the Songling Xuemaikang capsule therapy used for hypertension. The present study aimed to investigate the effects and underlying mechanisms of MWS‑19 on hydrogen peroxide (H2O2)‑induced apoptosis in human umbilical vein endothelial cells (HUVECs). To investigate the effect of MWS‑19 on apoptosis in HUVECs, an oxidative stress‑induced apoptosis model was established in HUVECs using H2O2, and the present study performed Hoechst 33258 staining and a Cell Counting Kit‑8 (CCK‑8) assay. Furthermore, western blot analysis was also performed to investigate the underlying mechanism of the effects of MWS‑19 on the model. The results demonstrated that MWS‑19 reversed the effects of H2O2 on cell apoptosis at a concentration range of 15.6‑250 µg/ml, with dose‑dependent increases in cell growth. Hoechst staining indicated that 500 µM H2O2 induced HUVEC apoptosis, and MWS‑19 markedly protected HUVECs against apoptosis at 31.3, 62.5 and 125 µg/ml. Furthermore, the protein expression of phosphatidylinositol 3‑kinase (PI3K), phosphorylated‑Akt and Bcl‑2‑associated agonist of cell death (Bad) were increased, and reduced caspase‑3 activation was observed, following treatment with MWS‑19 in H2O2‑treated HUVECs. Additionally, the PI3K inhibitor wortmannin attenuated PI3K/Akt/Bad signaling induced by MWS‑19 treatment and neutralized the effect of MWS‑19 on the growth of HUVECs. In conclusion, the results of the present study indicate that MWS‑19 may protect against H2O2‑induced HUVEC apoptosis via the PI3K/Akt/Bad signaling pathway. MWS‑19 may serve an important role in the prevention of oxidative damage in vascular endothelial cells in hypertension patients.
Collapse
Affiliation(s)
- Li-Tao Liu
- Post‑Doctoral Research Station, Chengdu Kanghong Pharmaceutical Co., Ltd., Chengdu, Sichuan 610217, P.R. China
| | - Lei Liang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Wei Wang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Cui-Qi Yan
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Jing Zhang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Yun-Chuan Xiao
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Liang Ye
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Man-Xi Zhao
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Quan-Shu Huang
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Jun-Jie Bian
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Zhang-Fei Shi
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Xiao Ke
- National‑Level Enterprise Technology Center, Chengdu Kanghong Pharmaceutical Group Co., Ltd., Chengdu, Sichuan 610036, P.R. China
| | - Zhi-Rong Zhang
- Post‑Doctoral Mobile Station, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Ma X, Zheng S, Shu Y, Wang Y, Chen X. Association of the Glu504Lys polymorphism in the aldehyde dehydrogenase 2 gene with endothelium-dependent dilation disorder in Chinese Han patients with essential hypertension. Intern Med J 2017; 46:608-15. [PMID: 26691593 DOI: 10.1111/imj.12983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND In essential hypertension (EH), 30-50% of the variability in blood pressure is determined by genetic factors. The aldehyde dehydrogenase 2 (ALDH2) gene Glu504Lys polymorphism is associated with 'alcohol flush' and might be associated with EH. AIMS The aim of the present study was to investigate the association of the Glu504Lys polymorphism in the ALDH2 gene with endothelium-dependent dilation (EDD) disorder in Chinese Han patients with EH. METHODS This case-control study enrolled 1210 patients with EH. The control group consisted of 1089 healthy subjects with normal blood pressure. Patients with EH were divided into normal brachial arterial flow-mediated dilation (FMD) (EH1 group, n = 354) versus endothelial dysfunction (EH2 group, n = 856). ALDH2 gene Glu504Lys polymorphism was detected using a DNA microarray. RESULTS The ALDH2 AA/AG genotypes and the A allele frequencies were significantly higher in the EH group compared with healthy controls (both P < 0.05) and significantly higher in the EH2 group compared with the EH1 group (79.8 vs 51.4%; 45.0 vs 29.1%, respectively; both P < 0.05). Multivariate logistic regression analyses showed that the ALDH2 gene Glu504Lys polymorphism was independently associated with EH (dominant: odds ratio (OR) = 1.38; 95% confidence interval (95% CI) = 1.14-2.82; P = 0.01; additive: OR = 1.32; 95% CI = 1.12-2.44; P = 0.02) as well as with EDD in patients with EH (dominant: OR = 1.49, 95% CI = 1.16-3.01, P = 0.02; additive: OR = 1.43, 95% CI = 1.10-2.87, P = 0.03). CONCLUSION The ALDH2 Glu504Lys polymorphism was associated with EDD disorders in Chinese Han patients with EH, providing further evidence that this mutation and 'alcohol flush' are not harmless in this Asian population.
Collapse
Affiliation(s)
- X Ma
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, China.,Center of Health Physical Examination and Health Management, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - S Zheng
- Department of Cardiology, The Affiliated Hospital of Luzhou Medical College, Lu Zhou, China
| | - Y Shu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Y Wang
- Cardiovascular Department of Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - X Chen
- Department of Cardiovascular Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Abstract
Owing to its acute psychotropic effects, ethanol is the most frequently consumed toxic agent worldwide. However, excessive alcohol intake results in an array of health, social, and economic consequences, which are related to its property as an addictive substance. It has been well established that exposure to high levels of alcohol for a long period leads to the onset and progression of nonischemic cardiomyopathy through direct toxic mechanisms of ethanol and its metabolite, acetaldehyde. Excessive alcohol ingestion causes myocardial damage including disruptions of the myofibrillar architecture and is associated with reduced myocardial contractility and decreased ejection volumes. Key features of alcoholic cardiomyopathy are cardiac hypertrophy and ventricular dilatation, and the disease is manifested mainly as cardiomegaly, congestive heart failure, and even cardiac death. Mechanisms that have been postulated to underlie the pathogenesis of alcoholic cardiomyopathy include apoptosis, mitochondrial alterations, acetaldehyde protein adduct formation, oxidative stress, and imbalances in fatty acid metabolism. In the following, we give a brief overview of the molecular effects of ethanol-metabolizing enzymes and their impact on myocardial signal transduction pathways.
Collapse
|
21
|
Nakano Y, Ochi H, Onohara Y, Sairaku A, Tokuyama T, Matsumura H, Tomomori S, Amioka M, Hironomobe N, Motoda C, Oda N, Chayama K, Chen CH, Gross ER, Mochly-Rosen D, Kihara Y. Genetic variations of aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B are associated with the etiology of atrial fibrillation in Japanese. J Biomed Sci 2016; 23:89. [PMID: 27927211 PMCID: PMC5142328 DOI: 10.1186/s12929-016-0304-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/25/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alcohol consumption and oxidative stress are well-known risk factors for developing atrial fibrillation (AF). Single nucleotide polymorphisms (SNPs) of alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes encoding enzymes of alcohol and reactive aldehyde metabolism, respectively, are prevalent among East Asians. Here, we examined whether these SNPs were associated with AF in Japanese patients. METHODS AND RESULTS Five hundred seventy-seven Japanese patients with AF undergoing catheter ablation and 1935 controls at Hiroshima University Hospital were studied. Alcohol consumption habits, medical history, electrocardiogram (EKG), electrophysiology and cardiac echocardiography were reviewed. Patients were also genotyped for ALDH2 (rs671) and ADH1B (rs1229984). A significant linear correlation was found between ALDH2 genotype and mean alcohol intake (P = 1.7 × 10-6). Further, ALDH2 (rs671) was associated with AF (P = 7.6 × 10-4, odds ratio [OR] = 0.6). Frequency of the ALDH2 SNP allele A which limits acetaldehyde metabolism was lower in patients with AF (18.8%) than in controls (23.5%). In contrast, we found that the frequencies of the ADH1B SNP genotypes were similar in patients with AF and in controls. Subset analysis among the 182 patients with lone AF and 914 controls (control II) (<60 years of age and without hypertension), both ALDH2 and ADH1B SNPs were significantly associated with AF (P = 0.013, OR = 0.7; P = 0.0007, OR = 1.4, respectively). The frequency of the dysfunctional allele A of ALDH2 was significantly lower and the dysfunctional allele G of ADH1B was significantly higher in patients with lone AF than in control II (ALDH2 A allele frequency = 0.176 vs 0.235, OR = 1.3, P = 0.013, ADH1B SNP G allele frequency = 0.286 vs 0.220, OR = 1.4, P = 0.0007). CONCLUSIONS When considering all patients enrolled, the dysfunctional ALDH2 allele was negatively associated with AF. When examining a subset of patients with lone AF, the dysfunctional ALDH2 allele was negatively associated with AF and the slower metabolizing ADH1B allele was positively associated with AF. Hence, prolonged metabolic conversion of alcohol to acetaldehyde may be associated with the occurrence of AF in the Japanese and other East Asian populations.
Collapse
Affiliation(s)
- Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Laboratory for Digestive Diseases, Center for Integrative Medical Sciences, RIKEN, Hiroshima, Japan
| | - Hidenori Ochi
- Laboratory for Digestive Diseases, Center for Integrative Medical Sciences, RIKEN, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University , Hiroshima, Japan
| | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akinori Sairaku
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroya Matsumura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shunsuke Tomomori
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Michitaka Amioka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Hironomobe
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nozomu Oda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuaki Chayama
- Laboratory for Digestive Diseases, Center for Integrative Medical Sciences, RIKEN, Hiroshima, Japan.,Department of Gastroenterology and Metabolism, Applied Life Science, Institute of Biomedical & Health Science, Hiroshima University , Hiroshima, Japan
| | - Che-Hong Chen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric R Gross
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Anesthesiology, Perioperative and Pain Management, School of Medicine, Stanford University, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical & Systems Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical & Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
22
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
23
|
Hardigan T, Spitler K, Matsumoto T, Carrillo-Sepulveda MA. Activation of Toll-like receptor 3 increases mouse aortic vascular smooth muscle cell contractility through ERK1/2 pathway. Pflugers Arch 2015; 467:2375-85. [PMID: 25724934 DOI: 10.1007/s00424-015-1697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 12/18/2022]
Abstract
Activation of Toll-like receptor 3 (TLR3), a pattern recognition receptor of the innate immune system, is associated with vascular complications. However, whether activation of TLR3 alters vascular contractility is unknown. We, therefore, hypothesized that TLR3 activation augments vascular contractility and activates vascular smooth muscle cell (VSMC) contractile apparatus proteins. Male mice were treated with polyinosinic-polycytidylic acid (Poly I:C group, 14 days), a TLR3 agonist; control mice received saline (vehicle, 14 days). At the end of protocol, blood pressure was measured by tail cuff method. Aortas were isolated and assessed for contractility experiments using a wire myograph. Aortic protein content was used to determine phosphorylated/total interferon regulatory factor 3 (IRF3), a downstream target of TLR3 signaling, and ERK1/2 using Western blot. We investigated the TLR3/IRF3/ERK1/2 signaling pathway and contractile-related proteins such as phosphorylated/total myosin light chain (MLC) and caldesmon (CaD) in aortic VSMC primary cultures. Poly I:C-treated mice exhibited (vs. vehicle-treated mice) (1) elevated systolic blood pressure. Moreover, Poly I:C treatment (2) enhanced aortic phenylephrine-induced maximum contraction, which was suppressed by PD98059 (ERK1/2 inhibitor), and (3) increased aortic levels of phosphorylated IRF3 and ERK1/2. Stimulation of mouse aortic VSMCs with Poly I:C resulted in increased phosphorylation of IRF3, ERK1/2, MLC, and CaD. Inhibition of ERK1/2 abolished Poly I:C-mediated phosphorylation of MLC and CaD. Our data provide functional evidence for the role of TLR3 in vascular contractile events, suggesting TLR3 as a potential new therapeutic target in vascular dysfunction and regulation of blood pressure.
Collapse
Affiliation(s)
- Trevor Hardigan
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| | - Kathryn Spitler
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshy University, Shinagawa-ku, Tokyo, Japan
| | - Maria Alicia Carrillo-Sepulveda
- Department of Physiology, Georgia Regents University, Augusta, GA, USA.
- Department of Biomedical Sciences, New York Institute of Technology-College of Medicine, Northern Blvd, Old Westbury, NY, 11568, USA.
| |
Collapse
|
24
|
Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int J Mol Sci 2014; 16:823-39. [PMID: 25561233 PMCID: PMC4307277 DOI: 10.3390/ijms16010823] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression.
Collapse
|
25
|
Staiculescu MC, Foote C, Meininger GA, Martinez-Lemus LA. The role of reactive oxygen species in microvascular remodeling. Int J Mol Sci 2014; 15:23792-835. [PMID: 25535075 PMCID: PMC4284792 DOI: 10.3390/ijms151223792] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Christopher Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
26
|
Zhang SY, Chan SW, Zhou X, Chen XL, Mok D, Lin ZX, Wang YH. Meta-analysis of association between ALDH2 rs671 polymorphism and essential hypertension in Asian populations. Herz 2014; 40 Suppl 2:203-8. [DOI: 10.1007/s00059-014-4166-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023]
|
27
|
Tarhouni K, Freidja ML, Guihot AL, Vessieres E, Grimaud L, Toutain B, Lenfant F, Arnal JF, Loufrani L, Henrion D. Role of estrogens and age in flow-mediated outward remodeling of rat mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 2014; 307:H504-14. [DOI: 10.1152/ajpheart.00986.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In resistance arteries, a chronic increase in blood flow induces hypertrophic outward remodeling. This flow-mediated remodeling (FMR) is absent in male rats aged 10 mo and more. As FMR depends on estrogens in 3-mo-old female rats, we hypothesized that it might be preserved in 12-mo-old female rats. Blood flow was increased in vivo in mesenteric resistance arteries after ligation of the side arteries in 3- and 12-mo-old male and female rats. After 2 wk, high-flow (HF) and normal-flow (NF) arteries were isolated for in vitro analysis. Arterial diameter and cross-sectional area increased in HF arteries compared with NF arteries in 3-mo-old male and female rats. In 12-mo-old rats, diameter increased only in female rats. Endothelial nitric oxide synthase expression and endothelium-mediated relaxation were higher in HF arteries than in NF arteries in all groups. ERK1/2 phosphorylation, NADPH oxidase subunit expression levels, and arterial contractility to KCl and to phenylephrine were greater in HF vessels than in NF vessels in 12-mo-old male rats only. Ovariectomy in 12-mo-old female rats induced a similar pattern with an increased contractility without diameter increase in HF arteries. Treatment of 12-mo-old male rats and ovariectomized female rats with hydralazine, the antioxidant tempol, or the angiotensin II type 1 receptor blocker candesartan restored HF remodeling and normalized arterial contractility in HF vessels. Thus, we found that FMR of resistance arteries remains efficient in 12-mo-old female rats compared with age-matched male rats. A balance between estrogens and vascular contractility might preserve FMR in mature female rats.
Collapse
Affiliation(s)
- K. Tarhouni
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
| | - M. L. Freidja
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
| | - A. L. Guihot
- Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers, France
| | | | - L. Grimaud
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
- CHU d'Angers, Angers, France; and
| | - B. Toutain
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
| | - F. Lenfant
- U858, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - J. F. Arnal
- U858, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, CHU de Toulouse, Toulouse, France
| | - L. Loufrani
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
- Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers, France
- U1083, Institut National de la Santé et de la Recherche Médicale, Angers, France
- CHU d'Angers, Angers, France; and
| | - D. Henrion
- L'Université Nantes Angers Le Mans University and University of Angers, Angers, France
- Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers, France
- U1083, Institut National de la Santé et de la Recherche Médicale, Angers, France
- CHU d'Angers, Angers, France; and
| |
Collapse
|
28
|
Hu JF, Zhang GJ, Wang L, Kang PF, Li J, Wang HJ, Gao Q, Chen YQ. Ethanol at low concentration attenuates diabetes induced lung injury in rats model. J Diabetes Res 2014; 2014:107152. [PMID: 25019090 PMCID: PMC4082928 DOI: 10.1155/2014/107152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 01/01/2023] Open
Abstract
To observe the changes of lung injury when diabetic rats were treated with low concentration of ethanol (EtOH) and analyze the related mechanisms, male Sprague-Dawley (SD) rats were divided into control, diabetic (DM), and EtOH+DM groups. Diabetic rat was mimicked by injection of streptozotocin intraperitoneally. Fasting blood glucose (FBG) level, lung weight (LW), body weight (BW), and LW/BW were measured. The changes of lung tissue and Type II alveolar cell were detected. Pulmonary malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured; meanwhile, ALDH2 mRNA and protein expressions were detected by RT-PCR and western blotting, respectively. Compared with control group, in DM group, SOD activity was decreased; FBG level, LW/BW, MDA content, ALDH2 mRNA, and protein expressions were decreased. Compared with DM group, in EtOH+DM group, SOD activity, ALDH2 mRNA, and protein expressions were increased; LW/BW and MDA content were decreased. The structures of lung tissue and lamellar bodies were collapsed in DM group; the injury was attenuated in EtOH+DM group. Our findings suggested that, in diabetic rat, pulmonary ALDH2 expression was decreased accompanying lung injury. EtOH at low concentration decreased diabetes induced lung injury through activating ALDH2 expression.
Collapse
Affiliation(s)
- Jun-Feng Hu
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Guan-Jun Zhang
- Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Lei Wang
- Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jun Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
- *Qin Gao:
| | - Yu-Qing Chen
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| |
Collapse
|
29
|
Abstract
Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Free Radicals in Medicine Core, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | |
Collapse
|
30
|
D'Souza Y, Ji Y, Bennett BM. Effect of overexpression of human aldehyde dehydrogenase 2 in LLC-PK1 cells on glyceryl trinitrate biotransformation and cGMP accumulation. Br J Pharmacol 2013; 168:978-87. [PMID: 22994391 DOI: 10.1111/j.1476-5381.2012.02220.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 07/29/2012] [Accepted: 09/11/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies suggest a primary role for aldehyde dehydrogenase 2 (ALDH2) in mediating the biotransformation of organic nitrates, such as glyceryl trinitrate (GTN), to the proximal activator of soluble guanylyl cyclase (sGC), resulting in increased cGMP accumulation and vasodilation. Our objective was to assess the role of ALDH2 in organic nitrate action using a cell culture model. EXPERIMENTAL APPROACH Porcine renal epithelial (LLC-PK1) cells possess an intact NO-sGC-cGMP signaling system, and can be used as a biochemical model of organic nitrate action. We used a pcDNA3.1-human ALDH2 expression vector to establish a stably transfected cell line (PK1(ALDH2)) that overexpressed ALDH2, or small interfering RNA (siRNA) to deplete endogenous ALDH2, and assessed GTN biotransformation and GTN-induced cGMP formation. KEY RESULTS ALDH2 activity in the stably transfected cells was approximately sevenfold higher than wild-type cells or cells stably transfected with empty vector (PK1(vector)); and protein expression, as assessed by immunoblot analysis, was markedly increased. In PK1(ALDH2), GTN biotransformation was significantly increased as a result of increased glyceryl-1,2-dinitrate formation compared to wild-type or PK1(vector). However, the incubation of PK1(ALDH2) with 1 or 10 μM GTN did not alter GTN-induced cGMP accumulation compared with wild-type or PK1(vector) cells. Furthermore, siRNA-mediated depletion of ALDH2 had no effect on GTN-induced cGMP formation. CONCLUSIONS AND IMPLICATIONS In an intact cell system, neither overexpression nor depletion of ALDH2 affects GTN-induced cGMP formation, indicating that ALDH2 does not mediate the mechanism-based biotransformation of GTN to an activator of sGC.
Collapse
Affiliation(s)
- Y D'Souza
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
31
|
Activation of ALDH2 with ethanol attenuates diabetes induced myocardial injury in rats. Food Chem Toxicol 2013; 56:419-24. [DOI: 10.1016/j.fct.2013.02.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/20/2022]
|
32
|
Li RJ, Ji WQ, Pang JJ, Wang JL, Chen YG, Zhang Y. Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome. TOHOKU J EXP MED 2013; 229:45-51. [PMID: 23238616 DOI: 10.1620/tjem.229.45] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aldehyde dehydrogenase-2 (ALDH2) is the main enzyme responsible for acetaldehyde oxidation in ethanol metabolism and also provides protection against oxidative stress. Alpha-lipoic acid (α-LA), a natural dithiol compound with antioxidant properties, has been reported to increase ALDH2 activity in cultured cells. We analyzed the therapeutic efficacy of α-LA in 63 patients with confirmed acute coronary syndrome (ACS). These patients (52 men and 11 women, with age range 49-72 years) were randomized into two groups: untreated group (n = 30) and α-LA group (n = 33). Patients in the α-LA group were given an intravenous injection of 600 mg α-LA every day for 5 days while the patients in the untreated group were given saline. An isoprostane, 8-iso-prostaglandin F2α (8-iso-PGF2α), one product of arachidonic acid metabolism, was measured as a marker for oxidative stress. The serum levels of 8-iso-PGF2α and ALDH2 activity were determined at admission to the hospital (time 0), and at 24 hours and 1 week after treatment. At 24 hours and 1 week after treatment, ALDH2 activity was significantly higher in the α-LA group than in the untreated group (P < 0.05), whereas the levels of 8-iso-PGF2α were significantly lower in the α-LA group than in the untreated group (all P < 0.05). Importantly, the decrease of 8-iso-PGF2α levels correlated with the increased ALDH2 activity at both 24 hours (r = 0.6234, P < 0.001) and 1 week after treatment (r = -0.3941, P = 0.0014). α-LA may ameliorate oxidative stress through up-regulating ALDH2 activity in patients with ACS.
Collapse
Affiliation(s)
- Rui-Jian Li
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, Shangdong, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Haskett D, Speicher E, Fouts M, Larson D, Azhar M, Utzinger U, Vande Geest J. The effects of angiotensin II on the coupled microstructural and biomechanical response of C57BL/6 mouse aorta. J Biomech 2011; 45:772-9. [PMID: 22196971 DOI: 10.1016/j.jbiomech.2011.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RATIONALE Abdominal aortic aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta, the rupture of which is associated with significant morbidity and mortality. Animal models of AAA can be used to study how changes in the microstructural and biomechanical behavior of aortic tissues develop as disease progresses in these animals. We chose here to investigate the effect of angiotensin II (AngII) in C57BL/6 mice as a first step towards understanding how such changes occur in the established ApoE(-/-) AngII infused mouse model of AAA. OBJECTIVE The objective of this study was to utilize a recently developed device in our laboratory to determine how the microstructural and biomechanical properties of AngII-infused C57BL/6 wildtype mouse aorta change following 14 days of AngII infusion. METHODS C57BL/6 wildtype mice were infused with either saline or AngII for 14 day. Aortas were excised and tested using a device capable of simultaneously characterizing the biaxial mechanical response and load-dependent (unfixed, unfrozen) extracellular matrix organization of mouse aorta (using multiphoton microscopy). Peak strains and stiffness values were compared across experimental groups, and both datasets were fit to a Fung-type constitutive model. The mean mode and full width at half maximum (FWHM) of fiber histograms from two photon microscopy were quantified in order to assess the preferred fiber distribution and degree of fiber splay, respectively. RESULTS The axial stiffness of all mouse aorta was found to be an order of magnitude larger than the circumferential stiffness. The aortic diameter was found to be significantly increased for the AngII infused mice as compared to saline infused control (p=0.026). Aneurysm, defined as a percent increase in maximum diameter of 30% (defined with respect to saline control), was found in 3 of the 6 AngII infused mice. These three mice displayed adventitial collagen that lacked characteristic fiber crimp. The biomechanical response in the AngII infused mice showed significantly reduced circumferential compliance. We also noticed that the ability of the adventitial collagen fibers in AngII infused mice to disperse in reaction to circumferential loading was suppressed. CONCLUSIONS Collagen remodeling is present following 14 days of AngII infusion in C57BL/6 mice. Aneurysmal development occurred in 50% of our AngII infused mice, and these dilatations were accompanied with adventitial collagen remodeling and decreased circumferential compliance.
Collapse
Affiliation(s)
- Darren Haskett
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0119, USA
| | | | | | | | | | | | | |
Collapse
|