1
|
Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Caputo D, Rovaris M, Clerici M. Increased concentrations of P2X7R in oligodendrocyte derived extracellular vesicles of Multiple sclerosis patients. Neurobiol Dis 2024; 199:106601. [PMID: 38996986 DOI: 10.1016/j.nbd.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
Activation of the purinergic receptor P2X7 (P2X7R) is believed to be deleterious in autoimmune diseases and it was hypothesized to play a role in the pathogenesis of MS. P2X7R is an ATP-gated non-selective cationic channel; its activation can be driven by high concentrations of ATP and leads to the generation of large, cytolytic conductance pores. P2X7R activation can also result in apoptosis as a consequence of the activation of the caspase cascade via P2X7R-dependent stimulation of the NLRP3 inflammasome. We measured P2X7R in oligodendrocyte derived extracellular vesicles (ODEVs) in MS patients and in healthy subjects. Sixty-eight MS patients (50 relapsing-remitting, RR-MS, 18 primary progressive, PP-MS) and 57 healthy controls (HC) were enrolled. ODEVs were enriched from serum by a double step immunoaffinity method using an anti OMGp (oligodendrocyte myelin glycoprotein) antibody. P2X7R concentration was measured in ODEVs lysates by ELISA. One-way Anova test showed that P2X7R in ODEVs is significantly higher in PP-MS (mean: 1742.89 pg/mL) compared both to RR-MS (mean: 1277.33 pg/mL) (p < 0.001) and HC (mean: 879.79 pg/mL) (p < 0.001). Comparison between RR-MS and HC was also statistically significant (p < 0.001). Pearson's correlations showed that P2RX7 in ODEVs was positively correlated with EDSS (p = 0.002, r = 0.38, 0.15-0.57 95% CI) and MSSS (p = 0.004, r = 0.34, 0.12-0.54 95% CI) scores, considering MS patients together (PP-MS + RR-MS) and with disease duration in PP-MS group (p = 0.02, r = 0.53, 0.09-0.80 95% CI). Results suggest that ODEVs-associated P2X7R levels could be a biomarker for MS.
Collapse
Affiliation(s)
- Cristina Agliardi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | | | - Milena Zanzottera
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | | | - Domenico Caputo
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, Milan, Italy; Pathophysiology and Transplantation Department, University of Milan, via Francesco Sforza 35, Milan, Italy
| |
Collapse
|
2
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
3
|
Pulito-Cueto V, Sebastián Mora-Gil M, Ferrer-Pargada D, Remuzgo-Martínez S, Genre F, Lera-Gómez L, Alonso-Lecue P, Batista-Liz JC, Tello-Mena S, Abascal-Bolado B, Izquierdo S, Ruiz-Cubillán JJ, Armiñanzas-Castillo C, Blanco R, González-Gay MA, López-Mejías R, Cifrián JM. Inflammasome-Related Genetic Polymorphisms as Severity Biomarkers of COVID-19. Int J Mol Sci 2024; 25:3731. [PMID: 38612539 PMCID: PMC11011752 DOI: 10.3390/ijms25073731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The most critical forms of coronavirus disease 2019 (COVID-19) are associated with excessive activation of the inflammasome. Despite the COVID-19 impact on public health, we still do not fully understand the mechanisms by which the inflammatory response influences disease prognosis. Accordingly, we aimed to elucidate the role of polymorphisms in the key genes of the formation and signaling of the inflammasome as biomarkers of COVID-19 severity. For this purpose, a large and well-defined cohort of 377 COVID-19 patients with mild (n = 72), moderate (n = 84), severe (n = 100), and critical (n = 121) infections were included. A total of 24 polymorphisms located in inflammasome-related genes (NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, IL18, NFKB1, ATG16L1, and MIF) were genotyped in all of the patients and in the 192 healthy controls (HCs) (who were without COVID-19 at the time of and before the study) by RT-qPCR. Our results showed that patients with mild, moderate, severe, and critical COVID-19 presented similar allelic and genotypic distribution in all the variants studied. No statistically significant differences in the haplotypic distribution of NLRP3, NLRC4, NLRP1, CARD8, CASP1, IL1B, and ATG16L1 were observed between COVID-19 patients, who were stratified by disease severity. Each stratified group of patients presented a similar genetic distribution to the HCs. In conclusion, our results suggest that the inflammasome polymorphisms studied are not associated with the worsening of COVID-19.
Collapse
Affiliation(s)
- Verónica Pulito-Cueto
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - María Sebastián Mora-Gil
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Diego Ferrer-Pargada
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | | | - Fernanda Genre
- Valdecilla Research Institute (IDIVAL), 39011 Santander, Spain; (S.R.-M.); (F.G.)
| | - Leticia Lera-Gómez
- Department of Microbiology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Pilar Alonso-Lecue
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Joao Carlos Batista-Liz
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Sandra Tello-Mena
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Beatriz Abascal-Bolado
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Sheila Izquierdo
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | - Juan José Ruiz-Cubillán
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
| | | | - Ricardo Blanco
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Miguel A. González-Gay
- School of Medicine, University of Cantabria, 39011 Santander, Spain;
- Department of Rheumatology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Raquel López-Mejías
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Rheumatology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - José M. Cifrián
- Immunopathology Group, Marqués de Valdecilla University Hospital-Valdecilla Research Institute (IDIVAL), 39008 Santander, Spain; (M.S.M.-G.); (P.A.-L.); (J.C.B.-L.); (R.B.); (R.L.-M.); (J.M.C.)
- Department of Pneumology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; (D.F.-P.); (S.T.-M.); (B.A.-B.); (S.I.); (J.J.R.-C.)
- School of Medicine, University of Cantabria, 39011 Santander, Spain;
| |
Collapse
|
4
|
Liu J, Wei H, Zhu X, Liu H, Jin L. Contrasting the relationship of serum uric acid/albumin ratio on quantitative flow ratio with other multiple composite parameters in patients with suspected coronary artery disease. BMC Cardiovasc Disord 2024; 24:146. [PMID: 38443781 PMCID: PMC10913211 DOI: 10.1186/s12872-024-03763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association between quantitative coronary flow reserve (CFR) and the blood uric acid/albumin ratio, as well as multiple clinical parameters, in order to assess the severity of coronary artery functional stenosis. METHODS This retrospective cross-sectional study included 257 suspected coronary artery disease patients who underwent coronary angiography (CAG) and quantitative flow ratio (QFR) examinations in the Department of Cardiovascular Medicine at the First Affiliated Hospital of Yangtze University in Jingzhou City, China, between September 2022 and March 2023. The study subjects were divided into two groups based on their QFR values: QFR ≤ 0.80 group and QFR > 0.80 group. Correlation of uric acid-to-albumin ratio (UAR), high-density lipoprotein ratio (MHR), systemic immune-inflammation index (SII), Systemic Inflammation Response Index (SIRI), and Aggregate Index of Systemic Inflammation (AISI) with coronary artery QFR was analyzed using univariate and multivariate logistic regression models, considering them as both continuous and binary variables. RESULTS The QFR ≤ 0.80 group consisted of 83 patients, while the QFR > 0.80 group included 174 patients. Significant differences were observed between the QFR ≤ 0.80 and QFR > 0.80 groups in the following parameters: UAR (9.19 ± 2.47 vs 7.61 ± 1.91; p < 0.001), MHR (0.46 ± 0.19 vs 0.37 ± 0.16, p < 0.001), SII (674.98 ± 332.30 vs 571.43 ± 255.82; p = 0.006), SIRI (1.53 ± 0.83 vs 1.29 ± 1.10; p = 0.047), and AISI (340.22 ± 242.10 vs 243.97 ± 151.97; p < 0.001). ROC curve analysis revealed an area under the curve of 0.701 (CI: 0.633-0.770; p < 0.001) for UAR. In the univariate analysis, when treated as binary variables, high levels of UAR, MHR, SII, SIRI, and AISI were found to be significantly associated with the risk of QFR ≤ 0.80 (all P < 0.05). However, in the multivariate regression analysis, only high levels of UAR and AISI remained significantly associated with QFR ≤ 0.80 (all P < 0.05). When treated as continuous variables, the univariate analysis indicated that UAR (OR: 1.412, CI: 1.231-1.620, p < 0.001), e^MHR (OR: 1.394, CI: 1.151-1.687, p < 0.001), lnSII (OR: 1.001, CI: 1.000-1.002, p = 0.008), and lnAISI (OR: 2.695, CI: 1.539-4.719, p = 0.001) were significantly associated with QFR ≤ 0.80. In the multivariate analysis, UAR (OR: 1.373, CI: 1.187-1.587, p < 0.001) and AISI (OR: 2.217, CI: 1.309-3.757, p < 0.001) remained significantly associated with QFR ≤ 0.80. CONCLUSIONS The results of this study indicate a significant association between UAR and AISI with QFR ≤ 0.80, suggesting its potential role in predicting the extent of functional coronary artery stenosis in patients with CAD. Additionally, AIRI, identified as an inflammatory marker in the complete blood count, was found to exert influence on the severity of coronary artery physiology.
Collapse
Affiliation(s)
- Jin Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, No.8, Aviation Road, Shashi District, Jingzhou, 434021, China
| | - Han Wei
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, No.8, Aviation Road, Shashi District, Jingzhou, 434021, China
| | - Xuanzhi Zhu
- Department of Anesthesiology, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Huangjun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, No.8, Aviation Road, Shashi District, Jingzhou, 434021, China.
| | - Lijun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, No.8, Aviation Road, Shashi District, Jingzhou, 434021, China.
| |
Collapse
|
5
|
Lu J, Song L, Luan J, Feng Y, Wang Y, Cao X, Lu Y. Identification of Shared Biomarkers and Immune Infiltration Signatures between Vitiligo and Hashimoto's Thyroiditis. Clin Cosmet Investig Dermatol 2024; 17:311-327. [PMID: 38327551 PMCID: PMC10847670 DOI: 10.2147/ccid.s451080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Background Vitiligo and Hashimoto's thyroiditis (HT) are concomitant autoimmune diseases characterized by the destruction of melanocytes or thyrocytes. We aimed to explore the immunological mechanism of this comorbidity and screen their potential biomarkers. Methods We downloaded the microarray datasets from the GEO database. Differentially expressed genes (DEGs) and immune-related genes (IRGs) were selected. The immune-related differentially expressed genes (IRDEGs) were obtained by taking the intersection. Candidate biomarkers were elected by Cytoscape software. CIBERSORT was used to depict immune cell infiltration prospects. Correlation analysis was conducted between infiltrating cells and several indicators. The results were validated by real-time quantitative PCR (RT-qPCR). Results Three datasets and 60 IRDEGs were obtained in total. Pathway enrichment analysis showed that the T cell receptor signaling pathway, IL-17 signaling pathway, receptor-ligand activity, and signaling receptor activator activity were significantly enriched. We screened out four hub genes, including IFNG, STAT1, IL1B, and CXCL10. The ROC curve indicated the highest diagnostic value of CXCL10 in both vitiligo and HT. Immuno-infiltration analysis revealed significant changes in T cell subsets and macrophage subtypes, which were correlated with four hub genes, melanocyte markers, and thyroid-specific antigens. qPCR validated the hub genes in peripheral blood mononuclear cells from patients with comorbidity. Conclusion IFNG, STAT1, IL1B, and CXCL10, were the key IRDEGs to vitiligo and HT. These genes may participate in the comorbidity by remodeling the immune cell infiltration pattern, and cross-expressed antigens may mediate the common damage of melanocytes and thyroid tissues.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lebin Song
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yifei Feng
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yidan Wang
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xuechen Cao
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Yu J, Xiong F, Xu Y, Xu H, Zhang X, Gao H, Li Y. Lipidomics reveals immune-related adverse events in NSCLC patients receiving immune checkpoint inhibitor. Int Immunopharmacol 2024; 127:111412. [PMID: 38160567 DOI: 10.1016/j.intimp.2023.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
There is a lack of reliable biomarkers to predict and identify the risk of immune-related adverse events (irAEs) in non-small cell lung cancer (NSCLC) patients undergoing immune checkpoint inhibitor (ICI) treatment. This study aims to explore potential biomarkers using lipidomics to identify and predict the risk of irAEs in NSCLC patients receiving ICI treatment. This prospective study enrolled 94 NSCLC patients with IIIB/IV stage NSCLC who underwent first-line chemotherapy in combination with ICI treatment. The prediction cohort consisted of plasma samples collected from 60 patients before ICI treatment, and the occurrence of irAE was monitored within 6 months of initiating first-line ICI therapy. The validation cohort comprised 34 patients, with plasma samples obtained from 15 patients who did not develop irAE at 6 months of ICI treatment and plasma samples collected from 19 irAE patients at the onset of irAE. Through non-targeted lipidomics and semi-targeted lipid quantification analysis, we identify 11 differentially metabolized lipids and further screened these lipids with the area under the curve (AUC) > 0.7 to predict the occurrence of irAEs in NSCLC patients following ICI treatment. The results showed that the biomarker panel consisting of 9 lipids (LPC-18:2, PC-40:6, LPC-22:6, LPC-O-18:0, PS-38:0, PC-38:6, PC-37:6, PC-36:5,LPC-17:0) exhibited a good AUC of 0.859 in the prediction and 0.940 in the validation cohort phase of the receiver operating characteristic curve; The study utilizes plasma lipidomics to develop a rapid and effective prediction model for identifying irAEs in advanced NSCLC patients who treatment with first-line chemotherapy combined with immunotherapy.
Collapse
Affiliation(s)
- Jia Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Fen Xiong
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingruo Xu
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xi Zhang
- Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory, Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
7
|
Li M, Wang M, Wen Y, Zhang H, Zhao G, Gao Q. Signaling pathways in macrophages: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2023; 4:e349. [PMID: 37706196 PMCID: PMC10495745 DOI: 10.1002/mco2.349] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Macrophages play diverse roles in development, homeostasis, and immunity. Accordingly, the dysfunction of macrophages is involved in the occurrence and progression of various diseases, such as coronavirus disease 2019 and atherosclerosis. The protective or pathogenic effect that macrophages exert in different conditions largely depends on their functional plasticity, which is regulated via signal transduction such as Janus kinase-signal transducer and activator of transcription, Wnt and Notch pathways, stimulated by environmental cues. Over the past few decades, the molecular mechanisms of signaling pathways in macrophages have been gradually elucidated, providing more alternative therapeutic targets for diseases treatment. Here, we provide an overview of the basic physiology of macrophages and expound the regulatory pathways within them. We also address the crucial role macrophages play in the pathogenesis of diseases, including autoimmune, neurodegenerative, metabolic, infectious diseases, and cancer, with a focus on advances in macrophage-targeted strategies exploring modulation of components and regulators of signaling pathways. Last, we discuss the challenges and possible solutions of macrophage-targeted therapy in clinical applications. We hope that this comprehensive review will provide directions for further research on therapeutic strategies targeting macrophage signaling pathways, which are promising to improve the efficacy of disease treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mengjie Wang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanjia Wen
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongfei Zhang
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guang‐Nian Zhao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qinglei Gao
- Department of Gynecological OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- National Clinical Research Center for Obstetrics and GynecologyCancer Biology Research Center (Key Laboratory of the Ministry of Education)Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
8
|
Grassi F, Salina G. The P2X7 Receptor in Autoimmunity. Int J Mol Sci 2023; 24:14116. [PMID: 37762419 PMCID: PMC10531565 DOI: 10.3390/ijms241814116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated nonselective cationic channel that, upon intense stimulation, can progress to the opening of a pore permeable to molecules up to 900 Da. Apart from its broad expression in cells of the innate and adaptive immune systems, it is expressed in multiple cell types in different tissues. The dual gating property of P2X7R is instrumental in determining cellular responses, which depend on the expression level of the receptor, timing of stimulation, and microenvironmental cues, thus often complicating the interpretation of experimental data in comprehensive settings. Here we review the existing literature on P2X7R activity in autoimmunity, pinpointing the different functions in cells involved in the immunopathological processes that can make it difficult to model as a druggable target.
Collapse
Affiliation(s)
- Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | |
Collapse
|
9
|
Kim YJ, Choi W, Sim J, Ahn JW, Park J, Kim D, Jeong JY, Lee JM, Cho K, Moon JS, Moon JH, Sung KS, Lim J. Comparing the Expression of Canonical and Non-Canonical Inflammasomes Across Glioma Grades: Evaluating Their Potential as an Aggressiveness Marker. Brain Tumor Res Treat 2023; 11:191-203. [PMID: 37550819 PMCID: PMC10409615 DOI: 10.14791/btrt.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Inflammasomes are key in the initiation of inflammatory responses and serve to defend the organism. However, when the immune system is imbalanced, these complexes contribute to tumor progression. The purpose of this study was to investigate the effect of non-canonical inflammasomes on glioma malignancy. METHODS We performed bioinformatics analysis to confirm the expression of canonical and non-canonical inflammasome-related molecules according to the degree of malignancy through immunohistochemical examination of glioma tissues obtained with patient consent from our institution. RESULTS Bioinformatics analysis confirmed that the expression levels of non-canonical inflammasome-related molecules were significantly higher in tumor tissues than in normal tissues, and they also increased according to malignancy, which adversely affected the survival rate. Furthermore, in gliomas, positive correlations were found between N-form gasdermin-D, a key molecule associated with the non-canonical inflammasome, and other related molecules, including NLRP3, caspase-1, caspase-4, and caspase-5. These results were verified by immunohistochemical examination of glioma tissues, and the expression levels of these molecules also increased significantly with increasing grade. In addition, the features of pyroptosis were confirmed. CONCLUSION This study identified the potential of non-canonical inflammasomes as aggressiveness markers for gliomas and presented a perspective for improving glioma treatment.
Collapse
Affiliation(s)
- Yu Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Wooseok Choi
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - JeongMin Sim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Ju Won Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - JeongMan Park
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
- Department of Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Dongkil Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Ju-Yeon Jeong
- CHA Future Medicine Research Institute, Bundang CHA Medical Center, Seongnam, Korea
| | - Ji Min Lee
- CHA Future Medicine Research Institute, Bundang CHA Medical Center, Seongnam, Korea
| | - Kyunggi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Jong-Seok Moon
- Soonchunhyang Institution of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea.
| | - Jaejoon Lim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
- CHA Future Medicine Research Institute, Bundang CHA Medical Center, Seongnam, Korea.
| |
Collapse
|
10
|
Yazdanpanah N, Rezaei A, Ziaee V, Rezaei N. Study of NLRP3 Single Nucleotide Polymorphisms in Juvenile Systemic Lupus Erythematosus (JSLE). Immunol Invest 2023:1-18. [PMID: 37262326 DOI: 10.1080/08820139.2023.2215280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Juvenile systemic lupus erythematosus (JSLE) is a multifaceted multifactorial disorder with an unclear etiopathogenesis. Environmental factors, genetic factors, and dysregulated and defective immune system responses are known to have a role in JSLE etiopathogenesis. NLRP3 inflammasome, as an important contributor to immune-mediated inflammatory responses, is assumed to be involved in JSLE etiopathogenesis. To determine whether the NLRP3 genetic variants are altered in patients with JSLE. Fifty-three patients diagnosed with JSLE and 56 healthy sex-matched controls were studied. NLRP3 (C/G rs10754558, C/T rs3806265, C/T rs4612666, A/C rs35829419) gene polymorphisms were evaluated using a TaqMan single-nucleotide polymorphism assay. C allele at position rs3806265 was detected in higher frequencies in patients than in the control group (37.74% vs 23.21%, P-value = .028). At the genotype level at the same position, CT has a significantly higher frequency in patients than the healthy subjects (75.47% vs 46.43%, P-value = .003). The NLRP3 rs3806265 CT genotype was detected at a higher frequency in patients with JSLE than in the healthy control group.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Wang Y, Ding M, Chi J, Wang T, Zhang Y, Li Z, Li Q. Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID-19. Sci Rep 2023; 13:3884. [PMID: 36890149 PMCID: PMC9993359 DOI: 10.1038/s41598-023-29207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. However, the treatment of vitiligo combined with COVID-19 has not been reported. Astragalus membranaceus (AM) has a therapeutic effect on patients with vitiligo and COVID-19. This study aims to discover its possible therapeutic mechanisms and provide potential drug targets. Using the Chinese Medicine System Pharmacological Database (TCMSP), GEO database and Genecards websites and other databases, AM target, vitiligo disease target, and COVID-19 related gene set were established. Then find the crossover genes by taking the intersection. Then use GO, KEGG enrichment analysis, and PPI network to discover its underlying mechanism. Finally, by importing drugs, active ingredients, crossover genes, and enriched signal pathways into Cytoscape software, a "drug-active ingredient-target signal pathway-" network is constructed. TCMSP screened and obtained 33 active ingredients including baicalein (MOL002714), NEOBAICALEIN (MOL002934), Skullcapflavone II (MOL002927), and wogonin (MOL000173), which acted on 448 potential targets. 1166 differentially expressed genes for vitiligo were screened by GEO. CIVID-19 related genes were screened by Genecards. Then by taking the intersection, a total of 10 crossover genes (PTGS2, CDK1, STAT1, BCL2L1, SCARB1, HIF1A, NAE1, PLA2G4A, HSP90AA1, and HSP90B1) were obtained. KEGG analysis found that it was mainly enriched in signaling pathways such as IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway. Five core targets (PTGS2, STAT1, BCL2L1, HIF1A, and HSP90AA1) were obtained by analyzing the PPI network. The network of "active ingredients-crossover genes" was constructed by Cytoscape, and the 5 main active ingredients acting on the 5 core crossover genes acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone. The core crossover genes obtained by PPI and the core crossover genes obtained by the "active ingredient-crossover gene" network are intersected to obtain the three most important core genes (PTGS2, STAT1, HSP90AA1). AM may act on PTGS2, STAT1, HSP90AA1, etc. through active components such as acacetin, wogonin, baicalein, bis2S)-2-ethylhexyl) benzene-1,2-dicarboxylate and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to activate IL-17 signaling pathway, Th17 cell differentiation, Necroptosis, NOD-like receptor signaling pathway, Kaposi sarcoma-associated herpesvirus infection, and VEGF signaling pathway and other signaling pathways to achieve the effect of treating vitiligo and COVID-19.
Collapse
Affiliation(s)
- Yaojun Wang
- Graduate School, Hebei North University, Zhangjiakou, 075000, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Ming Ding
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Jiaoni Chi
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Tao Wang
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China.,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Yue Zhang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhimin Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, China
| | - Qiang Li
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China. .,Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| |
Collapse
|
13
|
Razumova IY, Surnina ZV, Dzhaber DN. [Current view on the pathogenesis of immune-mediated inflammatory diseases associated with ocular manifestations]. Vestn Oftalmol 2023; 139:68-75. [PMID: 37067934 DOI: 10.17116/oftalma202313902168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
This literature review discusses the new concept of pathogenesis of systemic immune-mediated inflammatory diseases (IMIDs), presents their classification and analyzes their association with ocular manifestations.
Collapse
Affiliation(s)
- I Yu Razumova
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - Z V Surnina
- Krasnov Research Institute of Eye Diseases, Moscow, Russia
| | - D N Dzhaber
- Scientific and Practical Sight Recovery Center, Moscow, Russia
| |
Collapse
|
14
|
Caspase-10 affects the pathogenesis of primary biliary cholangitis by regulating inflammatory cell death. J Autoimmun 2022; 133:102940. [PMID: 36323068 DOI: 10.1016/j.jaut.2022.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disease that involves chronic inflammation and injury to biliary epithelial cells. To identify critical genetic factor(s) in PBC patients, we performed whole-exome sequencing of five female siblings, including one unaffected and four affected sisters, in a multi-PBC family, and identified 61 rare heterozygote variants that segregated only within the affected sisters. Among them, we were particularly interested in caspase-10, for although several caspases are involved in cell death, inflammation and autoimmunity, caspase-10 is little known from this perspective. We generated caspase-10 knockout macrophages, and then investigated the obtained phenotypes in comparison to those of its structurally similar protein, caspase-8. Unlike caspase-8, caspase-10 does not play a role during differentiation into macrophages, but after differentiation, it regulates the process of inflammatory cell deaths such as necroptosis and pyroptosis more strongly. Interestingly, caspase-10 displays better protease activity than caspase-8 in the process of RIPK1 cleavage, and an enhanced ability to form a complex with RIPK1 and FADD in human macrophages. Higher inflammatory cell death affected the fibrotic response of hepatic stellate cells; this effect could be recovered by treatment with UDCA and OCA, which are currently approved for PBC patients. Our findings strongly indicate that the defective roles of caspase-10 in macrophages contribute to the pathogenesis of PBC, thereby suggesting a new therapeutic strategy for PBC treatment.
Collapse
|
15
|
Zheng Q, Lin R, Chen Y, Lv Q, Zhang J, Zhai J, Xu W, Wang W. SARS-CoV-2 induces "cytokine storm" hyperinflammatory responses in RA patients through pyroptosis. Front Immunol 2022; 13:1058884. [PMID: 36532040 PMCID: PMC9751040 DOI: 10.3389/fimmu.2022.1058884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Background The coronavirus disease (COVID-19) is a pandemic disease that threatens worldwide public health, and rheumatoid arthritis (RA) is the most common autoimmune disease. COVID-19 and RA are each strong risk factors for the other, but their molecular mechanisms are unclear. This study aims to investigate the biomarkers between COVID-19 and RA from the mechanism of pyroptosis and find effective disease-targeting drugs. Methods We obtained the common gene shared by COVID-19, RA (GSE55235), and pyroptosis using bioinformatics analysis and then did the principal component analysis(PCA). The Co-genes were evaluated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ClueGO for functional enrichment, the protein-protein interaction (PPI) network was built by STRING, and the k-means machine learning algorithm was employed for cluster analysis. Modular analysis utilizing Cytoscape to identify hub genes, functional enrichment analysis with Metascape and GeneMANIA, and NetworkAnalyst for gene-drug prediction. Network pharmacology analysis was performed to identify target drug-related genes intersecting with COVID-19, RA, and pyroptosis to acquire Co-hub genes and construct transcription factor (TF)-hub genes and miRNA-hub genes networks by NetworkAnalyst. The Co-hub genes were validated using GSE55457 and GSE93272 to acquire the Key gene, and their efficacy was assessed using receiver operating curves (ROC); SPEED2 was then used to determine the upstream pathway. Immune cell infiltration was analyzed using CIBERSORT and validated by the HPA database. Molecular docking, molecular dynamics simulation, and molecular mechanics-generalized born surface area (MM-GBSA) were used to explore and validate drug-gene relationships through computer-aided drug design. Results COVID-19, RA, and pyroptosis-related genes were enriched in pyroptosis and pro-inflammatory pathways(the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex, death-inducing signaling complex, regulation of interleukin production), natural immune pathways (Network map of SARS-CoV-2 signaling pathway, activation of NLRP3 inflammasome by SARS-CoV-2) and COVID-19-and RA-related cytokine storm pathways (IL, nuclear factor-kappa B (NF-κB), TNF signaling pathway and regulation of cytokine-mediated signaling). Of these, CASP1 is the most involved pathway and is closely related to minocycline. YY1, hsa-mir-429, and hsa-mir-34a-5p play an important role in the expression of CASP1. Monocytes are high-caspase-1-expressing sentinel cells. Minocycline can generate a highly stable state for biochemical activity by docking closely with the active region of caspase-1. Conclusions Caspase-1 is a common biomarker for COVID-19, RA, and pyroptosis, and it may be an important mediator of the excessive inflammatory response induced by SARS-CoV-2 in RA patients through pyroptosis. Minocycline may counteract cytokine storm inflammation in patients with COVID-19 combined with RA by inhibiting caspase-1 expression.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Weihong Xu
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China,*Correspondence: Weihong Xu, ; Wanming Wang,
| |
Collapse
|
16
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:ijms232012154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
17
|
Mo W, Li Q, Zhou H, Shi X, Yang H, Xiao Z, Wei J, Lv X. Bibliometric analysis of global research trends on pyroptosis in lung disease. Front Immunol 2022; 13:978552. [PMID: 36177039 PMCID: PMC9513361 DOI: 10.3389/fimmu.2022.978552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Pyroptosis is a lytic pro-inflammatory programmed cell death mode that depends on caspase, inflammasome, and Gasdermin D (GSDMD). A growing number of studies have shown that pyroptosis is closely related to the pathophysiological mechanism of lung. The purpose of this study is to analyze the literature from Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC) and visualize the current trends and hotspots in the research of pyroptosis in lung disease. Methods On February 20, 2022, we retrieved all articles on pyroptosis in lung disease from SCI-expanded of WoSCC. Original articles and reviews published in English from 2007 to 2021 were included in the analysis. VOSviewer 1.6.17 and CiteSpace 5.8.R2 were used to analyze the retrieved data and visualize the results. Result 1798 qualified original articles and reviews on pyroptosis in lung disease were included in the bibliometric analysis. So far, the research in this field is still in a period of growth, and the number of global publications has increased yearly. Among the 66 countries that have published relevant articles, China ranked first in the number of publications, and the USA ranked first in the number of cited articles. Holian,A. was the author with the largest number of articles, including 21 published. The University of California System in the USA was the organization with the largest number of articles, totaling 55. Frontiers in Immunology was the journal with the most publications in pyroptosis. After bibliometric analysis, the frequently used keywords are: “NOD-like receptor3 (NLRP3) inflammasome”, “inflammation”, “oxidative stress”, and “acute lung injury (ALI)”. Conclusion The research on pyroptosis in lung disease is in its growth stage. The information released in this article may help researchers better understand the hotspots and developmental trends in this field, the cooperation network information of authors, countries, and institutions, and the citation correlation between articles. With the in-depth study of the mechanism of pyroptosis, the focus has shifted to increasing research on the connections and influences of different diseases. So far, increasing attention has been paid to the research field of the relationship between ALI and pyroptosis related to COVID-19.
Collapse
Affiliation(s)
- Wei Mo
- Graduate School, Wannan Medical College, Wuhu, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Xiao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xin Lv, ; Juan Wei,
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xin Lv, ; Juan Wei,
| |
Collapse
|
18
|
Zhuang L, Luo X, Wu S, Lin Z, Zhang Y, Zhai Z, Yang F, Li Y, Zhuang J, Luo G, Xu W, He Y, Sun E. Disulfiram alleviates pristane-induced lupus via inhibiting GSDMD-mediated pyroptosis. Cell Death Dis 2022; 8:379. [PMID: 36057687 PMCID: PMC9440918 DOI: 10.1038/s41420-022-01167-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/19/2022]
Abstract
Activation of multiple inflammasomes in monocytes/macrophages is associated with the pathogenesis of systemic lupus erythematosus (SLE). Gasdermin D (GSDMD)-mediated pyroptosis, a common consequence of multiple activated inflammasomes, is a programmed cell death with strong inflammatory responses. This suggested that targeting monocyte/macrophage pyroptosis might provide an opportunity to cure SLE. Here, we aimed to investigate the effect of disulfiram (DSF), a small molecule inhibitor of pyroptosis, and its potential therapeutic mechanism for SLE. The mRNA expression of GSDMD and IL-1β were significantly increased in peripheral blood mononuclear cells (PBMCs) from SLE patients. Importantly, we found serum from SLE patients rather than healthy controls induced GSDMD-mediated pyroptosis in THP-1 cells, as evidenced by enhanced LDH release, increased number of PI-positive cells, and high expression of full-length GSDMD and N-terminal GSDMD. Interestingly, treatment with DSF obviously inhibited pyroptosis of THP-1 cells induced by serum from SLE patients. Of note, DSF administration reduced proteinuria, serum anti-dsDNA level, and renal immune complex. It also attenuated renal damage in PIL mice. Further research found that the high level of serum IL-β and GSDMD-mediated pyroptosis of glomerular macrophages in PIL mice were rescued with DSF treatment. These data implied that GSDMD-mediated monocytes/macrophages pyroptosis played an important role in the pathogenesis of SLE and DSF might be a potential alternative therapeutic agent for SLE.
Collapse
Affiliation(s)
- Lili Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqing Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shufan Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhangmei Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zeqing Zhai
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fangyuan Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yehao Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhuang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Wenchao Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Foshan, China.
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Foshan, China.
| |
Collapse
|
19
|
Banerjee SK, Chatterjee A, Gupta S, Nagar A. Activation and Regulation of NLRP3 by Sterile and Infectious Insults. Front Immunol 2022; 13:896353. [PMID: 35663964 PMCID: PMC9161712 DOI: 10.3389/fimmu.2022.896353] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs) that patrols the cytosolic environment. NLR engagement drives caspase-1 activation that cleaves pro-IL-1B which then gets secreted. Released IL-1B recruits immune cells to the site of infection/injury. Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores within the plasma membrane driving inflammatory cell death called pyroptosis. NLRP3 is the most extensively studied NLR. The NLRP3 gene is encoded by 9 exons, where exon 1 codes for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR) domain is coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects the rest of the protein to the pyrin domain and may be involved in NLRP3 regulation. The NLRP3 inflammasome is activated by many structurally divergent agonists of microbial, environmental, and host origin. Activated NLRP3 interacts with an adaptor protein, ASC, that bridges it to pro-Caspase-1 forming a multi-protein complex called inflammasome. Dysregulation of NLRP3 inflammasome activity is a hallmark of pathogenesis in several human diseases, indicating its highly significant clinical relevance. In this review, we summarize the existing knowledge about the mechanism of activation of NLRP3 and its regulation during activation by infectious and sterile triggers.
Collapse
Affiliation(s)
- Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ayan Chatterjee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shamba Gupta
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Abhinit Nagar
- Flow Cytometry, Luminex Corporation, Austin, TX, United States
- *Correspondence: Abhinit Nagar,
| |
Collapse
|
20
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
21
|
Cabrera SM, Coren AT, Pant T, Ciecko AE, Jia S, Roethle MF, Simpson PM, Atkinson SN, Salzman NH, Chen YG, Hessner MJ. Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Sci Rep 2022; 12:3306. [PMID: 35228584 PMCID: PMC8885673 DOI: 10.1038/s41598-022-07203-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.
Collapse
|
22
|
Expression of Autoimmunity-Related Genes in Melanoma. Cancers (Basel) 2022; 14:cancers14040991. [PMID: 35205739 PMCID: PMC8870167 DOI: 10.3390/cancers14040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The present study selected four genes strongly related to autoimmunity. Their expression was found to be significantly altered in melanoma patients according to a multi-validation procedure carried out on 1948 patients. Such genes may represent suitable molecular targets to further investigate the role autoimmunity may play in melanoma setup and development. Our data suggest that autoimmunity may play a beneficial role in melanoma set up, at least to some extent. Abstract (1) Background. Immune response dysregulation plays a key role in melanoma, as suggested by the substantial prognosis improvement observed under immune-modulation therapy. Similarly, the role of autoimmunity is under large investigation in melanoma and other cancers. (2) Methods. Expression of 98 autoimmunity-related genes was investigated in 1948 individuals (1024 melanoma and 924 healthy controls). Data were derived from four independent databases, namely, GEO in the selection phase, and Ist Online, GEPIA2 and GENT2, in three sequential validation-steps. ROC analyses were performed to measure the ability to discriminate melanoma from controls. Principal Component Analysis (PCA) was used to combine expression data; survival analysis was carried out on the GEPIA2 platform. (3) Results. Expression levels of NOD2, BAX, IL-18 and ADRB2 were found to be significantly different in melanoma vs. controls and discriminate melanoma from controls in an extremely effective way, either as single molecules (AUC > 0.93 in all cases) or as a profile, according to the PCA analysis. Patients showing high-expression of NOD2 and of IL-18 also show a significant survival improvement as compared to low-expression patients. (4) Conclusions. Four genes strongly related to autoimmunity show a significant altered expression in melanoma samples, highlighting the role they may play in melanoma.
Collapse
|
23
|
Le Moli R, Vella V, Tumino D, Piticchio T, Naselli A, Belfiore A, Frasca F. Inflammasome activation as a link between obesity and thyroid disorders: Implications for an integrated clinical management. Front Endocrinol (Lausanne) 2022; 13:959276. [PMID: 36060941 PMCID: PMC9437482 DOI: 10.3389/fendo.2022.959276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity is strongly associated with chronic low-grade inflammation. Obese patients have an increased risk to develop thyroid autoimmunity and to became hypothyroid, suggesting a pathogenetic link between obesity, inflammation and autoimmunity. Moreover, type 2 diabetes and dyslipidemia, also characterized by low-grade inflammation, were recently associated with more aggressive forms of Graves' ophthalmopathy. The association between obesity and autoimmune thyroid disorders may also go in the opposite direction, as treating autoimmune hyper and hypothyroidism can lead to weight gain. In addition, restoration of euthyroidism by L-T4 replacement therapy is more challenging in obese athyreotic patients, as it is difficult to maintain thyrotropin stimulation hormone (TSH) values within the normal range. Intriguingly, pro-inflammatory cytokines decrease in obese patients after bariatric surgery along with TSH levels. Moreover, the risk of thyroid cancer is increased in patients with thyroid autoimmune disorders, and is also related to the degree of obesity and inflammation. Molecular studies have shown a relationship between the low-grade inflammation of obesity and the activity of intracellular multiprotein complexes typical of immune cells (inflammasomes). We will now highlight some clinical implications of inflammasome activation in the relationship between obesity and thyroid disease.
Collapse
|
24
|
Zhang Z, Zhou J, Verma V, Liu X, Wu M, Yu J, Chen D. Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Front Immunol 2021; 12:774807. [PMID: 34925345 PMCID: PMC8672113 DOI: 10.3389/fimmu.2021.774807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced lung injury (RILI) is a form of radiation damage to normal lung tissue caused by radiotherapy (RT) for thoracic cancers, which is most commonly comprised of radiation pneumonitis (RP) and radiation pulmonary fibrosis (RPF). Moreover, with the widespread utilization of immunotherapies such as immune checkpoint inhibitors as first- and second-line treatments for various cancers, the incidence of immunotherapy-related lung injury (IRLI), a severe immune-related adverse event (irAE), has rapidly increased. To date, we know relatively little about the underlying mechanisms and signaling pathways of these complications. A better understanding of the signaling pathways may facilitate the prevention of lung injury and exploration of potential therapeutic targets. Therefore, this review provides an overview of the signaling pathways of RILI and IRLI and focuses on their crosstalk in diverse signaling pathways as well as on possible mechanisms of adverse events resulting from combined radiotherapy and immunotherapy. Furthermore, this review proposes potential therapeutic targets and avenues of further research based on signaling pathways. Many new studies on pyroptosis have renewed appreciation for the value and importance of pyroptosis in lung injury. Therefore, the authors posit that pyroptosis may be the common downstream pathway of RILI and IRLI; discussion is also conducted regarding further perspectives on pyroptosis as a crucial signaling pathway in lung injury treatment.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jialin Zhou
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Vivek Verma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xu Liu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Wu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Laboratory of Radio-Immunology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
25
|
Nakajo T, Katayoshi T, Kitajima N, Tsuji-Naito K. 1,25-Dihydroxyvitamin D 3 attenuates IL-1β secretion by suppressing NLRP1 inflammasome activation by upregulating the NRF2-HO-1 pathway in epidermal keratinocytes. Redox Biol 2021; 48:102203. [PMID: 34872043 PMCID: PMC8646996 DOI: 10.1016/j.redox.2021.102203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein (NLRP) inflammasome is a key inflammatory signaling pathway activated via a two-step signaling process consisting of priming and activation steps. Several studies have shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2VD3) inhibits the priming step required for NLRP3 inflammasome activation in immune cells. However, as activating the NLRP1 inflammasome in keratinocytes does not necessarily require a priming step, whether 1,25(OH)2VD3 inhibits NLRP1 activation in unprimed keratinocytes is currently unknown. In this study, we showed that 1,25(OH)2VD3 inhibits nigericin-induced NLRP1 inflammasome activation in unprimed keratinocytes. 1,25(OH)2VD3 suppressed nigericin-induced interleukin-1β (IL-1β) secretion and caspase-1 activation in human primary keratinocytes. In addition, 1,25(OH)2VD3 significantly inhibited the formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomers and specks, but not caspase-1 enzymatic activity, suggesting that 1,25(OH)2VD3 prevents NLRP1-ASC complex assembly in keratinocytes. Vitamin D receptor (VDR)-knockdown abolished the inhibitory effects of 1,25(OH)2VD3 on nigericin-induced ASC oligomerization and IL-1β secretion, suggesting that 1,25(OH)2VD3 suppresses inflammasome activation via VDR signaling. Furthermore, nigericin induced K+ efflux and cellular reactive oxygen species (ROS) production, and 1,25(OH)2VD3 pretreatment suppressed nigericin-induced ROS production. 1,25(OH)2VD3 increased the expression of both nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1), whereas HO-1 inhibition or NRF2 and HO-1 knockdown abrogated the inhibitory effects of 1,25(OH)2VD3 on IL-1β secretion. Our results indicate that 1,25(OH)2VD3 inhibits nigericin-induced activation step of NLRP1 inflammasome activation in unprimed keratinocytes. Our findings reveal the mechanism underlying the inhibitory effect of 1,25(OH)2VD3, which involves NRF2-HO-1 pathway activation through the VDR, providing further insight into the potential function of 1,25(OH)2VD3 as a therapeutic agent for inflammasome-related skin diseases.
Collapse
Affiliation(s)
- Takahisa Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Takeshi Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Natsuko Kitajima
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Kentaro Tsuji-Naito
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| |
Collapse
|
26
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
27
|
Ghozali N, Belguendouz H, Messaoudene D, Hadjimi Z, Ihammichene S, Chekaoui A, Benchabane S, Terahi M, Kediha I, Ali Pacha L, Touil-Boukoffa C. In-vitro immunomodulatory effects of nicotine on Nitric Oxide, interleukin 1β and interleukin 37 production in human peripheral blood mononuclear cells (PBMC) from patients with Behçet disease. Int Immunopharmacol 2021; 101:108189. [PMID: 34601327 DOI: 10.1016/j.intimp.2021.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
Abstract
Behçet's disease is a chronic systemic inflammatory disorder associated with a cytokine profile disruption and increased nitric oxide levels. In our current study we sought to evaluate the in-vitro modulatory effect of nicotine, the principal alkaloid of tobacco, on nitric oxide (NO), interleukin 1β (IL-1β) and interleukin 37 (IL-37) production during Behçet's disease. Peripheral blood mononuclear cells cultures were performed with or without nicotine (200 μg/ml). Culture supernatants were harvested after 24 h of incubation. NO, IL-1β and IL-37 measurements were, respectively, performed by modified Griess method and ELISA sandwich. Our results showed that nicotine significantly reduced NO and IL-1β levels in patients with Behçet's disease, while it increased IL-37 production. Our results showed no sex differences in the effects of nicotine on the production of nitric oxide and IL-1β nor IL-37 in PBMC of patients. Our findings suggest that nicotine may provide a potential therapeutic strategy targeting inflammation during Behçet's disease.
Collapse
Affiliation(s)
- Nourelhouda Ghozali
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria; Laboratory of valorization and conservation of biological resources, FS, UMBB, Boumerdes, Algeria.
| | - Houda Belguendouz
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Djamel Messaoudene
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Zohra Hadjimi
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Sarah Ihammichene
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Arezki Chekaoui
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Sara Benchabane
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria
| | - Malika Terahi
- Ophthalmology Department, Nafissa Hammoud Hospital, Algiers, Algeria
| | - Islam Kediha
- Neurology Department, Mustapha Bacha Hospital, Algiers, Algeria
| | - Lamia Ali Pacha
- Neurology Department, Mustapha Bacha Hospital, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Team "Cytokines and NO synthases: Immunity and pathogenesis", LBCM, FSB, USTHB, Algiers, Algeria.
| |
Collapse
|
28
|
TANYEL KİREMİTÇİ T, MERCAN Ö, MISIRLI C, TÜRKOĞLU R. Activation of NLRP1 and NLRP3 Inflammasomes in Multiple Sclerosis and Clinically Isolated Syndrome. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.730473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Zhang Y, Sun D. Genetic Polymorphisms of FCRL3, NLRP3 and IL2 are Associated with the Risk of Head and Neck Cancer in a Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1047-1053. [PMID: 34471376 PMCID: PMC8405226 DOI: 10.2147/pgpm.s324750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
Purpose This study aimed to evaluate the associations between immune-related gene (FCRL3, NLRP3 and IL2) polymorphisms and the risk of head and neck cancer (HNC). Methods Six polymorphisms of FCRL3, NLRP3 and IL2 were genotyped in 400 HNC cases and 400 controls using a MassARRAY platform. Results rs11264799-T was a protective variant against HNC risk, while rs7528684-G, rs35829419-A and rs6822844-T were all risk alleles for HNC (p < 0.05). rs11264799-TT was correlated with reduced HNC risk, while rs7528684-GG and rs6822844-TG were associated with an elevated risk of disease (p < 0.05). Moreover, rs11264799 was correlated with a declining risk of HNC in three genetic models (p < 0.05). In contrast, rs7528684 exhibited an elevated risk of HNC in recessive and additive models; rs35829419 and rs6822844 were associated with an increased risk of disease in dominant and additive models (p < 0.05). Finally, an interaction was observed between the above SNPs and drinking (p < 0.05). Conclusion The results expand our knowledge on immune-related gene polymorphisms in HNC and provide clues for further functional study on the pathogenesis of HNC.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.,Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dawei Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| |
Collapse
|
30
|
Zhu H, Zhao M, Chang C, Chan V, Lu Q, Wu H. The complex role of AIM2 in autoimmune diseases and cancers. Immun Inflamm Dis 2021; 9:649-665. [PMID: 34014039 PMCID: PMC8342223 DOI: 10.1002/iid3.443] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Absent in melanoma 2 (AIM2) is a novel member of interferon (IFN)-inducible PYHIN proteins. In innate immune cells, AIM2 servers as a cytoplasmic double-stranded DNA sensor, playing a crucial role in the initiation of the innate immune response as a component of the inflammasome. AIM2 expression is increased in patients with systemic lupus erythematosus (SLE), psoriasis, and primary Sjogren's syndrome, indicating that AIM2 might be involved in the pathogenesis of autoimmune diseases. Meanwhile, AIM2 also plays an antitumorigenesis role in an inflammasome independent-manner. In melanoma, AIM2 is initially identified as a tumor suppressor factor. However, AIM2 is also found to contribute to lung tumorigenesis via the inflammasome-dependent release of interleukin 1β and regulation of mitochondrial dynamics. Additionally, AIM2 reciprocally dampening the cGAS-STING pathway causes immunosuppression of macrophages and evasion of antitumor immunity during antibody treatment. To summarize the complicated effect and role of AIM2 in autoimmune diseases and cancers, herein, we provide an overview of the emerging research progress on the function and regulatory pathway of AIM2 in innate and adaptive immune cells, as well as tumor cells, and discuss its pathogenic role in autoimmune diseases, such as SLE, psoriasis, primary Sjogren's syndrome, and cancers, such as melanomas, non-small-cell lung cancer, colon cancer, hepatocellular carcinoma, renal carcinoma, and so on, hopefully providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California at Davis School of MedicineDavisCaliforniaUSA
| | - Vera Chan
- Division of Rheumatology and Clinical Immunology, Department of MedicineThe University of Hong KongHong KongChina
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
- Institute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical EpigenomicsThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
31
|
Lee HH, Kim D, Jung J, Kang H, Cho H. NLRP3 Deficiency in Hepatocellular Carcinoma Enhances Surveillance of NK-92 through a Modulation of MICA/B. Int J Mol Sci 2021; 22:ijms22179285. [PMID: 34502191 PMCID: PMC8430511 DOI: 10.3390/ijms22179285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the most common and even worse at prognosis. The patients with HCC which accompanied by other diseases, such as cirrhosis, can be limited in various treatments, such as chemotherapy, not HCC patients without other diseases. NLRP3 inflammasome plays an important role in the innate immune response, but emerging evidence has indicated that the NLRP3 inflammasome is implicated in all stages of cancer development. Various cells express NLRP3 protein through the autocrine or paracrine signaling in their environment, but NK cells do not. The expanding evidence shows that patients who suffer from liver cancers have a low frequency of natural killer (NK) cells, and the function of these cells is also impaired. Thus, we examined how the expression of NLRP3 in HCC cells affects cancer surveillance by NK cells in a state of a co-culture of both cells. When the expression of NLRP3 in HCC cells was ablated, MICA/B on the surface of HCC cells was upregulated through the lowered expression of matrix metalloproteinase. The expression of MICA on the surface of HCC cells interacted with the NKG2D receptor on NK-92 cells, which led to NK cytotoxicity. Furthermore, in a xenograft mice model, NLRP3 KO HCC cells delayed tumor development and metastasis as well as increased the sensitivity to NK cell cytotoxicity. Taken together, NLRP3 KO in HCC could enhance NK immunosurveillance through an interaction of NKG2D-MICA.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CRISPR-Cas Systems
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Cytotoxicity, Immunologic/immunology
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Monitoring, Immunologic/methods
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hwan Hee Lee
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.H.L.); (J.J.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea;
| | - Dongoh Kim
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea;
| | - Joohee Jung
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.H.L.); (J.J.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea;
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (H.K.); (H.C.); Tel.: +82-53-950-8569 (H.K.); +82-2-901-8678 (H.C.)
| | - Hyosun Cho
- Department of Pharmacy, Duksung Women’s University, Seoul 01369, Korea; (H.H.L.); (J.J.)
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul 01369, Korea;
- Correspondence: (H.K.); (H.C.); Tel.: +82-53-950-8569 (H.K.); +82-2-901-8678 (H.C.)
| |
Collapse
|
32
|
Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clin Rev Allergy Immunol 2021; 61:299-323. [PMID: 34283349 DOI: 10.1007/s12016-021-08868-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Vitiligo is an autoimmune disease of the skin characterized by epidermal melanocyte loss resulting in white patches, with an approximate prevalence of 0.5-2% worldwide. Several precipitating factors by chemical exposure and skin injury present commonly in patients with vitiligo. Although the diagnosis appears to be straightforward for the distinct clinical phenotype and specific histological features, vitiligo provides many challenges including chronicity, treatment resistance, frequent relapse, associated profound psychosocial effect, and negative impact on quality of life. Multiple mechanisms are involved in melanocyte disappearance, including genetics, environmental factors, and immune-mediated inflammation. Compelling evidence supports the melanocyte intrinsic abnormalities with poor adaptation to stressors leading to instability and release of danger signals, which will activate dendritic cells, natural killer cells, and innate lymphoid cells to initiate innate immunity, ultimately resulting in T-cell mediated adaptive immune response and melanocyte destruction. Importantly, the cross- talk between keratinocytes, melanocytes, and immune cells, such as interferon (IFN)-γ signaling pathway, builds inflammatory loops that give rise to the disease deterioration. Improved understanding of the immune pathogenesis of vitiligo has led to the development of new therapeutic options including Janus kinase (JAK) inhibitors targeting IFN-γ signaling pathways, which can effectively reverse depigmentation. Furthermore, definition of treatment goals and integration of comorbid diseases into vitiligo management have revolutionized the way vitiligo is treated. In this review, we highlight recent developments in vitiligo clinical aspects and immune pathogenesis. Our key objective is to raise awareness of the complexity of this disease, the potential of prospective therapy strategies, and the need for early and comprehensive management.
Collapse
|
33
|
Guggino G, Mauro D, Rizzo A, Alessandro R, Raimondo S, Bergot AS, Rahman MA, Ellis JJ, Milling S, Lories R, Elewaut D, Brown MA, Thomas R, Ciccia F. Inflammasome Activation in Ankylosing Spondylitis Is Associated With Gut Dysbiosis. Arthritis Rheumatol 2021; 73:1189-1199. [PMID: 33452867 DOI: 10.1002/art.41644] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE We undertook this study to evaluate the activation and functional relevance of inflammasome pathways in ankylosing spondylitis (AS) patients and rodent models and their relationship to dysbiosis. METHODS An inflammasome pathway was evaluated in the gut and peripheral blood from 40 AS patients using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), flow cytometry, and confocal microscopy, and was compared to that of 20 healthy controls and 10 patients with Crohn's disease. Bacteria was visualized using silver stain in human samples, and antibiotics were administered to HLA-B27-transgenic rats. The NLRP3 inhibitor MCC950 was administered to SKG mice, and ileal and joint tissues were assessed by IHC analysis and real-time qRT-PCR. The role of inflammasome in modulating the interleukin-23 (IL-23)/IL-17 axis was studied ex vivo. RESULTS Expression levels of Nlrp3, Nlrc4, and Aim2 were increased in the gut of HLA-B27-transgenic rats and reduced by antibiotic treatment (P < 0.05). In curdlan-treated SKG mice, NLRP3 blockade prevented ileitis and delayed arthritis onset (P < 0.05). Compared to healthy controls, AS patients demonstrated overexpression of NLRP3 (fold induction 2.33 versus 22.2; P < 0.001), NLRC4 (fold induction 1.90 versus 6.47; P < 0.001), AIM2 (fold induction 2.40 versus 20.8; P < 0.001), CASP1 (fold induction 2.53 versus 24.8; P < 0.001), IL1B (fold induction 1.07 versus 10.93; P < 0.001), and IL18 (fold induction 2.56 versus 15.67; P < 0.001) in the ileum, and caspase 1 activity was increased (P < 0.01). The score of adherent and invasive mucosa-associated bacteria was higher in AS (P < 0.01) and correlated with the expression of inflammasome components in peripheral blood mononuclear cells (P < 0.001). NLRP3 expression was associated with disease activity (the Ankylosing Spondylitis Disease Activity Score using the C-reactive protein level) (r2 = 0.28, P < 0.01) and with IL23A expression (r2 = 0.34, P < 0.001). In vitro, inflammasome activation in AS monocytes was paralleled by increased serum levels of IL-1β and IL-18. Induction of IL23A, IL17A, and IL22 was IL-1β-dependent. CONCLUSION Inflammasome activation occurs in rodent models of AS and in AS patients, is associated with dysbiosis, and is involved in triggering ileitis in SKG mice. Inflammasomes drive type III cytokine production with an IL-1β-dependent mechanism in AS patients.
Collapse
Affiliation(s)
| | - Daniele Mauro
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Aroldo Rizzo
- Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | | | | | - Anne-Sophie Bergot
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - M Arifur Rahman
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jonathan J Ellis
- NIHR Guy's and St, Thomas' Biomedical Research Centre, London, UK
| | | | - Rik Lories
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dirk Elewaut
- Ghent Universityand VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Matthew A Brown
- NIHR Guy's and St, Thomas' Biomedical Research Centre, London, UK
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Francesco Ciccia
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
34
|
Jing M, Yang J, Zhang L, Liu J, Xu S, Wang M, Zhang L, Sun Y, Yan W, Hou G, Wang C, Xin W. Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP3 inflammasome axis. Int Immunopharmacol 2021; 98:107879. [PMID: 34147915 DOI: 10.1016/j.intimp.2021.107879] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
Emerging evidence indicates that NOD-like receptor protein 3 (NLRP3) inflammasome-induced inflammation plays a critical role in the pathogenesis of rheumatoid arthritis (RA). Celastrol (Cel) is a quinone-methylated triterpenoid extracted from Tripterygium wilfordii that is used to treat RA. However, researchers have not determined whether Cel exerts anti-RA effects by regulating the activation of the NLRP3 inflammasome. In the present study, complete Freund's adjuvant (CFA)- induced rats and human mononuclear macrophages (THP-1 cells) were used to explore the anti-RA effects of Cel and its underlying mechanism. Joint swelling, the arthritis index score, inflammatory cell infiltration, and synovial hyperplasia in CFA-induced rats were correspondingly reduced after Cel treatment. The secretion of interleukin (IL)-1β and IL-18 in the serum of CFA-induced rats and supernatants of THP-1 cells exposed to Cel was significantly decreased. These inhibitory effects occurred because Cel blocked the nuclear factor-kappa B (NF-κB) signaling pathway and inhibited the activation of the NLRP3 inflammasome. Furthermore, Cel inhibited reactive oxygen species (ROS) production induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). We speculated that Cel relieves RA symptoms and inhibits inflammation by inhibiting the ROS-NF-κB-NLRP3 axis.
Collapse
Affiliation(s)
- Ming Jing
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Lirong Zhang
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Jing Liu
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Sen Xu
- Department of Clinical Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Meiling Wang
- Department of Clinical Medicine, Jining First People's Hospital, Jining 272011, Shandong, China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, Shandong, China
| | - Yue Sun
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Weibin Yan
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Guige Hou
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Chunhua Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| |
Collapse
|
35
|
Matyszewski M, Zheng W, Lueck J, Mazanek Z, Mohideen N, Lau AY, Egelman EH, Sohn J. Distinct axial and lateral interactions within homologous filaments dictate the signaling specificity and order of the AIM2-ASC inflammasome. Nat Commun 2021; 12:2735. [PMID: 33980849 PMCID: PMC8115694 DOI: 10.1038/s41467-021-23045-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Inflammasomes are filamentous signaling platforms integral to innate immunity. Currently, little is known about how these structurally similar filaments recognize and distinguish one another. A cryo-EM structure of the AIM2PYD filament reveals that the architecture of the upstream filament is essentially identical to that of the adaptor ASCPYD filament. In silico simulations using Rosetta and molecular dynamics followed by biochemical and cellular experiments consistently demonstrate that individual filaments assemble bidirectionally. By contrast, the recognition between AIM2 and ASC requires at least one to be oligomeric and occurs in a head-to-tail manner. Using in silico mutagenesis as a guide, we also identify specific axial and lateral interfaces that dictate the recognition and distinction between AIM2 and ASC filaments. Together, the results here provide a robust framework for delineating the signaling specificity and order of inflammasomes.
Collapse
Affiliation(s)
- Mariusz Matyszewski
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jacob Lueck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Mazanek
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naveen Mohideen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Pu Y, Chen X, Chen Y, Zhang L, Chen J, Zhang Y, Shao X, Chen J. Transcriptome and Differential Methylation Integration Analysis Identified Important Differential Methylation Annotation Genes and Functional Epigenetic Modules Related to Vitiligo. Front Immunol 2021; 12:587440. [PMID: 33790887 PMCID: PMC8006451 DOI: 10.3389/fimmu.2021.587440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Vitiligo is an pigmentation disorder caused by a variety of pathogenic factors; its main pathophysiological conditions include oxidative stress, immune activation, and genetic background. Additionally, DNA methylation is often associated with the pathogenesis of vitiligo; however, the underlying mechanism remains unknown. In the present study, we used the Human Methylation 850K BeadChip platform to detect DNA methylation changes in the vitiligo melanocytes. We then integrated the results with the transcriptome data of vitiligo melanocytes and lesions to analyse the correlation between differentially methylated levels and differentially expressed genes. The results showed that there was a significant negative correlation between methylation levels and differentially expressed genes. Subsequently, we enriched GO and KEGG based on methylated differentially expressed genes (MDEGs) using R package ClusterProfiler, and the results were closely related to the pathogenesis of vitiligo. In addition, we also constructed a PPI network of MDEGs and excavated three important functional epigenetic modules, involving a total of 12 (BCL2L1, CDK1, ECT2, HELLS, HSP90AA1, KIF23, MC1R, MLANA, PBK, PTGS2, SOX10, and TYRP1) genes. These genes affect melanocyte melanogenesis, cellular oxidative stress and other important biological processes. Our comprehensive analysis results support the significant contribution of the status of DNA methylation modification to vitiligo, which will help us to better understand the molecular mechanism of vitiligo and explore new therapeutic strategies.
Collapse
Affiliation(s)
- Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuenuo Chen
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Zhang J, Yu S, Hu W, Wang M, Abudoureyimu D, Luo D, Li T, Long L, Zeng H, Cheng C, Lei Z, Teng J, Kang X. Comprehensive Analysis of Cell Population Dynamics and Related Core Genes During Vitiligo Development. Front Genet 2021; 12:627092. [PMID: 33679890 PMCID: PMC7933673 DOI: 10.3389/fgene.2021.627092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Shirong Yu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Wen Hu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dilinuer Abudoureyimu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Dong Luo
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Tingting Li
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Linglong Long
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Hui Zeng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zixian Lei
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Jianan Teng
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Medical School, Shihezi University, Shihezi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| |
Collapse
|
38
|
Huang JH, Chiang BL. Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience 2021; 24:102103. [PMID: 33615201 PMCID: PMC7881254 DOI: 10.1016/j.isci.2021.102103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/25/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Regulatory T cells induced by B cells (Treg-of-B cells), a distinct Foxp3- Treg cell subset, have established the roles in the suppression of inflammatory conditions, including asthma and intestinal inflammation. However, little is known about the regulatory effects of Treg-of-B cells on innate immunity. Herein, we examined whether Treg-of-B cells could regulate macrophage function and prevent NLRP3-associated diseases, particularly inflammatory gouty arthritis. Treg-of-B cells, but not thymus-derived Treg or effector T cells, inhibited inflammasome-mediated IL-1β secretion, caspase-1 activation, and NLRP3 production by LPS/ATP stimulation in a cell contact-dependent manner. In addition, Treg-of-B cells inhibited monosodium urate-induced NLRP3 inflammasome activation in vitro via NF-κB signaling. Treg-of-B cells ameliorated gouty inflammation in a mouse air pouch model by reducing neutrophil and leukocyte influx and cytokine and chemokine production. Our results demonstrated that Treg-of-B cells exerted regulatory effects on innate immunity by suppressing NLRP3 inflammasome activation and feasible for future therapeutic applications.
Collapse
Affiliation(s)
- Jing-Hui Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei 10041, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
39
|
Yang CA, Chiang BL. Inflammasomes and Childhood Autoimmune Diseases: A Review of Current Knowledge. Clin Rev Allergy Immunol 2020; 61:156-170. [PMID: 33236284 PMCID: PMC7685913 DOI: 10.1007/s12016-020-08825-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are multiprotein complexes capable of sensing pathogen-associated molecular patterns (PAMPs), danger-associated molecular patterns (DAMPs), and cellular perturbations. Upon stimulation, the inflammasomes activate the production of the pro-inflammatory cytokines IL-1β and IL-18 and induce gasdermin D-mediated pyroptosis. Dysregulated inflammasome signaling could lead to hyperinflammation in response to environmental triggers, thus contributing to the pathogenesis of childhood autoimmune/autoinflammatory diseases. In this review, we group childhood rheumatic diseases into the autoinflammation to autoimmunity spectrum and discuss about the involvement of inflammasomes in disease mechanisms. Genetic mutations in inflammasome components cause monogenic autoinflammatory diseases, while inflammasome-related genetic variants have been implicated in polygenic childhood rheumatic diseases. We highlight the reported associations of inflammasome signaling-related genetic polymorphisms/protein levels with pediatric autoimmune disease susceptibility and disease course. Furthermore, we discuss about the use of IL-1 receptor antagonist as an adjunctive therapy in several childhood autoimmune diseases, including macrophage activation syndrome (MAS) and multisystem inflammatory syndrome in children (MIS-C) related to COVID-19. A comprehensive multi-cohort comparison on inflammasome gene expression profile in different pediatric rheumatic diseases is needed to identify patient subsets that might benefit from the adjunctive therapy of IL-1β inhibitors.
Collapse
Affiliation(s)
- Chin-An Yang
- Division of Laboratory Medicine and Division of Pediatrics, China Medical University Hsinchu Hospital, Jubei, Hsinchu, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
40
|
Abstract
Als Perikarditis wird eine Entzündung des Herzbeutels bezeichnet, die mit einem Perikarderguss oder einer entzündlichen Reaktion des Myokards (Perimyokarditis) einhergehen kann. Die Perikarditis kann im Rahmen von entzündlich rheumatischen Systemerkrankungen oder als eigenständige Erkrankung vorkommen. Rezidivierende Perikarditisepisoden ohne fassbare Ursache werden als idiopathische rekurrierende Perikarditis (IRP) bezeichnet, welche wesentliche Gemeinsamkeiten mit autoinflammatorischen Erkrankungen aufweist. Der Artikel gibt einen Überblick über die Häufigkeit des Auftretens einer Perikarditis bei rheumatologischen Erkrankungen. Weiterhin werden Klinik und Pathophysiologie der IRP diskutiert. Abschließend wird die Therapie der akuten und idiopathischen Perikarditis erläutert.
Collapse
|
41
|
Ma S, Wang Y, Zhou X, Li Z, Zhang Z, Wang Y, Huang T, Zhang Y, Shi J, Guan F. MG53 Protects hUC-MSCs against Inflammatory Damage and Synergistically Enhances Their Efficacy in Neuroinflammation Injured Brain through Inhibiting NLRP3/Caspase-1/IL-1β Axis. ACS Chem Neurosci 2020; 11:2590-2601. [PMID: 32786312 DOI: 10.1021/acschemneuro.0c00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inflammatory microenvironment in a lesion is not conducive to the survival of stem cells. Improving the inflammatory microenvironment may be an alternative strategy to enhance the efficacy of stem cells. We evaluated the therapeutic effect and molecular mechanism of mitsugumin53 (MG53) on lipopolysaccharide (LPS)-induced damage in human umbilical cord mesenchymal stem cells (hUC-MSCs) and in C57/BL6 mice. MG53 significantly promoted the proliferation and migration of hUC-MSCs, protected hUC-MSCs against LPS-induced apoptosis and mitochondrial dysfunction, and reversed LPS-induced inflammatory cytokine release. Furthermore, MG53 combined with hUC-MSCs transplantation improved LPS-induced memory impairment and activated neurogenesis by promoting the migration of hUC-MSCs and enhancing βIII-tubulin and doublecortin (DCX) expression. MG53 protein combined with hUC-MSCs improved the M1/M2 phenotype polarization of microglia accompanied by lower inducible nitric oxide synthase (iNOS) expression and higher arginase 1 (ARG1) expression. MG53 significantly suppressed the expression of tumor necrosis factor α (TNF-α), Toll-like receptor 4 (TLR4), nucleotide oligomerization domain-like receptor protein 3 (NLRP3), cleaved-caspase-1, and interleukin (IL)-1β to alleviate LPS-induced neuroinflammation on hUC-MSCs and C57/BL6 mice. In conclusion, our results indicated that MG53 could protect hUC-MSCs against LPS-induced inflammatory damage and facilitate their efficacy in LPS-treated C57/BL6 mice partly by inhibiting the NLRP3/caspase-1/IL-1β axis.
Collapse
Affiliation(s)
- Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 Henan, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yingying Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jijing Shi
- Central Lab of the First People’s Hospital of Zhengzhou, Zhengzhou, 450001 Henan. China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052 Henan, China
| |
Collapse
|
42
|
Rahman T, Nagar A, Duffy EB, Okuda K, Silverman N, Harton JA. NLRP3 Sensing of Diverse Inflammatory Stimuli Requires Distinct Structural Features. Front Immunol 2020; 11:1828. [PMID: 32983094 PMCID: PMC7479093 DOI: 10.3389/fimmu.2020.01828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
The NLRP3 inflammasome is central to host defense and implicated in various inflammatory diseases and conditions. While the favored paradigm of NLRP3 inflammasome activation stipulates a unifying signal intermediate that de-represses NLRP3, this view has not been tested. Further, structures within NLRP3 required for inflammasome activation are poorly defined. Here we demonstrate that while the NLRP3 LRRs are not auto-repressive and are not required for inflammasome activation by all agonists, distinct sequences within the NLRP3 LRRs positively and negatively modulate inflammasome activation by specific ligands. In addition, elements within the HD1/HD2 “hinge” of NLRP3 and the nucleotide-binding domain have contrasting functions depending upon the specific agonists. Further, while NLRP3 1–432 is minimally sufficient for inflammasome activation by all agonists tested, the pyrin, and linker domains (1–134) function cooperatively and are sufficient for inflammasome activation by certain agonists. Conserved cysteines 8 and 108 appear important for inflammasome activation by sterile, but not infectious insults. Our results define common and agonist-specific regions of NLRP3 that likely mediate ligand-specific responses, discount the hypothesis that NLRP3 inflammasome activation has a unified mechanism, and implicate NLRP3 as an integrator of agonist-specific, inflammasome activating signals.
Collapse
Affiliation(s)
- Tabassum Rahman
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Abhinit Nagar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Ellen B Duffy
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Kendi Okuda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jonathan A Harton
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
43
|
Associations between NLRC4 Gene Polymorphisms and Autoimmune Thyroid Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1378427. [PMID: 32802832 PMCID: PMC7424365 DOI: 10.1155/2020/1378427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
Abstract
Background Many studies have shown that NLRC4 inflammasome polymorphisms are associated with a variety of autoimmune diseases, but the associations between NLRC4 polymorphisms and autoimmune thyroid diseases (AITDs) are unclear. Our research was aimed at identifying the correlations between NLRC4 polymorphisms and AITDs. Methods Hi-SNP high-throughput genotyping technology was used for detecting four single-nucleotide polymorphisms (SNPs) of NLRC4 in 1005 AITDs patients (including 629 Graves' disease and 376 Hashimoto's thyroiditis) and 781 healthy controls. Results Compared with healthy controls, the allele frequencies and genotype distribution of rs385076 were statistically related to AITDs (P = 0.016 and P = 0.048, respectively) and Hashimoto's thyroiditis (P = 0.022 and P = 0.046, respectively). Before adjusting for age and gender, rs385076 and AITDs had a significant association in three models of allele model, dominant model, and homozygous model. After adjusting for age and gender, in the above three models, there is still a clear relationship between them. Before adjusting for age and gender, there were prominent discrepancy between rs385076 and Hashimoto's thyroiditis in the allele model (OR = 0.81, 95% CI 0.67-0.97; P = 0.021) and the dominant model (OR = 0.73, 95% CI 0.57-0.94; P = 0.014), after adjusting for age and gender, rs385076 and Hashimoto's thyroiditis were significantly related to allele model, dominant model, and homozygous model. However, rs455060, rs212704, and rs675712 were not related to AITDs in our study. Conclusion NLRC4 rs385076 was found to have a significant association with Hashimoto's thyroiditis for the first time. It laid a foundation for the disclosure of the pathogenesis of AITDs, and provided a possible treatment prospect for HT.
Collapse
|
44
|
Rodrigues KB, Dufort MJ, Llibre A, Speake C, Rahman MJ, Bondet V, Quiel J, Linsley PS, Greenbaum CJ, Duffy D, Tarbell KV. Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes. Diabetologia 2020; 63:1576-1587. [PMID: 32500289 PMCID: PMC10091865 DOI: 10.1007/s00125-020-05179-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this. METHODS The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured. RESULTS Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different. CONCLUSIONS/INTERPRETATION Our study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway. DATA AVAILABILITY Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452 ). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338 ). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia . Graphical abstract.
Collapse
Affiliation(s)
- Kameron B Rodrigues
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Pathology Department, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alba Llibre
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Cate Speake
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - M Jubayer Rahman
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Vincent Bondet
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France
| | - Juan Quiel
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Darragh Duffy
- Immunobiology of Dendritic Cells/Inserm U1223, Département d'Immunologie, Institut Pasteur, 25 rue de Dr. Roux, 75724, Paris, France.
| | - Kristin V Tarbell
- Immune Tolerance Section, Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
- Amgen Discovery Research, 1120 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
45
|
Zhao N, Li CC, Di B, Xu LL. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: Mechanisms, role in diseases and related inhibitors. J Autoimmun 2020; 113:102515. [PMID: 32703754 DOI: 10.1016/j.jaut.2020.102515] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome is a high-molecular-weight complex mediated by the activation of pattern-recognition receptors (PRRs) seed in innate immunity. Once NLRP3 is activated, the following recruitment of the adapter apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC) and procaspase-1 would be initiated. Cleavage of procaspase-1 into active caspase-1 then leads to the maturation of the precursor forms of interleukin (IL)-1β and IL-18 into biologically active IL-1β and IL-18. The activation of NLRP3 inflammasome is thought to be tightly associated with a regulator never in mitosis A (NIMA)-related kinase 7 (NEK7), apart from other signaling events such as K+ efflux and reactive oxygen species (ROS). Plus, the NLRP3 inflammasome has been linked to various metabolic disorders, chronic inflammation and other diseases. In this review, we firstly describe the cellular/molecular mechanisms of the NEK7-licensed NLRP3 inflammasome activation. Then we detail the potential inhibitors that can selectively and effectively modulate either the NEK7-NLRP3 complex itself or the related molecular/cellular events. Finally, we describe some inhibitors as promising therapeutic strategies for diverse diseases driven by NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
46
|
Yang X, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif 2020; 53:e12854. [PMID: 32530555 PMCID: PMC7377929 DOI: 10.1111/cpr.12854] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Macrophages maintain a dynamic balance in physiology. Various known or unknown microenvironmental signals influence the polarization, activation and death of macrophages, which creates an imbalance that leads to disease. Rheumatoid arthritis (RA) is characterized by the massive infiltration of a variety of chronic inflammatory cells in synovia. Abundant activated macrophages found in RA synovia are an early hallmark of RA, and the number of these macrophages can be decreased after effective treatment. In RA, the proportion of M1 (pro‐inflammatory macrophages) is higher than that of M2 (anti‐inflammatory macrophages). The increased pro‐inflammatory ability of macrophages is related to their excessive activation and proliferation as well as an enhanced anti‐apoptosis ability. At present, there are no clinical therapies specific to macrophages in RA. Understanding the mechanisms and functional consequences of the heterogeneity of macrophages will aid in confirming their potential role in inflammation development. This review will outline RA‐related macrophage properties (focus on polarization, metabolism and apoptosis) as well as the origin of macrophages. The molecular mechanisms that drive macrophage properties also be elucidated to identify novel therapeutic targets for RA and other autoimmune disease.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Nouadi B, Sbaoui Y, El Messal M, Bennis F, Chegdani F. Integrative Analysis of the Genes Induced by the Intestine Microbiota of Infant Born to Term and Breastfed. Bioinform Biol Insights 2020; 14:1177932220906168. [PMID: 32425510 PMCID: PMC7218278 DOI: 10.1177/1177932220906168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the integration of biological data is a major challenge for bioinformatics. Many studies have examined gene expression in the epithelial tissue in the intestines of infants born to term and breastfed, generating a large amount of data. The integration of these data is important to understand the biological processes involved during bacterial colonization of the newborns intestine, particularly through breast milk. This work aims to exploit the bioinformatics approaches, to provide a new representation and interpretation of the interactions between differentially expressed genes in the host intestine induced by the microbiota.
Collapse
Affiliation(s)
- Badreddine Nouadi
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Yousra Sbaoui
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame El Messal
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Laboratory of Health and Environment, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
48
|
Pathogenic contribution of the Macrophage migration inhibitory factor family to major depressive disorder and emerging tailored therapeutic approaches. J Affect Disord 2020; 263:15-24. [PMID: 31818772 DOI: 10.1016/j.jad.2019.11.127] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/28/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Immunoinflammatory disorders are often accompanied by depression. Here, we review the available preclinical and clinical studies suggesting a role for the pro-inflammatory cytokine Macrophage migration inhibitory factor (MIF) and the second member of the MIF family, D-dopachrome tautomerase (D-DT; DDT), in the pathogenesis of Major Depressive Disorders (MDD). METHODS We prepared a narrative review from a search on PubMed of studies pertaining to MDD and MIF, as for October 2019. Both humans and animal studies haves been considered. RESULTS Preclinical data show conflicting results on the role of endogenous MIF and DDT in depression. In contrast, several human studies show that circulating MIF levels tend to increase during the course of MDD. Higher levels of inflammatory biomarkers have also been associated with poorer responses to antidepressants and the levels of MIF significantly decrease after treatment, despite this may not be necessarily associated to an improvement in psychiatric symptoms. LIMITATIONS This is a narrative and not a systematic review of the literature on the involvement of MIF in MDD. We have highlighted studies performed in humans and in animal models, irrespective of population size and methodological approach. CONCLUSIONS This review highlights a role of MIF, and possibly DDT, in the pathogenesis of MDD. Whilst studies in animal models are discordant, the studies in patients with MDD convergently suggest that MIF plays a role in induction and maintenance of the disease. Additional studies are also needed on DDT that often displays synergistic function with MIF and their receptors.
Collapse
|
49
|
da Cruz HLA, Cavalcanti CAJ, de Azêvedo Silva J, de Lima CAD, Fragoso TS, Barbosa AD, Dantas AT, de Ataíde Mariz H, Duarte ALBP, Pontillo A, Crovella S, Sandrin-Garcia P. Differential expression of the inflammasome complex genes in systemic lupus erythematosus. Immunogenetics 2020; 72:217-224. [PMID: 32020248 DOI: 10.1007/s00251-020-01158-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder involving heterogeneous clinical manifestations and numerous susceptibility genes. Several findings evidence the critical role of inflammasomes in the predisposition to autoimmune diseases and in SLE. We investigated whether inflammasome polymorphins could affect susceptibility to develop and/or severity SLE. Moreover, differences in inflammasome activation in peripheral blood were also evaluated in SLE patients and controls. The distribution of 13 SNPs in eight inflammasome genes was evaluated. To assess inflammasome priming in peripheral blood monocytes of SLE and controls, differential expression of selected inflammasome genes and IL-1ß production was analyzed in resting condition as well as after LPS and ATP stimulation. Results showed that the gain-of-function variant rs10754558 (NLRP3) was significantly more frequent in SLE patients with nephritis, reinforcing the concept of a key role of NLRP3 inflammasome not only in SLE but also especially in kidney disease. SLE monocytes in resting condition showed a higher level of IL-1ß expression and produced higher levels of IL-1ß when stimulated with LPS+ATP comparing to controls. The stimulation induced a significant expression of NLRP1, AIM2, CASP1, and IL1B genes, suggesting that the NLRP1 inflammasome is responsible for the IL-1ß production observed in monocytes. These data emphasized once more the important contribution of inflammasome in SLE-associated inflammation.
Collapse
Affiliation(s)
| | - Catarina Addobbati Jordão Cavalcanti
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Thiago Sotero Fragoso
- Rheumatology Service, "Clinical Hospital", Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Andréa Tavares Dantas
- Rheumatology Division, "Clinical Hospital", Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Henrique de Ataíde Mariz
- Rheumatology Division, "Clinical Hospital", Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergio Crovella
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Paula Sandrin-Garcia
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife, Pernambuco, Brazil. .,Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
50
|
Kim J, Kim WJ, Ha KS, Han ET, Park WS, Yang SR, Hong SH. Perivascular Stem Cells Suppress Inflammasome Activation during Inflammatory Responses in Macrophages. Int J Stem Cells 2019; 12:419-429. [PMID: 31658511 PMCID: PMC6881042 DOI: 10.15283/ijsc19115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Perivascular stem cells (PVCs) have been identified as precursors of mesenchymal stem cells (MSCs) that offer promising prospects for application in the development of cellular therapies. Although PVCs have been demonstrated to have greater therapeutic potential compared to bone marrow and adipose tissue-derived MSCs in various diseases, the regulatory role of PVCs on inflammasome activation during macrophage-mediated inflammatory responses has not been investigated. Methods and Results In this study, we found that the PVC secretome effectively alleviates secretion of both caspase-1 and interleukin-1β in lipopolysaccharide-primed and activated human and murine macrophages by blocking inflammasome activation and attenuating the production of mitochondrial reactive oxygen species (ROS). We further showed that the PVC secretome significantly reduces inflammatory responses and endoplasmic reticulum stress in peritoneal macrophages in a mouse model of monosodium urate-induced peritonitis. A cytokine antibody array analysis revealed that the PVC secretome contains high levels of serpin E1 and angiogenin, which may be responsible for the inhibitory effects on mitochondrial ROS generation as well as on inflammasome activation. Conclusions Our results suggest that PVCs may be therapeutically useful for the treatment of macrophage- and inflammation-mediated diseases by paracrine action via the secretion of various biological factors.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Kwon-Soo Ha
- Scripps Korea Antibody Institute and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|