1
|
Ouyang Q, Yu H, Xu L, Yu M, Zhang Y. Relationship between gut microbiota and multiple sclerosis: a scientometric visual analysis from 2010 to 2023. Front Immunol 2024; 15:1451742. [PMID: 39224586 PMCID: PMC11366631 DOI: 10.3389/fimmu.2024.1451742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background Numerous studies have investigated the relationship between gut microbiota (GM) and multiple sclerosis(MS), highlighting the significant role of GM in MS. However, there is a lack of systematic Scientometric analyses published in this specific research area to provide an overall understanding of the current research status. Methods Perform a scientometric analysis on research conducted between 2010 and 2023 concerning the link between GM and MS using quantitative and visual analysis software (CiteSpace and VOSviewer.). Results From January 1, 2010, and December 31, 2023, a total of 1019 records about GM and MS were retrieved. The number of publications exhibited a consistent upward trend annually. The United States led in publications, showed the strongest level of collaboration among countries. The University of California, San Francisco stands as the top institution in terms of output, and the most prolific and cited authors were Lloyd H. Kasper and Javier Ochoa-Reparaz from the USA. The research in this field primarily centers on investigating the alterations and associations of GM in MS or EAE, the molecular immunological mechanisms, and the potential of GM-based interventions to provide beneficial effects in MS or EAE. The Keywords co-occurrence network reveals five primary research directions in this field. The most frequently occurring keywords are inflammation, probiotics, diet, dysbiosis, and tryptophan. In recent years, neurodegeneration and neuropsychiatric disorders have been prominent, indicating that the investigation of the mechanisms and practical applications of GM in MS has emerged as a current research focus. Moreover, GM research is progressively extending into the realm of neurodegenerative and psychiatric diseases, potentially becoming future research hotspots. Conclusions This study revealed a data-driven systematic comprehension of research in the field of GM in MS over the past 13 years, highlighted noteworthy research within the field, provided us with a clear understanding of the current research status and future trends, providing a valuable reference for researchers venturing into this domain.
Collapse
Affiliation(s)
- Qingrong Ouyang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hao Yu
- Department of Emergency, Suining Central Hospital, Suining, China
| | - Lei Xu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Ming Yu
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Yunwei Zhang
- Department of Neurology, Suining Central Hospital, Suining, China
| |
Collapse
|
2
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
3
|
Prajjwal P, Inban P, Natarajan B, Gadam S, Marsool MD, Tariq H, Paras P, Vora N, Al-Aish ST, Marsool AD, Amir Hussin O. Remyelination in multiple sclerosis, along with its immunology and association with gut dysbiosis, lifestyle, and environmental factors. Ann Med Surg (Lond) 2023; 85:4417-4424. [PMID: 37663721 PMCID: PMC10473370 DOI: 10.1097/ms9.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/22/2023] [Indexed: 09/05/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that damages the myelin sheath around the axons of the central nervous system. While there are periods of inflammation and remyelination in MS, the latter can sometimes be insufficient and lead to the formation of lesions in the brain and spinal cord. Environmental factors such as vitamin D deficiency, viral or bacterial infections, tobacco smoking, and anxiety have been shown to play a role in the development of MS. Dysbiosis, where the composition of the microbiome changes, may also be involved in the pathogenesis of MS by affecting the gut's microbial population and negatively impacting the integrity of the epithelia. While the cause of MS remains unknown, genetic susceptibility, and immunological dysregulation are believed to play a key role in the development of the disease. Further research is needed to fully understand the complex interplay between genetic, environmental, and microbial factors in the pathogenesis of MS.
Collapse
Affiliation(s)
| | | | - Balaganesh Natarajan
- St. George’s University School of Medicine, University Centre Grenada, West Indies, Grenada
| | | | | | | | | | - Neel Vora
- BJ Medical College, Ahmedabad, India
| | | | | | | |
Collapse
|
4
|
Wang E, Zhou R, Li T, Hua Y, Zhou K, Li Y, Luo S, An Q. The Molecular Role of Immune Cells in Dilated Cardiomyopathy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1246. [PMID: 37512058 PMCID: PMC10385992 DOI: 10.3390/medicina59071246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Dilated cardiomyopathy (DCM) is a rare and severe condition characterized by chamber dilation and impaired contraction of the left ventricle. It constitutes a fundamental etiology for profound heart failure and abrupt cardiac demise, rendering it a prominent clinical indication for heart transplantation (HTx) among both adult and pediatric populations. DCM arises from various etiologies, including genetic variants, epigenetic disorders, infectious insults, autoimmune diseases, and cardiac conduction abnormalities. The maintenance of cardiac function involves two distinct types of immune cells: resident immune cells and recruited immune cells. Resident immune cells play a crucial role in establishing a harmonious microenvironment within the cardiac tissue. Nevertheless, in response to injury, cardiomyocytes initiate a cytokine cascade that attracts peripheral immune cells, thus perturbing this intricate equilibrium and actively participating in the initiation and pathological remodeling of dilated cardiomyopathy (DCM), particularly during the progression of myocardial fibrosis. Additionally, immune cells assume a pivotal role in orchestrating the inflammatory processes, which are intimately linked to the prognosis of DCM. Consequently, understanding the molecular role of various immune cells and their regulation mechanisms would provide an emerging era for managing DCM. In this review, we provide a summary of the most recent advancements in our understanding of the molecular mechanisms of immune cells in DCM. Additionally, we evaluate the effectiveness and limitations of immunotherapy approaches for the treatment of DCM, with the aim of optimizing future immunotherapeutic strategies for this condition.
Collapse
Affiliation(s)
- Enping Wang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ruofan Zhou
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yifei Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuhua Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
6
|
Hsp65-producing Lactococcus lactis inhibits experimental autoimmune encephalomyelitis by preventing cell migration into spinal cord. Cell Immunol 2023; 384:104661. [PMID: 36621093 DOI: 10.1016/j.cellimm.2022.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Because of its complexity and the difficulty to treat, searching for immunoregulatory responses that reduce the clinical signs of disease by non-aggressive mechanisms and without adverse effects is a scientific challenge. Herein we propose a protocol of oral tolerance induction that prevented and controlled MOG-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The genetically modified strain HSP65-producing Lactococcus lactis was orally administered for 5 consecutive days either before or during disease development in mice. Both protocols of feeding HSP65 resulted in significant reduction in the clinical score of EAE. Frequencies of LAP+CD4+Foxp3- regulatory T cells were higher in spleens and inguinal lymph nodes of fed mice. In addition, intravital microscopy showed that adherence of leukocytes to venules in the spinal cord was reduced in orally treated mice. Oral treatment with HSP65-producing L.lactis prevented leukocytes to leave the secondary lymphoid organs, therefore they could not reach the central nervous system. Despite the inhibition of pathological immune response that drive EAE development, activated T cells were at normal frequencies suggesting that oral tolerance did not induce general immunosuppression, but it led to specific control of pathogenic T cells. Our results indicate a novel therapeutic strategy to prevent and control autoimmune diseases such as multiple sclerosis.
Collapse
|
7
|
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, LeBlanc JG, Bermúdez-Humarán LG. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health. Gut Microbes 2022; 14:2110821. [PMID: 35960855 PMCID: PMC9377234 DOI: 10.1080/19490976.2022.2110821] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is now strong evidence to support the interest in using lactic acid bacteria (LAB)in particular, strains of lactococci and lactobacilli, as well as bifidobacteria, for the development of new live vectors for human and animal health purposes. LAB are Gram-positive bacteria that have been used for millennia in the production of fermented foods. In addition, numerous studies have shown that genetically modified LAB and bifodobacteria can induce a systemic and mucosal immune response against certain antigens when administered mucosally. They are therefore good candidates for the development of new mucosal delivery strategies and are attractive alternatives to vaccines based on attenuated pathogenic bacteria whose use presents health risks. This article reviews the most recent research and advances in the use of LAB and bifidobacteria as live delivery vectors for human and animal health.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Naima G. Cortes-Perez
- Université Paris-Saclay, INRAE, AgroParisTech, UMR 0496, 78350 Jouy-en-Josas, France
| | - Alejandra de Moreno de Leblanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Jade Loiseau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne Aucouturier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC) San Miguel de Tucumán, Tucumán, Argentina
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France,CONTACT Luis G. Bermúdez-Humarán Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| |
Collapse
|
8
|
Correale J, Hohlfeld R, Baranzini SE. The role of the gut microbiota in multiple sclerosis. Nat Rev Neurol 2022; 18:544-558. [PMID: 35931825 DOI: 10.1038/s41582-022-00697-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
During the past decade, research has revealed that the vast community of micro-organisms that inhabit the gut - known as the gut microbiota - is intricately linked to human health and disease, partly as a result of its influence on systemic immune responses. Accumulating evidence demonstrates that these effects on immune function are important in neuroinflammatory diseases, such as multiple sclerosis (MS), and that modulation of the microbiome could be therapeutically beneficial in these conditions. In this Review, we examine the influence that the gut microbiota have on immune function via modulation of serotonin production in the gut and through complex interactions with components of the immune system, such as T cells and B cells. We then present evidence from studies in mice and humans that these effects of the gut microbiota on the immune system are important in the development and course of MS. We also consider how strategies for manipulating the composition of the gut microbiota could be used to influence disease-related immune dysfunction and form the basis of a new class of therapeutics. The strategies discussed include the use of probiotics, supplementation with bacterial metabolites, transplantation of faecal matter or defined microbial communities, and dietary intervention. Carefully designed studies with large human cohorts will be required to gain a full understanding of the microbiome changes involved in MS and to develop therapeutic strategies that target these changes.
Collapse
Affiliation(s)
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sergio E Baranzini
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Barati M, Jabbari M, Abdi Ghavidel A, Nikmehr P, Arzhang P, Aynehchi A, Babashahi M, Mosharkesh E, Roshanravan N, Shabani M, Davoodi SH. The engineered probiotics for the treatment of chronic diseases: A systematic review. J Food Biochem 2022; 46:e14343. [PMID: 35880960 DOI: 10.1111/jfbc.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Engineered probiotics (EPs) are a group of probiotics whose proteome is manipulated by biotechnological techniques. EPs have attracted a lot of attention in recent researches for preventing and treating chronic diseases. The current study has been conducted to provide an overview regarding the EPs application in the treatment of chronic disease by a comprehensive systematic review of the published articles up to January 2022. To retrieve the related publications, three databases (PubMed/MEDLINE, Web of Sciences, and Scopus) were searched systematically. Finally, all human (n = 2) and animal (n = 37) studies were included. The included articles evaluated the effects of EPs on treatment of arthritis (n = 3), cancer (n = 2), autoimmune encephalomyelitis (EAE; n = 6), Parkinson disease (PD; n = 1), Alzheimer diseases (AD; n = 1), colitis (n = 11), celiac disease (n = 1), diabetes (n = 8) and cardiovascular disease (CVD; n = 6). Induction of oral tolerance (OT) is the most important mechanism of EPs action in the treatment of chronic disease. Providing oral vaccine and bioactive compounds are the other mechanisms of EPs action. PRACTICAL APPLICATIONS: The current systematic review gathered evidence about the application of EPs in the treatment of chronic diseases. Evidence suggests that EPs have very broad and potent effects in the treatment of chronic and even genetic diseases.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jabbari
- Department of Community Nutrition, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Abdi Ghavidel
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Nikmehr
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pishva Arzhang
- Qods Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aydin Aynehchi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Babashahi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Mosharkesh
- Collage of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition & Dietetics, School of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Pinheiro-Rosa N, Torres L, Oliveira MDA, Andrade-Oliveira MF, Guimarães MADF, Coelho MM, Alves JDL, Maioli TU, Faria AMC. Oral tolerance as antigen-specific immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab017. [PMID: 35919733 PMCID: PMC9327124 DOI: 10.1093/immadv/ltab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Summary
Oral tolerance is a physiological phenomenon described more than a century ago as a suppressive immune response to antigens that gain access to the body by the oral route. It is a robust and long-lasting event with local and systemic effects in which the generation of mucosally induced regulatory T cells (iTreg) plays an essential role. The idea of using oral tolerance to inhibit autoimmune and allergic diseases by oral administration of target antigens was an important development that was successfully tested in 1980s. Since then, several studies have shown that feeding specific antigens can be used to prevent and control chronic inflammatory diseases in both animal models and clinically. Therefore, oral tolerance can be classified as an antigen-specific form of oral immunotherapy (OIT). In the light of novel findings on mechanisms, sites of induction and factors affecting oral tolerance, this review will focus on specific characteristics of oral tolerance induction and how they impact in its therapeutic application.
Collapse
Affiliation(s)
- Natália Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana de Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Felipe Andrade-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana de Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Guerra PV, Andrade CM, Nunes IV, Gama BC, Tibúrcio R, Santos WLC, Azevedo VA, Tavares NM, Rebouças JDS, Maiolii TU, Faria AMC, Brodskyn CI. Oral Tolerance Induced by Heat Shock Protein 65-Producing Lactococcus lactis Mitigates Inflammation in Leishmania braziliensis Infection. Front Immunol 2021; 12:647987. [PMID: 34248935 PMCID: PMC8264454 DOI: 10.3389/fimmu.2021.647987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/07/2021] [Indexed: 12/05/2022] Open
Abstract
Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.
Collapse
Affiliation(s)
- Priscila Valera Guerra
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Curso de Medicina, Centro Universitário Christus, Fortaleza, Brazil
| | - Camila Mattos Andrade
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Ivanéia Valeriano Nunes
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Brena Cardoso Gama
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Rafael Tibúrcio
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Washington Luis Conrado Santos
- Laboratório de Patologia Estrutural e Molecular (LAPEM), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Patologia e Medicina Legal Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biomédicas, Universidade Federal de Minais Gerais, Belo Horizonte, Brazil
| | - Natalia Machado Tavares
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Juliana de Souza Rebouças
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências da Saúde, Universidade de Pernambuco, Recife, Brazil
| | - Tatiani Uceli Maiolii
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Ida Brodskyn
- Laboratório da Interação Parasita-Hospedeiro e Epidemiologia (LAIPHE) Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| |
Collapse
|
12
|
Chen XY, Du GS, Sun X. Targeting Lymphoid Tissues to Promote Immune Tolerance. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao Yan Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Guang Sheng Du
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| | - Xun Sun
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University No.17, Block 3, Southern Renmin Road Chengdu 610041 China
| |
Collapse
|
13
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Immunoregulatory Effects of Tolerogenic Probiotics in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:87-105. [PMID: 33725347 DOI: 10.1007/978-3-030-55035-6_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota has essential roles in the prevention and progression of multiple sclerosis (MS). The association between the gut microbiota and the central nervous system (CNS) or immune system response of MS patients has been documented in many studies. The composition of the gut microbiota could lead to sensitization or resistance against promotion and development of MS disease. Probiotics are the major part of gut microflorapopulation and could be substituted with tolerogenic probiotics that protect the CNS against autoimmune responses. Tolerogenic probiotics with anti-inflammatory and immuno-modulatory properties have effects on intestinal flora and can reestablish regulatory mucosal and systemic immune responses. Probiotics are able to prevent and restore excessive activation of inflammatory responses, especially autoreactive T cells and inflammatory cytokines. Tolerogenic probiotics, through induction of regulatory T cells and increase of anti-inflammatory cytokines, play a crucial role in controlling inflammation and maintaining tolerance and hemostasis. Therefore, probiotics can be considered as a preventive or therapeutic tool in MS. In the present review, we focus on the immunoregulatory effects of tolerogenic probiotics on the severity of disease, as well as Th1, Th2, and Treg populations in different experimental and human studies of MS.
Collapse
|
15
|
Barroso FAL, de Jesus LCL, de Castro CP, Batista VL, Ferreira Ê, Fernandes RS, de Barros ALB, Leclerq SY, Azevedo V, Mancha-Agresti P, Drumond MM. Intake of Lactobacillus delbrueckii (pExu: hsp65) Prevents the Inflammation and the Disorganization of the Intestinal Mucosa in a Mouse Model of Mucositis. Microorganisms 2021; 9:microorganisms9010107. [PMID: 33466324 PMCID: PMC7824804 DOI: 10.3390/microorganisms9010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU) is an antineoplastic drug that causes, as a side effect, intestinal mucositis, acute inflammation in the small bowel. The Heat Shock Protein (Hsp) are highly expressed in inflammatory conditions, developing an important role in immune modulation. Thus, they are potential candidates for the treatment of inflammatory diseases. In the mucositis mouse model, the present study aimed to evaluate the beneficial effect of oral administration of milk fermented by Lactobacillus delbrueckii CIDCA 133 (pExu:hsp65), a recombinant strain. This approach showed increased levels of sIgA in the intestinal fluid, reducing inflammatory infiltrate and intestinal permeability. Additionally, the histological score was improved. Protection was associated with a reduction in the gene expression of pro-inflammatory cytokines such as Tnf, Il6, Il12, and Il1b, and an increase in Il10, Muc2, and claudin 1 (Cldn1) and 2 (Cldn2) gene expression in ileum tissue. These findings are corroborated with the increased number of goblet cells, the electronic microscopy images, and the reduction of intestinal permeability. The administration of milk fermented by this recombinant probiotic strain was also able to reverse the high levels of gene expression of Tlrs caused by the 5-FU. Thus, the rCIDCA 133:Hsp65 strain was revealed to be a promising preventive strategy for small bowel inflammation.
Collapse
Affiliation(s)
- Fernanda Alvarenga Lima Barroso
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Viviane Lima Batista
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Renata Salgado Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - André Luís Branco de Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - Sophie Yvette Leclerq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias (FUNED), Belo Horizonte 30510-010, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Faculdade de Minas-Faminas-BH, Medicina, Belo Horizonte 31744-007, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| |
Collapse
|
16
|
Ullah H, Tovchiga O, Daglia M, Khan H. Modulating Gut Microbiota: An Emerging Approach in the Prevention and Treatment of Multiple Sclerosis. Curr Neuropharmacol 2021; 19:1966-1983. [PMID: 33596808 PMCID: PMC9185793 DOI: 10.2174/1570159x19666210217084827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive neuromuscular disorder characterized by demyelination of neurons of the central nervous system (CNS). The pathogenesis of the disorder is described as an autoimmune attack targeting the myelin sheath of nerve cell axons in the CNS. Available treatments only reduce the risk of relapse, prolonging the remissions of neurological symptoms and halt the progression of the disorder. Among the new ways of targeting neurological disorders, including MS, there is modulation of gut microbiota since the link between gut microbiota has been rethought within the term gut-brain axis. Gut microbiota is known to help the body with essential functions such as vitamin production and positive regulation of immune, inflammatory, and metabolic pathways. High consumption of saturated fatty acids, gluten, salt, alcohol, artificial sweeteners, or antibiotics is the responsible factor for causing gut dysbiosis. The latter can lead to dysregulation of immune and inflammatory pathways, which eventually results in leaky gut syndrome, systemic inflammation, autoimmune reactions, and increased susceptibility to infections. In modern medicine, scientists have mostly focused on the modulation of gut microbiota in the development of novel and effective therapeutic strategies for numerous disorders, with probiotics and prebiotics being the most widely studied in this regard. Several pieces of evidence from preclinical and clinical studies have supported the positive impact of probiotic and/or prebiotic intake on gut microbiota and MS. This review aims to link gut dysbiosis with the development/progression of MS, and the potential of modulation of gut microbiota in the therapeutics of the disease.
Collapse
Affiliation(s)
| | | | - Maria Daglia
- Address correspondence to this author at the Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy, International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang212013, China; E-mail:
| | | |
Collapse
|
17
|
de Lacerda LB, Rios WM, Masson AP, Brandão IT, Milani TM, Borges MC, Ramalho LNZ, Barbosa MCR, Miyoshi A, Silva CL. Oral administration of Hsp65-producing Lactococcus lactis attenuates allergic asthma in a murine model. J Appl Microbiol 2020; 130:2075-2086. [PMID: 33124086 DOI: 10.1111/jam.14913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023]
Abstract
AIMS Allergic asthma is a chronic inflammatory lung disease characterized by a Th2-type immune response pattern. The development of nonspecific immunotherapy is one of the primary goals for the control of this disease. METHODS AND RESULTS In this study, we evaluated the therapeutic effects of Lactococcus lactis-producing mycobacterial heat shock protein 65 (LLHsp65) in an ovalbumin (OVA)-induced allergic asthma model. OVA-challenged BALB/c mice were orally administrated with LLHsp65 for 10 consecutive days. The results demonstrate that LLhsp65 attenuates critical features of allergic inflammation, like airway hyperresponsiveness and mucus production. Likewise, the treatment decreases the pulmonary eosinophilia and the serum level of OVA-specific IgE. In addition to deviating immune responses towards Th1-cytokine profile, increase regulatory T cells, and cytokine levels, such as IL-6 and IL-10. CONCLUSIONS Our results reveal that the mucosal immunotherapy of LLHsp65 significantly reduces the overall burden of airway allergic inflammation, suggesting a promising therapeutic strategy for allergic asthma treatment. SIGNIFICANCE AND IMPACT OF THE STUDY This research reveals new perspectives on nonspecific immunotherapy based on the delivery of recombinant proteins by lactic acid bacteria to treat of allergic disorders.
Collapse
Affiliation(s)
- L B de Lacerda
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - W M Rios
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A P Masson
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - I T Brandão
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - T M Milani
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M C Borges
- Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L N Z Ramalho
- Department of Pathology Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - M C R Barbosa
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A Miyoshi
- Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C L Silva
- Department of Biochemistry and Immunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Gusmao-Silva G, Aguiar SLF, Miranda MCG, Guimarães MA, Alves JL, Vieira AT, Cara DC, Miyoshi A, Azevedo VA, Oliveira RP, Faria AMC. Hsp65-Producing Lactococcocus lactis Prevents Antigen-Induced Arthritis in Mice. Front Immunol 2020; 11:562905. [PMID: 33072101 PMCID: PMC7538670 DOI: 10.3389/fimmu.2020.562905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Oral tolerance is the physiological process that enables the immune system to differentiate between harmless dietary and microbiota antigens from pathogen derived antigens. It develops at the mucosal surfaces and can result in local and systemic regulatory and anti-inflammatory effects. Translation of these benefits to the clinical practice faces limitations involving specificity and doses of antigen as well as regimens of feeding. To circumvent these problems, we developed a recombinant Hsp65 delivered by the acid lactic bacteria Lactococcus lactis NCDO 2118 directy in the intestinal mucosa. Hsp65 is a ubiquitous protein overexpressed in inflamed tissues and capable of inducing immunoregulatory mechanisms. L. lactis has probiotic properties and is commonly and safely used in dairy products. In this study, we showed that continuous delivery of HSP65 in the gut mucosa by L. lactis is a potent tolerogenic stimulus inducing regulatory CD4+LAP+ T cells that prevented collagen-induced and methylated bovine serum albumin-induced arthritis in mice. Clinical and histological signs of arthritis were inhibited as well as levels of inflammatory cytokines such as IL-17 and IFN-γ, serum titers of anti-collagen antibodies and rheumatoid factor. Oral administration of L. lactis induced alterations in microbiota composition toward an increased abundance of anaerobic bacteria such as Bifidobacterium and Lactobacillus. Tolerance to HSP65 and arthritis prevention induced by the recombinant L. lactis was associated with increase in IL-10 production by B cells and it was dependent on LAP+ T cells, IL-10 and TLR2 signaling. Therefore, HSP65-producing treatment induced effective tolerance and prevented arthritis development suggesting it can be used as a therapeutic tool for autoimmune diseases.
Collapse
Affiliation(s)
- Guilherme Gusmao-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Mauro Andrade Guimarães
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lima Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Miyoshi
- Departamento de Genética, Evolução e Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Evolução e Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
20
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
21
|
Ilchmann-Diounou H, Menard S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front Immunol 2020; 11:1823. [PMID: 32983091 PMCID: PMC7477358 DOI: 10.3389/fimmu.2020.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune disorders (ADs) are multifactorial diseases involving, genetic, epigenetic, and environmental factors characterized by an inappropriate immune response toward self-antigens. In the past decades, there has been a continuous rise in the incidence of ADs, which cannot be explained by genetic factors alone. Influence of psychological stress on the development or the course of autoimmune disorders has been discussed for a long time. Indeed, based on epidemiological studies, stress has been suggested to precede AD occurrence and to exacerbate symptoms. Furthermore, compiling data showed that most of ADs are associated with gastrointestinal symptoms, that is, microbiota dysbiosis, intestinal hyperpermeability, and intestinal inflammation. Interestingly, social stress (acute or chronic, in adult or in neonate) is a well-described intestinal disrupting factor. Taken together, those observations question a potential role of stress-induced defect of the intestinal barrier in the onset and/or the course of ADs. In this review, we aim to present evidences supporting the hypothesis for a role of stress-induced intestinal barrier disruption in the onset and/or the course of ADs. We will mainly focus on autoimmune type 1 diabetes, multiple sclerosis and systemic lupus erythematosus, ADs for which we could find sufficient circumstantial data to support this hypothesis. We excluded gastrointestinal (GI) ADs like coeliac disease to privilege ADs not focused on intestinal disorders to avoid confounding factors. Indeed, GIADs are characterized by antibodies directed against intestinal barrier actors.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/microbiology
- Autoimmunity
- Diabetes Mellitus, Type 1/epidemiology
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/microbiology
- Dysbiosis
- Gastrointestinal Microbiome
- Host-Pathogen Interactions
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Lupus Erythematosus, Systemic/epidemiology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/microbiology
- Multiple Sclerosis/epidemiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/microbiology
- Permeability
- Risk Factors
- Stress, Psychological/epidemiology
- Stress, Psychological/immunology
- Stress, Psychological/metabolism
- Stress, Psychological/microbiology
Collapse
Affiliation(s)
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition Team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
22
|
Engineering the gut microbiota to treat chronic diseases. Appl Microbiol Biotechnol 2020; 104:7657-7671. [PMID: 32696297 PMCID: PMC7484268 DOI: 10.1007/s00253-020-10771-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/21/2022]
Abstract
Gut microbes play vital roles in host health and disease. A number of commensal bacteria have been used as vectors for genetic engineering to create living therapeutics. This review highlights recent advances in engineering gut bacteria for the treatment of chronic diseases such as metabolic diseases, cancer, inflammatory bowel diseases, and autoimmune disorders. KEY POINTS: • Bacterial homing to tumors has been exploited to deliver therapeutics in mice models. • Engineered bacteria show promise in mouse models of metabolic diseases. • Few engineered bacterial treatments have advanced to clinical studies.
Collapse
|
23
|
da Cunha VP, Preisser TM, Santana MP, Machado DCC, Pereira VB, Miyoshi A. Invasive Lactococcus lactis producing mycobacterial Hsp65 ameliorates intestinal inflammation in acute TNBS-induced colitis in mice by increasing the levels of the cytokine IL-10 and secretory IgA. J Appl Microbiol 2020; 129:1389-1401. [PMID: 32473073 DOI: 10.1111/jam.14695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
AIMS To investigate the anti-inflammatory activity of an invasive and Hp65-producing strain Lactococcus lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) in acute 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in mice as an innovative therapeutic strategy against Crohn's disease (CD). METHODS AND RESULTS The pXYCYT:Hsp65 plasmid was transformed into the L. lactis NCDO2118 FnBPA+ strain, resulting in the L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain. Then, the functionality of the strain was evaluated in vitro for Hsp65 production by Western blotting and for invasion into Caco-2 cells. The results demonstrated that the strain was able to produce Hsp65 and efficiently invade eukaryotic cells. Subsequently, in vivo, the anti-inflammatory capacity of the recombinant strain was evaluated in colitis induced with TNBS in BALB/c mice. Oral administration of the recombinant strain was able to attenuated the severity of colitis by mainly reducing IL-12 and IL-17 levels and increasing IL-10 and secretory immunoglobulin A levels. CONCLUSIONS The L. lactis NCDO2118 FnBPA+ (pXYCYT:Hsp65) strain contributed to a reduction in inflammatory damage in experimental CD. SIGNIFICANCE AND IMPACT OF THE STUDY This study, which used L. lactis for the production and delivery of Hsp65, has scientific relevance because it shows the efficacy of this new strategy based on therapeutic protein delivery into mammalian enterocytes.
Collapse
Affiliation(s)
- V P da Cunha
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - T M Preisser
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M P Santana
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - D C C Machado
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - V B Pereira
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A Miyoshi
- Laboratory of Genetic Technology, Department of Ecology, Genetics and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Valburg C, Sonti A, Stern JN, Najjar S, Harel A. Dietary factors in experimental autoimmune encephalomyelitis and multiple sclerosis: A comprehensive review. Mult Scler 2020; 27:494-502. [PMID: 32406797 DOI: 10.1177/1352458520923955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dietary intervention in multiple sclerosis carries potential therapeutic implications. While studies utilizing animal models of multiple sclerosis (MS) have demonstrated intriguing findings, well-designed clinical trials are few in number. OBJECTIVE The objective of this study is to review the animal model and clinical literature regarding dietary factors in experimental autoimmune encephalitis (EAE) and MS. METHODS This manuscript provides a comprehensive review of current animal model and clinical knowledge related to dietary factors in MS. RESULTS While there is currently little data for any specific diet in MS, there is growing evidence that certain dietary factors may influence the disease. CONCLUSIONS Definitive information regarding dietary factors as a modifiable risk factor in MS will require larger randomized clinical trials.
Collapse
Affiliation(s)
- Claire Valburg
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Anup Sonti
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Joel Nh Stern
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Souhel Najjar
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| | - Asaff Harel
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA/Institute of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA/Department of Neurology, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
25
|
Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci 2020; 10:brainsci10040234. [PMID: 32295236 PMCID: PMC7226078 DOI: 10.3390/brainsci10040234] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
An increase of multiple sclerosis (MS) incidence has been reported during the last decade, and this may be connected to environmental factors. This review article aims to encapsulate the current advances targeting the study of the gut-brain axis, which mediates the communication between the central nervous system and the gut microbiome. Clinical data arising from many research studies, which have assessed the effects of administered disease-modifying treatments in MS patients to the gut microbiome, are also recapitulated.
Collapse
|
26
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
27
|
Shin C, Kim YK. Autoimmunity in microbiome-mediated diseases and novel therapeutic approaches. Curr Opin Pharmacol 2019; 49:34-42. [DOI: 10.1016/j.coph.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
28
|
Rezende RM, Nakagaki BN, Moreira TG, Lopes JR, Kuhn C, Tatematsu BK, Boulenouar S, Maghzi AH, Rubino S, Menezes GB, Chitnis T, Weiner HL. γδ T Cell-Secreted XCL1 Mediates Anti-CD3-Induced Oral Tolerance. THE JOURNAL OF IMMUNOLOGY 2019; 203:2621-2629. [PMID: 31578268 DOI: 10.4049/jimmunol.1900784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Oral tolerance is defined as the specific suppression of cellular and/or humoral immune responses to an Ag by prior administration of the Ag through the oral route. Although the investigation of oral tolerance has classically involved Ag feeding, we have found that oral administration of anti-CD3 mAb induced tolerance through regulatory T (Treg) cell generation. However, the mechanisms underlying this effect remain unknown. In this study, we show that conventional but not plasmacytoid dendritic cells (DCs) are required for anti-CD3-induced oral tolerance. Moreover, oral anti-CD3 promotes XCL1 secretion by small intestine lamina propria γδ T cells that, in turn, induces tolerogenic XCR1+ DC migration to the mesenteric lymph node, where Treg cells are induced and oral tolerance is established. Consistent with this, TCRδ-/- mice did not develop oral tolerance upon oral administration of anti-CD3. However, XCL1 was not required for oral tolerance induced by fed Ags, indicating that a different mechanism underlies this effect. Accordingly, oral administration of anti-CD3 enhanced oral tolerance induced by fed MOG35-55 peptide, resulting in less severe experimental autoimmune encephalomyelitis, which was associated with decreased inflammatory immune cell infiltration in the CNS and increased Treg cells in the spleen. Thus, Treg cell induction by oral anti-CD3 is a consequence of the cross-talk between γδ T cells and tolerogenic DCs in the gut. Furthermore, anti-CD3 may serve as an adjuvant to enhance oral tolerance to fed Ags.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Brenda N Nakagaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and.,Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Selma Boulenouar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Amir-Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
29
|
LAP + Cells Modulate Protection Induced by Oral Vaccination with Rhesus Rotavirus in a Neonatal Mouse Model. J Virol 2019; 93:JVI.00882-19. [PMID: 31292251 DOI: 10.1128/jvi.00882-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) has been shown to play a role in immunity against different pathogens in vitro and against parasites in vivo However, its role in viral infections in vivo is incompletely understood. Using a neonatal mouse model of heterologous rhesus rotavirus (RV) vaccination, we show that the vaccine induced rotavirus-specific CD4 T cells, the majority of which lacked expression of KLRG1 or CD127, and a few regulatory rotavirus-specific CD4 T cells that expressed surface latency-associated peptide (LAP)-TGF-β. In these mice, inhibiting TGF-β, with both a neutralizing antibody and an inhibitor of TGF-β receptor signaling (activin receptor-like kinase 5 inhibitor [ALK5i]), did not change the development or intensity of the mild diarrhea induced by the vaccine, the rotavirus-specific T cell response, or protection against a subsequent challenge with a murine EC-rotavirus. However, mice treated with anti-LAP antibodies had improved protection after a homologous EC-rotavirus challenge, compared with control rhesus rotavirus-immunized mice. Thus, oral vaccination with a heterologous rotavirus stimulates regulatory RV-specific CD4 LAP-positive (LAP+) T cells, and depletion of LAP+ cells increases vaccine-induced protection.IMPORTANCE Despite the introduction of several live attenuated animal and human rotaviruses as efficient oral vaccines, rotaviruses continue to be the leading etiological agent for diarrhea mortality among children under 5 years of age worldwide. Improvement of these vaccines has been partially delayed because immunity to rotaviruses is incompletely understood. In the intestine (where rotavirus replicates), regulatory T cells that express latency-associated peptide (LAP) play a prominent role, which has been explored for many diseases but not specifically for infectious agents. In this paper, we show that neonatal mice given a live oral rotavirus vaccine develop rotavirus-specific LAP+ T cells and that depletion of these cells improves the efficiency of the vaccine. These findings may prove useful for the design of strategies to improve rotavirus vaccines.
Collapse
|
30
|
Langan D, Kim EY, Moudgil KD. Modulation of autoimmune arthritis by environmental 'hygiene' and commensal microbiota. Cell Immunol 2019; 339:59-67. [PMID: 30638679 PMCID: PMC8056395 DOI: 10.1016/j.cellimm.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/09/2018] [Accepted: 12/09/2018] [Indexed: 12/20/2022]
Abstract
Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.
Collapse
Affiliation(s)
- David Langan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States
| | - Eugene Y Kim
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biomedical Sciences, Washington State University, Spokane, WA 99224, United States
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Baltimore VA Medical Center, Baltimore, MD 21201, United States.
| |
Collapse
|
31
|
Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients 2019; 11:nu11040788. [PMID: 30959761 PMCID: PMC6521300 DOI: 10.3390/nu11040788] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Probiotics are defined as live microorganisms that when administered in adequate amounts confer a health benefit to the host. Their positive supplementation outcomes on several gastrointestinal disorders are well defined. Nevertheless, their actions are not limited to the gut, but may also impart their beneficial effects at distant sites and organs. In this regard, in this review article we: (i) comprehensively describe the main mechanisms of action of probiotics at distant sites, including bones, skin, and brain; (ii) critically present their therapeutic potential against bone, skin, and neuronal diseases (e.g., osteoporosis, non-healing wounds and autoimmune skin illnesses, mood, behavior, memory, and cognitive impairments); (iii) address the current gaps in the preclinical and clinical research; and (iv) indicate new research directions and suggest future investigations.
Collapse
|
32
|
The Gut Microbiome in Multiple Sclerosis: A Potential Therapeutic Avenue. Med Sci (Basel) 2018; 6:medsci6030069. [PMID: 30149548 PMCID: PMC6163724 DOI: 10.3390/medsci6030069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been a substantial increase in the number of studies focused upon connecting the gut microbiome with cases of central nervous system (CNS) autoimmunity. Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the CNS. Recent experimental and clinical evidence suggests the presence of microbial imbalances in the gut of MS sufferers. The gut microbiome is defined as the summation of all the microbial entities as well as their genes, proteins, and metabolic products in a given space and time. Studies show the MS gut microbiome as having general alterations in specific taxa, some associated with the promotion of inflammatory cytokines and overall inflammation. In conjunction with these findings, experimental models of the disease have reported that T regulatory (Treg) cells have deficits in their function as a result of the aberrant gut microbiota composition. The findings suggest that the interactions between the host and the microbiota are reciprocal, although more extensive work is required to confirm this. Moreover, evidence indicates that changes in microbiota composition may result in imbalances that could result in disease, with the gut as a potential novel therapeutic avenue. By understanding the biological effects of aberrant gut microbiome composition, it is possible to contemplate current therapeutic options and their efficacy. Ultimately, more research is necessary in this field, but targeting the gut microbiota may lead to the development of novel therapeutic strategies.
Collapse
|
33
|
de Castro CP, Drumond MM, Batista VL, Nunes A, Mancha-Agresti P, Azevedo V. Vector Development Timeline for Mucosal Vaccination and Treatment of Disease Using Lactococcus lactis and Design Approaches of Next Generation Food Grade Plasmids. Front Microbiol 2018; 9:1805. [PMID: 30154762 PMCID: PMC6102412 DOI: 10.3389/fmicb.2018.01805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Lactococcus lactis has been used historically in fermentation and food preservation processes as it is considered safe for human consumption (GRAS—Generally Recognized As Safe). Nowadays, in addition to its wide use in the food industry, L. lactis has been used as a bioreactor for the production of molecules of medical interest, as well as vectors for DNA delivery. These applications are possible due to the development of promising genetic tools over the past few decades, such as gene expression, protein targeting systems, and vaccine plasmids. Thus, this review presents some of these genetic tools and their evolution, which allow us to envision new biotechnological and therapeutic uses of L. lactis. Constitutive and inductive expression systems will be discussed, many of which have been used successfully for heterologous production of different proteins, tested on animal models. In addition, advances in the construction of new plasmids to be used as potential DNA vaccines, delivered by this microorganism, will also be viewed. Finally, we will focus on the scene of gene expression systems known as “food-grade systems” based on inducing compounds and safe selection markers, which eliminate the need for the use of compounds harmful to humans or animal health and potential future prospects for their applications.
Collapse
Affiliation(s)
- Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda Nunes
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
35
|
Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm 2018; 2018:8168717. [PMID: 29805314 PMCID: PMC5902007 DOI: 10.1155/2018/8168717] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/22/2018] [Accepted: 03/04/2018] [Indexed: 12/19/2022] Open
Abstract
The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS.
Collapse
|
36
|
Saresella M, Mendozzi L, Rossi V, Mazzali F, Piancone F, LaRosa F, Marventano I, Caputo D, Felis GE, Clerici M. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Front Immunol 2017; 8:1391. [PMID: 29118761 PMCID: PMC5661395 DOI: 10.3389/fimmu.2017.01391] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogenesis of autoimmune disorders, including multiple sclerosis (MS), has been linked to an alteration of the resident microbial commensal community and of the interplay between the microbiota and the immune system. Dietary components such as fiber, acting on microbiota composition, could, in principle, result in immune modulation and, thus, could be used to obtain beneficial outcomes for patients. We verified this hypothesis in a pilot study involving two groups of clinically similar relapsing-remitting (RR) MS patients who had undergone either a high-vegetable/low-protein diet (HV/LP diet group; N = 10) or a "Western Diet" (WD group; N = 10) for at least 12 months. Gut microbiota composition, analyzed by 16 S V4 rRNA gene sequencing and immunological profiles, was examined after a minimum of 12 months of diet. Results showed that, in the HV/LP diet group compared to the WD group: (1) Lachnospiraceae family was significantly more abundant; (2) IL-17-producing T CD4+ lymphocytes (p = 0.04) and PD-1 expressing T CD4+ lymphocytes (p = 0.0004) were significantly decreased; and (3) PD-L1 expressing monocytes (p = 0.009) were significantly increased. In the HV/LP diet group, positive correlations between Lachnospiraceae and both CD14+/IL-10+ and CD14+/TGFβ+monocytes (RSp = 0.707, p = 0.05, and RSp = 0.73, p = 0.04, respectively), as well as between Lachnospiraceae and CD4+/CD25+/FoxP3+ T lymphocytes (RSp = 0.68, p = 0.02) were observed. Evaluation of clinical parameters showed that in the HV/LP diet group alone the relapse rate during the 12 months follow-up period and the Expanded Disability Status Scale score at the end of the study period were significantly reduced. Diet modulates dysbiosis and improves clinical parameters in MS patients by increasing anti-inflammatory circuits. Because Lachnospiraceae favor Treg differentiation as well as TGFβ and IL-10 production this effect could be associated with an increase of these bacteria in the microbiota.
Collapse
Affiliation(s)
- Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Laura Mendozzi
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Valentina Rossi
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Franca Mazzali
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Federica Piancone
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Francesca LaRosa
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Domenico Caputo
- Department of Neurology, Don Gnocchi Foundation, IRCCS, Milan, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, Don Gnocchi Foundation, IRCCS, Milan, Italy.,Department of Physiopathology and Transplants, University of Milano, Milan, Italy
| |
Collapse
|
37
|
Salehipour Z, Haghmorad D, Sankian M, Rastin M, Nosratabadi R, Soltan Dallal MM, Tabasi N, Khazaee M, Nasiraii LR, Mahmoudi M. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother 2017; 95:1535-1548. [PMID: 28946394 DOI: 10.1016/j.biopha.2017.08.117] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Recent reports have shown that probiotics can induce immunomodulatory activity with promising effects in inflammatory diseases. This study was designed to reveal the molecular and cellular mechanisms underlying the effect of Lactobacillus plantarum A7, which comprises human commensal bacteria, and Bifidobacterium animalis, a potential probiotic strain, on alleviation of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. METHODS To evaluate the therapeutic effects of probiotic strains, female C57BL/6 mice (8-10 wks old) received Lactobacillus plantarum A7, Bifidobacterium animalis PTCC 1631or a mixture of both strains through oral administration daily for 22days beginning simultaneous with induction of EAE. The clinical parameters were recorded daily. On Day 22, each mouse was bled, and their spinal cord was removed for histology analysis. The effects of the treatments on regulatory T (Treg) cells level were evaluated using flow cytometry, and T-cell proliferation was assessed using a BrdU incorporation assay. The supernatants of spleen and lymph nodes cultured and mononuclear cells were collected for quantification of different panel of pro and anti-inflammatory cytokines by ELISA. The analysis of gene expression was performed at RNA level for transcription factors by real-time PCR. RESULTS The results showed that treatment with a mixture of the two strains caused a more significant delay in the time of disease onset and clinical score compared to when the strains were used alone. The pathological features of the disease, such as mononuclear infiltration into the CNS, were also inhibited more significantly by the combinational approach. The results also revealed that treatment with combination of both strains enhanced the population of CD4+CD25+Foxp3+-expressing T-cells in the lymph nodes and the spleen. TREATMENT with our probiotic strains markedly inhibited disease associated cytokines while increased anti-inflammatory cytokines. Additionally, L. plantarumA7 and B. animalis ameliorated EAE condition by favoring Th2 and Treg differentiation via up-regulation of Foxp3 and GATA3 in the brain and spleen as well as inhibited the differentiation of Th1 and Th17 cells. CONCLUSIONS The current research provided evidence that probiotic therapy with L. plantarum and B. animalis can effectively attenuate EAE progression as well as reinforce the polarization of regulatory T-cells.
Collapse
Affiliation(s)
- Zohre Salehipour
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mojtaba Sankian
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Rastin
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Nosratabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Department, Faculty of medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nafiseh Tabasi
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdieh Khazaee
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Mahmoud Mahmoudi
- Immunology Research Center, Bu Ali Research Institute, School of Medicine; Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
van den Hoogen WJ, Laman JD, 't Hart BA. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Front Immunol 2017; 8:1081. [PMID: 28928747 PMCID: PMC5591889 DOI: 10.3389/fimmu.2017.01081] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research.
Collapse
Affiliation(s)
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bert A 't Hart
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
39
|
Colpitts SL, Kasper LH. Influence of the Gut Microbiome on Autoimmunity in the Central Nervous System. THE JOURNAL OF IMMUNOLOGY 2017; 198:596-604. [PMID: 28069755 DOI: 10.4049/jimmunol.1601438] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023]
Abstract
Autoimmune disorders of the CNS have complex pathogeneses that are not well understood. In multiple sclerosis and neuromyelitis optica spectrum disorders, T cells destroy CNS tissue, resulting in severe disabilities. Mounting evidence suggests that reducing inflammation in the CNS may start with modulation of the gut microbiome. The lymphoid tissues of the gut are specialized for the induction of regulatory cells, which are directly responsible for the suppression of CNS-damaging autoreactive T cells. Whether cause or effect, the onset of dysbiosis in the gut of patients with multiple sclerosis and neuromyelitis optica provides evidence of communication along the gut-brain axis. Thus, current and future therapeutic interventions directed at microbiome modulation are of considerable appeal.
Collapse
Affiliation(s)
- Sara L Colpitts
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Lloyd H Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
40
|
Álvarez B, Fernández LÁ. Sustainable therapies by engineered bacteria. Microb Biotechnol 2017; 10:1057-1061. [PMID: 28696008 PMCID: PMC5609241 DOI: 10.1111/1751-7915.12778] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022] Open
Abstract
The controlled in situ delivery of biologics (e.g. enzymes, cytokines, antibodies) by engineered bacteria of our microbiome will allow the sustainable production of these complex and expensive drugs locally in the human body, overcoming many of the technical and economical barriers currently associated with the global use of these potent medicines. We provide examples showing how engineered bacteria can be effective treatments against multiple pathologies, including autoimmune and inflammatory diseases, metabolic disorders, diabetes, obesity, infectious diseases and cancer, hence contributing to achieve the Global Sustainable Goal 3: ensure healthy lives and promote well‐being for all at all ages.
Collapse
Affiliation(s)
- Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus UAM Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
41
|
|
42
|
Ochoa-Repáraz J, Magori K, Kasper LH. The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:145. [PMID: 28462225 DOI: 10.21037/atm.2017.01.18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recent findings suggest that the intestinal microbiota of patients suffering from relapsing remitting multiple sclerosis (MS) shows changes on the relative abundances of archaeal and bacterial genera. Although the richness and overall structure of the microbiota may be similar compared to the intestinal microbiota of healthy controls, elevated and reduced frequencies suggest a dysbiotic microbiota in MS. Over the past decade experimental evidence obtained in murine models of the disease highlighted the important relevance of the microbiota in the regulation of the immune system and in the severity of the disease. More recent findings on peripheral immune cells derived from human MS patients support the initial observations that changes in the microbiota may affect immunological pathways that could exacerbate disease. However, important questions remain to be answered. For instance, it is unclear whether dysbiosis precedes disease or, if in the contrary, an autoimmune disease such as MS can lead to gut dysbiosis. In this brief discussion, we speculate about this later possibility based on findings observed in murine models of disease. Further human studies are needed to answer the dilemma and determine specific immunomodulatory pathways that could have an impact on the therapeutic approaches to treat MS.
Collapse
Affiliation(s)
| | - Krisztian Magori
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Lloyd H Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| |
Collapse
|
43
|
pVAXhsp65 Vaccination Primes for High IL-10 Production and Decreases Experimental Encephalomyelitis Severity. J Immunol Res 2017; 2017:6257958. [PMID: 28321419 PMCID: PMC5339488 DOI: 10.1155/2017/6257958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/03/2017] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating pathology of the central nervous system (CNS) used as a model to study multiple sclerosis immunopathology. EAE has also been extensively employed to evaluate potentially therapeutic schemes. Considering the presence of an immune response directed to heat shock proteins (hsps) in autoimmune diseases and the immunoregulatory potential of these molecules, we evaluated the effect of a previous immunization with a genetic vaccine containing the mycobacterial hsp65 gene on EAE development. C57BL/6 mice were immunized with 4 pVAXhsp65 doses and 14 days later were submitted to EAE induction by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) emulsified in Complete Freund's Adjuvant. Vaccinated mice presented significant lower clinical scores and lost less body weight. MOG35–55 immunization also determined less inflammation in lumbar spinal cord but did not change CD4+CD25+Foxp3+ T cells frequency in spleen and CNS. Infiltrating cells from the CNS stimulated with rhsp65 produced significantly higher levels of IL-10. These results suggest that the ability of pVAXhsp65 vaccination to control EAE development is associated with IL-10 induction.
Collapse
|
44
|
Gomes-Santos AC, de Oliveira RP, Moreira TG, Castro-Junior AB, Horta BC, Lemos L, de Almeida LA, Rezende RM, Cara DC, Oliveira SC, Azevedo VAC, Miyoshi A, Faria AMC. Hsp65-Producing Lactococcus lactis Prevents Inflammatory Intestinal Disease in Mice by IL-10- and TLR2-Dependent Pathways. Front Immunol 2017; 8:30. [PMID: 28194152 PMCID: PMC5277002 DOI: 10.3389/fimmu.2017.00030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins (Hsps) are highly expressed at all sites of inflammation. As they are ubiquitous and immunodominant antigens, these molecules represent good candidates for the therapeutic use of oral tolerance in autoimmune and chronic inflammatory diseases. Evidences from human and animal studies indicate that inflammatory bowel disease (IBD) results from uncontrolled inflammatory responses to intestinal microbiota. Hsps are immunodominant proteins expressed by several immune cells and by commensal bacteria. Using an IBD mouse model, we showed that oral pretreatment with genetically modified Lactococcus lactis that produces and releases Mycobacterium Hsp65, completely prevented DSS-induced colitis in C57BL/6 mice. Protection was associated with reduced pro-inflammatory cytokines, such as IFN-γ, IL-6, and TNF-α; increased IL-10 production in colonic tissue; and expansion of CD4+Foxp3+ and CD4+LAP+ regulatory T cells in spleen and mesenteric lymph nodes. This effect was dependent on IL-10 and toll-like receptor 2. Thus, this approach may open alternative options for long-term management of IBD.
Collapse
Affiliation(s)
- Ana Cristina Gomes-Santos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro Universitário UNA, Belo Horizonte, Brazil
| | - Rafael Pires de Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Federal do Paraná, Palmas, Brazil
| | - Thaís Garcias Moreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | | | - Bernardo Coelho Horta
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Luísa Lemos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Leonardo Augusto de Almeida
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Rafael Machado Rezende
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Ann Ronmey Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Denise Carmona Cara
- Departamento de Morfologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Sérgio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | | | - Anderson Miyoshi
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
45
|
The influence of gut-derived CD39 regulatory T cells in CNS demyelinating disease. Transl Res 2017; 179:126-138. [PMID: 27519147 PMCID: PMC5164971 DOI: 10.1016/j.trsl.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023]
Abstract
There is considerable interest in trying to understand the importance of the gut microbiome in human diseases. The association between dysbiosis, an altered microbial composition, as related to human disease is being explored in the context of different autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that MS affects the composition of the gut microbiota by altering the relative abundances of specific bacteria and archaea species. Remarkably, some of the bacterial species shown reduced in the gut of MS patients are known to promote immunosuppressive regulatory T cells (Tregs). In MS, the function of a phenotype of Tregs that express CD39, an ectoenzyme involved in the catabolism of adenosine triphosphate as immunomodulatory cells, appears to be reduced. In this review, we discuss the involvement of the gut microbiota in the regulation of experimental models of central nervous system inflammatory demyelination and review the evidence that link the gut microbiome with MS. Further, we hypothesize that the gut microbiome is an essential organ for the control of tolerance in MS patients and a potential source for safer novel therapeutics.
Collapse
|
46
|
Secretion of an immunoreactive single-chain variable fragment antibody against mouse interleukin 6 by Lactococcus lactis. Appl Microbiol Biotechnol 2016; 101:341-349. [DOI: 10.1007/s00253-016-7907-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/10/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022]
|
47
|
Nabi XH, Ma CY, Manaer T, Heizati M, Wulazibieke B, Aierken L. Anti-atherosclerotic effect of traditional fermented cheese whey in atherosclerotic rabbits and identification of probiotics. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:309. [PMID: 27553960 PMCID: PMC4995647 DOI: 10.1186/s12906-016-1285-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
Background Traditional fermented cheese whey (TFCW), containing probiotics, has been used both as a dairy food with ethnic flavor and a medicine for cardiovascular disease, especially regulating blood lipid among Kazakh. We therefore investigated anti-atherosclerotic effects of TFCW in atherosclerotic rabbits and identified lactic acid bacteria (LAB) and yeasts in TFCW. Methods Atherosclerotic rabbits were induced by administration of atherosclerotic diet for 12 weeks and divided randomly into three groups and treated for 4 weeks with Simvastatin (20 mg/kg) or TFCW (25 mg/kg) and (50 mg/kg). In addition, a normal control group and an atherosclerotic group were used for comparison. All drugs were intragastrical administered once daily 10 mL/kg for 4 weeks. Body weight (BW), lipid profiles, C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) were tested and theromatous plaques and the number of foam cells and infiltrating fibroblast cells in the thoracic aorta endothelium was evaluated by hematoxylin and eosin stainin. LAB and yeasts were isolated and purified by conventional techniques and identified using morphological and biochemical properties as well as gene sequences analysis. Results After 4 weeks of treatment, high and low dose TFCW decreased serum TC, TG, LDLC, CRP, VCAM-1 and ICAM-1 (P < 0.05) compared to atherosclerotic group, and increased HDL-C (P < 0.05) compared to normal controls. Histological analysis showed TFCW reduced VCAM-1 expression and formation of atheromatous plaques on the aortic endothelium of atherosclerotic rabbits. Conclusion Seven classes of LBA from two different genera including Lactobacillus brevis, Lactobacillus kefianofaciens, Lactobacillus helveticus, Lactobacillus Casei, Lactobacillus plantarum, Lactobacillus kefiri and Lactococcus lactic as well as 2 classes of yeasts from two different genera including Saccharomyces unisporus and Issatchenkia orientalis were isolated and identified from TFCW. In summary, TFCW, containing 7 classes of LBA and 2 classes of yeasts, has significant anti-atherosclerotic potential in atherosclerotic rabbits and may modulate lipid metabolism and protect aorta in the atherosclerotic condition, which might be related to various probiotics acting through reducing the CRP, VCAM-1 and ICAM-1 levels and protecting the aortic endothelium.
Collapse
|
48
|
Luo JH, Yang LA, Li GL. [Changes in proportion and function of peripheral CD4(+)LAP(+) regulatory T cells in children with asthma]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:726-730. [PMID: 27530790 PMCID: PMC7399523 DOI: 10.7499/j.issn.1008-8830.2016.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the changes in the proportion and function of peripheral CD4(+)LAP(+)regulatory T cells (CD4(+)LAP(+)Treg cells) in children with asthma, as well as the role of CD4(+)LAP(+)Treg cells in the pathogenesis of asthma. METHODS A total of 75 children who were diagnosed with asthma from March 2014 to September 2015 were enrolled as study subjects, and according to their conditions, they were divided into acute-stage asthma group (40 children) and remission-stage asthma group (35 patients). Another 30 children who underwent physical examination were enrolled as the healthy control group. Flow cytometry was used to determine the percentage of peripheral CD4(+)LAP(+)Treg cells, and [(3)H]-thymidine incorporation assay was performed to analyze the immunosuppression of CD4(+)LAP(+)Treg cells in each group. RESULTS The acute-stage asthma group showed significant reductions in the proportion of CD4(+)LAP(+)Treg cells compared with the remission-stage asthma group and the healthy control group (2.0%±1.0% vs 4.1%±2.4%/4.6%±3.0%; P<0.05). The acute-stage asthma group also showed a significant reduction in the immunosuppression rate of CD4(+)LAP(+)Treg cells compared with the remission-stage asthma group and the healthy control group (21%±4% vs 55%±9%/62%±11%; P<0.05). CONCLUSIONS In children with asthma, the reduction in the number and inhibitory function of peripheral CD4(+)LAP(+)Treg cells may be involved in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jing-Hua Luo
- Department of Pediatrics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | | | | |
Collapse
|
49
|
Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 2016; 7:1081. [PMID: 27462309 PMCID: PMC4939298 DOI: 10.3389/fmicb.2016.01081] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine and the IBD Clinical and Research Centre, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
50
|
Pileggi GS, Clemencio AD, Malardo T, Antonini SR, Bonato VLD, Rios WM, Silva CL. New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro. BMC Biotechnol 2016; 16:40. [PMID: 27165305 PMCID: PMC4862051 DOI: 10.1186/s12896-016-0270-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/04/2016] [Indexed: 01/02/2023] Open
Abstract
Background The valuable role of immunotherapy in treating autoimmune diseases is increasingly recognized by those involved in the research and clinical application of new biopharmaceuticals products. However, many aspects related to the mechanisms of immune-modulated therapies remain to be elucidated in order to explore fully the emerging opportunities. The non-obese diabetic NOD mouse develops insulin-dependent diabetes mellitus spontaneously as a consequence of an autoimmune process in the presence of pathogenic CD4+ T cells that typically exhibit Th17 cell phenotypes. The change of a Th17 phenotype into a pattern of regulatory T cells (Treg) is extremely important in controlling autoimmune diseases. Heat shock proteins (HSPs) are stress-induced proteins with immunoregulatory properties. In the current study, the capacity of Hsp65 and Hsp70 mycobacterial HSPs and a constructed DNA encoded Hsp65 (DNAhsp65) to transform the pattern of the immune response from Th17 into Treg cells has been studied in vitro using co-cultures of antigen presenting cells (APCs) and T cells in NOD mice. Results Cells harvested from NOD mice and cultured for 48 h (without immunoregulatory compounds) presented with Th1/Th17 patterns and secretions of IL-6, IFN-γ, IL-10 and IL-17 cytokines. The cultured cells from the non-diabetic BALB/C mice exhibited a Th1 pattern and the production of IL 6 and IFN-γ secretions. An up-regulation was observed in the supernatants from the co-cultures of NOD cells that were stimulated with DNAhsp65, Hsp65 or Hsp70 through increased levels of IL-10 secretion and the suppression of IL-6, IFN-γ and IL-17 production. In addition, immunoregulation was demonstrated through IL-17 suppression in the co-culture stimulated by the specific insulin antigen. Moreover, an increase of immunoregulatory compounds were observed in the co-culture through the expression of CD11b+CD86+ activation markers on APCs, as well as the frequency of Treg cells expressing CD4+CD3+ and CD4+CD25hi. Conclusions The in vitro observation of Th17 cells differentiating into Tregs in NOD mice could raise the hypothesis that the immune regulatory activity of HSPs could be an efficient strategy for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Gecilmara Salviato Pileggi
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Aline Dayana Clemencio
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil
| | - Thiago Malardo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Av. Bandeirantes, 3900, 7 Floor, 14049-900, Ribeirão Preto, SP, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Wendy Martin Rios
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Celio L Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|