1
|
Deng G, Zhang Y, Song J, Zhang Y, Zheng Q, Luo Y, Fei X, Yang Y, Kuai L, Li B, Luo Y. The role and therapeutic strategies for tissue-resident memory T cells, central memory T cells, and effector memory T cells in psoriasis. Immunology 2024; 173:470-480. [PMID: 39136109 DOI: 10.1111/imm.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/19/2024] [Indexed: 10/04/2024] Open
Abstract
Psoriasis is a skin disease that is inflammatory and persistent, causing a high rate of recurrence, poor quality of life, and significant socioeconomic burden. Its main pathological manifestations are abnormal activation and infiltration of T cells and excessive proliferation of keratinocytes (KCs). The great majority of patients with psoriasis will relapse after remission. It usually lasts a lifetime and necessitates long-term treatment strategies. During periods of activity and remission, one of the main cell types in psoriasis is memory T cells, which include tissue-resident memory T (TRM) cells, central memory T (TCM) cells, and effector memory T (TEM) cells. They work by releasing inflammatory factors, cytotoxic particles, or altering cell subpopulations, leading to increased inflammation or recurrence. This review summarizes the role of memory T cells in the pathology and treatment of psoriasis, with a view to potential novel therapies and therapeutic targets.
Collapse
Affiliation(s)
- Guoshu Deng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulin Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Kim H, Choi MR, Jeon SH, Jang Y, Yang YD. Pathophysiological Roles of Ion Channels in Epidermal Cells, Immune Cells, and Sensory Neurons in Psoriasis. Int J Mol Sci 2024; 25:2756. [PMID: 38474002 DOI: 10.3390/ijms25052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
4
|
Navarro-Pérez M, Capera J, Benavente-Garcia A, Cassinelli S, Colomer-Molera M, Felipe A. Kv1.3 in the spotlight for treating immune diseases. Expert Opin Ther Targets 2024; 28:67-82. [PMID: 38316438 DOI: 10.1080/14728222.2024.2315021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies. AREAS COVERED This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research. EXPERT OPINION Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
Collapse
Affiliation(s)
- María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anna Benavente-Garcia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Chen Y, Liu H, Yan Y, Chen H, Ye S, Qiu F, Liang CL, Zhang Q, Zheng F, Han L, Lu C, Dai Z. Methotrexate and electrostimulation cooperate to alleviate the relapse of psoriasiform skin inflammation by suppressing memory T cells. Biochem Pharmacol 2024; 219:115979. [PMID: 38081367 DOI: 10.1016/j.bcp.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Methotrexate (MTX) is an immunosuppressant used to treat autoimmune diseases, including psoriasis. However, like other immunosuppressants, MTX alone does not prevent their recurrence. Electrostimulation (ES) has been utilized to treat some inflammatory disorders without any major side-effect. But it remains unknown if ES alone, or together with MTX, ameliorates autoimmune disease relapse: a sticky medical problem. In particular, the mechanisms underlying ES action remain unclear. The objective of this study was to determine an impact of ES and/or MTX on psoriasis relapse and their potential cooperation. We found that regional ES, but not MTX, ameliorated psoriasiform skin inflammation recurrence. Interestingly, treatment with both MTX and ES further prevented psoriasis recurrence compared to ES alone. Moreover, ES downregulated potassium channel Kv1.3 on T-cells and reduced CD4+/CD8+ effector memory (TEM) and CD8+ skin-resident memory T (TRM) cells, while ES plus MTX further decreased CD8+ TEM/TRM cells compared to ES alone. However, ES failed to further attenuate psoriasis recurrence or suppress T cell memory in Kv1.3-deficient mice, whereas lack of Kv1.3 itself ameliorated psoriasis relapse by shrinking T cell memory pool. Importantly, ES moderately inhibited T-cell proliferation in vitro. ES also reduced human CD8+ TRM cells and attenuated human skin lesions in humanized mice grafted with lesional skin from patients with recurrent psoriasis, with an enhanced efficacy in mice treated with both ES and MTX. Thus, ES and MTX cooperated to prevent psoriasis relapse by reducing T-cell memory via targeting potassium channel Kv1.3. Our studies may be implicated for treating human psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuhong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fang Zheng
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
6
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Gubič Š, Montalbano A, Sala C, Becchetti A, Hendrickx LA, Van Theemsche KM, Pinheiro-Junior EL, Altadonna GC, Peigneur S, Ilaš J, Labro AJ, Pardo LA, Tytgat J, Tomašič T, Arcangeli A, Peterlin Mašič L. Immunosuppressive effects of new thiophene-based K V1.3 inhibitors. Eur J Med Chem 2023; 259:115561. [PMID: 37454520 DOI: 10.1016/j.ejmech.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.
Collapse
Affiliation(s)
- Špela Gubič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alberto Montalbano
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Cesare Sala
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy
| | - Andrea Becchetti
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, I-20126, Milano, Italy
| | - Louise Antonia Hendrickx
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Kenny M Van Theemsche
- University of Antwerp, Department of Biomedical Sciences, Campus Drie Eiken, Universiteisplein 1, 2610, Wilrijk, Belgium; Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Ernesto Lopes Pinheiro-Junior
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | | | - Steve Peigneur
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Alain J Labro
- Ghent University, Department of Basic and Applied Medical Sciences, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Luis A Pardo
- Max-Planck Institute for Experimental Medicine, AG Oncophysiology, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Jan Tytgat
- University of Leuven, Toxicology and Pharmacology, Campus Gasthuisberg, Onderwijs en Navorsing 2, Herestraat 49, PO Box 922, 3000, Leuven, Belgium
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Annarosa Arcangeli
- University of Florence, Department of Experimental and Clinical Medicine, I-50134, Florence, Italy.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Cherkashina OL, Morgun EI, Rippa AL, Kosykh AV, Alekhnovich AV, Stoliarzh AB, Terskikh VV, Vorotelyak EA, Kalabusheva EP. Blank Spots in the Map of Human Skin: The Challenge for Xenotransplantation. Int J Mol Sci 2023; 24:12769. [PMID: 37628950 PMCID: PMC10454653 DOI: 10.3390/ijms241612769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Most of the knowledge about human skin homeostasis, development, wound healing, and diseases has been accumulated from human skin biopsy analysis by transferring from animal models and using different culture systems. Human-to-mouse xenografting is one of the fundamental approaches that allows the skin to be studied in vivo and evaluate the ongoing physiological processes in real time. Humanized animals permit the actual techniques for tracing cell fate, clonal analysis, genetic modifications, and drug discovery that could never be employed in humans. This review recapitulates the novel facts about mouse skin self-renewing, regeneration, and pathology, raises issues regarding the gaps in our understanding of the same options in human skin, and postulates the challenges for human skin xenografting.
Collapse
Affiliation(s)
- Olga L. Cherkashina
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra L. Rippa
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander V. Alekhnovich
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Aleksey B. Stoliarzh
- Federal Government-Financed Institution “National Medical Research Center of High Medical Technologies n.a. A.A. Vishnevsky”, 143421 Krasnogorsk, Russia
| | - Vasiliy V. Terskikh
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P. Kalabusheva
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
9
|
Edwards A, Chandran V, Rahman P. Investigational monoclonal antibodies in early development for psoriatic arthritis: beyond the biosimilars. Expert Opin Investig Drugs 2023; 32:741-753. [PMID: 37655430 DOI: 10.1080/13543784.2023.2254684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Psoriatic Arthritis (PsA) is an inflammatory arthritis that is present in approximately 25% of psoriasis patients. Currently, several targeted therapies are available to manage PsA; however, many patients fail these therapies. Several new therapeutic options, with differing mechanisms of action, are currently being evaluated. AREAS COVERED This article reviews available results from phase I to phase III trials of several investigational monoclonal antibodies that the FDA has not yet approved for PsA. The proposed mechanisms of the new therapeutic agents and their relevance to the pathogenesis of PsA will be discussed. The investigational agents' efficacy and safety will be summarized, and their potential clinical applications for managing PsA will be contemplated. EXPERT OPINION Due to recent advances in understanding psoriatic arthritis, therapeutic agents are increasingly focused on inhibiting interleukin-17 and interleukin-23 pathways. Various strategies have been used to inhibit these cytokines, demonstrating favorable efficacy and acceptable safety profile.
Collapse
Affiliation(s)
- Anna Edwards
- Faculty of Pharmacy, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Vinod Chandran
- Department of Medicine, Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
| | - Proton Rahman
- Department of Medicine, Division of Rheumatology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
10
|
Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol 2023; 14:1190476. [PMID: 37180699 PMCID: PMC10166874 DOI: 10.3389/fphar.2023.1190476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Mechanical thrombectomy has improved treatment options and outcomes for acute ischemic stroke with large artery occlusion. However, as the time window of endovascular thrombectomy is extended there is an increasing need to develop immunocytoprotective therapies that can reduce inflammation in the penumbra and prevent reperfusion injury. We previously demonstrated, that by reducing neuroinflammation, KV1.3 inhibitors can improve outcomes not only in young male rodents but also in female and aged animals. To further explore the therapeutic potential of KV1.3 inhibitors for stroke therapy, we here directly compared a peptidic and a small molecule KV1.3 blocker and asked whether KV1.3 inhibition would still be beneficial when started at 72 hours after reperfusion. Methods: Transient middle cerebral artery occlusion (tMCAO, 90-min) was induced in male Wistar rats and neurological deficit assessed daily. On day-8 infarction was determined by T2-weighted MRI and inflammatory marker expression in the brain by quantitative PCR. Potential interactions with tissue plasminogen activator (tPA) were evaluated in-vitro with a chromogenic assay. Results: In a direct comparison with administration started at 2 hours after reperfusion, the small molecule PAP-1 significantly improved outcomes on day-8, while the peptide ShK-223 failed to reduce infarction and neurological deficits despite reducing inflammatory marker expression. PAP-1 still provided benefits when started 72 hours after reperfusion. PAP-1 does not reduce the proteolytic activity of tPA. Discussion: Our studies suggest that KV1.3 inhibition for immunocytoprotection after ischemic stroke has a wide therapeutic window for salvaging the inflammatory penumbra and requires brain-penetrant small molecules.
Collapse
Affiliation(s)
- Ruth D. Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Yi-Je Chen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
- Animal Models Core, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Hai M. Nguyen
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Varanita T, Angi B, Scattolini V, Szabo I. Kv1.3 K + Channel Physiology Assessed by Genetic and Pharmacological Modulation. Physiology (Bethesda) 2023; 38:0. [PMID: 35998249 DOI: 10.1152/physiol.00010.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
Collapse
Affiliation(s)
| | - Beatrice Angi
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Immler R, Nadolni W, Bertsch A, Morikis V, Rohwedder I, Masgrau-Alsina S, Schroll T, Yevtushenko A, Soehnlein O, Moser M, Gudermann T, Barnea ER, Rehberg M, Simon SI, Zierler S, Pruenster M, Sperandio M. The voltage-gated potassium channel KV1.3 regulates neutrophil recruitment during inflammation. Cardiovasc Res 2022; 118:1289-1302. [PMID: 33881519 PMCID: PMC8953450 DOI: 10.1093/cvr/cvab133] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
AIMS Neutrophil trafficking within the vasculature strongly relies on intracellular calcium signalling. Sustained Ca2+ influx into the cell requires a compensatory efflux of potassium to maintain membrane potential. Here, we aimed to investigate whether the voltage-gated potassium channel KV1.3 regulates neutrophil function during the acute inflammatory process by affecting sustained Ca2+ signalling. METHODS AND RESULTS Using in vitro assays and electrophysiological techniques, we show that KV1.3 is functionally expressed in human neutrophils regulating sustained store-operated Ca2+ entry through membrane potential stabilizing K+ efflux. Inhibition of KV1.3 on neutrophils by the specific inhibitor 5-(4-Phenoxybutoxy)psoralen (PAP-1) impaired intracellular Ca2+ signalling, thereby preventing cellular spreading, adhesion strengthening, and appropriate crawling under flow conditions in vitro. Using intravital microscopy, we show that pharmacological blockade or genetic deletion of KV1.3 in mice decreased neutrophil adhesion in a blood flow dependent fashion in inflamed cremaster muscle venules. Furthermore, we identified KV1.3 as a critical component for neutrophil extravasation into the inflamed peritoneal cavity. Finally, we also revealed impaired phagocytosis of Escherichia coli particles by neutrophils in the absence of KV1.3. CONCLUSION We show that the voltage-gated potassium channel KV1.3 is critical for Ca2+ signalling and neutrophil trafficking during acute inflammatory processes. Our findings do not only provide evidence for a role of KV1.3 for sustained calcium signalling in neutrophils affecting key functions of these cells, they also open up new therapeutic approaches to treat inflammatory disorders characterized by overwhelming neutrophil infiltration.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Wiebke Nadolni
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Annika Bertsch
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Vasilios Morikis
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Sergi Masgrau-Alsina
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Tobias Schroll
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Anna Yevtushenko
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkofer Straße 8a, 80336 Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Solnavägen 1, 17177 Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Enmarch-Straße 56, 48149 Münster, Germany
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Einsteinstraße 25, 81675 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Eytan R Barnea
- BioIncept LLC, New York, 140 East 40th Street #11E, NY 10016, USA
| | - Markus Rehberg
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Scott I Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336 Munich, Germany
| | - Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
13
|
The Kv1.3 K + channel in the immune system and its "precision pharmacology" using peptide toxins. Biol Futur 2021; 72:75-83. [PMID: 34554500 DOI: 10.1007/s42977-021-00071-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023]
Abstract
Since the discovery of the Kv1.3 voltage-gated K+ channel in human T cells in 1984, ion channels are considered crucial elements of the signal transduction machinery in the immune system. Our knowledge about Kv1.3 and its inhibitors is outstanding, motivated by their potential application in autoimmune diseases mediated by Kv1.3 overexpressing effector memory T cells (e.g., Multiple Sclerosis). High affinity Kv1.3 inhibitors are either small organic molecules (e.g., Pap-1) or peptides isolated from venomous animals. To date, the highest affinity Kv1.3 inhibitors with the best Kv1.3 selectivity are the engineered analogues of the sea anemone peptide ShK (e.g., ShK-186), the engineered scorpion toxin HsTx1[R14A] and the natural scorpion toxin Vm24. These peptides inhibit Kv1.3 in picomolar concentrations and are several thousand-fold selective for Kv1.3 over other biologically critical ion channels. Despite the significant progress in the field of Kv1.3 molecular pharmacology several progressive questions remain to be elucidated and discussed here. These include the conjugation of the peptides to carriers to increase the residency time of the peptides in the circulation (e.g., PEGylation and engineering the peptides into antibodies), use of rational drug design to create novel peptide inhibitors and understanding the potential off-target effects of Kv1.3 inhibition.
Collapse
|
14
|
Gubič Š, Hendrickx LA, Toplak Ž, Sterle M, Peigneur S, Tomašič T, Pardo LA, Tytgat J, Zega A, Mašič LP. Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. Med Res Rev 2021; 41:2423-2473. [PMID: 33932253 PMCID: PMC8252768 DOI: 10.1002/med.21800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.
Collapse
Affiliation(s)
- Špela Gubič
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Louise A. Hendrickx
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Žan Toplak
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Maša Sterle
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Steve Peigneur
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | | - Luis A. Pardo
- AG OncophysiologyMax‐Planck Institute for Experimental MedicineGöttingenGermany
| | - Jan Tytgat
- Toxicology and PharmacologyUniversity of Leuven, Campus GasthuisbergLeuvenBelgium
| | - Anamarija Zega
- Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
15
|
Zhukov AS, Khairutdinov VR, Samtsov AV. Perspective trends of topical therapy of patients with psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Topical medications are used to treat not only limited, but also common forms of the disease. Currently prescribed external anti-inflammatory drugs have a low selectivity of action, which does not allow achieving a long-term and pronounced clinical effect without the development of undesirable phenomena.
This review presents new options for the use of methotrexate in modern topical forms (AuNPs-3MPS), which make it possible to reduce the incidence of adverse events with a high efficiency of therapy. Shown is an innovative drug that blocks resident memory cells (PAP-1), which will influence the course and relapses of the disease, and possibly even lead to the cure of the patient from psoriasis. A new direction has been described inhibition of serine proteases (ER143, AAN-16) and thus inhibition of IL-36-mediated inflammation, which will allow controlling the inflammatory process in psoriasis in the early stages of its development. In addition, a number of drugs are shown whose action is based on blocking intracellular signaling pathways, which leads to inhibition of the development of the inflammatory response and resolution of psoriatic eruptions: inhibitors of Janus kinases (tofacitinib), transcription factor Stat3 (rS3-PA), secondary messenger of signals (SIS3), phosphodiesterase 7 (ASB16165) and 4 (AN-2728/crisaborol), ROR transcription factor (PF-06763809), phospholipase A2 (AVX001), hydrolases (DZ2002).
The results of preclinical and initial stages of clinical trials with an assessment of the safety and tolerability of the studied substances are presented. Based on the review, the advantages and disadvantages of the proposed drugs are characterized. Topical therapy with a selective effect on the key links in the development of psoriasis will increase the effectiveness of treatment and reduce the frequency of unwanted effects.
Collapse
|
16
|
Checchetto V, Leanza L, De Stefani D, Rizzuto R, Gulbins E, Szabo I. Mitochondrial K + channels and their implications for disease mechanisms. Pharmacol Ther 2021; 227:107874. [PMID: 33930454 DOI: 10.1016/j.pharmthera.2021.107874] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The field of mitochondrial ion channels underwent a rapid development during the last decade, thanks to the molecular identification of some of the nuclear-encoded organelle channels and to advances in strategies allowing specific pharmacological targeting of these proteins. Thereby, genetic tools and specific drugs aided definition of the relevance of several mitochondrial channels both in physiological as well as pathological conditions. Unfortunately, in the case of mitochondrial K+ channels, efforts of genetic manipulation provided only limited results, due to their dual localization to mitochondria and to plasma membrane in most cases. Although the impact of mitochondrial K+ channels on human diseases is still far from being genuinely understood, pre-clinical data strongly argue for their substantial role in the context of several pathologies, including cardiovascular and neurodegenerative diseases as well as cancer. Importantly, these channels are druggable targets, and their in-depth investigation could thus pave the way to the development of innovative small molecules with huge therapeutic potential. In the present review we summarize the available experimental evidence that mechanistically link mitochondrial potassium channels to the above pathologies and underline the possibility of exploiting them for therapy.
Collapse
Affiliation(s)
| | - Luigi Leanza
- Department of Biology, University of Padova, Italy
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Italy.
| |
Collapse
|
17
|
Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021; 60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Ruby J Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - David A Fox
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
18
|
Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, Singh N, Manne S, Neal M, Gabrielle M, Abdalla A, Anantharam P, Rokad D, Panicker N, Singh V, Ay M, Charli A, Harischandra D, Jin LW, Jin H, Rangaraju S, Anantharam V, Wulff H, Kanthasamy AG. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest 2021; 130:4195-4212. [PMID: 32597830 DOI: 10.1172/jci136174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Characterization of the key cellular targets contributing to sustained microglial activation in neurodegenerative diseases, including Parkinson's disease (PD), and optimal modulation of these targets can provide potential treatments to halt disease progression. Here, we demonstrated that microglial Kv1.3, a voltage-gated potassium channel, was transcriptionally upregulated in response to aggregated α-synuclein (αSynAgg) stimulation in primary microglial cultures and animal models of PD, as well as in postmortem human PD brains. Patch-clamp electrophysiological studies confirmed that the observed Kv1.3 upregulation translated to increased Kv1.3 channel activity. The kinase Fyn, a risk factor for PD, modulated transcriptional upregulation and posttranslational modification of microglial Kv1.3. Multiple state-of-the-art analyses, including Duolink proximity ligation assay imaging, revealed that Fyn directly bound to Kv1.3 and posttranslationally modified its channel activity. Furthermore, we demonstrated the functional relevance of Kv1.3 in augmenting the neuroinflammatory response by using Kv1.3-KO primary microglia and the Kv1.3-specific small-molecule inhibitor PAP-1, thus highlighting the importance of Kv1.3 in neuroinflammation. Administration of PAP-1 significantly inhibited neurodegeneration and neuroinflammation in multiple animal models of PD. Collectively, our results imply that Fyn-dependent regulation of Kv1.3 channels plays an obligatory role in accentuating the neuroinflammatory response in PD and identify Kv1.3 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Hai M Nguyen
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Jie Luo
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Monica Langley
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Neeraj Singh
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Sireesha Manne
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Matthew Neal
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Michelle Gabrielle
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdalla
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Medicine Building, ISU, Ames, Iowa, USA
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Muhammet Ay
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Dilshan Harischandra
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Lee-Way Jin
- M.I.N.D. Institute, Alzheimer's Disease Center, Department of Pathology and Laboratory Medicine, UCD, Davis, California, USA
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, UCD, Davis, California, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, Iowa State University (ISU), Ames, Iowa, USA
| |
Collapse
|
19
|
Navarini L, Currado D, Costa L, Tasso M, Chimenti MS, Caso F. Experimental and Investigational Pharmacotherapy for Psoriatic Arthritis: Drugs of the Future. J Exp Pharmacol 2020; 12:487-502. [PMID: 33235521 PMCID: PMC7679354 DOI: 10.2147/jep.s265633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022] Open
Abstract
In recent years, different studies have shown in psoriatic arthritis (PsA), the pathogenetic role of multiple cytokines other than tumor necrosis factor-α, such as interleukin-17 (IL-17), and IL-23 and dysfunction of Janus kinase (JAK)-signal family pathway. These molecules also represent the target of recently developed biologic (bDMARDs) and targeted synthetic disease modifying antirheumatic drugs (DMARDs) (tsDMARDs) currently investigated in several Phase II and III randomized controlled trials (RCTs). This review examines the therapeutic efficacy and safety of most recent developed IL-17, IL-23 and JAK inhibitors and highlights how these new PsA therapies are going to revolutionize the management of PsA in the next few years. Ongoing RCTs of these molecules in PsA are also described. Available literature on new anti-IL-17 and anti-IL-23 agents and JAK inhibitors demonstrates the potential role of these molecules as effective therapeutic strategies across multiple PsA clinical domains, along with an acceptable tolerability and safety profile, thus expanding the treatment options available for PsA patients. Of note, other molecules are under investigation, and among those, potential therapeutic strategies seem to be represented by single antibodies blocking simultaneously two cytokines, the agents inhibiting mammalian target of rapamycin (mTOR), receptor retinoic acid receptor-related orphan receptor gamma (RORγt), A3 adenosine receptor (A3 AR), and K+ channel voltage channel inhibitors. Remarkable progress has been made in PsA pharmacotherapy, and novel bDMARDs targeting IL17A and tsDMARDs (JAK-inhibitors) represent promising therapies. More clinical trials are needed to better characterize the efficacy and safety profile of these therapeutic agents in PsA treatment.
Collapse
Affiliation(s)
- Luca Navarini
- Unit of Rheumatology, Immunology and Clinical Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Damiano Currado
- Unit of Rheumatology, Immunology and Clinical Medicine, Università Campus Bio-Medico Di Roma, Rome, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Marco Tasso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Xie Z, Zhao Y, Yang W, Li W, Wu Y, Chen Z. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem Biophys Res Commun 2020; 532:265-270. [PMID: 32863001 DOI: 10.1016/j.bbrc.2020.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 μM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.
Collapse
Affiliation(s)
- Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Moreno-Estar S, Serrano S, Arévalo-Martínez M, Cidad P, López-López JR, Santos M, Pérez-Garcia MT, Arias FJ. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study. Acta Biomater 2020; 115:264-274. [PMID: 32771595 DOI: 10.1016/j.actbio.2020.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disorder. Vascular surgery strategies for coronary revascularization (either percutaneous or open) show a high rate of failure because of restenosis of the vessel, due to phenotypic switch of vascular smooth muscle cells (VSMCs) leading to proliferation and migration. We have previously reported that the inhibition of Kv1.3 channel function with selective blockers represents an effective strategy for the prevention of restenosis in human vessels used for coronary angioplasty procedures. However, delivery systems for controlled release of these drugs have not been investigated. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models. The dose and time course of PAP-1 release from ELRs click hydrogels was able to inhibit human VSMC proliferation in vitro as well as remodeling of human vessels in organ culture and restenosis in in vivo models. We conclude that this combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients. STATEMENT OF SIGNIFICANCE: Vascular surgery strategies for coronary revascularization show a high rate of failure, because of occlusion (restenosis) of the vessel, due to vascular smooth muscle cells proliferation and migration. We have previously reported that blockers of Kv1.3 channels represent an effective anti-restenosis therapy, but delivery systems for their controlled release have not being explored. Here we tested the efficacy of several formulations of elastin like recombinamers (ELRs) hydrogels to deliver the Kv1.3 blocker PAP-1 in various restenosis models, both in vivo and in vitro, and also in human vessels. We demonstrated that combination of active compound and advanced delivery method could improve the outcomes of vascular surgery in patients.
Collapse
|
22
|
Moniz T, Costa Lima SA, Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol 2020; 177:4314-4329. [PMID: 32608012 PMCID: PMC7484561 DOI: 10.1111/bph.15184] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| |
Collapse
|
23
|
Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, Carrer A, Biasutto L, Parrasia S, Kadow S, Managò A, Urbani A, Rossa A, Semenzato G, Soriano ME, Trentin L, Ahmad S, Edwards M, Gulbins E, Paradisi C, Zoratti M, Leanza L, Szabò I. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol 2020; 37:101705. [PMID: 33007503 PMCID: PMC7527709 DOI: 10.1016/j.redox.2020.101705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool. The mitochondrial channel mitoKv1.3 is a promising pharmacological target. MitoKv1.3 interacts with Complex I of the respiratory chain. Psoralenic inhibitors of Kv1.3 facilitate the diversion of e− from complex I to O2. A novel psoralenic Kv1.3 inhibitor with increased solubility reduces melanoma volume.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | | | | | - Matteo Romio
- Department of Chemical Sciences, University of Padua, Italy
| | | | - Andrea Carrer
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Sofia Parrasia
- Department of Biomedical Sciences, University of Padua, Italy
| | - Stephanie Kadow
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Andrea Urbani
- Department of Biology, University of Padua, Italy; Department of Biomedical Sciences, University of Padua, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padua, Italy
| | | | | | | | - Syed Ahmad
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Michael Edwards
- Department of Surgery, Medical School, University of Cincinnati, USA
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Germany
| | | | - Mario Zoratti
- Department of Biomedical Sciences, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Italy; CNR Institute of Neuroscience, Padua, Italy.
| |
Collapse
|
24
|
Toussi A, Maverakis N, Le ST, Sarkar S, Raychaudhuri SK, Raychaudhuri SP. Updated therapies for the management of Psoriatic Arthritis. Clin Immunol 2020; 220:108536. [PMID: 32681979 DOI: 10.1016/j.clim.2020.108536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Psoriatic arthritis (PsA) is a large volume of our clinical practice and its management can be challenging. Traditional DMARDs have been used over last six decades and observational studies have substantiated an effective use of many of these drugs. However, in last two decades use of anti-TNF agents has brought a new dimension in treatment of PsA and in many other autoimmune diseases. Regulatory role of the Th17 cells and its cytokines in the pathogenesis of PsA has successfully paved the foundations of anti-IL antibody based therapies in PsA. Newer therapies targeting the IL-23/IL-17 cytokines and its signaling proteins are now in development and bringing new promises for management of PsA. Herein, we provide an overview of the landscape of drug therapies, including IL-17, IL-12/23, IL-23 inhibitors, and janus kinase (JAK) inhibitors, as well as those in development, such as RORγt inhibitors, anti-NGF agents, mTOR inhibitors and T cell ion-channel blockers.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States; School of Medicine, University of California, Davis, Sacramento, CA, United States
| | | | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Soumajyoti Sarkar
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Sacramento, CA, United States
| | - Smriti K Raychaudhuri
- School of Medicine, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology and Immunology, VA Sacramento Medical Center, CA, United States
| | - Siba P Raychaudhuri
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Sacramento, CA, United States; Division of Rheumatology and Immunology, VA Sacramento Medical Center, CA, United States.
| |
Collapse
|
25
|
Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. Br J Anaesth 2020; 125:298-307. [PMID: 32624183 DOI: 10.1016/j.bja.2020.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.
Collapse
|
26
|
Ong ST, Bajaj S, Tanner MR, Chang SC, Krishnarjuna B, Ng XR, Morales RAV, Chen MW, Luo D, Patel D, Yasmin S, Ng JJH, Zhuang Z, Nguyen HM, El Sahili A, Lescar J, Patil R, Charman SA, Robins EG, Goggi JL, Tan PW, Sadasivam P, Ramasamy B, Hartimath SV, Dhawan V, Bednenko J, Colussi P, Wulff H, Pennington MW, Kuyucak S, Norton RS, Beeton C, Chandy KG. Modulation of Lymphocyte Potassium Channel K V1.3 by Membrane-Penetrating, Joint-Targeting Immunomodulatory Plant Defensin. ACS Pharmacol Transl Sci 2020; 3:720-736. [PMID: 32832873 DOI: 10.1021/acsptsci.0c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/23/2022]
Abstract
We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.
Collapse
Affiliation(s)
- Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Shih Chieh Chang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ming Wei Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Dharmeshkumar Patel
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sabina Yasmin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jeremy Jun Heng Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Zhong Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Abbas El Sahili
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Julien Lescar
- School of Biological Sciences, Nanyang Institute of Structural Biology, Experimental Medicine building, Singapore 636921
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash University, Parkville, Victoria 3052, Australia
| | - Edward G Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667.,Singapore Bioimaging Consortium, NUS Clinical Imaging Research Centre (CIRC), Centre for Life Sciences, Singapore 117599
| | - Julian L Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Peng Wen Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Pragalath Sadasivam
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Siddana V Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A Star), Singapore 138667
| | - Vikas Dhawan
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Janna Bednenko
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Paul Colussi
- TetraGenetics Inc, Arlington, Massachusetts 02474, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, United States
| | - Michael W Pennington
- Peptides International, Inc., Louisville, Kentucky 40269, United States.,AmbioPharm Inc., North Augusta, South Carolina 29842, United States
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - K George Chandy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921
| |
Collapse
|
27
|
Lozano-Gerona J, Oliván-Viguera A, Delgado-Wicke P, Singh V, Brown BM, Tapia-Casellas E, Pueyo E, Valero MS, Garcia-Otín ÁL, Giraldo P, Abarca-Lachen E, Surra JC, Osada J, Hamilton KL, Raychaudhuri SP, Marigil M, Juarranz Á, Wulff H, Miura H, Gilaberte Y, Köhler R. Conditional KCa3.1-transgene induction in murine skin produces pruritic eczematous dermatitis with severe epidermal hyperplasia and hyperkeratosis. PLoS One 2020; 15:e0222619. [PMID: 32150577 PMCID: PMC7062274 DOI: 10.1371/journal.pone.0222619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-β1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-β1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Javier Lozano-Gerona
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Aida Oliván-Viguera
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Brandon M. Brown
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Elena Tapia-Casellas
- Scientific and Technical Service, Aragónese Center for Biomedical Research, Univ. of Zaragoza, Zaragoza, Spain
| | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Ángel-Luis Garcia-Otín
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Pilar Giraldo
- Spanish Foundation for the Study and Treatment of Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
| | - Edgar Abarca-Lachen
- Universidad San Jorge, Faculty of Health Sciences, Villanueva de Gállego, Spain
| | - Joaquín C. Surra
- Departamento de Producción Animal y Ciencia de los Alimentos, CIBER-obn, Univ. of Zaragoza, Zaragoza, Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular (CIBEROBN), Facultad de Veterinaria, Univ. of Zaragoza, Zaragoza, Spain
| | - Kirk L. Hamilton
- Dept. of Physiology, School of Biomedical Sciences, Univ. of Otago, Dunedin, New Zealand
| | - Siba P. Raychaudhuri
- Department of Medicine and Dermatology, School of Medicine UC Davis and VA Sacramento Medical Center University of California, Mather, California, United States of America
| | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, UAM, Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Hiroto Miura
- Dept. of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States of America
| | - Yolanda Gilaberte
- Dept. of Dermatology, Univ. Hospital Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ralf Köhler
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| |
Collapse
|
28
|
Wang Y, Zhang S, Zhang N, Feng M, Liang Z, Zhao X, Gao C, Qin Y, Wu Y, Liu G, Zhao J, Guo H, Luo J. Reduced activated regulatory T cells and imbalance of Th17/activated Treg cells marks renal involvement in ANCA-associated vasculitis. Mol Immunol 2019; 118:19-29. [PMID: 31837507 DOI: 10.1016/j.molimm.2019.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
The role of naturally occurring regulatory T cells (Treg) in the control of the immune tolerance of ANCA-associated vasculitis (AAV) has not been well defined. Therefore, we separate the phenotypically heterogeneous Treg cells into different subsets based on the expression of FOXP3 and CD45RA during AAV pathogenesis. Fifty-four AAV patients (38 patients with renal involvement) and 19 healthy controls (HCs) were enrolled in this study. Levels of CD4+T cell subsets and cytokines were detected by flow cytometry. Treg immunesuppression capacity was measured in co-culture experiments. The diagnostic value for Treg subsets was evaluated by the areas under the receiver operating characteristic curves (AUC). Patients with AAV had lower percentages and numbers of activated Treg cells (aTreg, P = 0.044, P = 0.002), while higher levels of total Treg cells (P = 0.001, P = 0.026) with diminished immunosuppression capacity. The proportions of effector memory T-cell subpopulation (P < 0.001) were increased in AAV patients. Interestingly, the AUC of the aTreg improved significantly the diagnostic potential of AAV. Furthermore, the ratio of Th17/aTreg was significantly increased in active and renal vasculitis patient and positive correlation between Th17/Treg subset ratio and creatinine or BUN. In addition, we found that cytokine IL-2 and IL-4 exhibited a downward while IL-6, IL-10, TNF-α, IFN-γ and IL-17A trend upward in AAV patients. Increase in total Treg levels, along with functional deficiency, and decrease in aTreg cells constitute potential novel biomarkers for AAV. And the ratio of Th17/aTreg might serve as an important tool to recognize and monitor AAV patients with renal involvement and disease remission.
Collapse
Affiliation(s)
- Yanlin Wang
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Shulan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | - Na Zhang
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Min Feng
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhaojun Liang
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiangcong Zhao
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chong Gao
- Department of Pathology,Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Qin
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yanyao Wu
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guangying Liu
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jinfang Zhao
- Department of Medical Statistics, Shanxi Medical University, Taiyuan, China
| | - Hui Guo
- Division of Nephrology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Division of Nephrology, Department of Medicine, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, Guangdong 518005, China.
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
29
|
Ye CJ, Li SA, Zhang Y, Lee WH. Geraniol targets K V1.3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo. Fitoterapia 2019; 139:104394. [PMID: 31669719 DOI: 10.1016/j.fitote.2019.104394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 01/18/2023]
Abstract
Naturally occurring monoterpenes are known for their various pharmacological activities including anti-inflammation. KV1.3 ion channel is a voltage-gated potassium channel and has been validated as a drug target for autoimmune and chronic inflammatory diseases like psoriasis. Here we experimentally test the direct interaction between monoterpenes and KV1.3 ion channel. Our electrophysiological analysis determined that monoterpenes (geraniol, nerol, β-citronellol, citral and linalool) have inhibitory effects on KV1.3 ion channel. Representatively, geraniol reversibly blocked KV1.3 currents in a voltage-dependent manner with an IC50 of 490.50 ± 1.04 μM at +40 mV in HEK293T cells. At the effective concentrations, geraniol also inhibited cytokine secretion of activated human T cells, including IL-2, TNF-α and IFN-γ. In an imiquimod-induced psoriasis-like animal model, geraniol administration significantly reduced psoriasis area and severity index scores, ameliorated the deteriorating histopathology and decreased the degree of splenomegaly. Together, our findings not only suggest that monoterpenes may serve as lead molecules for the development of KV1.3 inhibitors, but also indicate that geraniol could be considered as a promising therapeutic candidate to treat autoimmune diseases.
Collapse
Affiliation(s)
- Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences, Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
30
|
Hu T, Krejsgaard T, Nastasi C, Buus TB, Nansen A, Hald A, Spee P, Nielsen PR, Blümel E, Gluud M, Willerslev-Olsen A, Woetmann A, Bzorek M, Eriksen JO, Ødum N, Rahbek Gjerdrum LM. Expression of the Voltage-Gated Potassium Channel Kv1.3 in Lesional Skin from Patients with Cutaneous T-Cell Lymphoma and Benign Dermatitis. Dermatology 2019; 236:123-132. [PMID: 31536992 DOI: 10.1159/000502137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by effector memory T cells (TEM) and plays an important role in their activation and proliferation. Mycosis fungoides (MF), the most common subtype of cutaneous T-cell lymphoma (CTCL), was recently proposed to be a malignancy of skin-resident TEM. However, the expression of Kv1.3 in CTCL has not been investigated. OBJECTIVES This study aims to examine the expression of Kv1.3 in situ and in vitro in CTCL. METHODS The expression of Kv1.3 was examined by immunohistochemistry in skin lesions from 38 patients with MF, 4 patients with Sézary syndrome (SS), and 27 patients with benign dermatosis. In 4 malignant T-cell lines of CTCL (Myla2059, PB2B, SeAx, and Mac2a) and a non-malignant T-cell line (MyLa1850), the expression of Kv1.3 was determined by flow cytometry. The proliferation of those cell lines treated with various concentrations of Kv1.3 inhibitor ShK was measured by 3H-thymdine incorporation. RESULTS Half of the MF patients (19/38) displayed partial Kv1.3 expression including 1 patient with moderate Kv1.3 positivity, while the other half (19/38) exhibited Kv1.3 negativity. An almost identical distribution was observed in patients with benign conditions, that is, 44.4% (12/27) were partially positive for Kv1.3 including 1 patient with moderate Kv1.3 positivity, while 55.6% (15/27) were Kv1.3 negative. In contrast, 3 in 4 SS patients displayed partial Kv1.3 positivity including 2 patients with weak staining and 1 with moderate staining, while 1 in 4 SS patients was Kv1.3 negative. In addition, all malignant T-cell lines, and a non-malignant T-cell line, displayed low Kv1.3 surface expression with a similar pattern. Whereas 2 cell lines (PB2B and Mac2a) were sensitive to Kv1.3 blockade, the other 2 (Myla2059 and SeAx) were completely resistant. CONCLUSIONS We provide the first evidence of a heterogeneous Kv1.3 expression in situ in CTCL lesions.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of in vivo Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | - Andreas Hald
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens O Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
31
|
Hu T, Buus TB, Krejsgaard T, Nansen A, Lundholt BK, Spee P, Fredholm S, Petersen DL, Blümel E, Gluud M, Monteiro MN, Willerslev-Olsen A, Andersen MH, Straten PT, Met Ö, Stolearenco V, Fogh H, Gniadecki R, Nastasi C, Litman T, Woetmann A, Gjerdrum LMR, Ødum N. Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget 2019; 10:4894-4906. [PMID: 31448055 PMCID: PMC6690676 DOI: 10.18632/oncotarget.27122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022] Open
Abstract
The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by a subset of chronically activated memory T cells and plays an important role in their activation and proliferation. Here, we show that primary malignant T cells isolated from patients with Sézary syndrome (SS) express Kv1.3 and are sensitive to potent Kv1.3 inhibitors ShK and Vm24, but not sensitive to a less potent inhibitor [N17A/F32T]-AnTx. Kv1.3 blockade inhibits CD3/CD28-induced proliferation and IL-9 expression by SS cells in a concentration-dependent manner. In parallel, CD3/CD28-mediated CD25 induction is inhibited, whereas Kv1.3 blockade has no effect on apoptosis or cell death as judged by Annexin V and PI staining. In conclusion, we provide the first evidence that malignant T cells in SS express functional Kv1.3 channels and that Kv1.3 blockade inhibits activation-induced proliferation as well as cytokine and cytokine receptor expression in malignant T cells, suggesting that Kv1.3 is a potential target for therapy in SS.
Collapse
Affiliation(s)
- Tengpeng Hu
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Terkild Brink Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anneline Nansen
- Department of Molecular Pharmacology, Zealand Pharma A/S, Glostrup, Denmark
| | | | | | - Simon Fredholm
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - David Leander Petersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Edda Blümel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Madalena N. Monteiro
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Willerslev-Olsen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Hald Andersen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Per thor Straten
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Özcan Met
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital at Herlev, Copenhagen, Denmark
| | - Veronica Stolearenco
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Fogh
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Copenhagen University Hospital at Bispebjerg, Copenhagen, Denmark
| | - Claudia Nastasi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Serrano-Albarrás A, Cirera-Rocosa S, Sastre D, Estadella I, Felipe A. Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochem Pharmacol 2019; 165:214-220. [DOI: 10.1016/j.bcp.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
33
|
Maezawa I, Nguyen HM, Di Lucente J, Jenkins DP, Singh V, Hilt S, Kim K, Rangaraju S, Levey AI, Wulff H, Jin LW. Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain 2019; 141:596-612. [PMID: 29272333 DOI: 10.1093/brain/awx346] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 12/14/2022] Open
Abstract
Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-β oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-β oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-β oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-β aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-β uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.
Collapse
Affiliation(s)
- Izumi Maezawa
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - Hai M Nguyen
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA
| | - David Paul Jenkins
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Vikrant Singh
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California Davis, One Shields Avenue, Med Sci 1-C, Davis, CA 95616, USA
| | - Srikant Rangaraju
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology and Alzheimer's Disease Research Center, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, 2805 50th Street, Sacramento, CA 95817, USA.,Alzheimer's Disease Center, University of California Davis Medical Center, 4860 Y Street, Suite 3900, Sacramento, CA 95817, USA
| |
Collapse
|
34
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
35
|
Di Lucente J, Nguyen HM, Wulff H, Jin LW, Maezawa I. The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia 2018; 66:1881-1895. [PMID: 30043400 DOI: 10.1002/glia.23457] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/09/2022]
Abstract
Microglia show a rich repertoire of activation patterns regulated by a complex ensemble of surface ion channels, receptors, and transporters. We and others have investigated whether microglia vary their K+ channel expression as a means to achieve functional diversity. However, most of the prior studies were conducted using in vitro models such as BV2 cells, primary microglia, or brain slices in culture, which may not accurately reflect microglia physiology in adult individuals. Here we employed an in vivo mouse model of selective innate immune activation by intracerebroventricular injection of lipopolysaccharides (ICV-LPS) to determine the role of the voltage-gated Kv1.3 channel in LPS-induced M1-like microglial activation. Using microglia acutely isolated from adult brains, we detected Kv1.3 and Kir2.1 currents, and found that ICV-LPS increased the current density and RNA expression of Kv1.3 but did not affect those of Kir2.1. Genetic knockout of Kv1.3 abolished LPS-induced microglial activation exemplified by Iba-1 immunoreactivity and expression of pro-inflammatory mediators such as IL-1β, TNF-α, IL-6, and iNOS. Moreover, Kv1.3 knockout mitigated the LPS-induced impairment of hippocampal long-term potentiation (hLTP), suggesting that Kv1.3 activity regulates pro-inflammatory microglial neurotoxicity. Pharmacological intervention using PAP-1, a small molecule that selectively blocks homotetrameric Kv1.3 channels, achieved anti-inflammatory and hLTP-recovery effects similar to Kv1.3 knockout. We conclude that Kv1.3 is required for microglial M1-like pro-inflammatory activation in vivo. A significant implication of our in vivo data is that Kv1.3 blockers could be therapeutic candidates for neurological diseases where microglia-mediated neurotoxicity is implicated in the pathogenesis.
Collapse
Affiliation(s)
- Jacopo Di Lucente
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| | - Hai M Nguyen
- Department of Pharmacology, University of California, Davis, California
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California
| | - Lee-Way Jin
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| | - Izumi Maezawa
- From the Department of Pathology and Laboratory Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
36
|
|
37
|
Tanner MR, Beeton C. Differences in ion channel phenotype and function between humans and animal models. FRONT BIOSCI-LANDMRK 2018; 23:43-64. [PMID: 28930537 PMCID: PMC5626566 DOI: 10.2741/4581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion channels play crucial roles in regulating a broad range of physiological processes. They form a very large family of transmembrane proteins. Their diversity results from not only a large number of different genes encoding for ion channel subunits but also the ability of subunits to assemble into homo- or heteromultimers, the existence of splice variants, and the expression of different regulatory subunits. These characteristics and the existence of very selective modulators make ion channels very attractive targets for therapy in a wide variety of pathologies. Some ion channels are already being targeted in the clinic while many more are being evaluated as novel drug targets in both clinical and preclinical studies. Advancing ion channel modulators from the bench to the clinic requires their assessment for safety and efficacy in animal models. While extrapolating results from one species to another is tempting, doing such without careful evaluation of the ion channels in different species presents a risk as the translation is not always straightforward. Here, we discuss differences between species in terms of ion channels expressed in selected tissues, differing roles of ion channels in some cell types, variable response to pharmacological agents, and human channelopathies that cannot fully be replicated in animal models.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston TX 77030
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston TX 77030, and Center for Drug Discovery and Biology of Inflammation Center, Baylor College of Medicine, Houston TX 77030,
| |
Collapse
|
38
|
Chen YJ, Nguyen HM, Maezawa I, Jin LW, Wulff H. Inhibition of the potassium channel Kv1.3 reduces infarction and inflammation in ischemic stroke. Ann Clin Transl Neurol 2017; 5:147-161. [PMID: 29468176 PMCID: PMC5817832 DOI: 10.1002/acn3.513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Objective Inhibitors of the voltage‐gated K+ channel Kv1.3 are currently in development as immunomodulators for the treatment of autoimmune diseases. As Kv1.3 is also expressed on microglia and has been shown to be specifically up‐regulated on “M1‐like” microglia, we here tested the therapeutic hypothesis that the brain‐penetrant small‐molecule Kv1.3‐inhibitor PAP‐1 reduces secondary inflammatory damage after ischemia/reperfusion. Methods We studied microglial Kv1.3 expression using electrophysiology and immunohistochemistry, and evaluated PAP‐1 in hypoxia‐exposed organotypic hippocampal slices and in middle cerebral artery occlusion (MCAO) with 8 days of reperfusion in both adult male C57BL/6J mice (60 min MCAO) and adult male Wistar rats (90 min MCAO). In both models, PAP‐1 administration was started 12 h after reperfusion. Results We observed Kv1.3 staining on activated microglia in ischemic infarcts in mice, rats, and humans and found higher Kv1.3 current densities in acutely isolated microglia from the infarcted hemisphere than in microglia isolated from the contralateral hemisphere of MCAO mice. PAP‐1 reduced microglia activation and increased neuronal survival in hypoxia‐exposed hippocampal slices as effectively as minocycline. In mouse MCAO, PAP‐1 dose‐dependently reduced infarct area, improved neurological deficit score, and reduced brain levels of IL‐1β and IFN‐γ without affecting IL‐10 and brain‐derived nerve growth factor (BDNF) levels or inhibiting ongoing phagocytosis. The beneficial effects on infarct area and neurological deficit score were reproduced in rats providing confirmation in a second species. Interpretation Our findings suggest that Kv1.3 constitutes a promising therapeutic target for preferentially inhibiting “M1‐like” inflammatory microglia/macrophage functions in ischemic stroke.
Collapse
Affiliation(s)
- Yi-Je Chen
- Department of Pharmacology University of California Davis 95616 California
| | - Hai M Nguyen
- Department of Pharmacology University of California Davis 95616 California
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine University of California Davis, Sacramento 95817 California.,M.I.N.D. Institute University of California Davis 95817 California
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine University of California Davis, Sacramento 95817 California.,M.I.N.D. Institute University of California Davis 95817 California
| | - Heike Wulff
- Department of Pharmacology University of California Davis 95616 California
| |
Collapse
|
39
|
Zou Y, Zhang F, Li Y, Wang Y, Li Y, Long Z, Shi S, Shuai L, Liu J, Di Z, Yin S. Cloning, expression and identification of KTX-Sp4, a selective Kv1.3 peptidic blocker from Scorpiops pococki. Cell Biosci 2017; 7:60. [PMID: 29142737 PMCID: PMC5674823 DOI: 10.1186/s13578-017-0187-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Specific and selective peptidic blockers of Kv1.3 channels can serve as a valuable drug lead for treating T cell-mediated autoimmune diseases, and scorpion venom is an important source of kv1.3 channel inhibitors. Through conducting transcriptomic sequencing for the venom gland of Scorpiops pococki from Xizang province of China, this research aims to discover a novel functional gene encoding peptidic blocker of Kv1.3, and identify its function. Results We screened out a new peptide toxin KTX-Sp4 which had 43 amino acids including six cysteine residues. Electrophysiological experiments indicated that recombinant expression products of KTX-Sp4 blocked both endogenous and exogenous Kv1.3 channel concentration-dependently, and exhibited good selectivity on Kv1.3 over Kv1.1, Kv1.2, respectively. Mutation experiments showed that the Kv1 turret region was responsible for the selectivity of KTX-Sp4 peptide on Kv1.3 over Kv1.1. Conclusions This work not only provided a novel lead compound for the development of anti autoimmune disease drugs, but also enriched the molecular basis for the interaction between scorpion toxins and potassium channels, serving as an important theoretical basis for designing high selective Kv1.3 peptide inhibitors.
Collapse
Affiliation(s)
- Yan Zou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Feng Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yaxian Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yuanfang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Yi Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhengtao Long
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Shujuan Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Li Shuai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Jiukai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| | - Zhiyong Di
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027 People's Republic of China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074 People's Republic of China
| |
Collapse
|
40
|
Venom-derived peptide inhibitors of voltage-gated potassium channels. Neuropharmacology 2017; 127:124-138. [PMID: 28689025 DOI: 10.1016/j.neuropharm.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
Voltage-gated potassium channels play a key role in human physiology and pathology. Reflecting their importance, numerous channelopathies have been characterised that arise from mutations in these channels or from autoimmune attack on the channels. Voltage-gated potassium channels are also the target of a broad range of peptide toxins from venomous organisms, including sea anemones, scorpions, spiders, snakes and cone snails; many of these peptides bind to the channels with high potency and selectivity. In this review we describe the various classes of peptide toxins that block these channels and illustrate the broad range of three-dimensional structures that support channel blockade. The therapeutic opportunities afforded by these peptides are also highlighted. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
|
41
|
Tanner MR, Tajhya RB, Huq R, Gehrmann EJ, Rodarte KE, Atik MA, Norton RS, Pennington MW, Beeton C. Prolonged immunomodulation in inflammatory arthritis using the selective Kv1.3 channel blocker HsTX1[R14A] and its PEGylated analog. Clin Immunol 2017; 180:45-57. [PMID: 28389388 PMCID: PMC5484050 DOI: 10.1016/j.clim.2017.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
Abstract
Effector memory T lymphocytes (TEM cells) that lack expression of CCR7 are major drivers of inflammation in a number of autoimmune diseases, including multiple sclerosis and rheumatoid arthritis. The Kv1.3 potassium channel is a key regulator of CCR7- TEM cell activation. Blocking Kv1.3 inhibits TEM cell activation and attenuates inflammation in autoimmunity, and as such, Kv1.3 has emerged as a promising target for the treatment of TEM cell-mediated autoimmune diseases. The scorpion venom-derived peptide HsTX1 and its analog HsTX1[R14A] are potent Kv1.3 blockers and HsTX1[R14A] is selective for Kv1.3 over closely-related Kv1 channels. PEGylation of HsTX1[R14A] to create a Kv1.3 blocker with a long circulating half-life reduced its affinity but not its selectivity for Kv1.3, dramatically reduced its adsorption to inert surfaces, and enhanced its circulating half-life in rats. PEG-HsTX1[R14A] is equipotent to HsTX1[R14A] in preferential inhibition of human and rat CCR7- TEM cell proliferation, leaving CCR7+ naïve and central memory T cells able to proliferate. It reduced inflammation in an active delayed-type hypersensitivity model and in the pristane-induced arthritis (PIA) model of rheumatoid arthritis (RA). Importantly, a single subcutaneous dose of PEG-HsTX1[R14A] reduced inflammation in PIA for a longer period of time than the non-PEGylated HsTX1[R14A]. Together, these data indicate that HsTX1[R14A] and PEG-HsTX1[R14A] are effective in a model of RA and are therefore potential therapeutics for TEM cell-mediated autoimmune diseases. PEG-HsTX1[R14A] has the additional advantages of reduced non-specific adsorption to inert surfaces and enhanced circulating half-life.
Collapse
Affiliation(s)
- Mark R Tanner
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Graduate Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth J Gehrmann
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathia E Rodarte
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mustafa A Atik
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Christine Beeton
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Biology of Inflammation Center and Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Kubota T, Correa AM, Bezanilla F. Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. Sci Rep 2017; 7:45310. [PMID: 28349975 PMCID: PMC5368567 DOI: 10.1038/srep45310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/22/2017] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium channel subfamily A member 3 (Kv1.3) dominantly expresses on T cells and neurons. Recently, the interaction between Kv1.3 and NavBeta1 subunits has been explored through ionic current measurements, but the molecular mechanism has not been elucidated yet. We explored the functional interaction between Kv1.3 and NavBeta1 through gating current measurements using the Cut-open Oocyte Voltage Clamp (COVC) technique. We showed that the N-terminal 1–52 sequence of hKv1.3 disrupts the channel expression on the Xenopus oocyte membrane, suggesting a potential role as regulator of hKv1.3 expression in neurons and lymphocytes. Our gating currents measurements showed that NavBeta1 interacts with the voltage sensing domain (VSD) of Kv1.3 through W172 in the transmembrane segment and modifies the gating operation. The comparison between G-V and Q-V with/without NavBeta1 indicates that NavBeta1 may strengthen the coupling between hKv1.3-VSD movement and pore opening, inducing the modification of kinetics in ionic activation and deactivation.
Collapse
Affiliation(s)
- Tomoya Kubota
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th street, Chicago, IL 60637, USA
| | - Ana M Correa
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th street, Chicago, IL 60637, USA
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th street, Chicago, IL 60637, USA
| |
Collapse
|
43
|
Management of psoriatic arthritis: Early diagnosis, monitoring of disease severity and cutting edge therapies. J Autoimmun 2017; 76:21-37. [DOI: 10.1016/j.jaut.2016.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
|
44
|
Kazama I, Tamada T. Lymphocyte Kv1.3-channels in the pathogenesis of chronic obstructive pulmonary disease: novel therapeutic implications of targeting the channels by commonly used drugs. Allergy Asthma Clin Immunol 2016; 12:60. [PMID: 27956907 PMCID: PMC5129211 DOI: 10.1186/s13223-016-0168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/15/2016] [Indexed: 02/05/2023] Open
Abstract
In patients with chronic obstructive pulmonary disease (COPD), over-activated T-lymphocytes produce pro-inflammatory cytokines and proliferate in situ in the lower airways and pulmonary parenchyma, contributing substantially to the pathogenesis of the disease. Despite our understanding of the molecular mechanisms by which lymphocytes are activated, we know little about the physiological mechanisms. T-lymphocytes predominantly express delayed rectifier K+-channels (Kv1.3) in their plasma membranes and these channels play crucial roles in inducing the lymphocyte activation and proliferation. In the pathogenesis of chronic inflammatory diseases, such as chronic kidney disease (CKD) or inflammatory bowel disease (IBD), these channels, which are overexpressed in proliferating lymphocytes within the inflamed organs, are responsible for the progression of the diseases. Since the over-activation of cellular immunity is also mainly involved in the pathogenesis of COPD, this disease could share similar pathophysiological features as those of CKD or IBD. From a literature review including ours, it is highly likely that the Kv1.3-channels are overexpressed or over-activated in T-lymphocytes isolated from patients with COPD, and that the overexpression of the channels would contribute to the development or progression of COPD. The involvement of the channels leads to novel therapeutic implications of potentially useful Kv1.3-channel inhibitors, such as calcium channel blockers, macrolide antibiotics, HMG-CoA reductase inhibitors and nonsteroidal anti-inflammatory drugs, in the treatment of COPD.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
45
|
Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, Grice JE, Roberts MS. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8:163-176. [PMID: 27799831 PMCID: PMC5076797 DOI: 10.2147/cpaa.s64788] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The assessment of percutaneous permeation of molecules is a key step in the evaluation of dermal or transdermal delivery systems. If the drugs are intended for delivery to humans, the most appropriate setting in which to do the assessment is the in vivo human. However, this may not be possible for ethical, practical, or economic reasons, particularly in the early phases of development. It is thus necessary to find alternative methods using accessible and reproducible surrogates for in vivo human skin. A range of models has been developed, including ex vivo human skin, usually obtained from cadavers or plastic surgery patients, ex vivo animal skin, and artificial or reconstructed skin models. Increasingly, largely driven by regulatory authorities and industry, there is a focus on developing standardized techniques and protocols. With this comes the need to demonstrate that the surrogate models produce results that correlate with those from in vivo human studies and that they can be used to show bioequivalence of different topical products. This review discusses the alternative skin models that have been developed as surrogates for normal and diseased skin and examines the concepts of using model systems for in vitro–in vivo correlation and the demonstration of bioequivalence.
Collapse
Affiliation(s)
- Eman Abd
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Shereen A Yousef
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael N Pastore
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Krishna Telaprolu
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Yousuf H Mohammed
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Sarika Namjoshi
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Jeffrey E Grice
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane
| | - Michael S Roberts
- Translational Research Institute, School of Medicine, University of Queensland, Brisbane; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
46
|
Abstract
Our PubMed search for peer-reviewed articles published in the 2014 solar year retrieved a significantly higher number of hits compared to 2013 with a net 28 % increase. Importantly, full articles related to autoimmunity constitute approximately 5 % of immunology articles. We confirm that our understanding of autoimmunity is becoming a translational paradigm with pathogenetic elements rapidly followed by new treatment options. Furthermore, numerous clinical and pathogenetic elements and features are shared among autoimmune diseases, and this is well illustrated in the recent literature. More specifically, the past year witnessed critical revisions of our understanding and management of antiphospholipid syndrome with new exciting data on the pathogenicity of the serum anti-beta2 glycoprotein autoantibody, a better understanding of the current and new treatments for rheumatoid arthritis, and new position papers on important clinical questions such as vaccinations in patients with autoimmune disease, comorbidities, or new classification criteria. Furthermore, data confirming the important connections between innate immunity and autoimmunity via toll-like receptors or the critical role of T regulatory cells in tolerance breakdown and autoimmunity perpetuation were also reported. Lastly, genetic and epigenetic data were provided to confirm that the mosaic of autoimmunity warrants a susceptible individual background which may be geographically determined and contribute to the geoepidemiology of diseases. The 2014 literature in the autoimmunity world should be cumulatively regarded as part of an annus mirabilis in which, on a different level, the 2014 Annual Meeting of the American College of Rheumatology in Boston was attended by over 16,000 participants with over selected 3000 abstracts.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, via A. Manzoni 56, 20089 Rozzano, Milan, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
47
|
Peimine, a main active ingredient of Fritillaria, exhibits anti-inflammatory and pain suppression properties at the cellular level. Fitoterapia 2016; 111:1-6. [DOI: 10.1016/j.fitote.2016.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
|
48
|
Wan LS, Nian Y, Ye CJ, Shao LD, Peng XR, Geng CA, Zuo ZL, Li XN, Yang J, Zhou M, Qiu MH. Three Minor Diterpenoids with Three Carbon Skeletons from Euphorbia peplus. Org Lett 2016; 18:2166-9. [PMID: 27075046 DOI: 10.1021/acs.orglett.6b00787] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Euphorbia peplus has been used in traditional medicine to treat asthma and psoriasis. Three highly modified diterpenoids, namely, pepluacetal (1) and pepluanol A-B (2-3), have been isolated and identified from this plant. Compounds 1-3 exhibit unprecedented 5/4/7/3, 5/6/7/3, and 5/5/8/3 ring systems, respectively. Their structures with absolute configurations were determined by spectroscopic analyses, X-ray crystallography, and electronic circular dichroism calculations. Since Kv1.3 is a validated target for the treatment of autoimmune diseases, such as multiple sclerosis, type-1 diabetes, asthma, and psoriasis, Kv1.3 was studied in terms of its response to the new compounds. All three compounds inhibit Kv1.3, with compound 3 being the most effective with an IC50 value of 9.50 μM.
Collapse
Affiliation(s)
- Luo-Sheng Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Yin Nian
- Key Laboratory of Animal Models and Human Diease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, P. R. China
| | - Chen-Jun Ye
- Key Laboratory of Animal Models and Human Diease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, P. R. China
| | - Li-Dong Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| | - Jian Yang
- Key Laboratory of Animal Models and Human Diease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, P. R. China.,Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | - Ming Zhou
- Key Laboratory of Animal Models and Human Diease Mechanisms, and Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, P. R. China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences , 132 Lanhei Road, Kunming 650201, P. R. China
| |
Collapse
|
49
|
Raychaudhuri SK, Wulff H, Raychaudhuri SP. KCa3.1(-/-) Mice Do Not Develop CIA: Regulatory Role for KCa3.1 in Autoimmune Arthritis. J Cell Physiol 2016; 231:2313-4. [PMID: 26910182 DOI: 10.1002/jcp.25356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Smriti K Raychaudhuri
- Sacramento VA Medical Center, Mather, California.,Department of Pharmacology, University of California Davis, Davis, California
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, California
| | - Siba P Raychaudhuri
- Sacramento VA Medical Center, Mather, California.,Medicine/Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California Davis, California
| |
Collapse
|
50
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|