1
|
Uyanır E, Šoral M, Seyhan G, Akkaya D, Barut B, Sari S, Duman H, Renda G, Şöhretoğlu D. Alpha-Glucosidase Inhibitory Effects of Flavonoids, Phenolic Acids and Iridoids Isolated From Vinca Soneri: In Vitro and In Silico Perspectives. Chem Biodivers 2024; 21:e202401386. [PMID: 39031506 DOI: 10.1002/cbdv.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Various Vinca species have been traditionally used for their antihypertensive, sedative, and hemostatic properties, as well as for treating diabetes. In this study, some flavonoids, phenolic acids and iridoids were isolated from an endemic Vinca species, Vinca soneri for the first time. α-Glucosidase inhibitory effects of the isolates were tested and kaempferol-3-O-α-rhamnopyranosyl (1→6) β-galactopyranoside (1) was found to be the most active one with an IC50 value of 285.73 ±7.35 μM. Enzyme kinetic assay revealed that it inhibited α-glucosidase in competitive manner. Molecular geometry of 1 was predicted and Frontier molecular orbital analysis was performed using Density Functional Theory (DFT) calculations. Molecular docking and MM-GBSA calculations predicted good fit for 1 in the enzyme active site and key interactions with the catalytic residues. As a result, current study identifies 1 as a promising competitive α-glucosidase inhibitor to be developed as a potential antidiabetic drug candidate.
Collapse
Affiliation(s)
- Eliz Uyanır
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Michal Šoral
- Institute of Chemistry, Analytical Department, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38, Bratislava, Slovak Republic
| | - Gökçe Seyhan
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Didem Akkaya
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, TR-61080, Trabzon, Türkiye
| | - Suat Sari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Hacettepe University, TR-06100, Ankara, Türkiye
| | - Hayri Duman
- Faculty of Science, Department of Biology, Gazi University, TR-06500, Ankara, Türkiye
| | - Gülin Renda
- Faculty of Pharmacy, Department of Pharmacognosy, Karadeniz Technical University, 61080, Trabzon, Türkiye
| | - Didem Şöhretoğlu
- Faculty of Pharmacy, Department of Pharmacognosy, Hacettepe University, TR-06100, Ankara, Türkiye
| |
Collapse
|
2
|
Sevimli E, Seyhan G, Akkaya D, Sarı S, Barut B, Köksoy B. Effective α-glycosidase inhibitors based on polyphenolic benzothiazole heterocycles. Bioorg Chem 2024; 147:107366. [PMID: 38636435 DOI: 10.1016/j.bioorg.2024.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
α-Glycosidase inhibition is one of the main approaches to treat Diabetes mellitus. Polyphenolic moieties are known to be responsible for yielding exhibit potent α-glycosidase inhibitory effects. In addition, compounds containing benzothiazole and Schiff base functionalities were previously reported to show α-glycosidase inhibition. In this paper, the synthesis of seven new phloroglucinol-containing benzothiazole Schiff base derivatives through the reaction of 6-substituted-2-aminobenzothiazole compounds with 2,4,6-trihydroxybenzaldehyde using acetic acid as a catalyst was reported. The synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, and elemental analysis. The synthesized compounds were evaluated for their inhibitory effects on α-glycosidase, compounds 3f and 3g were found to show significant inhibitory properties when compared to the positive control. The IC50 values of 3f and 3g were calculated as 24.05 ± 2.28 and 18.51 ± 1.19 µM, respectively. Kinetic studies revealed that compounds 3f and 3g exhibited uncompetitive mode of inhibition against α-glycosidase. Molecular modeling predicted druglikeness for the title compounds and underpinned the importance of phloroglucinol hydroxyls for interacting with the key residues of α-glycosidase.
Collapse
Affiliation(s)
- Esra Sevimli
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye
| | - Gökçe Seyhan
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Didem Akkaya
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Suat Sarı
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkiye
| | - Burak Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Biochemistry, Trabzon, Turkiye
| | - Baybars Köksoy
- Bursa Technical University, Department of Chemistry, Bursa, Turkiye.
| |
Collapse
|
3
|
Guan Q, Tang L, Zhang L, Huang L, Xu M, Wang Y, Zhang M. Molecular insights into α-glucosidase inhibition and antiglycation properties affected by the galloyl moiety in (-)-epigallocatechin-3-gallate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7381-7392. [PMID: 37390299 DOI: 10.1002/jsfa.12818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Diabetes mellitus poses a substantial threat to public health due to rising morbidity and mortality. α-Glucosidase is one of the key enzymes affecting diabetes. Herein, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epigallocatechin (EGC) were applied to clarify the role of the galloyl moiety of tea polyphenols in the inhibition of glycation and α-glucosidase activity. The structure-activity relationship of the galloyl moiety in EGCG on α-glucosidase was investigated in terms of inhibition kinetics, spectroscopy, atomic force microscopy and molecular docking. A bovine serum protein-fructose model was employed to determine the effect of the galloyl moiety on glycation. RESULTS The results indicated that the introduction of a galloyl moiety enhanced the capacity of EGCG to inhibit glycation and α-glucosidase activity. The IC50 value of EGC is approximately 2400 times higher than that of EGCG. Furthermore, the galloyl moiety in EGCG altered the microenvironment and secondary structure of α-glucosidase, resulting in a high binding affinity of EGCG to α-glucosidase. The binding constant of EGCG to α-glucosidase at 298 K is approximately 28 times higher than that of EGC. CONCLUSION Overall, the galloyl moiety of EGCG plays a crucial role in inhibiting glycation and α-glucosidase activity, which helps to enhance the molecular understanding of the structure and function of the polyphenol galloyl moiety in the science of food and agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yuan Wang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Meng Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, China
| |
Collapse
|
4
|
Tu J, Adhikari B, Brennan MA, Bai W, Cheng P, Brennan CS. Shiitake polysaccharides acted as a non-competitive inhibitor to α-glucosidase and inhibited glucose transport of digested starch from Caco-2 cells monolayer. Food Res Int 2023; 173:113268. [PMID: 37803584 DOI: 10.1016/j.foodres.2023.113268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
The inhibition mechanism of shitake mushroom polysaccharides (Lentinula edodes polysaccharides, LEP) against α-glucosidase was studied by enzyme kinetic assay, fluorescence quenching and molecular docking. The effect of LEP on glucose transport of digested starch was investigated via an in vitro digestion/Caco-2 transwell model. LEP exhibited a stronger inhibiting effect (IC50 = 0.66 mg/mL) than acarbose and presented a non-competitive inhibition mechanism. The interaction between LEP and α-glucosidase primarily involved electrostatic interaction and hydrogen bonding. Molecular docking modelling showed that the four structures of LEP were bound to the allosteric tunnel or adjacent pocket of α-glucosidase via electrostatic force and hydrogen bonds. The (1 → 6)-linkages in LEP structures favoured its binding affinity to the α-glucosidase. The α-glucosidase inhibiting activity of LEP was also found to emanate from the reduction in glucose transport of digested starch as deducted from the in vitro digestion/Caco-2 transwell data. The release of glucose from digested starch cooked with LEP was significantly reduced (33.7%) compared to the digested starch without LEP. The findings from the current study suggest that LEP could be a promising ingredient to inhibit α-glucosidase activity as well as control the level of postprandial blood glucose when incorporated into starchy foods.
Collapse
Affiliation(s)
- Juncai Tu
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Benu Adhikari
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia.
| | - Margaret Anne Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia; Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 84, Lincoln 7647, Christchurch, New Zealand
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ping Cheng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | | |
Collapse
|
5
|
Grayfer T, Yamani K, Jung E, Chesnokov GA, Ferrara I, Hsiao CC, Georgiou A, Michel J, Bailly A, Sieber S, Eberl L, Gademann K. Allylic Carbocyclic Inhibitors Covalently Bind Glycoside Hydrolases. JACS AU 2023; 3:1151-1161. [PMID: 37124289 PMCID: PMC10131216 DOI: 10.1021/jacsau.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Allylic cyclitols were investigated as covalent inhibitors of glycoside hydrolases by chemical, enzymatic, proteomic, and computational methods. This approach was inspired by the C7 cyclitol natural product streptol glucoside, which features a potential carbohydrate leaving group in the 4-position (carbohydrate numbering). To test this hypothesis, carbocyclic inhibitors with leaving groups in the 4- and 6- positions were prepared. The results of enzyme kinetics analyses demonstrated that dinitrophenyl ethers covalently inhibit α-glucosidases of the GH13 family without reactivation. The labeled enzyme was studied by proteomics, and the active site residue Asp214 was identified as modified. Additionally, computational studies, including enzyme homology modeling and density functional theory (DFT) calculations, further delineate the electronic and structural requirements for activity. This study demonstrates that previously unexplored 4- and 6-positions can be exploited for successful inhibitor design.
Collapse
Affiliation(s)
- Tatyana
D. Grayfer
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Khalil Yamani
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Erik Jung
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Gleb A. Chesnokov
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Isabella Ferrara
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chien-Chi Hsiao
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Antri Georgiou
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Jeremy Michel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Aurélien Bailly
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Simon Sieber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Leo Eberl
- Department
of Plant and Microbial Biology, University
of Zurich, Zollikerstrasse
107, 8008 Zürich, Switzerland
| | - Karl Gademann
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Banu HAN, Kalluraya B, Manju N, Ramu R, Patil SM, Lokanatha Rai KM, Kumar N. Synthesis of Pyrazoline‐Embedded 1,2,3‐Triazole Derivatives via 1,3‐Dipolar Cycloaddition Reactions with in vitro and in silico Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- H. A. Nagma Banu
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - Balakrishna Kalluraya
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - N. Manju
- Department of studies in Chemistry Mangalore University Mangalagangothri Konaje 574199 Karnataka India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research, SS Nagar Mysuru 570015 Karnataka India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research, SS Nagar Mysuru 570015 Karnataka India
| | - K. M. Lokanatha Rai
- Department of studies in Chemistry PG centre, Chikkaaluvara Mangalore university Mangalagangothri Karnataka India
| | - Naveen Kumar
- Department of Chemistry Sri Dharmasthala Manjunatheshwara College (Autonomous) Ujire 574240 Karnataka India
| |
Collapse
|
7
|
Patil SM, Martiz RM, Ramu R, Shirahatti PS, Prakash A, Kumar BRP, Kumar N. Evaluation of flavonoids from banana pseudostem and flower (quercetin and catechin) as potent inhibitors of α-glucosidase: An in silico perspective. J Biomol Struct Dyn 2022; 40:12491-12505. [PMID: 34488558 DOI: 10.1080/07391102.2021.1971561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amelioration of postprandial hyperglycemia in diabetic conditions could be accomplished by the inhibition of α-glucosidases, a set of intestinal carbohydrate digestive enzymes responsible for starch hydrolysis and its absorption. The ethnopharmacological profile of banana depicts the usage of different plant parts in conventional medicinal formulations. The antidiabetic studies of the plant have demonstrated their ability to inhibit α-glucosidase. Besides, our research group has reported the α-glucosidase inhibitory potential of the banana pseudostem and flower extracts in previous studies. In this study, we deliberate on the specific phytoconstituents of banana pseudostem and flower to evaluate their antidiabetic effects through an in silico perspective for the α-glucosidase inhibition. In this context, several phytoconstituents of banana pseudostem and flower identified through GC-MS analysis were retrieved from chemical databases. These phytochemicals were virtually screened through the molecular docking simulation process, from which only two flavonoids (catechin and quercetin) were selected based on their binding affinity and extent of interaction with the α-glucosidase target protein. The lower binding affinities of catechin and quercetin in comparison with that of acarbose as a control proved their binding efficiency with the target protein. In addition, acarbose showed subservient molecular interaction, forming an unfavourable acceptor-acceptor bond. The molecular dynamics simulations also depicted the effective binding and stability of the complexes formed with catechin and quercetin, in comparison with that of acarbose. Further, PASS analysis, druglikeliness, and pharmacokinetic assessments showed that both catechin and quercetin edge over acarbose in terms of drug-score and pharmacokinetic properties. With the positive results obtained from contemporary strategies, the two flavonoids from banana pseudostem and flower might be established as a considerable phototherapeutic approach to inhibit α-glucosidase. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Ashwini Prakash
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Naveen Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, Karnataka, India
| |
Collapse
|
8
|
Ali S, Ali M, Khan A, Ullah S, Waqas M, Al-Harrasi A, Latif A, Ahmad M, Saadiq M. Novel 5-(Arylideneamino)-1 H-Benzo[ d]imidazole-2-thiols as Potent Anti-Diabetic Agents: Synthesis, In Vitro α-Glucosidase Inhibition, and Molecular Docking Studies. ACS OMEGA 2022; 7:43468-43479. [PMID: 36506132 PMCID: PMC9730482 DOI: 10.1021/acsomega.2c03854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel series of multifunctional benzimidazoles has been reported as potent inhibitors of α-glucosidase. The procedure relies on the synthesis of 5-amino-1H-benzo[d]imidazole-2-thiol 5 via the multistep reaction through 2-nitroaniline 1, benzene-1,2-diamine 2, 1H-benzo[d]imidazole-2-thiol 3, and 5-nitro-1H-benzo[d]imidazole-2-thiol 4. Further treatment of 5 with aromatic aldehydes 6a-m provided access to the target 5-(arylideneamino)-1H-benzo[d]imidazole-2-thiols 7a-m. The results of the bioactivity assessment revealed all the compounds as excellent inhibitors of the enzyme (IC50 range: 0.64 ± 0.05 μM to 343.10 ± 1.62 μM) than acarbose (873.34 ± 1.21). Among them, 7i was the most active inhibitor (IC50: 0.64 ± 0.05 μM) followed by 7d (IC50: 5.34 ± 0.16 μM), 7f (IC50: 6.46 ± 0.30 μM), 7g (IC50: 8.62 ± 0.19 μM), 7c (IC50: 9.84 ± 0.08 μM), 7m (IC50: 11.09 ± 0.79 μM), 7a (IC50: 11.84 ± 0.26 μM), 7e (IC50: 16.38 ± 0.53 μM), 7j (IC50: 18.65 ± 0.74 μM), 7h (IC50: 20.73 ± 0.59 μM), 7b (IC50: 27.26 ± 0.30 μM), 7k (70.28 ± 1.52 μM) and finally 7l (IC50: 343.10 ± 1.62 μM). Molecular docking revealed important interactions with the enzyme, thereby supporting the experimental findings.
Collapse
Affiliation(s)
- Sardar Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Mumtaz Ali
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Saeed Ullah
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- H. E.
J Research Institute of Chemistry, International
Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Waqas
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Department
of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Abdul Latif
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Manzoor Ahmad
- Department
of Chemistry, University of Malakand, Dir Lower, Chakdara 18800 Khyber
Pakhtunkhwa, Pakistan
| | - Muhammad Saadiq
- Department
of Chemistry, Bacha Khan University, Charsadda 18800 Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
9
|
Wang H, Tang S, Zhang G, Pan Y, Jiao W, Shao H. Synthesis of N-Substituted Iminosugar C-Glycosides and Evaluation as Promising α-Glucosidase Inhibitors. Molecules 2022; 27:molecules27175517. [PMID: 36080282 PMCID: PMC9458058 DOI: 10.3390/molecules27175517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
A series of N-substituted iminosugar C-glycosides were synthesized and tested for α-glucosidase inhibition. The results suggested that 6e is a promising and potent α-glucosidase inhibitor. Enzymatic kinetic assays indicated that compound 6e may be classified as an uncompetitive inhibitor. The study of structure-activity relationships of those iminosugars provided a starting point for the discovery of new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Haibo Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, China
| | - Senling Tang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (W.J.); (H.S.)
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (W.J.); (H.S.)
| |
Collapse
|
10
|
Askarzadeh M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Sajjadi-Jazi SM, Larijani B, Hamedifar H, Mahdavi M. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes. Sci Rep 2022; 12:10569. [PMID: 35732907 PMCID: PMC9217978 DOI: 10.1038/s41598-022-14896-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
In the present work, a new series of 14 novel phthalimide-benzenesulfonamide derivatives 4a-n were synthesized, and their inhibitory activity against yeast α-glucosidase was screened. The obtained results indicated that most of the newly synthesized compounds showed prominent inhibitory activity against α-glucosidase. Among them, 4-phenylpiperazin derivative 4m exhibited the strongest inhibition with the IC50 value of 52.2 ± 0.1 µM. Enzyme kinetic study of compound 4m proved that its inhibition mode was competitive and Ki value of this compound was calculated to be 52.7 µM. In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the target compounds over the active site of α-glucosidase. Obtained date of these studies demonstrated that our new compounds interacted as well with the α-glucosidase active site with the acceptable binding energies. Furthermore, in silico druglikeness/ADME/Toxicity studies of compound 4m were performed and predicted that this compound is druglikeness and has good ADME and toxicity profiles.
Collapse
Affiliation(s)
- Mohammad Askarzadeh
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran.
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Maradesha T, Patil SM, Al-Mutairi KA, Ramu R, Madhunapantula SV, Alqadi T. Inhibitory Effect of Polyphenols from the Whole Green Jackfruit Flour against α-Glucosidase, α-Amylase, Aldose Reductase and Glycation at Multiple Stages and Their Interaction: Inhibition Kinetics and Molecular Simulations. Molecules 2022; 27:1888. [PMID: 35335251 PMCID: PMC8949615 DOI: 10.3390/molecules27061888] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
For the first time, α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages inhibitory assays were used to explore the antidiabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed). Two polyphenols (phenolic acids) with strong antihyperglycaemic activity were isolated from the methanol extract of whole jackfruit flour (MJ) using activity-guided repeated fractionation on a silica gel column chromatography. The bioactive compounds isolated were identified as 3-(3,4-Dihydroxyphenyl)-2-propenoic acid (caffeic acid: CA) and 4-Hydroxy-3,5-dimethoxybenzoic acid (syringic acid: SA) after various physicochemical and spectroscopic investigations. CA (IC50: 8.0 and 26.90 µg/mL) and SA (IC50: 7.5 and 25.25 µg/mL) were identified to inhibit α-glucosidase and α-amylase in a competitive manner with low Ki values. In vitro glycation experiments further revealed that MJ and its components inhibited each stage of protein glycation as well as the generation of intermediate chemicals. Furthermore, CA (IC50: 3.10) and SA (IC50: 3.0 µg/mL) inhibited aldose reductase effectively in a non-competitive manner, respectively. The binding affinity of these substances towards the enzymes examined has been proposed by molecular docking and molecular dynamics simulation studies, which may explain their inhibitory activities. The found potential of MJ in antihyperglycaemic activity via inhibition of α-glucosidase and in antidiabetic action via inhibition of the polyol pathway and protein glycation is more likely to be related to the presence of the phenolic compounds, according to our findings.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (T.M.); (S.M.P.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR, A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysore 570015, Karnataka, India;
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
12
|
Djeujo FM, Ragazzi E, Urettini M, Sauro B, Cichero E, Tonelli M, Froldi G. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2022; 15:ph15020205. [PMID: 35215317 PMCID: PMC8880268 DOI: 10.3390/ph15020205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Magnolol and luteolin are two natural compounds recognized in several medicinal plants widely used in traditional medicine, including type 2 diabetes mellitus. This research aimed to determine the inhibitory activity of magnolol and luteolin on α-glucosidase activity. Their biological profile was studied by multispectroscopic methods along with inhibitory kinetic analysis and computational experiments. Magnolol and luteolin decreased the enzymatic activity in a concentration-dependent manner. With 0.075 µM α-glucosidase, the IC50 values were similar for both compounds (~ 32 µM) and significantly lower than for acarbose (815 μM). Magnolol showed a mixed-type antagonism, while luteolin showed a non-competitive inhibition mechanism. Thermodynamic parameters suggested that the binding of magnolol was predominantly sustained by hydrophobic interactions, while luteolin mainly exploited van der Waals contacts and hydrogen bonds. Synchronous fluorescence revealed that magnolol interacted with the target, influencing the microenvironment around tyrosine residues, and circular dichroism explained a rearrangement of the secondary structure of α-glucosidase from the initial α-helix to the final conformation enriched with β-sheet and random coil. Docking studies provided support for the experimental results. Altogether, the data propose magnolol, for the first time, as a potential α-glucosidase inhibitor and add further evidence to the inhibitory role of luteolin.
Collapse
Affiliation(s)
- Francine Medjiofack Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Miriana Urettini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Beatrice Sauro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Elena Cichero
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| |
Collapse
|
13
|
Dincel ED, Hasbal-Celikok G, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Design, biological evaluation, molecular docking study and in silico ADME prediction of novel imidazo[2,1-b]thiazole derivatives as a novel class of α-glucosidase inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wu T, Mu X, Xue Y, Xu Y, Nie Y. Structure-guided steric hindrance engineering of Bacillus badius phenylalanine dehydrogenase for efficient L-homophenylalanine synthesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:207. [PMID: 34689801 PMCID: PMC8543943 DOI: 10.1186/s13068-021-02055-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block L-homophenylalanine (L-HPA) given that its sole expense is ammonia and that water is the only byproduct. Current issues in this field include a poor catalytic efficiency and a low substrate loading. RESULTS In this study, we report a structure-guided steric hindrance engineering of PheDH from Bacillus badius to create an enhanced biocatalyst for efficient L-HPA synthesis. Mutagenesis libraries based on molecular docking, double-proximity filtering, and a degenerate codon significantly increased catalytic efficiency. Seven superior mutants were acquired, and the optimal triple-site mutant, V309G/L306V/V144G, showed a 12.7-fold higher kcat value, and accordingly a 12.9-fold higher kcat/Km value, than that of the wild type. A paired reaction system comprising V309G/L306V/V144G and glucose dehydrogenase converted 1.08 M 2-OPBA to L-HPA in 210 min, and the specific space-time conversion was 30.9 mmol g-1 L-1 h-1. The substrate loading and specific space-time conversion are the highest values to date. Docking simulation revealed increases in substrate-binding volume and additional degrees of freedom of the substrate 2-OPBA in the pocket. Tunnel analysis suggested the formation of new enzyme tunnels and the expansion of existing ones. CONCLUSIONS Overall, the results show that the mutant V309G/L306V/V144G has the potential for the industrial synthesis of L-HPA. The modified steric hindrance engineering approach can be a valuable addition to the current enzyme engineering toolbox.
Collapse
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Yuyan Xue
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
15
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Dong Z, Yang S, Dong X, Yang Y, Yan X, Su J, Tang C, Yao L, Kan Y. Characteristics, Protein Engineering, Heterologous Production, and Industrial Applications of Microbial Isoamylases. STARCH-STARKE 2021. [DOI: 10.1002/star.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Shuangshuang Yang
- College of Physical Education Nanyang Normal University Nanyang 473061 China
| | - Xiaoxiao Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Yongna Yang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Xueting Yan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Jiejie Su
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐North Nanyang Normal University Nanyang 473061 China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| |
Collapse
|
17
|
Mo QH, Yan MQ, Zhou XL, Luo Q, Huang XS, Liang CQ. Phloroglucinol derivatives rhotomensones A-G from Rhodomyrtus tomentosa. PHYTOCHEMISTRY 2021; 190:112890. [PMID: 34388480 DOI: 10.1016/j.phytochem.2021.112890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Undescribed phloroglucinol derivatives, rhotomensones A-G, and a known derivative rhodomyrtosone B, were isolated from the leaves of Rhodomyrtus tomentosa. Rhotomensones A-D and G have unreported structural characteristics, in which rhotomensone A substitutes a benzene ring, rhotomensones B-D are bonded with a 2-methylbutanoyl group, and rhotomensone G has two fewer carbons. The structures of these compounds were determined by NMR spectroscopy, circular dichroism (CD) spectroscopy and X-ray crystallography. The inhibitory activities against α-glucosidase of rhotomensones E and F were evaluated in vitro, with IC50 values of 0.50 ± 0.14 mg/mL and 0.07 ± 0.02 mg/mL. Moreover, rhodomyrtosone B showed significant antibacterial activity against some bacteria, with MIC values ranging from 0.50 to 16.00 μg/mL.
Collapse
Affiliation(s)
- Qing-Hu Mo
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - Meng-Qi Yan
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China
| | - Xian-Li Zhou
- College of Biotechnology, Guilin Medical University, Guilin, 541199, PR China.
| | - Qin Luo
- Science Experiment Center, Guilin Medical University, Guilin, 541199, PR China
| | - Xi-Shan Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, PR China.
| | - Cheng-Qin Liang
- College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China.
| |
Collapse
|
18
|
Structural Insight into a Yeast Maltase-The BaAG2 from Blastobotrys adeninivorans with Transglycosylating Activity. J Fungi (Basel) 2021; 7:jof7100816. [PMID: 34682239 PMCID: PMC8539097 DOI: 10.3390/jof7100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
An early-diverged yeast, Blastobotrys (Arxula) adeninivorans (Ba), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the Ba type strain (CBS 8244) the GH13-family maltase BaAG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail. The chemical entities of sucrose-derived oligosaccharides were determined using nuclear magnetic resonance. Several potentially prebiotic oligosaccharides with α-1,1, α-1,3, α-1,4, and α-1,6 linkages were disclosed among the products. Trisaccharides isomelezitose, erlose, and theanderose, and disaccharides maltulose and trehalulose were dominant transglycosylation products. To date no structure for yeast maltase has been determined. Structures of the BaAG2 with acarbose and glucose in the active center were solved at 2.12 and 2.13 Å resolution, respectively. BaAG2 exhibited a catalytic domain with a (β/α)8-barrel fold and Asp216, Glu274, and Asp348 as the catalytic triad. The fairly wide active site cleft contained water channels mediating substrate hydrolysis. Next to the substrate-binding pocket an enlarged space for potential binding of transglycosylation acceptors was identified. The involvement of a Glu (Glu309) at subsite +2 and an Arg (Arg233) at subsite +3 in substrate binding was shown for the first time for α-glucosidases.
Collapse
|
19
|
Ansari S, Azizian H, Pedrood K, Yavari A, Mojtabavi S, Faramarzi MA, Golshani S, Hosseini S, Biglar M, Larijani B, Rastegar H, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, and α-glucosidase-inhibitory activity of phenoxy-biscoumarin-N-phenylacetamide hybrids. Arch Pharm (Weinheim) 2021; 354:e2100179. [PMID: 34467580 DOI: 10.1002/ardp.202100179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.
Collapse
Affiliation(s)
- Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yavari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Golshani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
New 4,5-diphenylimidazole-acetamide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: synthesis, in vitro and in silico enzymatic and toxicity evaluations. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02779-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Rational Design of Novel Inhibitors of α-Glucosidase: An Application of Quantitative Structure Activity Relationship and Structure-Based Virtual Screening. Pharmaceuticals (Basel) 2021; 14:ph14050482. [PMID: 34069325 PMCID: PMC8158765 DOI: 10.3390/ph14050482] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
α-Glucosidase is considered a prime drug target for Diabetes Mellitus and its inhibitors are used to delay carbohydrate digestion for the treatment of diabetes mellitus. With the aim to design α-glucosidase inhibitors with novel chemical scaffolds, three folds ligand and structure based virtual screening was applied. Initially linear quantitative structure activity relationship (QSAR) model was developed by a molecular operating environment (MOE) using a training set of thirty-two known inhibitors, which showed good correlation coefficient (r2 = 0.88), low root mean square error (RMSE = 0.23), and cross-validated correlation coefficient r2 (q2 = 0.71 and RMSE = 0.31). The model was validated by predicting the biological activities of the test set which depicted r2 value of 0.82, indicating the robustness of the model. For virtual screening, compounds were retrieved from zinc is not commercial (ZINC) database and screened by molecular docking. The best docked compounds were chosen to assess their pharmacokinetic behavior. Later, the α-glucosidase inhibitory potential of the selected compounds was predicted by their mode of binding interactions. The predicted pharmacokinetic profile, docking scores and protein-ligand interactions revealed that eight compounds preferentially target the catalytic site of α-glucosidase thus exhibit potential α-glucosidase inhibition in silico. The α-glucosidase inhibitory activities of those Hits were predicted by QSAR model, which reflect good inhibitory activities of these compounds. These results serve as a guidelines for the rational drug design and development of potential novel anti-diabetic agents.
Collapse
|
22
|
Mahomoodally MF, Picot-Allain MCN, Zengin G, Llorent-Martínez EJ, Stefanucci A, Ak G, Senkardes I, Tomczyk M, Mollica A. Chemical profiles and biological potential of tuber extracts from Cyclamen coum Mill. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Gu Y, Yang X, Shang C, Thao TTP, Koyama T. Inhibitory properties of saponin from Eleocharis dulcis peel against α-glucosidase. RSC Adv 2021; 11:15400-15409. [PMID: 35424054 PMCID: PMC8698979 DOI: 10.1039/d1ra02198b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 01/13/2023] Open
Abstract
The inhibitory properties towards α-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest α-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of α-glucosidase was caused by the formation of the daucosterol–α-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site and produced hydrophobic interactions with 3 residues located at the exterior part of the binding pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used as a food supplement for anti-hyperglycemia. Daucosterol from Eleocharis dulcis peel exhibits potent inhibitory activity against α-glucosidase.![]()
Collapse
Affiliation(s)
- Yipeng Gu
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato Tokyo 108-8477 Japan
| | - Xiaomei Yang
- Institute of Food Science and Technology, Hezhou University Hezhou 542899 China
| | - Chaojie Shang
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato Tokyo 108-8477 Japan
| | - Truong Thi Phuong Thao
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato Tokyo 108-8477 Japan
| | - Tomoyuki Koyama
- Laboratory of Nutraceuticals and Functional Foods Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology 4-5-7 Konan, Minato Tokyo 108-8477 Japan
| |
Collapse
|
24
|
Magaña-Barajas E, Buitimea-Cantúa GV, Hernández-Morales A, Torres-Pelayo VDR, Vázquez-Martínez J, Buitimea-Cantúa NE. In vitro α-amylase and α-glucosidase enzyme inhibition and antioxidant activity by capsaicin and piperine from Capsicum chinense and Piper nigrum fruits. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:282-291. [PMID: 33397190 DOI: 10.1080/03601234.2020.1869477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, α-amylase and α-glucosidase inhibitory effect and antioxidant activity of capsaicin and piperine from the ethanolic extract of Capsicum chinense (EECch) and Piper nigrum (EEPn) fruits were investigated. Results revealed that EECch exhibited the highest phenolic (154 mg GAE/100 g of tissue) and flavonoid content (75 mg RtE/100 g of tissue) in comparison with EEPn. The predominant compound detected in EECch and EEPn by GC-EIMS analysis was the capsaicin and piperine, respectively. The capsaicin and piperine showed the highest α-amylase and α-glucosidase inhibitory effect and antioxidant activity rather than extracts. The EEPn (IC50= 216 µg/mL) and piperine (IC50= 105 µg/mL) present a highest α-amylase inhibitory effect, while the EECch (IC50= 225 µg/mL) and capsaicin (IC50= 117 µg/mL) showed highest anti-α-glucosidase activity. Molecular docking established that capsaicin and piperine bind at the α-glucosidase and α-amylase through hydrophobic interactions, hydrogen bond, and charge interactions with amino acid residues. The enzyme inhibitory activity and antioxidant properties exhibited by EECch and EEPn could be attributed to the capsaicin and piperine content and other compounds present such as phenolic compounds and flavonoids. These fruits are potential sources of natural antioxidant agents and α-amylase and α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Elisa Magaña-Barajas
- Programa de Ingeniería en Tecnologías de Alimentos, Universidad Estatal de Sonora. Perimetral y Ley Federal del Trabajo s/n Colonia Apolo C, Sonora, Mexico
| | - Génesis V Buitimea-Cantúa
- Tecnologico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, N.L., C.P, México
- CINVESTAV, Departamento de Biotecnología y Bioquímica, Irapuato, Guanajuato, CP, México
| | - Alejandro Hernández-Morales
- Unidad Académica Multidisciplinaria Zona Huasteca. Universidad Autónoma de San Luis Potosí, Fraccionamiento Rafael Curiel, Ciudad Valles S.L.P, CP, Ciudad Valles San Luis Potosí, México
| | | | - Juan Vázquez-Martínez
- Departamento de Ingeniería Bioquímica, Instituto Tecnologico Superior de Irapuato (ITESI), Tecnologico Nacional de Mexico (TecNM), Irapuato, Guanajuato, Mexico
| | | |
Collapse
|
25
|
Taslimi P, Sujayev A, Karaman M, Maharramova G, Sadeghian N, Osmanova S, Sardarova S, Majdi N, Ozel HU, Gulcin İ. N
‐Substituted pyrimidinethione and acetophenone derivatives as a new therapeutic approach in diabetes. Arch Pharm (Weinheim) 2020; 353:e2000075. [DOI: 10.1002/ardp.202000075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University Bartin Turkey
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and ScienceKilis 7 Aralik University Kilis Turkey
| | - Gunel Maharramova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of SciencesAtaturk University Erzurum Turkey
| | - Sabiya Osmanova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Sabira Sardarova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Nargiz Majdi
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Handan U. Ozel
- Department of Environmental Engineering, Faculty of EngineeringBartin University Bartin Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of SciencesAtaturk University Erzurum Turkey
| |
Collapse
|
26
|
Chen JG, Wu SF, Zhang QF, Yin ZP, Zhang L. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int J Biol Macromol 2020; 143:696-703. [DOI: 10.1016/j.ijbiomac.2019.09.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023]
|
27
|
Visnapuu T, Meldre A, Põšnograjeva K, Viigand K, Ernits K, Alamäe T. Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. Int J Mol Sci 2019; 21:E297. [PMID: 31906253 PMCID: PMC6981392 DOI: 10.3390/ijms21010297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (Ki = 0.8 µM) and Tris (Ki = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product-glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.V.); (A.M.); (K.P.); (K.V.); (K.E.)
| |
Collapse
|
28
|
Dong Z, Tang C, Lu Y, Yao L, Kan Y. Microbial Oligo‐α‐1,6‐Glucosidase: Current Developments and Future Perspectives. STARCH-STARKE 2019. [DOI: 10.1002/star.201900172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunfeng Lu
- School of Life Science and TechnologyNanyang Normal University Nanyang 473061 P. R. China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor and Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐NorthNanyang Normal University Nanyang 473061 P. R. China
| |
Collapse
|
29
|
Uysal S, Senkardes I, Mollica A, Zengin G, Bulut G, Dogan A, Glamočlija J, Soković M, Lobine D, Mahomoodally FM. Biologically active compounds from two members of the Asteraceae family: Tragopogon dubius Scop. and Tussilago farfara L. J Biomol Struct Dyn 2019; 37:3269-3281. [PMID: 30058457 DOI: 10.1080/07391102.2018.1506361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Tragopogon dubius and Tussilago farfara are consumed as vegetables and used in folk medicine to manage common diseases. Herein, the chemical compositions and biological activities of different leaf extracts (ethyl acetate, methanol, and water) of T. dubius and T. farfara were evaluated. The antibacterial, antifungal, and antioxidant abilities of the extracts were tested using different assays including free radical scavenging, reducing power, phosphomolybdenum, and metal chelating assays. Enzyme inhibitory potentials were evaluated against cholinesterases, tyrosinase, α-amylase and α-glucosidase. Complexes of bioactive compounds (chlorogenic and rosmarinic acid) were docked into the enzymatic cavity of α-glucosidase and subjected to molecular dynamic calculation, enzyme conformational stability, and flexibility analysis. T. dubius and T. farfara extracts showed remarkable antioxidant potentials. Ethyl acetate extracts of T. dubius and T. farfara were the most potent inhibitors of acetylcholinesterase and butyrylcholinesterase. T. dubius ethyl acetate extract and T. farfara methanolic extract showed noteworthy activity against α-glucosidase. High performance liquid chromatography analysis revealed the abundance of some phenolic compounds including chlorogenic and rosmarinic acids. Ethyl acetate extract of T. dubius showed notable antifungal activity against all strains. Docking studies showed best pose for chlorogenic acid was stabilized by a network of hydrogen bonds with residues Asp1157, Asp1279, whereas rosmarinic acid showed several hydrogen bonds with Asp1157, Asp1420, Asp1526, Lys1460 and Trp1369. This study further validates the use of T. dubius and T. farfara in traditional medicine, as well as act as a stimulus for further studies for future biomedicine development. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sengul Uysal
- a Faculty of Science, Department of Biology , Selcuk University, Campus , Konya , Turkey
| | - Ismail Senkardes
- b Faculty of Pharmacy, Department of Pharmaceutical Botany , Marmara University , Istanbul , Turkey
| | - Adriano Mollica
- c Department of Pharmacy , University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | - Gokhan Zengin
- a Faculty of Science, Department of Biology , Selcuk University, Campus , Konya , Turkey
| | - Gizem Bulut
- b Faculty of Pharmacy, Department of Pharmaceutical Botany , Marmara University , Istanbul , Turkey
| | - Ahmet Dogan
- b Faculty of Pharmacy, Department of Pharmaceutical Botany , Marmara University , Istanbul , Turkey
| | - Jasmina Glamočlija
- d Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Marina Soković
- d Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Devina Lobine
- e Faculty of Science, Department of Health Sciences , University of Mauritius , Réduit , Mauritius
| | - Fawzi M Mahomoodally
- e Faculty of Science, Department of Health Sciences , University of Mauritius , Réduit , Mauritius
| |
Collapse
|
30
|
Jakobson CM, She R, Jarosz DF. Pervasive function and evidence for selection across standing genetic variation in S. cerevisiae. Nat Commun 2019; 10:1222. [PMID: 30874558 PMCID: PMC6420628 DOI: 10.1038/s41467-019-09166-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Quantitative genetics aims to map genotype to phenotype, often with the goal of understanding how organisms evolved. However, it remains unclear whether the genetic variants identified are exemplary of evolution. Here we analyzed progeny of two wild Saccharomyces cerevisiae isolates to identify 195 loci underlying complex metabolic traits, resolving 107 to single polymorphisms with diverse molecular mechanisms. More than 20% of causal variants exhibited patterns of emergence inconsistent with neutrality. Moreover, contrary to drift-centric expectation, variation in diverse wild yeast isolates broadly exhibited this property: over 30% of shared natural variants exhibited phylogenetic signatures suggesting that they are not neutral. This pattern is likely attributable to both homoplasy and balancing selection on ancestral polymorphism. Variants that emerged repeatedly were more likely to have done so in isolates from the same ecological niche. Our results underscore the power of super-resolution mapping of ecologically relevant traits in understanding adaptation and evolution.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Richard She
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core. Carbohydr Res 2019; 473:18-35. [DOI: 10.1016/j.carres.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
|
32
|
Uysal A, Ozer OY, Zengin G, Stefanucci A, Mollica A, Picot-Allain CMN, Mahomoodally MF. Multifunctional approaches to provide potential pharmacophores for the pharmacy shelf: Heracleum sphondylium L. subsp. ternatum (Velen.) Brummitt. Comput Biol Chem 2019; 78:64-73. [DOI: 10.1016/j.compbiolchem.2018.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 11/24/2022]
|
33
|
Zengin G, Stefanucci A, Rodrigues MJ, Mollica A, Custodio L, Aumeeruddy MZ, Mahomoodally MF. Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. J Pharm Biomed Anal 2019; 162:225-233. [PMID: 30268023 DOI: 10.1016/j.jpba.2018.09.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 01/10/2023]
Abstract
The genus Scrophularia has received much interest with regards to its traditional uses against eczema, psoriasis, and mastitis. Yet, the medicinal properties of some species still need to be scientifically validated. The present study was designed to investigate into the biological properties of various solvent extracts (ethyl acetate, methanol, and aqueous) of the roots and aerial parts of Scrophularia lucida based on its antioxidant, anti-inflammatory, and enzyme inhibitory activities together with phytochemical screening. Our results revealed that the solvent extracts differed in their biological effectiveness. The root ethyl acetate extract showed the highest ABTS scavenging, FRAP, CUPRAC, and inhibitory activity against AChE and α-glucosidase. The ethyl acetate extract of the aerial parts displayed the highest BChE and α-amylase inhibition and antioxidant effect in the phosphomolybdenum assay, while the methanol extracts of both parts were the most effective DPPH• scavengers and tyrosinase inhibitors. The methanol extracts of the root and aerial parts also inhibited NO production in lipopolysaccharide (LPS)-stimulated murine leukemic monocyte-macrophage cell (4.99% and 10.77%, respectively), at 31.25 μg/mL concentration. The highest TPC (34.98 mg GAE/g extract) and TFC (48.33 mg RE/g extract) were observed in the ethyl acetate extract of the root and aerial parts, respectively. The most abundant compounds in the root ethyl acetate extract were luteolin (852 μg/g extract), rosmarinic acid (522 μg/g extract), and hesperidin (394 μg/g extract) while kaempferol was most abundant in the ethyl acetate extract of the aerial parts (628 μg/g extract). In silico experiments were conducted on tyrosinase and the higher docking values were observed for rosmarinic acid and hesperidin. The present findings provide base line information which tend to support the potential use of S. lucida in the management of several chronic diseases, including Alzheimer's disease and diabetes mellitus.
Collapse
Affiliation(s)
- Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Campıus, Konya, Turkey.
| | - Azzurra Stefanucci
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Maria João Rodrigues
- Centre of Marine Sciences, University of Algarve, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, 8005-139, Faro, Portugal
| | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Luisa Custodio
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230, Réduit, Mauritius
| | | | | |
Collapse
|
34
|
Synthesis, in vitro and in vivo evaluation of 2-aryl-4H-chromene and 3-aryl-1H-benzo[f]chromene derivatives as novel α-glucosidase inhibitors. Bioorg Med Chem Lett 2019; 29:119-123. [DOI: 10.1016/j.bmcl.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/07/2018] [Accepted: 10/12/2018] [Indexed: 01/10/2023]
|
35
|
Renda G, Sari S, Barut B, Šoral M, Liptaj T, Korkmaz B, Özel A, Erik İ, Şöhretoğlu D. α-Glucosidase inhibitory effects of polyphenols from Geranium asphodeloides: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Bioorg Chem 2018; 81:545-552. [DOI: 10.1016/j.bioorg.2018.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
|
36
|
Guler GO, Zengin G, Karadag F, Mollica A, Picot CMN, Mahomoodally MF. HPLC-DAD profiles and pharmacological insights of Onobrychis argyrea subsp isaurica extracts. Comput Biol Chem 2018; 76:256-263. [DOI: 10.1016/j.compbiolchem.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
|
37
|
Şöhretoğlu D, Sari S, Barut B, Özel A. Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg Chem 2018; 79:257-264. [DOI: 10.1016/j.bioorg.2018.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|
38
|
Viigand K, Põšnograjeva K, Visnapuu T, Alamäe T. Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins. Genes (Basel) 2018; 9:E354. [PMID: 30013016 PMCID: PMC6070925 DOI: 10.3390/genes9070354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic clustering of functionally related genes is rare in yeasts and other eukaryotes with only few examples available. Here, we summarize our data on a nontelomeric MAL cluster of a non-conventional methylotrophic yeast Ogataea (Hansenula) polymorpha containing genes for α-glucosidase MAL1, α-glucoside permease MAL2 and two hypothetical transcriptional activators. Using genome mining, we detected MAL clusters of varied number, position and composition in many other maltose-assimilating non-conventional yeasts from different phylogenetic groups. The highest number of MAL clusters was detected in Lipomyces starkeyi while no MAL clusters were found in Schizosaccharomyces pombe and Blastobotrys adeninivorans. Phylograms of α-glucosidases and α-glucoside transporters of yeasts agreed with phylogenesis of the respective yeast species. Substrate specificity of unstudied α-glucosidases was predicted from protein sequence analysis. Specific activities of Scheffersomycesstipitis α-glucosidases MAL7, MAL8, and MAL9 heterologously expressed in Escherichia coli confirmed the correctness of the prediction-these proteins were verified promiscuous maltase-isomaltases. α-Glucosidases of earlier diverged yeasts L. starkeyi, B. adeninivorans and S. pombe showed sequence relatedness with α-glucosidases of filamentous fungi and bacilli.
Collapse
Affiliation(s)
- Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristina Põšnograjeva
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
39
|
Bender O, Llorent-Martínez EJ, Zengin G, Mollica A, Ceylan R, Molina-García L, Fernández-de Córdova ML, Atalay A. Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS One 2018; 13:e0197815. [PMID: 29864137 PMCID: PMC5986121 DOI: 10.1371/journal.pone.0197815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/27/2018] [Indexed: 01/07/2023] Open
Abstract
The genus Hypericum is one of the most popular genera in both traditional medicine and scientific platform. This study is designed to provide conceptual insights on the biological potential and chemical characterization of H. salsugineum, which is endemic to Turkey. The qualitative and quantitative phenolic content of the extracts was characterized by HPLC-ESI-MSn. Biological efficiency was investigated by enzyme inhibitory assays (cholinesterases, tyrosinase, amylase, and glucosidase) and anti-cancer efficacy tests (anti-proliferative activities with the iCELLigence technology, colony formation and wound healing scratch assays). Phenolic acids (3-O-caffeoylquinic, 5-O-caffeoylquinic, and 4-O-caffeoylquinic acids) were the predominant group in the studied extracts, although several flavonoids were also detected and quantified. The extracts exhibited good inhibitory effects on tyrosinase and glucosidase, while they had weak ability against cholinesterases and amylase. Computational studies were also performed to explain the interactions between the major phenolics and these enzymes. The extracts displayed significant anti-cancer effects on breast carcinoma cell lines. Our findings suggest that Hypericum salsugineum could be valued as a potential source of biologically-active compounds for designing novel products.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | - Gokhan Zengin
- Deparment of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti-Italy
| | - Ramazan Ceylan
- Deparment of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Lucia Molina-García
- Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas S/N, Jaén, Spain
| | | | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| |
Collapse
|
40
|
Enhanced catalytic activities and modified substrate preferences for taxoid 10β-O-acetyl transferase mutants by engineering catalytic histidine residues. Biotechnol Lett 2018; 40:1245-1251. [PMID: 29869304 DOI: 10.1007/s10529-018-2573-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Taxoid 10β-O-acetyl transferase (DBAT) was redesigned to enhance its catalytic activity and substrate preference for baccatin III and taxol biosynthesis. RESULTS Residues H162, D166 and R363 were determined as potential sites within the catalytic pocket of DBAT for molecular docking and site-directed mutagenesis to modify the activity of DBAT. Enzymatic activity assays revealed that the kcat/KM values of mutant H162A/R363H, D166H, R363H, D166H/R363H acting on 10-deacetylbaccatin III were about 3, 15, 26 and 60 times higher than that of the wild type of DBAT, respectively. Substrate preference assays indicated that these mutants (H162A/R363H, D166H, R363H, D166H/R363H) could transfer acetyl group from unnatural acetyl donor (e.g. vinyl acetate, sec-butyl acetate, isobutyl acetate, amyl acetate and isoamyl acetate) to 10-deacetylbaccatin III. CONCLUSION Taxoid 10β-O-acetyl transferase mutants with redesigned active sites displayed increased catalytic activities and modified substrate preferences, indicating their possible application in the enzymatic synthesis of baccatin III and taxol.
Collapse
|
41
|
Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: Phenolic components, in vitro biological, and in silico propensities. Food Res Int 2018; 108:641-649. [DOI: 10.1016/j.foodres.2018.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
|
42
|
Zengin G, Lobine D, Mollica A, Locatelli M, Carradori S, Mahomoodally MF. Multiple pharmacological approaches onFibigia eriocarpaextracts by in vitro and computational assays. Fundam Clin Pharmacol 2018; 32:400-413. [DOI: 10.1111/fcp.12362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Gokhan Zengin
- Department of Biology; Faculty of Science; Selcuk University; Campus Konya Turkey
| | - Devina Lobine
- Department of Health Sciences; Faculty of Science; University of Mauritius; Réduit Mauritius
| | - Adriano Mollica
- Department of Pharmacy; University “G. d'Annunzio” Chieti-Pescara; 66100 Chieti Italy
| | - Marcello Locatelli
- Department of Pharmacy; University “G. d'Annunzio” Chieti-Pescara; 66100 Chieti Italy
| | - Simone Carradori
- Department of Pharmacy; University “G. d'Annunzio” Chieti-Pescara; 66100 Chieti Italy
| | | |
Collapse
|
43
|
In vitro and in silico evaluation of Centaurea saligna (K.Koch) Wagenitz—An endemic folk medicinal plant. Comput Biol Chem 2018; 73:120-126. [DOI: 10.1016/j.compbiolchem.2018.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 01/19/2023]
|
44
|
Mocan A, Zengin G, Mollica A, Uysal A, Gunes E, Crişan G, Aktumsek A. Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Food Chem Toxicol 2018; 112:448-457. [DOI: 10.1016/j.fct.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
|
45
|
Llorent-Martínez EJ, Zengin G, Lobine D, Molina-García L, Mollica A, Mahomoodally MF. Phytochemical characterization,in vitroandin silicoapproaches for threeHypericumspecies. NEW J CHEM 2018. [DOI: 10.1039/c8nj00347e] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of theHypericumgenus are spread throughout the world and have a long history of use in traditional systems of medicines.
Collapse
Affiliation(s)
| | - Gokhan Zengin
- Department of Biology
- Faculty of Science
- Selcuk University
- Campus/Konya
- Turkey
| | - Devina Lobine
- Department of Health Sciences
- Faculty of Science
- University of Mauritius
- Réduit
- Mauritius
| | - Lucia Molina-García
- Department of Physical and Analytical Chemistry
- University of Jaén
- Campus Las Lagunillas S/N
- E-23071 Jaén
- Spain
| | - Adriano Mollica
- Department of Pharmacy University “G. d’Annunzio” of Chieti-Pescara
- Chieti
- Italy
| | | |
Collapse
|
46
|
Zengin G, Aumeeruddy-Elalfi Z, Mollica A, Yilmaz MA, Mahomoodally MF. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species-A source of innovative phytopharmaceuticals from nature. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:35-44. [PMID: 29425653 DOI: 10.1016/j.phymed.2017.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/10/2017] [Accepted: 10/25/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Halophytes are considered as valuable sources of traditional drugs in different countries. PURPOSE The present study aimed to evaluate biological and chemical fingerprints of three halophytes (Arthrocnemum macrostachyum (Moric.) C, Koch, Halimione portulacoides (L.) Aellen and Salicornia europaea L.). MATERIALS AND METHODS The antioxidant and enzymatic inhibitory potential (acetylcholinesterase, butyrylcholinesterase, α-amylase, α-glucosidase, and tyrosinase) were assessed. The total phenolic, flavonoid contents, and the chemical profiles were appraised using the ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Molecular docking was conducted to provide additional insights of molecular interactions of the enzymes/phytochemicals. RESULTS Ethyl acetate extract was the most efficient extract, with A. macrostachyum being the most potent towards DPPH and ABTS radicals and phosphomolybdenum assay. Ethyl acetate extract of A. macrostachyum was also the best reducing agent (CUPRAC and FRAP assays). Methanol and ethyl acetate extract of A. macrostachyum, H. portulacoides, and S. europaea showed significant enzyme inhibition potential. Ethyl acetate extract of A. macrostachyum showed the highest total phenolic (29.54 ± 0.78 mgGAEs/g extract) while the ethyl acetate extract of S. europaea was more abundant in flavonoids (18.26 ± 0.11 mgREs/g extract). Phytochemical profiling allowed the identification of several components in the methanolic extracts (16 in A. macrostachyum, 14 in H. portulacoides, and 11 in S. europaea), with quinic acid, p-coumaric acid, and rhamnetin being most abundant. Docking studies revealed that the above compounds showed scores for the enzymes tested. CONCLUSION The three halophytes studies could be considered as potential sources of biologically-active compounds for novel phytopharmaceuticals development.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | | | - Adriano Mollica
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100 Chieti, Italy
| | - Mustafa Abdullah Yilmaz
- Research and Application of Science and Technology Center (DUBTAM), University of Dicle, Diyarbakır, Turkey
| | | |
Collapse
|
47
|
Uysal S, Ugurlu A, Zengin G, Baloglu MC, Altunoglu YC, Mollica A, Custodio L, Neng NR, Nogueira JMF, Mahomoodally MF. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem Toxicol 2017; 111:525-536. [PMID: 29217268 DOI: 10.1016/j.fct.2017.11.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Abstract
Bidens tripartita L. is a traditional phyto-remedy used in several countries, yet there is still a paucity of data on its biological potential. We aimed to provide new insights on the pharmacological potential of extracts prepared from B. tripartita via highlighting its antioxidant, key enzymes inhibitory potency, and DNA protecting effects. Phytochemical profile was established using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) and bioactive compound(s) docked against target enzymes using in silico methods. Cytotoxicity against three cancer cell lines was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell viability test. The main compounds were luteolin-7-glucoside (cynaroside), chlorogenic acid, and epicatechin in the extracts. The methanol extract exhibited the highest radical scavenging activity. Ethyl acetate extract showed strongest α-amylase inhibitory activity, while the best α-glucosidase inhibitory effect recorded for the methanol extract. Molecular docking showed that cynaroside strongly interact to α-glucosidase cavity by establishing six hydrogen bonds. B. tripartita extracts were found to protect supercoiled form of pUC19 plasmid (>70%) and also showed anti-proliferative properties. Results amassed in the present study add on to a growing body of literature on the multi-pharmacological potency of B. tripartita which can be applied to bio-products development geared towards management of common diseases.
Collapse
Affiliation(s)
- Sengul Uysal
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey.
| | - Asli Ugurlu
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey.
| | - Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Adriano Mollica
- Department of Pharmacy University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Luisa Custodio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Nuno R Neng
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - José M F Nogueira
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
48
|
Şöhretoğlu D, Sari S, Özel A, Barut B. α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int J Biol Macromol 2017; 105:1062-1070. [DOI: 10.1016/j.ijbiomac.2017.07.132] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/26/2022]
|
49
|
Mocan A, Zengin G, Simirgiotis M, Schafberg M, Mollica A, Vodnar DC, Crişan G, Rohn S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies. J Enzyme Inhib Med Chem 2017; 32:153-168. [PMID: 28095717 PMCID: PMC6009880 DOI: 10.1080/14756366.2016.1243535] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/03/2023] Open
Abstract
Goji (Lycium barbarum L.) leaves are emphasized as a functional tea or as dietary supplements. The phenolic compound profile, antioxidant, enzyme inhibitory, antimicrobial, and antimutagenic activities of leaf extracts from two selected cultivars in comparison with wild-growing plants have been evaluated. HPLC-DAD/ESI-ToF-MS analysis revealed the presence of phenolic acids and flavonoids with chlorogenic acid and rutin being the dominant compounds in the cultivated plants, whereas rutin and kaempeferol-3-O-rutinoside for wild growing ones. In particular, cv. Erma contained the highest amount of chlorogenic acid and showed a strong tyrosinase-inhibitory effect. Staphylococcus aureus, Listeria monocytogenes, and Penicillium funiculosum were the most sensitive strains when exposed to extracts from cultivated plants. Antimutagenic activity was evaluated by Ames' test. The tested extracts provided high protection against mutagenicity induced by 2-anthramine (2-AA) to Salmonella typhimurium strains TA 98 and TA 100 (max. inhibition (%) 88% and 74.2%, respectively). Overall, Goji leaves are a rich source of bioactive compounds with functional properties that need further risk/benefit evaluation when used in foods or health-promoting formulations.
Collapse
Affiliation(s)
- Andrei Mocan
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Michaela Schafberg
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Adriano Mollica
- Department of Pharmacy, University "G. d’Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Dan C. Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| |
Collapse
|
50
|
Chow SY, Wang YL, Hsieh YC, Lee GC, Liaw SH. The N253F mutant structure of trehalose synthase from Deinococcus radioduransreveals an open active-site topology. Acta Crystallogr F Struct Biol Commun 2017; 73:588-594. [DOI: 10.1107/s2053230x17014303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/03/2017] [Indexed: 11/11/2022] Open
Abstract
Trehalose synthase (TS) catalyzes the reversible conversion of maltose to trehalose and belongs to glycoside hydrolase family 13 (GH13). Previous mechanistic analysis suggested a rate-limiting protein conformational change, which is probably the opening and closing of the active site. Consistently, crystal structures ofDeinococcus radioduransTS (DrTS) in complex with the inhibitor Tris displayed an enclosed active site for catalysis of the intramoleular isomerization. In this study, the apo structure of the DrTS N253F mutant displays a new open conformation with an empty active site. Analysis of these structures suggests that substrate binding induces a domain rotation to close the active site. Such a substrate-induced domain rotation has also been observed in some other GH13 enzymes.
Collapse
|