1
|
Cahoon EB, Kim P, Xie T, González Solis A, Han G, Gong X, Dunn TM. Sphingolipid homeostasis: How do cells know when enough is enough? Implications for plant pathogen responses. PLANT PHYSIOLOGY 2024; 197:kiae460. [PMID: 39222369 DOI: 10.1093/plphys/kiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Sphingolipid homeostatic regulation is important for balancing plant life and death. Plant cells finely tune sphingolipid biosynthesis to ensure sufficient levels to support growth through their basal functions as major components of endomembranes and the plasma membrane. Conversely, accumulation of sphingolipid biosynthetic intermediates, long-chain bases (LCBs) and ceramides, is associated with programmed cell death. Limiting these apoptotic intermediates is important for cell viability, while overriding homeostatic regulation permits cells to generate elevated LCBs and ceramides to respond to pathogens to elicit the hypersensitive response in plant immunity. Key to sphingolipid homeostasis is serine palmitoyltransferase (SPT), an endoplasmic reticulum-associated, multi-subunit enzyme catalyzing the first step in the biosynthesis of LCBs, the defining feature of sphingolipids. Across eukaryotes, SPT interaction with its negative regulator Orosomucoid-like (ORM) is critical for sphingolipid biosynthetic homeostasis. The recent cryo-electron microscopy structure of the Arabidopsis SPT complex indicates that ceramides bind ORMs to competitively inhibit SPT activity. This system provides a sensor for intracellular ceramide concentrations for sphingolipid homeostatic regulation. Combining the newly elucidated Arabidopsis SPT structure and mutant characterization, we present a model for the role of the 2 functionally divergent Arabidopsis ceramide synthase classes to produce ceramides that form repressive (trihydroxy LCB-ceramides) or nonrepressive (dihydroxy LCB-ceramides) ORM interactions to influence SPT activity. We describe how sphingolipid biosynthesis is regulated by the interplay of ceramide synthases with ORM-SPT when "enough is enough" and override homeostatic suppression when "enough is not enough" to respond to environmental stimuli such as microbial pathogen attack.
Collapse
Affiliation(s)
- Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Panya Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ariadna González Solis
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024; 476:1833-1843. [PMID: 39297971 PMCID: PMC11582160 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
3
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2024:10.1007/s11357-024-01444-1. [PMID: 39585647 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Tani M. Biological Importance of Complex Sphingolipids and Their Structural Diversity in Budding Yeast Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:12422. [PMID: 39596489 PMCID: PMC11594620 DOI: 10.3390/ijms252212422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Complex sphingolipids are components of eukaryotic biomembranes and are involved in various physiological functions. In addition, their synthetic intermediates and metabolites, such as ceramide, sphingoid long-chain base, and sphingoid long-chain base 1-phosphate, play important roles as signaling molecules that regulate intracellular signal transduction systems. Complex sphingolipids have a large number of structural variations, and this structural diversity is considered an important molecular basis for their various physiological functions. The budding yeast Saccharomyces cerevisiae has simpler structural variations in complex sphingolipids compared to mammals and is, therefore, a useful model organism for elucidating the physiological significance of this structural diversity. In this review, we focus on the structure and function of complex sphingolipids in S. cerevisiae and summarize the response mechanisms of S. cerevisiae to metabolic abnormalities in complex sphingolipids.
Collapse
Affiliation(s)
- Motohiro Tani
- Faculty of Applied Biological Science, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
| |
Collapse
|
5
|
Dingjan T, Futerman AH. Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum. Front Cell Dev Biol 2024; 12:1457209. [PMID: 39170919 PMCID: PMC11335536 DOI: 10.3389/fcell.2024.1457209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
6
|
Brown RDR, Mahawar U, Wattenberg BW, Spiegel S. ORMDL mislocalization by impaired autophagy in Niemann-Pick type C disease leads to increased de novo sphingolipid biosynthesis. J Lipid Res 2024; 65:100556. [PMID: 38719150 PMCID: PMC11170278 DOI: 10.1016/j.jlr.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
7
|
Dubot P, Sabourdy F, Levade T. Human genetic defects of sphingolipid synthesis. J Inherit Metab Dis 2024. [PMID: 38706107 DOI: 10.1002/jimd.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Sphingolipids are ubiquitous lipids, present in the membranes of all cell types, the stratum corneum and the circulating lipoproteins. Autosomal recessive as well as dominant diseases due to disturbed sphingolipid biosynthesis have been identified, including defects in the synthesis of ceramides, sphingomyelins and glycosphingolipids. In many instances, these gene variants result in the loss of catalytic function of the mutated enzymes. Additional gene defects implicate the subcellular localization of the sphingolipid-synthesizing enzyme, the regulation of its activity, or even the function of a sphingolipid-transporter protein. The resulting metabolic alterations lead to two major, non-exclusive types of clinical manifestations: a neurological disease, more or less rapidly progressive, associated or not with intellectual disability, and an ichthyotic-type skin disorder. These phenotypes highlight the critical importance of sphingolipids in brain and skin development and homeostasis. The present article reviews the clinical symptoms, genetic and biochemical alterations, pathophysiological mechanisms and therapeutic options of this relatively novel group of metabolic diseases.
Collapse
Affiliation(s)
- Patricia Dubot
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
- Centre de Recherches, CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Frédérique Sabourdy
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Thierry Levade
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| |
Collapse
|
8
|
Demkova L, Bugajev V, Adamcova MK, Kuchar L, Grusanovic S, Alberich-Jorda M, Draber P, Halova I. Simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupts immune cell homeostasis. Front Immunol 2024; 15:1376629. [PMID: 38715613 PMCID: PMC11074395 DOI: 10.3389/fimmu.2024.1376629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
ORMDL3 is a prominent member of a family of highly conserved endoplasmic reticulum resident proteins, ORMs (ORM1 and ORM2) in yeast, dORMDL in Drosophila and ORMDLs (ORMDL1, ORMDL2, and ORMDL3) in mammals. ORMDL3 mediates feedback inhibition of de novo sphingolipid synthesis. Expression levels of ORMDL3 are associated with the development of inflammatory and autoimmune diseases including asthma, systemic lupus erythematosus, type 1 diabetes mellitus and others. It has been shown that simultaneous deletions of other ORMDL family members could potentiate ORMDL3-induced phenotypes. To understand the complex function of ORMDL proteins in immunity in vivo, we analyzed mice with single or double deletions of Ormdl genes. In contrast to other single and double knockouts, simultaneous deletion of ORMDL1 and ORMDL3 proteins disrupted blood homeostasis and reduced immune cell content in peripheral blood and spleens of mice. The reduced number of splenocytes was not caused by aberrant immune cell homing. A competitive bone marrow transplantation assay showed that the development of Ormdl1-/-/Ormdl3-/- B cells was dependent on lymphocyte intrinsic factors. Highly increased sphingolipid production was observed in the spleens and bone marrow of Ormdl1-/-/Ormdl3-/- mice. Slight, yet significant, increase in some sphingolipid species was also observed in the spleens of Ormdl3-/- mice and in the bone marrow of both, Ormdl1-/- and Ormdl3-/- single knockout mice. Taken together, our results demonstrate that the physiological expression of ORMDL proteins is critical for the proper development and circulation of lymphocytes. We also show cell-type specific roles of individual ORMDL family members in the production of different sphingolipid species.
Collapse
Affiliation(s)
- Livia Demkova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava K. Adamcova
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Srdjan Grusanovic
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
10
|
Xie T, Dong F, Han G, Wu X, Liu P, Zhang Z, Zhong J, Niranjanakumari S, Gable K, Gupta SD, Liu W, Harrison PJ, Campopiano DJ, Dunn TM, Gong X. Collaborative regulation of yeast SPT-Orm2 complex by phosphorylation and ceramide. Cell Rep 2024; 43:113717. [PMID: 38285738 DOI: 10.1016/j.celrep.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular β-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular β-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianlong Zhong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peter J Harrison
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | | | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
12
|
Mughram MHA, Kellogg GE, Wattenberg BW. Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi. Adv Biol Regul 2024; 91:101010. [PMID: 38135565 PMCID: PMC10922298 DOI: 10.1016/j.jbior.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
Collapse
Affiliation(s)
- Mohammed H Al Mughram
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
13
|
Jamil M, Cowart LA. Sphingolipids in mitochondria-from function to disease. Front Cell Dev Biol 2023; 11:1302472. [PMID: 38078003 PMCID: PMC10702779 DOI: 10.3389/fcell.2023.1302472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 02/12/2024] Open
Abstract
Sphingolipids are not only structural components of cellular membranes but also play vital roles in cell signaling and modulation of cellular processes. Within mitochondria, sphingolipids exert diverse effects on mitochondrial dynamics, energy metabolism, oxidative stress, and cell death pathways. In this review, we summarize literature addressing the crucial role of sphingolipids in mitochondria, highlighting their impact on mitochondrial dynamics, cellular bioenergetics, and important cell processes including apoptosis and mitophagy.
Collapse
Affiliation(s)
- Maryam Jamil
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Lauren Ashley Cowart
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran’s Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
14
|
Liao R, Babatunde A, Qiu S, Harikumar H, Coon JJ, Overmyer KA, Hannun YA, Luberto C, Bresnick EH. A transcriptional network governing ceramide homeostasis establishes a cytokine-dependent developmental process. Nat Commun 2023; 14:7262. [PMID: 37945603 PMCID: PMC10636182 DOI: 10.1038/s41467-023-42978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Abiola Babatunde
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie Qiu
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hamsini Harikumar
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Book University, Stony Brook, NY, USA
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
15
|
Zhu XM, Li L, Bao JD, Wang JY, Daskalov A, Liu XH, Del Poeta M, Lin FC. The biological functions of sphingolipids in plant pathogenic fungi. PLoS Pathog 2023; 19:e1011733. [PMID: 37943805 PMCID: PMC10635517 DOI: 10.1371/journal.ppat.1011733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Sphingolipids are critically significant in a range of biological processes in animals, plants, and fungi. In mammalian cells, they serve as vital components of the plasma membrane (PM) in maintaining its structure, tension, and fluidity. They also play a key role in a wide variety of biological processes, such as intracellular signal transduction, cell polarization, differentiation, and migration. In plants, sphingolipids are important for cell development and for cell response to environmental stresses. In pathogenic fungi, sphingolipids are crucial for the initiation and the development of infection processes afflicting humans. However, our knowledge on the metabolism and function of the sphingolipid metabolic pathway of pathogenic fungi affecting plants is still very limited. In this review, we discuss recent developments on sphingolipid pathways of plant pathogenic fungi, highlighting their uniqueness and similarity with plants and animals. In addition, we discuss recent advances in the research and development of fungal-targeted inhibitors of the sphingolipid pathway, to gain insights on how we can better control the infection process occurring in plants to prevent or/and to treat fungal infections in crops.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Mathivanan A, Nachiappan V. Deletion of ORM2 Causes Oleic Acid-Induced Growth Defects in Saccharomyces cerevisiae. Appl Biochem Biotechnol 2023; 195:5916-5932. [PMID: 36719521 DOI: 10.1007/s12010-023-04359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
The endoplasmic reticulum (ER) resident proteins of the Orm family (Orm1p and Orm2p) play an essential regulatory role in sphingolipid metabolism and proteostasis of Saccharomyces cerevisiae. Sphingolipid metabolism and its relationship with yeast ORM1 and ORM2 have been studied widely, but its position in phospholipids and neutral lipids requires further studies. We found that the deletion of ORM2 reduced phospholipid levels, but orm1Δ had shown no significant alteration of phospholipids. On the contrary, neutral lipid levels and lipid droplet (LD) numbers were increased in both orm1∆ and orm2∆ cells. Unlike orm1Δ, free fatty acid (FFA) levels were steeply accumulated in orm2∆ cells, and deletion of ORM2 made the cells more sensitive towards oleic acid toxicity. Misregulation of fatty acids has been implicated in the causation of several lipid metabolic disorders. It is imminent to comprehend the control mechanisms of free fatty acid homeostasis and its pathophysiology. Our study has provided experimental evidence of ORM2 role in the lipid and fatty acid metabolism of yeast.
Collapse
Affiliation(s)
- Arul Mathivanan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Trichy, 620 024, Tamil Nadu, India.
| |
Collapse
|
17
|
Issleny BM, Jamjoum R, Majumder S, Stiban J. Sphingolipids: From structural components to signaling hubs. Enzymes 2023; 54:171-201. [PMID: 37945171 DOI: 10.1016/bs.enz.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.
Collapse
Affiliation(s)
- Batoul M Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | | | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
18
|
Xie T, Liu P, Wu X, Dong F, Zhang Z, Yue J, Mahawar U, Farooq F, Vohra H, Fang Q, Liu W, Wattenberg BW, Gong X. Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis. Nat Commun 2023; 14:3475. [PMID: 37308477 DOI: 10.1038/s41467-023-39274-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The ORM/ORMDL family proteins function as regulatory subunits of the serine palmitoyltransferase (SPT) complex, which is the initiating and rate-limiting enzyme in sphingolipid biosynthesis. This complex is tightly regulated by cellular sphingolipid levels, but the sphingolipid sensing mechanism is unknown. Here we show that purified human SPT-ORMDL complexes are inhibited by the central sphingolipid metabolite ceramide. We have solved the cryo-EM structure of the SPT-ORMDL3 complex in a ceramide-bound state. Structure-guided mutational analyses reveal the essential function of this ceramide binding site for the suppression of SPT activity. Structural studies indicate that ceramide can induce and lock the N-terminus of ORMDL3 into an inhibitory conformation. Furthermore, we demonstrate that childhood amyotrophic lateral sclerosis (ALS) variants in the SPTLC1 subunit cause impaired ceramide sensing in the SPT-ORMDL3 mutants. Our work elucidates the molecular basis of ceramide sensing by the SPT-ORMDL complex for establishing sphingolipid homeostasis and indicates an important role of impaired ceramide sensing in disease development.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jian Yue
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Faheem Farooq
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hisham Vohra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Qi Fang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
19
|
Srivastava S, Shaked HM, Gable K, Gupta SD, Pan X, Somashekarappa N, Han G, Mohassel P, Gotkine M, Doney E, Goldenberg P, Tan QKG, Gong Y, Kleinstiver B, Wishart B, Cope H, Pires CB, Stutzman H, Spillmann RC, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM, Dai H, Dhar SU, Emrick LT, Goldman AM, Hanchard NA, Jamal F, Karaviti L, Lalani SR, Lee BH, Lewis RA, Marom R, Moretti PM, Murdock DR, Nicholas SK, Orengo JP, Posey JE, Potocki L, Rosenfeld JA, Samson SL, Scott DA, Tran AA, Vogel TP, Wangler MF, Yamamoto S, Eng CM, Liu P, Ward PA, Behrens E, Deardorff M, Falk M, Hassey K, Sullivan K, Vanderver A, Goldstein DB, Cope H, McConkie-Rosell A, Schoch K, Shashi V, Smith EC, Spillmann RC, Sullivan JA, Tan QKG, Walley NM, Agrawal PB, Beggs AH, Berry GT, Briere LC, Cobban LA, Coggins M, Cooper CM, Fieg EL, High F, Holm IA, Korrick S, Krier JB, Lincoln SA, Loscalzo J, Maas RL, MacRae CA, Pallais JC, Rao DA, Rodan LH, Silverman EK, Stoler JM, Sweetser DA, Walker M, Walsh CA, Esteves C, Kelley EG, Kohane IS, LeBlanc K, McCray AT, Nagy A, Dasari S, Lanpher BC, Lanza IR, Morava E, Oglesbee D, Bademci G, Barbouth D, Bivona S, Carrasquillo O, Chang TCP, Forghani I, Grajewski A, Isasi R, Lam B, Levitt R, Liu XZ, McCauley J, Sacco R, Saporta M, Schaechter J, Tekin M, Telischi F, Thorson W, Zuchner S, Colley HA, Dayal JG, Eckstein DJ, Findley LC, Krasnewich DM, Mamounas LA, Manolio TA, Mulvihill JJ, LaMoure GL, Goldrich MP, Urv TK, Doss AL, Acosta MT, Bonnenmann C, D’Souza P, Draper DD, Ferreira C, Godfrey RA, Groden CA, Macnamara EF, Maduro VV, Markello TC, Nath A, Novacic D, Pusey BN, Toro C, Wahl CE, Baker E, Burke EA, Adams DR, Gahl WA, Malicdan MCV, Tifft CJ, Wolfe LA, Yang J, Power B, Gochuico B, Huryn L, Latham L, Davis J, Mosbrook-Davis D, Rossignol F, Solomon B, MacDowall J, Thurm A, Zein W, Yousef M, Adam M, Amendola L, Bamshad M, Beck A, Bennett J, Berg-Rood B, Blue E, Boyd B, Byers P, Chanprasert S, Cunningham M, Dipple K, Doherty D, Earl D, Glass I, Golden-Grant K, Hahn S, Hing A, Hisama FM, Horike-Pyne M, Jarvik GP, Jarvik J, Jayadev S, Lam C, Maravilla K, Mefford H, Merritt JL, Mirzaa G, Nickerson D, Raskind W, Rosenwasser N, Scott CR, Sun A, Sybert V, Wallace S, Wener M, Wenger T, Ashley EA, Bejerano G, Bernstein JA, Bonner D, Coakley TR, Fernandez L, Fisher PG, Fresard L, Hom J, Huang Y, Kohler JN, Kravets E, Majcherska MM, Martin BA, Marwaha S, McCormack CE, Raja AN, Reuter CM, Ruzhnikov M, Sampson JB, Smith KS, Sutton S, Tabor HK, Tucker BM, Wheeler MT, Zastrow DB, Zhao C, Byrd WE, Crouse AB, Might M, Nakano-Okuno M, Whitlock J, Brown G, Butte MJ, Dell’Angelica EC, Dorrani N, Douine ED, Fogel BL, Gutierrez I, Huang A, Krakow D, Lee H, Loo SK, Mak BC, Martin MG, Martínez-Agosto JA, McGee E, Nelson SF, Nieves-Rodriguez S, Palmer CGS, Papp JC, Parker NH, Renteria G, Signer RH, Sinsheimer JS, Wan J, Wang LK, Perry KW, Woods JD, Alvey J, Andrews A, Bale J, Bohnsack J, Botto L, Carey J, Pace L, Longo N, Marth G, Moretti P, Quinlan A, Velinder M, Viskochi D, Bayrak-Toydemir P, Mao R, Westerfield M, Bican A, Brokamp E, Duncan L, Hamid R, Kennedy J, Kozuira M, Newman JH, PhillipsIII JA, Rives L, Robertson AK, Solem E, Cogan JD, Cole FS, Hayes N, Kiley D, Sisco K, Wambach J, Wegner D, Baldridge D, Pak S, Schedl T, Shin J, Solnica-Krezel L, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 2023; 146:1420-1435. [PMID: 36718090 PMCID: PMC10319774 DOI: 10.1093/brain/awac460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, BostonChildren's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Marc Gotkine
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Paula Goldenberg
- Department of Pediatrics, Section on Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Queenie K G Tan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Wishart
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claudia Brito Pires
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital , Memphis, TN 38105 , USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030 , USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital , Houston, TX 77030 , USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus , Jerusalem 91240 , Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences , Bethesda, MD 20814 , USA
| | | |
Collapse
|
20
|
Hurley LD, Lee H, Wade G, Simcox J, Engin F. Ormdl3 regulation of specific ceramides is dispensable for mouse β-cell function and glucose homeostasis under obesogenic conditions. Front Endocrinol (Lausanne) 2023; 14:1170461. [PMID: 37124760 PMCID: PMC10140491 DOI: 10.3389/fendo.2023.1170461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic elevation of sphingolipids contributes to β-cell failure. ORMDL3 has been identified as a key regulator of sphingolipid homeostasis, however, its function in pancreatic β-cell pathophysiology remains unclear. Here, we generated a mouse model lacking Ormdl3 within pancreatic β-cells (Ormdl3 β-/-). We show that loss of β-cell Ormdl3 does not alter glucose tolerance, insulin sensitivity, insulin secretion, islet morphology, or cellular ceramide levels on standard chow diet. When challenged with a high fat diet, while Ormdl3 β-/- mice did not exhibit any alteration in metabolic parameters or islet architecture, lipidomics analysis revealed significantly higher levels of very long chain ceramides in their islets. Taken together, our results reveal that loss of Ormdl3 alone is not sufficient to impinge upon β-cell function or whole-body glucose and insulin homeostasis, however, β-cell-specific loss of Ormdl3 does significantly alter levels of specific sphingolipid species in islets upon high fat feeding.
Collapse
Affiliation(s)
- Liam D. Hurley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hugo Lee
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Gina Wade
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Judith Simcox
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Feyza Engin
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
22
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
23
|
James BN, Weigel C, Green CD, Brown RDR, Palladino END, Tharakan A, Milstien S, Proia RL, Martin RK, Spiegel S. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice. FASEB J 2023; 37:e22799. [PMID: 36753412 PMCID: PMC9990076 DOI: 10.1096/fj.202201821r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.
Collapse
Affiliation(s)
- Briana N. James
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Christopher D. Green
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Ryan D. R. Brown
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Anuj Tharakan
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Richard L. Proia
- Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Rebecca K. Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| |
Collapse
|
24
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
25
|
Ceramide Nanoliposomes as Potential Therapeutic Reagents for Asthma. Cells 2023; 12:cells12040591. [PMID: 36831258 PMCID: PMC9954069 DOI: 10.3390/cells12040591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Ceramides are an emerging class of anti-inflammatory lipids, and nanoscale ceramide-delivery systems are potential therapeutic strategies for inflammatory diseases. This study investigated the therapeutic effects of ceramide nanoliposomes (CNL) on type 2 inflammation-based asthma, induced by repeated ovalbumin (OVA) challenges. Asthmatic mice intratracheally treated with ceramide-free liposomes (Ghost) displayed typical airway remodeling including mucosal accumulation and subepithelial fibrosis, whereas, in CNL-treated mice, the degree of airway remodeling was significantly decreased. Compared to the Ghost group, CNL treatment unexpectedly failed to significantly influence formation of type 2 cytokines, including IL-5 and IL-13, known to facilitate pathogenic production of airway mucus predominantly comprising MUC5AC mucin. Interestingly, CNL treatment suppressed OVA-evoked hyperplasia of MUC5AC-generating goblet cells in the airways. This suggests that CNL suppressed goblet cell hyperplasia and airway mucosal accumulation independently of type 2 cytokine formation. Mechanistically, CNL treatment suppressed cell growth and EGF-induced activation of Akt, but not ERK1/2, in a human lung epithelial cell culture system recapitulating airway goblet cell hyperplasia. Taken together, CNL is suggested to have therapeutic effects on airway remodeling in allergic asthma by targeting goblet cell hyperplasia. These findings raise the potential of ceramide-based therapies for airway diseases, such as asthma.
Collapse
|
26
|
Hurley LD, Lee H, Wade G, Simcox J, Engin F. Ormdl3 regulation of specific ceramides is dispensable for β-cell function and glucose homeostasis under obesogenic conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528130. [PMID: 36798417 PMCID: PMC9934654 DOI: 10.1101/2023.02.11.528130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Chronic elevation of sphingolipids contributes to β-cell failure. ORMDL3 has been identified as a key regulator of sphingolipid homeostasis, however, its function in pancreatic β-cell pathophysiology remains unclear. Here, we generated a mouse model lacking Ormdl3 within pancreatic β-cells ( Ormdl3 β-/- ). We show that loss of β-cell Ormdl3 does not alter glucose tolerance, insulin sensitivity, insulin secretion, islet morphology, or cellular ceramide levels on standard chow diet. When challenged with a high fat diet, while Ormdl3 β-/- mice did not exhibit any alteration in metabolic parameters or islet architecture, lipidomics analysis revealed significantly higher levels of very long chain ceramides in their islets. Taken together, our results reveal that loss of Ormdl3 alone is not sufficient to impinge upon β-cell function or whole-body glucose and insulin homeostasis, but loss of Ormdl3 does alter specific sphingolipid levels.
Collapse
Affiliation(s)
- Liam D Hurley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
| | - Gina Wade
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
27
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
28
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
29
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
30
|
A set of gene knockouts as a resource for global lipidomic changes. Sci Rep 2022; 12:10533. [PMID: 35732804 PMCID: PMC9218125 DOI: 10.1038/s41598-022-14690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.
Collapse
|
31
|
Lone MA, Bourquin F, Hornemann T. Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:47-56. [DOI: 10.1007/978-981-19-0394-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Spohner AK, Jakobi K, Trautmann S, Thomas D, Schumacher F, Kleuser B, Lütjohann D, El-Hindi K, Grösch S, Pfeilschifter J, Saba JD, Meyer zu Heringdorf D. Mouse Liver Compensates Loss of Sgpl1 by Secretion of Sphingolipids into Blood and Bile. Int J Mol Sci 2021; 22:10617. [PMID: 34638955 PMCID: PMC8508615 DOI: 10.3390/ijms221910617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5-2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
Collapse
Affiliation(s)
- Anna Katharina Spohner
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Katja Jakobi
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Sandra Trautmann
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Dominique Thomas
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Fabian Schumacher
- Institut für Pharmazie, Pharmakologie und Toxikologie, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany; (F.S.); (B.K.)
| | - Burkhard Kleuser
- Institut für Pharmazie, Pharmakologie und Toxikologie, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany; (F.S.); (B.K.)
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany;
| | - Khadija El-Hindi
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Sabine Grösch
- Institut für Klinische Pharmakologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theo-dor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (S.T.); (D.T.); (K.E.-H.); (S.G.)
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| | - Julie D. Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, 505 Parnassus Ave, San Francisco, CA 94143, USA;
| | - Dagmar Meyer zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Universitätsklinikum, Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (A.K.S.); (K.J.); (J.P.)
| |
Collapse
|
33
|
Dingjan T, Futerman AH. The role of the 'sphingoid motif' in shaping the molecular interactions of sphingolipids in biomembranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183701. [PMID: 34302797 DOI: 10.1016/j.bbamem.2021.183701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022]
Abstract
Sphingolipids can be differentiated from other membrane lipids by the distinctive chemistry of the sphingoid long chain base (LCB), which is generated by the condensation of an amino acid (normally but not always serine) and a fatty acyl CoA (normally palmitoyl CoA) by the pyridoxal phosphate-dependent enzyme, serine palmitoyl transferase (SPT). The first five carbon atoms of the sphingoid LCB, herein defined as the 'sphingoid motif', are largely responsible for the unique chemical and biophysical properties of sphingolipids since they can undergo a relatively large number (compared to other lipid species) of molecular interactions with other membrane lipids, via hydrogen-bonding, charge-pairing, hydrophobic and van der Waals interactions. These interactions are responsible, for instance, for the association of sphingolipids with cholesterol in the membrane lipid bilayer. Here, we discuss some of the unique properties of this sphingoid motif, and in addition to outlining how this structural motif drives intra-bilayer interactions, discuss the atomic details of the interactions with two critical players in the biosynthetic pathway, namely SPT, and the ceramide transport protein, CERT. In the former, the selectivity of sphingolipid synthesis relies on a hydrogen bond interaction between Lys379 of SPTLC2 and the l-serine sidechain hydroxyl moiety. In the latter, the entire sphingoid motif is stereoselectively recognized by a hydrogen-bonding network involving all three sphingoid motif heteroatoms. The remarkable selectivity of these interactions, and the subtle means by which these interactions are modified and regulated in eukaryotic cells raises a number of challenging questions about the generation of these proteins, and of their interactions with the sphingoid motif in evolutionary history.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
34
|
The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13102475. [PMID: 34069611 PMCID: PMC8161379 DOI: 10.3390/cancers13102475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Sphingolipids are membrane-associated lipids that are involved in signal transduction pathways regulating cell death, growth, and migration. In cancer cells, sphingolipids regulate pathways relevant to cancer therapy, such as invasion, metastasis, apoptosis, and lethal mitophagy. Notable sphingolipids include ceramide, a sphingolipid that induces death and lethal mitophagy, and sphingosine-1 phosphate, a sphingolipid that induces survival and chemotherapeutic resistance. These sphingolipids participate in regulating the process of mitophagy, where cells encapsulate damaged mitochondria in double-membrane vesicles (called autophagosomes) for degradation. Lethal mitophagy is an anti-tumorigenic mechanism mediated by ceramide, where cells degrade many mitochondria until the cancer cell dies in an apoptosis-independent manner. Abstract Sphingolipids are bioactive lipids responsible for regulating diverse cellular functions such as proliferation, migration, senescence, and death. These lipids are characterized by a long-chain sphingosine backbone amide-linked to a fatty acyl chain with variable length. The length of the fatty acyl chain is determined by specific ceramide synthases, and this fatty acyl length also determines the sphingolipid’s specialized functions within the cell. One function in particular, the regulation of the selective autophagy of mitochondria, or mitophagy, is closely regulated by ceramide, a key regulatory sphingolipid. Mitophagy alterations have important implications for cancer cell proliferation, response to chemotherapeutics, and mitophagy-mediated cell death. This review will focus on the alterations of ceramide synthases in cancer and sphingolipid regulation of lethal mitophagy, concerning cancer therapy.
Collapse
|
35
|
Green CD, Weigel C, Oyeniran C, James BN, Davis D, Mahawar U, Newton J, Wattenberg BW, Maceyka M, Spiegel S. CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism. J Lipid Res 2021; 62:100082. [PMID: 33939982 PMCID: PMC8167824 DOI: 10.1016/j.jlr.2021.100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the rate-limiting step in the de novo biosynthesis of ceramides, the precursors of sphingolipids. The mammalian ORMDL isoforms (ORMDL1-3) are negative regulators of SPT. However, the roles of individual ORMDL isoforms are unclear. Using siRNA against individual ORMDLs, only single siORMDL3 had modest effects on dihydroceramide and ceramide levels, whereas downregulation of all three ORMDLs induced more pronounced increases. With the CRISPR/Cas9-based genome-editing strategy, we established stable single ORMDL3 KO (ORMDL3-KO) and ORMDL1/2/3 triple-KO (ORMDL-TKO) cell lines to further understand the roles of ORMDL proteins in sphingolipid biosynthesis. While ORMDL3-KO modestly increased dihydroceramide and ceramide levels, ORMDL-TKO cells had dramatic increases in the accumulation of these sphingolipid precursors. SPT activity was increased only in ORMDL-TKO cells. In addition, ORMDL-TKO but not ORMDL3-KO dramatically increased levels of galactosylceramides, glucosylceramides, and lactosylceramides, the elevated N-acyl chain distributions of which broadly correlated with the increases in ceramide species. Surprisingly, although C16:0 is the major sphingomyelin species, it was only increased in ORMDL3-KO, whereas all other N-acyl chain sphingomyelin species were significantly increased in ORMDL-TKO cells. Analysis of sphingoid bases revealed that although sphingosine was only increased 2-fold in ORMDL-TKO cells, levels of dihydrosphingosine, dihydrosphingosine-1-phosphate, and sphingosine-1-phosphate were hugely increased in ORMDL-TKO cells and not in ORMDL3-KO cells. Thus, ORMDL proteins may have a complex, multifaceted role in the biosynthesis and regulation of cellular sphingolipids.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Briana N James
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Deanna Davis
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
36
|
Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex. Nat Struct Mol Biol 2021; 28:229-231. [PMID: 33558763 DOI: 10.1038/s41594-021-00562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat Struct Mol Biol 2021; 28:249-257. [PMID: 33558762 DOI: 10.1038/s41594-020-00553-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Human serine palmitoyltransferase (SPT) complex catalyzes the initial and rate-limiting step in the de novo biosynthesis of all sphingolipids. ORMDLs regulate SPT function, with human ORMDL3 being related to asthma. Here we report three high-resolution cryo-EM structures: the human SPT complex, composed of SPTLC1, SPTLC2 and SPTssa; the SPT-ORMDL3 complex; and the SPT-ORMDL3 complex bound to two substrates, PLP-L-serine (PLS) and a non-reactive palmitoyl-CoA analogue. SPTLC1 and SPTLC2 form a dimer of heterodimers as the catalytic core. SPTssa participates in acyl-CoA coordination, thereby stimulating the SPT activity and regulating the substrate selectivity. ORMDL3 is located in the center of the complex, serving to stabilize the SPT assembly. Our structural and biochemical analyses provide a molecular basis for the assembly and substrate selectivity of the SPT and SPT-ORMDL3 complexes, and lay a foundation for mechanistic understanding of sphingolipid homeostasis and for related therapeutic drug development.
Collapse
|
38
|
Costa-Pinheiro P, Heher A, Raymond MH, Jividen K, Shaw JJ, Paschal BM, Walker SJ, Fox TE, Kester M. Role of SPTSSB-Regulated de Novo Sphingolipid Synthesis in Prostate Cancer Depends on Androgen Receptor Signaling. iScience 2020; 23:101855. [PMID: 33313495 PMCID: PMC7721643 DOI: 10.1016/j.isci.2020.101855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-androgens are a common therapy in prostate cancer (PCa) targeting androgen receptor (AR) signaling. However, these therapies fail due to selection of highly aggressive AR-negative cancer cells that have no therapeutic options available. We demonstrate that elevating endogenous ceramide levels with administration of exogenous ceramide nanoliposomes (CNLs) was efficacious in AR-negative cell lines with limited efficacy in AR-positive cells. This effect is mediated through reduced de novo sphingolipid synthesis in AR-positive cells. We show that anti-androgens elevate de novo generation of sphingolipids via SPTSSB, a rate-limiting mediator of sphingolipid generation. Moreover, pharmacological inhibition of AR increases the efficacy of CNL in AR-positive cells through de novo synthesis, while SPTSSB knockdown limited CNL's efficacy in AR-negative cells. Alluding to clinical relevance, SPTSSB is upregulated in patients with advanced PCa after anti-androgens treatment. These findings emphasize the relevance of AR regulation upon sphingolipid metabolism and the potential of CNL as a PCa therapeutic. AR-negative PCa cells are more susceptible to CNL than AR-positive cells Combination of anti-androgens and CNL results in enhanced efficacy for AR-positive PCa AR negatively regulates the de novo synthesis of sphingolipids through SPTSSB SPTSSB is crucial for CNL effect in AR-negative PCa and is upregulated in neuroendocrine tumors
Collapse
Affiliation(s)
| | - Abigail Heher
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA
| | - Jeremy Jp Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA.,nanoSTAR Institute, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
39
|
Abstract
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Internal Medicine, Division of Endocrinology, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
40
|
Expression Patterns and Prognostic Values of ORMDL1 in Different Cancers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5178397. [PMID: 33145351 PMCID: PMC7596526 DOI: 10.1155/2020/5178397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023]
Abstract
The mammalian orosomucoid-like gene family (ORMDL), containing ORMDL1, ORMDL2, and ORMDL3, is the important regulator of sphingolipid metabolism, which is relevant to cell growth, proliferation, migration, and invasion. Since the role of ORMDL1 in cancers remained unclear, the main purpose of our study was to explore the expression patterns and prognostic values of ORMDL1 in different tumors, especially in cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse large B cell lymphoma (DLBCL), acute myeloid leukemia (LAML), and thymoma (THYM). Bioinformatics tools including GEPIA, CCLE, LinkedOmics, cBioPortal, and TIMER databases were used. As a result, the expression levels of ORMDL1 in tumor tissues and normal tissues varied in different cancers, especially significantly upregulated in CHOL, DLBCL, LAML, and THYM. Moreover, ORMDL1 mRNA was also highly expressed in cell lines of DLBCL and LAML. Further studies showed that ORMDL1 overexpression was associated with poor prognosis in DLBCL, but not significant in CHOL, LAML, and THYM. Consistently, there were genetic alterations of ORMDL1 in DLBCL, and patients with genetic alterations indicated worse survival. Coexpressed genes and related biological events with ORMDL1 in DLBCL were found via LinkedOmics, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The relationship between ORMDL1 and cancer immune cells was investigated, and ORMDL1 expression was positively correlated with infiltrating levels of B cells. In conclusion, ORMDL1 is suggested to be a tumorigenic factor and considered as the potential therapeutic target and prognostic biomarker in DLBCL.
Collapse
|
41
|
Huang Q, Hao S, Yao X, You J, Li X, Lai D, Han C, Schilling J, Hwa KY, Thyparambil S, Whitin J, Cohen HJ, Chubb H, Ceresnak SR, McElhinney DB, Wong RJ, Shaw GM, Stevenson DK, Sylvester KG, Ling XB. High-throughput quantitation of serological ceramides/dihydroceramides by LC/MS/MS: Pregnancy baseline biomarkers and potential metabolic messengers. J Pharm Biomed Anal 2020; 192:113639. [PMID: 33017796 DOI: 10.1016/j.jpba.2020.113639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023]
Abstract
Ceramides and dihydroceramides are sphingolipids that present in abundance at the cellular membrane of eukaryotes. Although their metabolic dysregulation has been implicated in many diseases, our knowledge about circulating ceramide changes during the pregnancy remains limited. In this study, we present the development and validation of a high-throughput liquid chromatography-tandem mass spectrometric method for simultaneous quantification of 16 ceramides and 10 dihydroceramides in human serum within 5 min. by using stable isotope-labeled ceramides as internal standards. This method employs a protein precipitation method for high throughput sample preparation, reverse phase isocratic elusion for chromatographic separation, and Multiple Reaction Monitoring for mass spectrometric detection. To qualify for clinical applications, our assay has been validated against the FDA guidelines for Lower Limit of Quantitation (1 nM), linearity (R2>0.99), precision (imprecision<15 %), accuracy (inaccuracy<15 %), extraction recovery (>90 %), stability (>85 %), and carryover (<0.01 %). With enhanced sensitivity and specificity from this method, we have, for the first time, determined the serological levels of ceramides and dihydroceramides to reveal unique temporal gestational patterns. Our approach could have value in providing insights into disorders of pregnancy.
Collapse
Affiliation(s)
| | - Shiying Hao
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States; Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, CA, United States
| | | | - Jin You
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiao Li
- mProbe Inc, Mountain View, CA, United States
| | - Donghai Lai
- mProbe Inc, Mountain View, CA, United States
| | - Chunle Han
- mProbe Inc, Mountain View, CA, United States
| | | | | | | | - John Whitin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Henry Chubb
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Scott R Ceresnak
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Doff B McElhinney
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States; Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, CA, United States
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Xuefeng B Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Palo Alto, CA, United States; Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
42
|
Zhao P, Liu ID, Hodgin JB, Benke PI, Selva J, Torta F, Wenk MR, Endrizzi JA, West O, Ou W, Tang E, Goh DLM, Tay SKH, Yap HK, Loh A, Weaver N, Sullivan B, Larson A, Cooper MA, Alhasan K, Alangari AA, Salim S, Gumus E, Chen K, Zenker M, Hildebrandt F, Saba JD. Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation. J Inherit Metab Dis 2020; 43:1131-1142. [PMID: 32233035 PMCID: PMC8072405 DOI: 10.1002/jimd.12238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Isaac D. Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Hospitals and Health Center, Ann Arbor, Michigan
| | - Peter I. Benke
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeremy Selva
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James A. Endrizzi
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Olivia West
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Weixing Ou
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Emily Tang
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Denise Li-Meng Goh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Stacey Kiat-Hong Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hui-Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Alwin Loh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Bonnie Sullivan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Clinical Genetics, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Austin Larson
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - Megan A. Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alangari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Suha Salim
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Evren Gumus
- Department of Medicine, Harran University, Sanliurfa, Turkey
| | - Karin Chen
- Department of Pediatrics, Division of Allergy and Immunology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | | | - Julie D. Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| |
Collapse
|
43
|
Song J, Liu X, Li R. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity. Mol Microbiol 2020; 114:891-905. [PMID: 32767804 DOI: 10.1111/mmi.14586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Xiao Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
44
|
Soczewka P, Flis K, Tribouillard-Tanvier D, di Rago JP, Santos CN, Menezes R, Kaminska J, Zoladek T. Flavonoids as Potential Drugs for VPS13-Dependent Rare Neurodegenerative Diseases. Genes (Basel) 2020; 11:E828. [PMID: 32708255 PMCID: PMC7397310 DOI: 10.3390/genes11070828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/30/2022] Open
Abstract
Several rare neurodegenerative diseases, including chorea acanthocytosis, are caused by mutations in the VPS13A-D genes. Only symptomatic treatments for these diseases are available. Saccharomyces cerevisiae contains a unique VPS13 gene and the yeast vps13Δ mutant has been proven as a suitable model for drug tests. A library of drugs and an in-house library of natural compounds and their derivatives were screened for molecules preventing the growth defect of vps13Δ cells on medium with sodium dodecyl sulfate (SDS). Seven polyphenols, including the iron-binding flavone luteolin, were identified. The structure-activity relationship and molecular mechanisms underlying the action of luteolin were characterized. The FET4 gene, which encodes an iron transporter, was found to be a multicopy suppressor of vps13Δ, pointing out the importance of iron in response to SDS stress. The growth defect of vps13Δ in SDS-supplemented medium was also alleviated by the addition of iron salts. Suppression did not involve cell antioxidant responses, as chemical antioxidants were not active. Our findings support that luteolin and iron may target the same cellular process, possibly the synthesis of sphingolipids. Unveiling the mechanisms of action of chemical and genetic suppressors of vps13Δ may help to better understand VPS13A-D-dependent pathogenesis and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
- Institut National de la Santé et de la Recherche Médicale INSERM, 33077 Bordeaux, France
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, Bordeaux University, CEDEX, 33077 Bordeaux, France; (D.T.-T.); (J.-P.d.R.)
| | - Cláudia N. Santos
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Regina Menezes
- Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, 2780-157 Oeiras, Portugal; (C.N.S.); (R.M.)
- CEDOC—Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n° 6, 6-A Edifício CEDOC II, 1150-082 Lisboa, Portugal
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (P.S.); (K.F.); (J.K.)
| |
Collapse
|
45
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
46
|
Kannan M, Davis DL, Suemitsu J, Oltorik CD, Wattenberg B. Preparation of HeLa Total Membranes and Assay of Lipid-inhibition of Serine Palmitoyltransferase Activity. Bio Protoc 2020; 10:e3656. [PMID: 33659326 DOI: 10.21769/bioprotoc.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/02/2022] Open
Abstract
Serine palmitoyltranferase (SPT) is a pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of de novo synthesis of sphingolipids. SPT activity is homeostatically regulated in response to increased levels of sphingolipids. This homeostatic regulation of SPT is mediated through small ER membrane proteins termed the ORMDLs. Here we describe a procedure to assay ORMDL dependent lipid inhibition of SPT activity. The assay of SPT activity using radiolabeled L-serine was developed from the procedure established by the Hornemann laboratory. The activity of SPT can also be measured using deuterated L-serine but it requires mass spectrometry, which consumes money, time and instrumentation. The ORMDL dependent lipid inhibition of SPT activity can be studied in both cells and in a cell free system. This assay procedure is applicable to any type of mammalian cell. Here we provide the detailed protocol to measure SPT activity in the presence of either short chain (C8-ceramide) or long chain ceramide (C24-ceramide). One of the greatest advantages of this protocol is the ability to test insoluble long chain ceramides. We accomplished this by generating long chain ceramide through endogenous ceramide synthase by providing exogenous sphingosine and 24:1 acyl CoA in HeLa cell membranes. This SPT assay procedure is simple and easy to perform and does not require sophisticated instruments.
Collapse
Affiliation(s)
- Muthukumar Kannan
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Deanna L Davis
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - John Suemitsu
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Christopher D Oltorik
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
47
|
Youssef M, De Sanctis JB, Shah J, Dumut DC, Hajduch M, Naumova AK, Radzioch D. Treatment of Allergic Asthma with Fenretinide Formulation (LAU-7b) Downregulates ORMDL Sphingolipid Biosynthesis Regulator 3 ( Ormdl3) Expression and Normalizes Ceramide Imbalance. J Pharmacol Exp Ther 2020; 373:476-487. [PMID: 32273303 DOI: 10.1124/jpet.119.263715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Zona pellucida binding protein 2 (Zpbp2) and ORMDL sphingolipid biosynthesis regulator 3 (Ormdl3), mapped downstream of Zpbp2, were identified as two genes associated with airway hyper-responsiveness (AHR). Ormdl3 gene product has been shown to regulate the biosynthesis of ceramides. Allergic asthma was shown to be associated with an imbalance between very-long-chain ceramides (VLCCs) and long-chain ceramides (LCCs). We hypothesized that Fenretinide can prevent the allergic asthma-induced augmentation of Ormdl3 gene expression, normalize aberrant levels of VLCCs and LCCs, and treat allergic asthma symptoms. We induced allergic asthma by house dust mite (HDM) in A/J WT mice and Zpbp2 KO mice expressing lower levels of Ormdl3 mRNA than WT. We investigated the effect of a novel formulation of Fenretinide, LAU-7b, on the AHR, inflammatory cell infiltration, mucus production, IgE levels, and ceramide levels. Although lower Ormdl3 expression, which was observed in Zpbp2 KO mice, was associated with lower AHR, allergic Zpbp2 KO mice were not protected from inflammatory cell infiltration, mucus accumulation, or aberrant levels of VLCCs and LCCs induced by HDM. LAU-7b treatment protects both the Zpbp2 KO and WT mice. The treatment significantly lowers the gene expression of Ormdl3, normalizes the VLCCs and LCCs, and corrects all the other phenotypes associated with allergic asthma after HDM challenge, except the elevated levels of IgE. LAU-7b treatment prevents the augmentation of Ormdl3 expression and ceramide imbalance induced by HDM challenge and protects both WT and Zpbp2 KO mice against allergic asthma symptoms. SIGNIFICANCE STATEMENT: Compared with A/J WT mice, KO mice with Zpbp2 gene deletion have lower AHR and lower levels of Ormdl3 expression. The novel oral clinical formulation of Fenretinide (LAU-7b) effectively lowers the AHR and protects against inflammatory cell infiltration and mucus accumulation induced by house dust mite in both Zpbp2 KO and WT A/J mice. LAU-7b prevents Ormdl3 overexpression in WT allergic mice and corrects the aberrant levels of very-long-chain and long-chain ceramides in both WT and Zpbp2 KO allergic mice.
Collapse
Affiliation(s)
- Mina Youssef
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juan B De Sanctis
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juhi Shah
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Daciana Catalina Dumut
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Marian Hajduch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Anna K Naumova
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Danuta Radzioch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| |
Collapse
|
48
|
Davis DL, Mahawar U, Pope VS, Allegood J, Sato-Bigbee C, Wattenberg BW. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J Lipid Res 2020; 61:505-522. [PMID: 32041816 DOI: 10.1194/jlr.ra120000627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases.
Collapse
Affiliation(s)
- Deanna L Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Victoria S Pope
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
49
|
Ono JG, Kim BI, Zhao Y, Christos PJ, Tesfaigzi Y, Worgall TS, Worgall S. Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J Clin Invest 2020; 130:921-926. [PMID: 31929190 PMCID: PMC6994114 DOI: 10.1172/jci130860] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Risk for childhood asthma is conferred by alleles within the 17q21 locus affecting ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression. ORMDL3 inhibits sphingolipid de novo synthesis. Although the effects of 17q21 genotypes on sphingolipid synthesis in human asthma remain unclear, both decreased sphingolipid synthesis and ORMDL3 overexpression are linked to airway hyperreactivity. To characterize the relationship of genetic asthma susceptibility with sphingolipid synthesis, we analyzed asthma-associated 17q21 genotypes (rs7216389, rs8076131, rs4065275, rs12603332, and rs8067378) in both children with asthma and those without asthma, quantified plasma and whole-blood sphingolipids, and assessed sphingolipid de novo synthesis in peripheral blood cells by measuring the incorporation of stable isotope-labeled serine (substrate) into sphinganine and sphinganine-1-phosphate. Whole-blood dihydroceramides and ceramides were decreased in subjects with the 17q21 asthma-risk alleles rs7216389 and rs8076131. Children with nonallergic asthma had lower dihydroceramides, ceramides, and sphingomyelins than did controls. Children with allergic asthma had higher dihydroceramides, ceramides, and sphingomyelins compared with children with nonallergic asthma. Additionally, de novo sphingolipid synthesis was lower in children with asthma compared with controls. These findings connect genetic 17q21 variations that are associated with asthma risk and higher ORMDL3 expression to lower sphingolipid synthesis in humans. Altered sphingolipid synthesis may therefore be a critical factor in asthma pathogenesis and may guide the development of future therapeutics.
Collapse
Affiliation(s)
- Jennie G. Ono
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Benjamin I. Kim
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Yize Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Paul J. Christos
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | - Yohannes Tesfaigzi
- Department of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Tilla S. Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
50
|
Inshaw JRJ, Cutler AJ, Crouch DJM, Wicker LS, Todd JA. Genetic Variants Predisposing Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes That Function in the Immune System and in Pancreatic β-Cells. Diabetes Care 2020; 43:169-177. [PMID: 31558544 PMCID: PMC6925581 DOI: 10.2337/dc19-0803] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/10/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Immunohistological analyses of pancreata from patients with type 1 diabetes suggest distinct autoimmune islet β-cell pathology between those diagnosed at <7 years (<7 group) and those diagnosed at age ≥13 years (≥13 group), with both B- and T-lymphocyte islet inflammation common in children in the <7 group, whereas B cells are rare in the ≥13 group. Based on these observations, we sought to identify differences in genetic susceptibility between these prespecified age-at-diagnosis groups to inform on the etiology of the most aggressive form of type 1 diabetes that initiates in the first years of life. RESEARCH DESIGN AND METHODS Using multinomial logistic regression models, we tested if known type 1 diabetes loci (17 within the HLA and 55 non-HLA loci) had significantly stronger effect sizes in the <7 group compared with the ≥13 group, using genotype data from 27,071 individuals (18,485 control subjects and 3,121 case subjects diagnosed at <7 years, 3,757 at 7-13 years, and 1,708 at ≥13 years). RESULTS Six HLA haplotypes/classical alleles and six non-HLA regions, one of which functions specifically in β-cells (GLIS3) and the other five likely affecting key T-cell (IL2RA, IL10, IKZF3, and THEMIS), thymus (THEMIS), and B-cell development/functions (IKZF3 and IL10) or in both immune and β-cells (CTSH), showed evidence for stronger effects in the <7 group. CONCLUSIONS A subset of type 1 diabetes-associated variants are more prevalent in children diagnosed under the age of 7 years and are near candidate genes that act in both pancreatic β- and immune cells.
Collapse
Affiliation(s)
- Jamie R J Inshaw
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K.
| | - Antony J Cutler
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K.
| |
Collapse
|