1
|
Nagoba BS, Rayate AS. Hepatitis E virus infections. World J Virol 2024; 13:90951. [PMID: 38984082 PMCID: PMC11229837 DOI: 10.5501/wjv.v13.i2.90951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/02/2024] [Accepted: 04/07/2024] [Indexed: 06/24/2024] Open
Abstract
Hepatitis E virus (HEV) infection is now endemic worldwide. Most patients with acute infection recover uneventfully. Outbreaks and sporadic cases, particularly in high-risk individuals are emerging increasingly. The patients with risk factors like pregnancy and pre-existing chronic liver disease, present with or progress rapidly to severe disease. Immuno-suppression in post-transplant patients is an additional risk factor. Standardized FDA-approved diagnostic tests are the need of the hour. Further studies are needed to establish guideline-based treatment regimen and outbreak preparedness for HEV to decrease global morbidity, mortality, and healthcare burden. Policies for screening donors and transplant cases are required.
Collapse
Affiliation(s)
- Basavraj S Nagoba
- Department of Microbiology, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| | - Abhijit S Rayate
- Department of Surgery, Maharashtra Institute of Medical Sciences & Research (Medical College), Latur 413531, India
| |
Collapse
|
2
|
Jain RK, Jain A, Chaurasia D, Shrivastava R, Kapoor G, Perumal N, Agarwal A. A retrospective analysis on seroprevalence of acute viral hepatitis observed among dengue patients attending a tertiary care centre in central India. Indian J Med Microbiol 2024; 49:100572. [PMID: 38552843 DOI: 10.1016/j.ijmmb.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
PURPOSE The present study was conducted retrospectively to assess the frequency of acute viral hepatitis among the clinically suspected dengue cases presented at our tertiary care centre during 2021. METHODS To determine the presence of acute viral hepatitis; Hepatitis A virus (HAV) and Hepatitis E virus (HEV) infections, 104 specimens were selected from the dengue-suspected clinical specimens received during 2021 on the basis of acute viral hepatitis symptoms. Following this, serological diagnosis was performed on those samples using anti-HAV IgM and anti-HEV IgM ELISA kits. RESULTS Based on sero-positivity for IgM antibodies, 3 (5.3%) dengue virus (DENV) seropositive samples were positive for both HAV and HEV, while among DENV seronegative cases, 11 (22.91%) samples were positive for HEV and 1 (2.08%) sample was positive for HAV, pointing towards misdiagnosis due to overlapping symptoms. Additionally, co-infection of HAV & HEV in 1 sample was also observed in this study. CONCLUSIONS This study revealed the presence of acute hepatitis infections among the dengue cases during monsoon and post-monsoon season. Overlapping of the clinical manifestations of these diseases can create misdiagnosis incidences raising risk for underreporting of the true cases of acute viral hepatitis infection. Dengue-suspected patients with selected symptoms during the monsoon and post-monsoon season should additionally be screened for acute hepatitis infections, as suggested in this study.
Collapse
Affiliation(s)
- Rajeev Kumar Jain
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Anamika Jain
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Deepti Chaurasia
- Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Rakesh Shrivastava
- Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Nagaraj Perumal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| | - Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, 462001, Madhya Pradesh, India.
| |
Collapse
|
3
|
Alexander V, Benjamin SJ, Subramani K, Sathyendra S, Goel A. Acute liver failure in pregnancy. Indian J Gastroenterol 2024; 43:325-337. [PMID: 38691240 DOI: 10.1007/s12664-024-01571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/09/2024] [Indexed: 05/03/2024]
Abstract
Liver function abnormalities are noted in a minority of pregnancies with multiple causes for the same. A small proportion of these develop severe liver injury and progress to acute liver failure (ALF). There is a discrete set of etiology for ALF in pregnancy and comprehensive understanding will help in urgent evaluation. Certain diseases such as acute fatty liver of pregnancy, hemolysis, elevated liver enzyme, low platelet (HELLP) syndrome and pre-eclampsia are secondary to pregnant state and can present as ALF. Quick and targeted evaluation with urgent institution of etiology-specific management, especially urgent delivery in patients with pregnancy-associated liver diseases, is the key to avoiding maternal deaths. Pregnancy, as also the fetal life, imparts a further layer of complication in assessment, prognosis and management of these sick patients with ALF. Optimal management often requires a multidisciplinary approach in a well-equipped centre. In this review, we discuss evaluation, assessment and management of pregnant patients with ALF, focussing on approach to pregnancy-associated liver diseases.
Collapse
Affiliation(s)
- Vijay Alexander
- Department of Hepatology, Christian Medical College, Vellore 632 004, India
| | - Santosh J Benjamin
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore 632 004, India
| | - Kandasamy Subramani
- Division of Critical Care, Christian Medical College, Vellore 632 004, India
| | - Sowmya Sathyendra
- Department of Obstetric Medicine, Christian Medical College, Vellore 632 004, India
| | - Ashish Goel
- Department of Hepatology, Christian Medical College, Vellore 632 004, India.
| |
Collapse
|
4
|
Biswas S, Kumar R, Shalimar, Acharya SK. Viral hepatitis-induced acute liver failure. Indian J Gastroenterol 2024; 43:312-324. [PMID: 38451383 DOI: 10.1007/s12664-024-01538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 03/08/2024]
Abstract
Viral hepatitis-induced acute liver failure (ALF) is a preventable cause for liver-related mortality worldwide. Viruses are the most common cause for ALF in developing nations in contrast to the west, where acetaminophen is largely responsible. Viruses may be hepatotropic or affect the liver secondary to a systemic infection. In tropical countries, infections such as leptospirosis, scrub typhus and malaria can mimic the symptoms of ALF. Differentiating these ALF mimics is crucial because they require etiology-specific therapy. Treatment of viral hepatitis-induced ALF is two-pronged and directed towards providing supportive care to prevent organ failures and antiviral drugs for some viruses. Liver transplantation (LT) is an effective modality for patients deteriorating despite adequate supportive care. Early referral and correct identification of patients who require a transplant are important. Liver support devices and plasma exchange have evolved into "bridging modalities" for LT. Preventive strategies such as hand hygiene, use of clean and potable water and inclusion of vaccines against viral hepatitis in the national program are simple yet very effective methods focusing on the preventive aspect of this disease.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, 801 507, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India.
| | - Subrat Kumar Acharya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110 029, India
- KIIT University, Bhubaneswar, 751 024, India
- Fortis Escorts Digestive and Liver Institute, Okhla, New Delhi, 110 025, India
| |
Collapse
|
5
|
Iqbal H, Mehmood BF, Sohal A, Roytman M. Hepatitis E infection: A review. World J Virol 2023; 12:262-271. [PMID: 38187497 PMCID: PMC10768387 DOI: 10.5501/wjv.v12.i5.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
Hepatitis E virus (HEV) is a small non-enveloped virus that is transmitted via the fecal-oral route. It is a highly common cause of acute hepatitis, particularly in low to middle income regions of Asia, Africa, and Central America. Most cases are self-limited, and symptomatic patients usually present with acute icteric hepatitis. A subset of patients including pregnant women, older men, those with pre-existing liver disease and immunocompromised patients however, may develop severe disease and hepatic failure. Immunocompromised patients are also at risk for chronic infection, and their immunosuppression should be decreased in order to facilitate viral clearance. HEV can also present with a variety of extra-intestinal manifestations including neurological, renal, hematological, and pancreatic derangements. The gold standard of diagnosis is HEV ribonucleic acid detection via nucleic acid amplification testing. Currently, there are no approved treatments for Hepatitis E, though ribavirin is the most commonly used agent to reduce viral load. Studies assessing the safety and efficacy of other antiviral agents for HEV are currently underway. HEV vaccination has been approved in China, and is currently being investigated in other regions as well. This review article aims to discuss the epidemiology, pathogenesis, presentation, diagnosis, complications, and treatment of Hepatitis E infection.
Collapse
Affiliation(s)
- Humzah Iqbal
- Department of Internal Medicine, University of California San Francisco, Fresno, CA 93701, United States
| | - Bilal Fazal Mehmood
- Department of Internal Medicine, University of California San Francisco, Fresno, CA 93701, United States
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, WA 98105, United States
| | - Marina Roytman
- Department of Gastroenterology and Hepatology, University of California San Francisco, Fresno, CA 93701, United States
| |
Collapse
|
6
|
Vento S, Cainelli F. Acute liver failure in low-income and middle-income countries. Lancet Gastroenterol Hepatol 2023; 8:1035-1045. [PMID: 37837969 DOI: 10.1016/s2468-1253(23)00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 10/16/2023]
Abstract
Acute liver failure is a rare condition involving the rapid development, progression, and worsening of liver dysfunction, characterised by coagulopathy and encephalopathy, and has a high mortality unless liver transplantation is performed. Population-based studies are scarce, and most published data are from high-income countries, where the main cause of acute liver failure is paracetamol overdose. This Review provides an overview of the scanty literature on acute liver failure in low-income and middle-income countries, where patients are often admitted to primary care hospitals and viral hepatitis (especially hepatitis E), tropical infections (eg, dengue), traditional medicines, and drugs (especially anti-tuberculosis drugs) have an important role. We discuss incidence, cause, occurrence in children and pregnant women, prognostic factors and scores, treatment, and mortality. To conclude, we advocate for international collaboration, the establishment of central registries for the condition, and better diagnostics.
Collapse
Affiliation(s)
- Sandro Vento
- Faculty of Medicine, University of Puthisastra, Phnom Penh, Cambodia.
| | | |
Collapse
|
7
|
Williamson C, Nana M, Poon L, Kupcinskas L, Painter R, Taliani G, Heneghan M, Marschall HU, Beuers U. EASL Clinical Practice Guidelines on the management of liver diseases in pregnancy. J Hepatol 2023; 79:768-828. [PMID: 37394016 DOI: 10.1016/j.jhep.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 07/04/2023]
Abstract
Liver diseases in pregnancy comprise both gestational liver disorders and acute and chronic hepatic disorders occurring coincidentally in pregnancy. Whether related to pregnancy or pre-existing, liver diseases in pregnancy are associated with a significant risk of maternal and fetal morbidity and mortality. Thus, the European Association for the Study of Liver Disease invited a panel of experts to develop clinical practice guidelines aimed at providing recommendations, based on the best available evidence, for the management of liver disease in pregnancy for hepatologists, gastroenterologists, obstetric physicians, general physicians, obstetricians, specialists in training and other healthcare professionals who provide care for this patient population.
Collapse
|
8
|
Biswas S, Shalimar. Liver Transplantation for Acute Liver Failure- Indication, Prioritization, Timing, and Referral. J Clin Exp Hepatol 2023; 13:820-834. [PMID: 37693253 PMCID: PMC10483009 DOI: 10.1016/j.jceh.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 09/12/2023] Open
Abstract
Acute liver failure (ALF) is a major success story in gastroenterology, with improvements in critical care and liver transplant resulting in significant improvements in patient outcomes in the current era compared to the dismal survival rates in the pretransplant era. However, the ever-increasing list of transplant candidates and limited organ pool makes judicious patient selection and organ use mandatory to achieve good patient outcomes and prevent organ wastage. Several scoring systems exist to facilitate the identification of patients who need a liver transplant and would therefore need an early referral to a specialized liver unit. The timing of the liver transplant is also crucial as transplanting a patient too early would lead to those who would recover spontaneously receiving an organ (wastage), and a late decision might result in the patient becoming unfit for transplant (delisted) or have an advanced disease which would result in poor post-transplant outcomes. The current article reviews the indications and contraindications of liver transplant in ALF patients, the various prognostic scoring systems, etiology-specific outcomes, prioritization and timing of referral.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences New Delhi, India
| |
Collapse
|
9
|
Kupke P, Adenugba A, Schemmerer M, Bitterer F, Schlitt HJ, Geissler EK, Wenzel JJ, Werner JM. Immunomodulation of Natural Killer Cell Function by Ribavirin Involves TYK-2 Activation and Subsequent Increased IFN-γ Secretion in the Context of In Vitro Hepatitis E Virus Infection. Cells 2023; 12:cells12030453. [PMID: 36766795 PMCID: PMC9913562 DOI: 10.3390/cells12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis globally. Chronic and fulminant courses are observed especially in immunocompromised transplant recipients since administration of ribavirin (RBV) does not always lead to a sustained virologic response. By in vitro stimulation of NK cells through hepatoma cell lines inoculated with a full-length HEV and treatment with RBV, we analyzed the viral replication and cell response to further elucidate the mechanism of action of RBV on immune cells, especially NK cells, in the context of HEV infection. Co-culture of HEV-infected hepatoma cells with PBMCs and treatment with RBV both resulted in a decrease in viral replication, which in combination showed an additive effect. An analysis of NK cell functions after stimulation revealed evidence of reduced cytotoxicity by decreased TRAIL and CD107a degranulation. Simultaneously, IFN-ɣ production was significantly increased through the IL-12R pathway. Although there was no direct effect on the IL-12R subunits, downstream events starting with TYK-2 and subsequently pSTAT4 were upregulated. In conclusion, we showed that RBV has an immunomodulatory effect on the IL-12R pathway of NK cells via TYK-2. This subsequently leads to an enhanced IFN-ɣ response and thus, to an additive antiviral effect in the context of an in vitro HEV infection.
Collapse
Affiliation(s)
- Paul Kupke
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Akinbami Adenugba
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mathias Schemmerer
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Florian Bitterer
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Edward K. Geissler
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jürgen J. Wenzel
- National Consultant Laboratory for HAV and HEV, Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
10
|
Bai Q, Wang Z, An Y, Tian J, Li Z, Yang Y, Dong Y, Chen M, Liu T. Chitosan-functionalized graphene oxide as adjuvant in HEV P239 vaccine. Vaccine 2022; 40:7613-7621. [PMID: 36371365 DOI: 10.1016/j.vaccine.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Searching appropriate adjuvants for vaccine is a potent method to intense the immune efficacy. In the present study, we developed a novel Hepatitis E virus (HEV) vaccine by utilizing chitosan modified nano-graphene oxide (GO-CS) as an adjuvant to support HEV antigen P239 protein (GO/CS/P239). The characterization of GO/CS/P239 was observed by atomic force microscope. The safety of GO/CS/P239 was measured by CCK-8 method, hemolysis test and acute challenge test. The anti-HEV titers and cytokines production were analyzed by double antibody sandwich ELISA. As the results showed, by contrast with a vaccine that contained only the P239 protein, GO/CS/P239 vaccine can promote immune cells to produce more IgG antibodies and cytokines, which were able to stimulate the organism to produce stronger both cellular and humoral immunity. Collectively, GO/CS/P239 particles have been demonstrated to be safe both in vitro and in vivo, and can facilitate sufficient immune response to protect organisms from virus infection, which suggested that our exploration offers a promising alternative vaccine that can control HEV infection.
Collapse
Affiliation(s)
- Qianyu Bai
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhiwen Wang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yina An
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhilin Li
- College of Pratacultural Science and Technology, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yifei Yang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yanjun Dong
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Mingyong Chen
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China.
| |
Collapse
|
11
|
Jindal A, Sarin SK. Epidemiology of liver failure in Asia-Pacific region. Liver Int 2022; 42:2093-2109. [PMID: 35635298 DOI: 10.1111/liv.15328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/13/2023]
Abstract
The global burden of deaths caused by liver failure is substantial. The Asia-Pacific region is home to more than half of the global population and accounted for 62.6% of global deaths because of liver diseases in 2015. The aetiology of liver failure varies in different countries at different times. Viruses (Hepatitis A, B and E), drugs (herbs and anti-tuberculous drugs), toxins (alcohol use) and autoimmune flares are mainly responsible of majority of liver failure in individuals with normal liver (acute liver failure; ALF); else these may precipitate liver failure in those with chronic liver disease (acute-on-chronic liver failure; ACLF). Concomitant increases in alcohol misuse and metabolic syndrome in recent years are concerning. Ongoing efforts to address liver failure-related morbidity and mortality require accurate contemporary estimates of epidemiology and outcomes. In light of the ever-changing nature of liver disease epidemiology, accurate estimates for the burden of liver failure across the countries are vital for setting clinical, research and policy priorities. In this review, we aimed to describe the current as well as changing epidemiological trends of common liver failure syndromes, ALF and ACLF in the Asia-Pacific region.
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
12
|
Cross-Species Transmission of Rabbit Hepatitis E Virus to Pigs and Evaluation of the Protection of a Virus-like Particle Vaccine against Rabbit Hepatitis E Virus Infection in Pigs. Vaccines (Basel) 2022; 10:vaccines10071053. [PMID: 35891218 PMCID: PMC9320745 DOI: 10.3390/vaccines10071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
We investigated the cross-species transmission of rabbit hepatitis E virus (rb HEV) to pigs and evaluated the cross-protection of a swine (sw) HEV-3 virus-like particle (VLP) vaccine against rb HEV infection in pigs. Twelve 4-week-old conventional pigs were divided into negative control (n = 3), positive control (rb HEV-infected, n = 4), and vaccinated (vaccinated and rb HEV-challenged, n = 5) groups. The vaccine was administered at weeks 0 and 2, and viral challenge was conducted at week 4. Serum HEV RNA, anti-HEV antibody, cytokine, and liver enzyme levels were determined. Histopathological lesions were examined in abdominal organs. Viral RNA was detected and increased anti-HEV antibody and alanine aminotransferase (ALT) levels were observed in positive control pigs; liver fibrosis, inflammatory cell infiltration in the lamina propria of the small intestine and shortened small intestine villi were also observed. In vaccinated pigs, anti-HEV antibody and Th1 cytokine level elevations were observed after the second vaccination; viral RNA was not detected, and ALT level elevations were not observed. The results verified the cross-species transmission of rb HEV to pigs and cross-protection of the sw HEV-3 VLP vaccine against rb HEV infection in pigs. This vaccine may be used for cross-protection against HEV infection in other species.
Collapse
|
13
|
Malik GF, Zakaria N, Majeed MI, Ismail FW. Viral Hepatitis - The Road Traveled and the Journey Remaining. Hepat Med 2022; 14:13-26. [PMID: 35300491 PMCID: PMC8922334 DOI: 10.2147/hmer.s352568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatitis is defined as inflammation of the liver and is commonly due to infection with The hepatotropic viruses - hepatitis A, B, C, D and E. Hepatitis carries one of the highest disease burdens globally and has caused significant morbidity and mortality among different patient populations. Clinical presentation varies from asymptomatic or acute flu-like illness to acute liver failure or chronic liver disease, characterized by jaundice, hepatomegaly and ascites among many other signs. Eventually, this can lead to fibrosis (cirrhosis) of the liver parenchyma and carries a risk of development into hepatocellular carcinoma. Hepatitis B and C are most notorious for causing liver cirrhosis; in 2019, an estimated 296 million people worldwide had chronic hepatitis B infection and 58 million are currently estimated to have chronic hepatitis C, with 1.5 million new infections of both hepatitis B and C, occurring annually. With the help of latest serological biomarkers and viral nucleic acid amplification tests, it has become rather simple to efficiently screen, diagnose and monitor patients with hepatitis, and to commence with appropriate antiviral treatment. More importantly, the development of vaccinations against some of these viruses has greatly helped to curb the infection rates. Whilst there has been exceptional progress over the years in the management of viral hepatitis, many hurdles still remain which must be addressed in order to proceed towards a hepatitis-free world. This review will shed light on the origin and discovery of the hepatitis viruses, the global epidemiology and clinical symptoms, diagnostic modalities, currently available treatment options, the importance of prevention, and the journey needed to move forward towards the eradication of its global disease burden.
Collapse
Affiliation(s)
- Ghulam Fareed Malik
- Section of Gastroenterology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
| | - Noval Zakaria
- Section of Gastroenterology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
| | | | - Faisal Wasim Ismail
- Section of Gastroenterology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
14
|
Seroprevalence and Potential Risk Factors of Hepatitis E Virus among Pregnant Women in Khartoum, Sudan. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although hepatitis E virus (HEV) infection has been widely understood as a public health concern in pregnant females, it is sometimes overlooked because of unusual observations of hepatitis E-induced complications during pregnancy. The objective of this descriptive cross-sectional study was to find out how frequent Hepatitis E virus infection is in pregnant women in Sudan. Blood samples were collected from pregnant women (n = 90) attending Khartoum North Hospital from February to December 2019. The specimens were investigated for Hepatitis E virus IgG and IgM antibodies using the commercial kits based on the enzyme immunosorbent assay (ELISA) technique. Out of ninety pregnant women, 36 (40%) were found positive for IgG antibodies, and 5 (6%) were tested positive for IgM antibodies. In addition, 13 (14.5%) of the positive cases are women in their third trimester. These data showed a significant association between previous Hepatitis E virus infection and miscarriage (p <0.001). This study did not find a significant association between maternal and gestation age, education, water sources, and hepatitis E virus infection. In conclusion, there was a high percentage of HEV infections among pregnant women attending Khartoum North Hospital. This study estimates the Hepatitis E virus burden in Khartoum state, but more extensive studies are required to confirm the burden in Sudan.
Collapse
|
15
|
Wu J, Shi C, Sheng X, Xu Y, Zhang J, Zhao X, Yu J, Shi X, Li G, Cao H, Li L. Prognostic Nomogram for Patients with Hepatitis E Virus-related Acute Liver Failure: A Multicenter Study in China. J Clin Transl Hepatol 2021; 9:828-837. [PMID: 34966646 PMCID: PMC8666371 DOI: 10.14218/jcth.2020.00117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Timely and effective assessment scoring systems for predicting the mortality of patients with hepatitis E virus-related acute liver failure (HEV-ALF) are urgently needed. The present study aimed to establish an effective nomogram for predicting the mortality of HEV-ALF patients. METHODS The nomogram was based on a cross-sectional set of 404 HEV-ALF patients who were identified and enrolled from a cohort of 650 patients with liver failure. To compare the performance with that of the model for end-stage liver disease (MELD) scoring and CLIF-Consortium-acute-on-chronic liver failure score (CLIF-C-ACLFs) models, we assessed the predictive accuracy of the nomogram using the concordance index (C-index), and its discriminative ability using time-dependent receiver operating characteristics (td-ROC) analysis, respectively. RESULTS Multivariate logistic regression analysis of the development set carried out to predict mortality revealed that γ-glutamyl transpeptidase, albumin, total bilirubin, urea nitrogen, creatinine, international normalized ratio, and neutrophil-to-lymphocyte ratio were independent factors, all of which were incorporated into the new nomogram to predict the mortality of HEV-ALF patients. The area under the curve of this nomogram for mortality prediction was 0.671 (95% confidence interval: 0.602-0.740), which was higher than that of the MELD and CLIF-C-ACLFs models. Moreover, the td-ROC and decision curves analysis showed that both discriminative ability and threshold probabilities of the nomogram were superior to those of the MELD and CLIF-C-ACLFs models. A similar trend was observed in the validation set. CONCLUSIONS The novel nomogram is an accurate and efficient mortality prediction method for HEV-ALF patients.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cuifen Shi
- Department of Infectious Disease, The Second People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Xinyu Sheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinrong Zhang
- Department of Laboratory Medicine, The People’s Hospital of Dafeng City, Yancheng, Jiangsu, China
| | - Xinguo Zhao
- Department of Respiration, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Shi
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, Jiangsu, China
| | - Gongqi Li
- Department of Clinical Laboratory, Linyi Traditional Hospital, Linyi, Shandong, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, Zhejiang, China
- Correspondence to: Hongcui Cao, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003, China. ORCID: https://orcid.org/0000-0002-6604-6867. Tel: +86-571-87236451, Fax: +86-571-87236459, E-mail:
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Kupke P, Werner JM. Hepatitis E Virus Infection-Immune Responses to an Underestimated Global Threat. Cells 2021; 10:cells10092281. [PMID: 34571931 PMCID: PMC8468229 DOI: 10.3390/cells10092281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for developing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised patients such as transplant recipients with more frequent severe courses. Unfortunately, besides reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is currently no specific anti-viral treatment to prevent disease progression. So far, research on involved immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples especially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain that the outcome of HEV-infected patients correlates with the strength of the proceeding immune response. Several lymphoid cells have been identified in contributing either to disease progression or achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying fulminant courses are poorly understood. However, liver biopsies indicate the involvement of cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid immune response against HEV and point out questions that remain unanswered regarding this underestimated global threat.
Collapse
|
17
|
Boonyai A, Thongput A, Sisaeng T, Phumchan P, Horthongkham N, Kantakamalakul W, Chaimayo C. Prevalence and clinical correlation of hepatitis E virus antibody in the patients' serum samples from a tertiary care hospital in Thailand during 2015-2018. Virol J 2021; 18:145. [PMID: 34247642 PMCID: PMC8273939 DOI: 10.1186/s12985-021-01616-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/02/2021] [Indexed: 02/02/2023] Open
Abstract
Background Prevalence and incidence of hepatitis caused by HEV infection are usually higher in developing countries. This study demonstrated the HEV seroprevalence and incidence of HEV infection in patients with clinical hepatitis in a tertiary hospital in Thailand. Methods A laboratory-based cross-sectional study was conducted using 1106 serum samples from patients suspected of HEV infection sent to the Serology laboratory, Siriraj Hospital, for detecting HEV antibodies during 2015–2018. Prevalence of anti-HEV IgG and IgM antibodies in general patients, including organ transplant recipients and pregnant women in a hospital setting, were determined using indirect enzyme-linked immunosorbent assay (ELISA) kits. Comparison of laboratory data between groups with different HEV serological statuses was performed. Results HEV IgG antibodies were detected in 40.82% of 904 serum samples, while HEV IgM antibodies were detected in 11.75% of 1081 serum samples. Similar IgG and IgM antibody detection rates were found in pregnant women. Interestingly, anti-HEV IgM antibodies were detected in 38.5% of patients who underwent organ transplantation. Patients who tested positive for anti-HEV IgM antibodies had higher alanine aminotransferase levels than those who had not. In contrast, patients who tested positive for anti-HEV IgG had more elevated levels of total bilirubin than those who tested negative. Conclusions HEV seroprevalence and incidence in patients with clinical hepatitis were relatively high in the Thai population, including the pregnancy and organ transplant subgroups. The results potentially benefit the clinicians in decision-making to investigate HEV antibodies and facilitating proper management for patients.
Collapse
Affiliation(s)
- Atiporn Boonyai
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Thongput
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarat Sisaeng
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parisut Phumchan
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Navin Horthongkham
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannee Kantakamalakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutikarn Chaimayo
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Khuroo MS. Hepatitis E and Pregnancy: An Unholy Alliance Unmasked from Kashmir, India. Viruses 2021; 13:1329. [PMID: 34372535 PMCID: PMC8310059 DOI: 10.3390/v13071329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The adverse relationship between viral hepatitis and pregnancy in developing countries had been interpreted as a reflection of retrospectively biased hospital-based data collection by the West. However, the discovery of hepatitis E virus (HEV) as the etiological agent of an epidemic of non-A, non-B hepatitis in Kashmir, and the documenting of the increased incidence and severity of hepatitis E in pregnancy via a house-to-house survey, unmasked this unholy alliance. In the Hepeviridae family, HEV-genotype (gt)1 from genus Orthohepevirus A has a unique open reading frame (ORF)4-encoded protein which enhances viral polymerase activity and viral replication. The epidemics caused by HEV-gt1, but not any other Orthohepevirus A genotype, show an adverse relationship with pregnancy in humans. The pathogenesis of the association is complex and at present not well understood. Possibly multiple factors play a role in causing severe liver disease in the pregnant women including infection and damage to the maternal-fetal interface by HEV-gt1; vertical transmission of HEV to fetus causing severe fetal/neonatal hepatitis; and combined viral and hormone related immune dysfunction of diverse nature in the pregnant women, promoting viral replication. Management is multidisciplinary and needs a close watch for the development and management of acute liver failure. (ALF). Preliminary data suggest beneficial maternal outcomes by early termination of pregnancy in patients with lower grades of encephalopathy.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu and Kashmir 190010, India
| |
Collapse
|
19
|
Seroprevalence of Hepatitis A and Hepatitis E Viruses among Pregnant Women in Northern Iran. Infect Dis Obstet Gynecol 2021; 2021:5130586. [PMID: 34305391 PMCID: PMC8272671 DOI: 10.1155/2021/5130586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 01/14/2023] Open
Abstract
Background Hepatitis A (HAV) and hepatitis E viruses (HEV) are endemic in Iran and are known major causes of acute viral hepatitis. Also, during pregnancy, they are associated with severe outcomes. Therefore, it is vital to evaluate the antibody levels against HAV and HEV in pregnant women to avoid severe outcomes incidence. Study design and methods. A total of 247 pregnant women were enrolled in this prospective cross-sectional study. In addition to completing the questionnaire and interviewing all participants, the serum samples were tested for anti-HAV and anti-HEV IgG using the enzyme-linked immunosorbent assay (ELISA). The association between anti-HAV and anti-HEV antibodies status and risk factors was evaluated. Results The mean age of patients was 28.06 ± 5.29 years. Anti-HAV antibody was found in 111 patients (44.9%), while anti-HEV antibody was detected in only two pregnant women (0.8%). The seroprevalence of HAV was inversely related to the level of education. There was no significant correlation between HAV antibody levels and age, marital status, residence location, and pregnancy trimesters. Conclusion Considering many complications of these diseases in pregnancy, the detection of enteroviral hepatitis, especially HAV in pregnant women, is necessary, and therefore, proactive measures, such as promoting education, improving people awareness, and vaccination, are recommended.
Collapse
|
20
|
Chowdhury D, Mahmood F, Edwards C, Taylor-Robinson SD. Five-day outcome of hepatitis E-induced acute liver failure in the ICU. EGYPTIAN LIVER JOURNAL 2021; 11:39. [PMID: 34804613 PMCID: PMC8591700 DOI: 10.1186/s43066-021-00098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is an important cause of acute liver failure (ALF) in Bangladesh with pregnant mothers being more vulnerable. As HEV occurs in epidemics, it limits medical capabilities in this resource-poor country. Cerebral oedema, resulting in raised intracranial pressure (ICP), is an important cause of morbidity and mortality. Practical treatments are currently few. To study the baseline characteristics and clinical outcome of HEV-induced ALF in a recent HEV epidemicTo detect raised ICP clinically and observe response to mannitol infusion.This was a prospective cohort study from June until August 2018 of 20 patients admitted to the intensive care unit (ICU) of a major Bangladeshi Referral Hospital with HEV-induced ALF. We diagnosed HEV infection by detecting serum anti-HEV IgM antibody. All were negative for hepatitis B surface antigen and hepatitis A IgM antibody. Data were collected on 5-day outcome after admission to ICU, monitoring all patients for signs of raised ICP. An intravenous bolus of 20% mannitol was administered at a single time point to patients with raised ICP. RESULTS Twenty patients were included in the study. Ten (50%) patients, seven (70%) females, received mannitol infusion. HE worsened in eight (40%): seven female and three pregnant. Glasgow Coma scores deteriorated in six (30%): all (100%) females and three pregnant. Consciousness status was not significantly different between pregnant and non-pregnant subjects, nor between those who received mannitol and those who did not. Six patients met King's College Criteria for liver transplantation. CONCLUSIONS Female patients had a worse outcome, but pregnancy status was not an additional risk factor in our cohort. Mannitol infusion was also not associated with a significant difference in outcome.
Collapse
Affiliation(s)
- Debashis Chowdhury
- Department of Gastroenterology and Hepatology, Chattogram Maa O Shishu Hospital (CMOSH) Medical College, Chattogram, Bangladesh
| | - Farhana Mahmood
- Department of Medicine, Chattogram Maa O Shishu Hospital (CMOSH) Medical College, Chattogram, Bangladesh
| | - Cathryn Edwards
- Office of the President, British Society of Gastroenterology, St Andrew’s Place, London, UK
| | - Simon D. Taylor-Robinson
- Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital Campus, London, UK
| |
Collapse
|
21
|
Lakshmanan S, Kane S, Dibble C, Roland B. Need for Awareness and Training in Women's Gastrointestinal Health: A Call to Action. J Womens Health (Larchmt) 2021; 31:125-129. [PMID: 33887148 DOI: 10.1089/jwh.2020.8826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Women's gastrointestinal (GI) health is a topic that is not well understood nor taught in most training programs. In this article, we highlight the importance of proper training in women's GI health among gastroenterologists and fellows, and identify some common conditions to provide the best possible treatment for their female patients.
Collapse
Affiliation(s)
- Seetha Lakshmanan
- Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island, USA
| | - Sunanda Kane
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christy Dibble
- Department of Gastroenterology, Women & Infants Hospital/Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Bani Roland
- Department of Gastroenterology, Women & Infants Hospital/Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Talapko J, Meštrović T, Pustijanac E, Škrlec I. Towards the Improved Accuracy of Hepatitis E Diagnosis in Vulnerable and Target Groups: A Global Perspective on the Current State of Knowledge and the Implications for Practice. Healthcare (Basel) 2021; 9:healthcare9020133. [PMID: 33572764 PMCID: PMC7912707 DOI: 10.3390/healthcare9020133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
The hepatitis E virus (HEV) is a positive single-stranded, icosahedral, quasi-enveloped RNA virus in the genus Orthohepevirus of the family Hepeviridae. Orthohepevirus A is the most numerous species of the genus Orthohepevirus and consists of eight different HEV genotypes that can cause infection in humans. HEV is a pathogen transmitted via the fecal-oral route, most commonly by consuming fecally contaminated water. A particular danger is the HEV-1 genotype, which poses a very high risk of vertical transmission from the mother to the fetus. Several outbreaks caused by this genotype have been reported, resulting in many premature births, abortions, and also neonatal and maternal deaths. Genotype 3 is more prevalent in Europe; however, due to the openness of the market, i.e., trade-in animals which represent a natural reservoir of HEV (such as pigs), there is a possibility of spreading HEV infections outside endemic areas. This problem is indeed global and requires increased hygiene measures in endemic areas, which entails special care for pregnant women in both endemic and non-endemic regions. As already highlighted, pregnant women could have significant health consequences due to the untimely diagnosis of HEV infection; hence, this is a population that should be targeted with a specific combination of testing approaches to ensure optimal specificity and sensitivity. Until we advance from predominantly supportive treatment in pregnancy and appraise the safety and efficacy of a HEV vaccine in this population, such screening approaches represent the mainstay of our public health endeavors.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
| | - Tomislav Meštrović
- University Centre Varaždin, University North, HR-42000 Varaždin, Croatia;
- Clinical Microbiology and Parasitology Unit, Dr. Zora Profozić Polyclinic, HR-10000 Zagreb, Croatia
| | - Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, HR-52100 Pula, Croatia;
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|
23
|
Ngo DB, Chaibun T, Yin LS, Lertanantawong B, Surareungchai W. Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling. Anal Bioanal Chem 2020; 413:1027-1037. [PMID: 33236225 DOI: 10.1007/s00216-020-03061-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.Graphical abstract.
Collapse
Affiliation(s)
- Duy Ba Ngo
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien-Chaitalay Road, Bangkok, 10150, Thailand
| | - Thanyarat Chaibun
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Jalan, Bukit Air Nasi, 08100, Bedong, Kedah, Malaysia
| | - Benchaporn Lertanantawong
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien-Chaitalay Road, Bangkok, 10150, Thailand. .,Nanoscience and Nanotechnology Graduate Program, Faculty of Science, King Mongkut's University of Technology Thonburi, Pracha Uthit Rd, Bangkok, 10140, Thailand.
| |
Collapse
|
24
|
Cornish EF, Filipovic I, Åsenius F, Williams DJ, McDonnell T. Innate Immune Responses to Acute Viral Infection During Pregnancy. Front Immunol 2020; 11:572567. [PMID: 33101294 PMCID: PMC7556209 DOI: 10.3389/fimmu.2020.572567] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Immunological adaptations in pregnancy allow maternal tolerance of the semi-allogeneic fetus but also increase maternal susceptibility to infection. At implantation, the endometrial stroma, glands, arteries and immune cells undergo anatomical and functional transformation to create the decidua, the specialized secretory endometrium of pregnancy. The maternal decidua and the invading fetal trophoblast constitute a dynamic junction that facilitates a complex immunological dialogue between the two. The decidual and peripheral immune systems together assume a pivotal role in regulating the critical balance between tolerance and defense against infection. Throughout pregnancy, this equilibrium is repeatedly subjected to microbial challenge. Acute viral infection in pregnancy is associated with a wide spectrum of adverse consequences for both mother and fetus. Vertical transmission from mother to fetus can cause developmental anomalies, growth restriction, preterm birth and stillbirth, while the mother is predisposed to heightened morbidity and maternal death. A rapid, effective response to invasive pathogens is therefore essential in order to avoid overwhelming maternal infection and consequent fetal compromise. This sentinel response is mediated by the innate immune system: a heritable, highly evolutionarily conserved system comprising physical barriers, antimicrobial peptides (AMP) and a variety of immune cells—principally neutrophils, macrophages, dendritic cells, and natural killer cells—which express pattern-receptors that detect invariant molecular signatures unique to pathogenic micro-organisms. Recognition of these signatures during acute infection triggers signaling cascades that enhance antimicrobial properties such as phagocytosis, secretion of pro-inflammatory cytokines and activation of the complement system. As well as coordinating the initial immune response, macrophages and dendritic cells present microbial antigens to lymphocytes, initiating and influencing the development of specific, long-lasting adaptive immunity. Despite extensive progress in unraveling the immunological adaptations of pregnancy, pregnant women remain particularly susceptible to certain acute viral infections and continue to experience mortality rates equivalent to those observed in pandemics several decades ago. Here, we focus specifically on the pregnancy-induced vulnerabilities in innate immunity that contribute to the disproportionately high maternal mortality observed in the following acute viral infections: Lassa fever, Ebola virus disease (EVD), dengue fever, hepatitis E, influenza, and novel coronavirus infections.
Collapse
Affiliation(s)
- Emily F Cornish
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Iva Filipovic
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Fredrika Åsenius
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - David J Williams
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Thomas McDonnell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
25
|
Anand AC, Nandi B, Acharya SK, Arora A, Babu S, Batra Y, Chawla YK, Chowdhury A, Chaoudhuri A, Eapen EC, Devarbhavi H, Dhiman R, Datta Gupta S, Duseja A, Jothimani D, Kapoor D, Kar P, Khuroo MS, Kumar A, Madan K, Mallick B, Maiwall R, Mohan N, Nagral A, Nath P, Panigrahi SC, Pawar A, Philips CA, Prahraj D, Puri P, Rastogi A, Saraswat VA, Saigal S, Shalimar, Shukla A, Singh SP, Verghese T, Wadhawan M. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol 2020; 10:339-376. [PMID: 32655238 PMCID: PMC7335721 DOI: 10.1016/j.jceh.2020.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is an infrequent, unpredictable, potentially fatal complication of acute liver injury (ALI) consequent to varied etiologies. Etiologies of ALF as reported in the literature have regional differences, which affects the clinical presentation and natural course. In this part of the consensus article designed to reflect the clinical practices in India, disease burden, epidemiology, clinical presentation, monitoring, and prognostication have been discussed. In India, viral hepatitis is the most frequent cause of ALF, with drug-induced hepatitis due to antituberculosis drugs being the second most frequent cause. The clinical presentation of ALF is characterized by jaundice, coagulopathy, and encephalopathy. It is important to differentiate ALF from other causes of liver failure, including acute on chronic liver failure, subacute liver failure, as well as certain tropical infections which can mimic this presentation. The disease often has a fulminant clinical course with high short-term mortality. Death is usually attributable to cerebral complications, infections, and resultant multiorgan failure. Timely liver transplantation (LT) can change the outcome, and hence, it is vital to provide intensive care to patients until LT can be arranged. It is equally important to assess prognosis to select patients who are suitable for LT. Several prognostic scores have been proposed, and their comparisons show that indigenously developed dynamic scores have an edge over scores described from the Western world. Management of ALF will be described in part 2 of this document.
Collapse
Key Words
- ACLF, acute on chronic liver failure
- AFLP, acute fatty liver of pregnancy
- AKI, Acute kidney injury
- ALF, Acute liver failure
- ALFED, Acute Liver Failure Early Dynamic
- ALT, alanine transaminase
- ANA, antinuclear antibody
- AP, Alkaline phosphatase
- APTT, activated partial thromboplastin time
- ASM, alternative system of medicine
- ASMA, antismooth muscle antibody
- AST, aspartate transaminase
- ATN, Acute tubular necrosis
- ATP, adenosine triphosphate
- ATT, anti-TB therapy
- AUROC, Area under the receiver operating characteristics curve
- BCS, Budd-Chiari syndrome
- BMI, body mass index
- CBF, cerebral blood flow
- CBFV, cerebral blood flow volume
- CE, cerebral edema
- CHBV, chronic HBV
- CLD, chronic liver disease
- CNS, central nervous system
- CPI, clinical prognostic indicator
- CSF, cerebrospinal fluid
- DAMPs, Damage-associated molecular patterns
- DILI, drug-induced liver injury
- EBV, Epstein-Barr virus
- ETCO2, End tidal CO2
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HAV, hepatitis A virus
- HBV, Hepatitis B virus
- HELLP, hemolysis
- HEV, hepatitis E virus
- HLH, Hemophagocytic lymphohistiocytosis
- HSV, herpes simplex virus
- HV, hepatic vein
- HVOTO, hepatic venous outflow tract obstruction
- IAHG, International Autoimmune Hepatitis Group
- ICH, intracerebral hypertension
- ICP, intracerebral pressure
- ICU, intensive care unit
- IFN, interferon
- IL, interleukin
- IND-ALF, ALF of indeterminate etiology
- INDILI, Indian Network for DILI
- KCC, King's College Criteria
- LC, liver cirrhosis
- LDLT, living donor liver transplantation
- LT, liver transplantation
- MAP, mean arterial pressure
- MHN, massive hepatic necrosis
- MPT, mitochondrial permeability transition
- MUAC, mid-upper arm circumference
- NAPQI, n-acetyl-p-benzo-quinone-imine
- NPV, negative predictive value
- NWI, New Wilson's Index
- ONSD, optic nerve sheath diameter
- PAMPs, pathogen-associated molecular patterns
- PCR, polymerase chain reaction
- PELD, Pediatric End-Stage Liver Disease
- PPV, positive predictive value
- PT, prothrombin time
- RAAS, renin–angiotensin–aldosterone system
- SHF, subacute hepatic failure
- SIRS, systemic inflammatory response syndrome
- SNS, sympathetic nervous system
- TB, tuberculosis
- TCD, transcranial Doppler
- TGF, tumor growth factor
- TJLB, transjugular liver biopsy
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TSFT, triceps skin fold thickness
- US, ultrasound
- USALF, US Acute Liver Failure
- VZV, varicella-zoster virus
- WD, Wilson disease
- Wilson disease (WD)
- YP, yellow phosphorus
- acute liver failure
- autoimmune hepatitis (AIH)
- drug-induced liver injury
- elevated liver enzymes, low platelets
- sALI, severe acute liver injury
- viral hepatitis
Collapse
Affiliation(s)
- Anil C. Anand
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Bhaskar Nandi
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Anil Arora
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sethu Babu
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Yogesh Batra
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
| | - Ashok Chaoudhuri
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Eapen C. Eapen
- Department of Hepatology, Christian Medical College, Vellore, India
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
| | - RadhaKrishan Dhiman
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Ajay Duseja
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Dinesh Jothimani
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
| | | | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Mohamad S. Khuroo
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Kaushal Madan
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
| | - Bipadabhanjan Mallick
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Rakhi Maiwall
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
| | - Neelam Mohan
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
| | - Aabha Nagral
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Preetam Nath
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Sarat C. Panigrahi
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Ankush Pawar
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
| | - Cyriac A. Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
| | - Dibyalochan Prahraj
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
| | - Pankaj Puri
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
| | - Amit Rastogi
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Sanjiv Saigal
- Department of Hepatology, Department of Liver Transplantation, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
| | - Akash Shukla
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Thomas Verghese
- Department of Gastroenterology, Government Medical College, Kozikhode, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| | - The INASL Task-Force on Acute Liver Failure
- Department of Gastroenterology, Kaliga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Department of Gastroenterology, Sarvodaya Hospital and Research Centre, Faridababd, Haryana, India
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
- Institute of Liver Gastroenterology &Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
- Department of Gastroenterology, Krishna Institute of Medical Sciences, Hyderabad 500003, India
- Department of Gastroenterology, Indraprastha Apollo Hospital, SaritaVihar, New Delhi, 110 076, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education & Research, Kolkata, 700020, India
- Hepatology and Liver Transplant, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Hepatology, Christian Medical College, Vellore, India
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, 560034, India
- Department of Hepatology, Post graduate Institute of Medical Education and Research, Chandigarh, 160 012, India
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Centre, Chrompet, Chennai, 600044, India
- Gleneagles Global Hospitals, Hyderabad, Telangana, India
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
- Department of Gastroenterology, Dr Khuroo’ S Medical Clinic, Srinagar, Kashmir, India
- Gastroenterology and Hepatology, Max Smart Super Specialty Hospital, Saket, New Delhi, India
- Department of Gastroenterology, Kalinga Institute of Medical Sciences, Bhubaneswar, 751024, India
- Hepatology Incharge Liver Intensive Care, Institute of Liver & Biliary Sciences, D-1 Vasant Kunj, New Delhi, India
- Department of Pediatric Gastroenterology, Hepatology & Liver Transplantation, Medanta – the Medicity Hospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Apollo and Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
- Liver & Digestive Diseases Institute, Fortis Escorts Hospital, Okhla Road, New Delhi, 110 025, India
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Centre, Kochi, 682028, Kerala, India
- Department of Hepatology and Gastroenterology, Fortis Escorts Liver & Digestive Diseases Institute (FELDI), Fortis Escorts Hospital, Delhi, India
- Department of Liver Transplantation, Medanta – the MedicityHospital, Sector – 38, Gurgaon, Haryana, India
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raibareli Road, Lucknow, Uttar Pradesh, 226 014, India
- Department of Hepatology, Department of Liver Transplantation, India
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 29, India
- Department of Gastroenterology, LTM Medical College & Sion Hospital, India
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
- Department of Gastroenterology, Government Medical College, Kozikhode, India
- Institute of Liver & Digestive Diseases and Head of Hepatology & Liver Transplant (Medicine), BLK Super Speciality Hospital, Delhi, India
| |
Collapse
|
26
|
Khoris IM, Chowdhury AD, Li TC, Suzuki T, Park EY. Advancement of capture immunoassay for real-time monitoring of hepatitis E virus-infected monkey. Anal Chim Acta 2020; 1110:64-71. [PMID: 32278401 DOI: 10.1016/j.aca.2020.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/30/2022]
Abstract
Rapid increasing outbreak of Hepatitis E virus (HEV) shows an urgent need of HEV detection. Instead of time consuming and expensive RT-qPCR, an efficient and quick monitoring system is in utmost demand which can be comparable with the RT-qPCR in term of reliability and detection limit. An advanced platform for immunoassay has been constructed in this study by a nanozyme that constitutes anti-HEV IgG antibody-conjugated gold nanoparticles (Ab-AuNPs) as core and in situ silver deposition on the surface of Ab-AuNPs as outer shell. The virus has been entrapped on the nanocomposites while the silver-shell has decomposed back to the silver ions (Ag+) by adding a tetramethylbenzidine (TMBZ) and hydrogen peroxide (H2O2) which indirectly quantifies the target virus concentration. Counterpart to only applying nanozyme, by incorporation of the enhanced effect of Ag shell on the AuNP-based nanozyme, the advance deposition has been confirmed to prove the signal amplification mechanism in the proposed immunoassay. Most importantly, the sensor performances have examined on the HEV, collected from the HEV-infected monkey over a period of 45 days. It was successfully correlated with the standard RT-qPCR data, showing the applicability of this immunoassay as a real-time monitoring on the HEV infection. The in situ formation of AuNPs@Ag as nanozyme in this capture immunoassay leads to a promising advancement over the conventional methods and nanozyme-based immunoassay in real application which can be a good substitute of RT-qPCR in near future.
Collapse
Affiliation(s)
- Indra Memdi Khoris
- Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Ankan Dutta Chowdhury
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Tian-Cheng Li
- Department of Virology 2, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayam-shi, Tokyo, 208-0011, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Disease, Hamamatsu University School of Medicine, Handayama, Hamamatsu, 431-3125, Japan.
| | - Enoch Y Park
- Department of Applied Biological Chemistry, College of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
27
|
Sooryanarain H, Heffron CL, Meng XJ. The U-Rich Untranslated Region of the Hepatitis E Virus Induces Differential Type I and Type III Interferon Responses in a Host Cell-Dependent Manner. mBio 2020; 11:e03103-19. [PMID: 31937650 PMCID: PMC6960293 DOI: 10.1128/mbio.03103-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV), a single-strand positive-sense RNA virus, is an understudied but important human pathogen. The virus can establish infection at a number of host tissues, including the small intestine and liver, causing acute and chronic hepatitis E as well as certain neurological disorders. The retinoic acid-inducible gene I (RIG-I) pathway is essential to induce the interferon (IFN) response during HEV infection. However, the pathogen-associated motif patterns (PAMPs) in the HEV genome that are recognized by RIG-I remain unknown. In this study, we first identified that HEV RNA PAMPs derived from the 3' untranslated region (UTR) of the HEV genome induced higher levels of IFN mRNA, interferon regulatory factor-3 (IRF3) phosphorylation, and nuclear translocation than the 5' UTR of HEV. We revealed that the U-rich region in the 3' UTR of the HEV genome acts as a potent RIG-I PAMP, while the presence of poly(A) tail in the 3' UTR further increases the potency. We further demonstrated that HEV UTR PAMPs induce differential type I and type III IFN responses in a cell type-dependent fashion. Predominant type III IFN response was observed in the liver tissues of pigs experimentally infected with HEV as well as in HEV RNA PAMP-induced human hepatocytes in vitro In contrast, HEV RNA PAMPs induced a predominant type I IFN response in swine enterocytes. Taken together, the results from this study indicated that the IFN response during HEV infection depends both on viral RNA motifs and host target cell types. The results have important implications in understanding the mechanism of HEV pathogenesis.IMPORTANCE Hepatitis E virus (HEV) is an important human pathogen causing both acute and chronic viral hepatitis E infection. Currently, the mechanisms of HEV replication and pathogenesis remain poorly understood. The innate immune response acts as the first line of defense during viral infection. The retinoic acid-inducible gene I (RIG-I)-mediated interferon (IFN) response has been implicated in establishing antiviral response during HEV infection, although the HEV RNA motifs that are recognized by RIG-I are unknown. This study identified that the U-rich region in the 3' untranslated region (UTR) of the HEV genome acts as a potent RIG-I agonist compared to the HEV 5' UTR. We further revealed that the HEV RNA pathogen-associated motif patterns (PAMPs) induced a differential IFN response in a cell type-dependent manner: a predominantly type III IFN response in hepatocytes, and a predominantly type I IFN response in enterocytes. These data demonstrate the complexity by which both host and viral factors influence the IFN response during HEV infection.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Connie L Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
28
|
Viral hepatitis among acute hepatitis patients attending tertiary care hospital in central India. Virusdisease 2019; 30:367-372. [PMID: 31803803 DOI: 10.1007/s13337-019-00541-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/08/2019] [Indexed: 01/21/2023] Open
Abstract
Viral hepatitis is a considerable public health burden affecting millions of people throughout the world. The incidence of viral hepatitis varies greatly depending upon geographic locations, age and gender. Exploring the etiological spectrum and clinic-epidemiological profile of acute viral hepatitis (AVH) becomes essential for strategizing the preventive measures to control the diseases. An epidemiological data depicting AVH situation and its etiologies is missing from central India. With the aim of fulfilling this lacuna, the present analysis was done on samples tested over a period of 2 years from July 2015 to June 2017. Of the 1901 hepatitis cases, 597 individuals (31.4%) were positive for AVH infection and HEV was the predominant cause followed by HBV, HAV and HCV. Co-infections of hepatitis viruses were detected in 42 cases. Co-infection of HEV with HBV was the commonest pattern. Male preponderance was observed among AVH positive cases and the age group of 26-45 years was the most susceptible to the viral hepatitis infections, except hepatitis A, which was the most frequent among children. Two hundred patients (33.45%) required hospitalization and 51 deaths were attributed to AVH infections. The analysis for the first time reports intricacies and viral etiologies of AVH in central India. Regular diagnosis of AVH etiology and monitoring of cases will help in patient management and assist disease control programs to take policy decisions.
Collapse
|
29
|
Arora A, Kumar A, Anand AC, Puri P, Dhiman RK, Acharya SK, Aggarwal K, Aggarwal N, Aggarwal R, Chawla YK, Dixit VK, Duseja A, Eapen CE, Goswami B, Gujral K, Gupta A, Jindal A, Kar P, Kumari K, Madan K, Malhotra J, Malhotra N, Pandey G, Pandey U, Puri RD, Rai RR, Rao PN, Sarin SK, Sharma A, Sharma P, Shenoy KT, Singh KR, Singh SP, Suri V, Trehanpati N, Wadhawan M. Indian National Association for the Study of the Liver-Federation of Obstetric and Gynaecological Societies of India Position Statement on Management of Liver Diseases in Pregnancy. J Clin Exp Hepatol 2019; 9:383-406. [PMID: 31360030 PMCID: PMC6637074 DOI: 10.1016/j.jceh.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Liver diseases occurring during pregnancy can be serious and can progress rapidly, affecting outcomes for both the mother and fetus. They are a common cause of concern to an obstetrician and an important reason for referral to a hepatologist, gastroenterologist, or physician. Liver diseases during pregnancy can be divided into disorders unique to pregnancy, those coincidental with pregnancy, and preexisting liver diseases exacerbated by pregnancy. A rapid differential diagnosis between liver diseases related or unrelated to pregnancy is required so that specialist and urgent management of these conditions can be carried out. Specific Indian guidelines for the management of these patients are lacking. The Indian National Association for the Study of the Liver (INASL) in association with the Federation of Obstetric and Gynaecological Societies of India (FOGSI) had set up a taskforce for development of consensus guidelines for management of patients with liver diseases during pregnancy, relevant to India. For development of these guidelines, a two-day roundtable meeting was held on 26-27 May 2018 in New Delhi, to discuss, debate, and finalize the consensus statements. Only those statements that were unanimously approved by most members of the taskforce were accepted. The primary objective of this review is to present the consensus statements approved jointly by the INASL and FOGSI for diagnosing and managing pregnant women with liver diseases. This article provides an overview of liver diseases occurring in pregnancy, an update on the key mechanisms involved in its pathogenesis, and the recommended treatment options.
Collapse
Key Words
- ABCB4, ATP-binding cassette subfamily B member 4
- AFLP, Acute fatty liver of pregnancy
- ALF, Acute liver failure
- ALP, Alkaline phosphatase
- ALT, Alanine transferase
- ART, Antiretroviral therapy
- AST, Aspartate aminotransferase
- BCS, Budd-Chiari syndrome
- CT, Computerized tomography
- DIC, Disseminated intravascular coagulation
- DNA, Deoxyribonucleic acid
- DPTA, Diethylenetriamine pentaacetic acid
- ERCP, Endoscopic retrograde cholangiopancreatography
- FDA, Food and Drug Administration
- FOGSI, Federation of Obstetric and Gynaecological Societies of India
- GGT, Gamma-glutamyl transpeptidase
- GI, Gastrointestinal
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- HBIG, Hepatitis B immune globulin
- HBV, Hepatitis B virus
- HBeAg, Hepatitis B envelope antigen
- HBsAg, Hepatitis B surface antigen
- HCV, Hepatitis C virus
- HELLP syndrome
- HELLP, Hemolysis, elevated liver enzymes, low platelet count
- HG, Hyperemesis gravidarum
- HIV, Human immunodeficiency virus
- HV, Hepatic vein
- ICP, Intrahepatic cholestasis of pregnancy
- INASL, Indian National Association for the Study of Liver
- IVF, In vitro fertilization
- LFT, Liver function test
- MDR, Multidrug resistance
- MRI, Magnetic resonance imaging
- MTCT, Mother-to-child transmission
- NA, Nucleos(t)ide analog
- PIH, Pregnancy-induced hypertension
- PT, Prothrombin time
- PUQE, Pregnancy-Unique Quantification of Emesis
- PegIFN, Pegylated interferon
- RNA, Ribonucleic acid
- TAF, Tenofovir alafenamide
- TDF, Tenofovir disoproxil fumarate
- TIPS, Transjugular intrahepatic portosystemic shunt
- UDCA, Ursodeoxycholic acid
- UGI, Upper gastrointestinal
- ULN, Upper limit of normal
- acute fatty liver of pregnancy
- hyperemesis gravidarum
- intrahepatic cholestasis of pregnancy
- liver diseases in pregnancy
Collapse
Affiliation(s)
- Anil Arora
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil C. Anand
- Kalinga Institute of Medical Sciences, KIIT University, Bubaneswar, India
| | - Pankaj Puri
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subrat K. Acharya
- Kalinga Institute of Medical Sciences, KIIT University, Bubaneswar, India
| | - Kiran Aggarwal
- Department of Obstetrics and Gynecology, LHMC & Associated Hospitals, New Delhi, India
| | - Neelam Aggarwal
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Yogesh K. Chawla
- Kalinga Institute of Medical Sciences, KIIT University, Bubaneswar, India
| | - Vinod K. Dixit
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Bhabadev Goswami
- Department of Gastroenterology, Guwahati Medical College, Assam, India
| | - Kanwal Gujral
- Institute of Obstetrics and Gynecology, Sir Ganga Ram Hospital, New Delhi, India
| | - Anoop Gupta
- Delhi IVF and Fertility Research Centre, New Delhi, India
| | - Ankur Jindal
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Patparganj, New Delhi
| | - Krishna Kumari
- Max Cure Suyosha Woman & Child Hospital, Hyderabad, India
| | - Kaushal Madan
- Max Smart Super Speciality Hospital, Saket, New Delhi, India
| | | | | | - Gaurav Pandey
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Uma Pandey
- Dept of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ratna D. Puri
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ramesh R. Rai
- Department of Gastroenterology, NIMS Medical College and Hospital, Jaipur, India
| | - Padaki N. Rao
- Department of Hepatology, Asian Institute of Gastroenterology Hospitals, Hyderabad, India
| | - Shiv K. Sarin
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Aparna Sharma
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Praveen Sharma
- Institute of Liver, Gastroenterology, and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Koticherry T. Shenoy
- Sree Gokulam Medical College and Research Foundation, Venjaramoodu, Thiruvananthapuram, India
| | - Karam R. Singh
- Regional Institute of Medical Sciences (RIMS), Imphal, Manipur, India
| | | | - Vanita Suri
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
30
|
Gomes CF, Sousa M, Lourenço I, Martins D, Torres J. Gastrointestinal diseases during pregnancy: what does the gastroenterologist need to know? Ann Gastroenterol 2018; 31:385-394. [PMID: 29991883 PMCID: PMC6033757 DOI: 10.20524/aog.2018.0264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022] Open
Abstract
Pregnancy is characterized by numerous physiological changes that may lead to a diversity of symptoms and frequently to gastrointestinal complaints, such as heartburn, nausea and vomiting, or constipation. Chronic gastrointestinal diseases require treatment maintenance during this period, raising the challenging question whether outcomes beneficial to the mother may be harmful for the fetus. In addition, certain diseases, such as acute fatty liver of pregnancy, only develop during pregnancy and may require urgent procedures, such as fetus delivery. Even though they are not present in our day-to-day practice, knowledge of pregnancy-related diseases is fundamental and collaboration between gastroenterologists and obstetricians is often necessary. Herein, we review pregnancy-related diseases and systematize the most appropriate treatment choices according to the recent literature and guidelines, so that the article can serve as a guide to the gastroenterologist regarding the medical approach to pregnancy-related gastrointestinal and liver diseases and their therapeutic management.
Collapse
Affiliation(s)
- Catarina Frias Gomes
- Surgical Department, Gastroenterology Division (Catarina Frias Gomes, Joana Torres), Hospital Beatriz Ângelo, Loures, Portugal
| | - Mónica Sousa
- Medicine Department, Internal Medicina Division (Mónica Sousa);), Hospital Beatriz Ângelo, Loures, Portugal
| | - Inês Lourenço
- Surgical Department, Gynaecology and Obstetrics Division (Inês Lourenço, Diana Martins), Hospital Beatriz Ângelo, Loures, Portugal
| | - Diana Martins
- Surgical Department, Gynaecology and Obstetrics Division (Inês Lourenço, Diana Martins), Hospital Beatriz Ângelo, Loures, Portugal
| | - Joana Torres
- Surgical Department, Gastroenterology Division (Catarina Frias Gomes, Joana Torres), Hospital Beatriz Ângelo, Loures, Portugal
| |
Collapse
|
31
|
Lei Q, Li L, Zhang S, Li T, Zhang X, Ding X, Qin B. HEV ORF3 downregulates TLR7 to inhibit the generation of type I interferon via impairment of multiple signaling pathways. Sci Rep 2018; 8:8585. [PMID: 29872132 PMCID: PMC5988675 DOI: 10.1038/s41598-018-26975-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E is the most common type of acute hepatitis prevalent worldwide. The open reading frame 3 protein of HEV (HEV ORF3) is proposed to create a favorable environment for viral replication and pathogenesis. However, the mechanisms by which HEV overcomes the effects of host immunity, particularly the role of ORF3, remain to be established. Expression of IFNα and IFNβ in supernatant and cell samples was examined via ELISA and quantitative RT-PCR. The protein levels of specific signaling factors in cells overexpressing HEV ORF3 were examined via western blot. Analyses of cells transfected with vectors expressing ORF3 demonstrated that HEV ORF3 significantly impairs the generation of endogenous type I interferon through downregulating TLR3 and TLR7 as well as their corresponding downstream signaling pathways. Moreover, inhibition of NFκB, JAK/STAT and JNK/MAPK signaling pathways contributed significantly to suppression of increased levels of TLR7. Levels of p-P65, p-STAT1 and p-JNK were markedly impaired in ORF3-expressing cells, even upon treatment with the respective agonists. HEV ORF3 inhibits the production of endogenous type I interferon through downregulation of TLR3 and TLR7. Furthermore, suppression of TLR7 is achieved through impairment of multiple signaling pathways, including NFκB, JAK/STAT and JNK/MAPK.
Collapse
Affiliation(s)
- Qingsong Lei
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Li
- Department of hepatic diseases, Chongqing Tranditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianju Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolin Ding
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bo Qin
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases,Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
32
|
Wang M, Huang Y, He M, Peng WJ, Tian DY. Effects of hepatitis E virus infection on interferon production via ISG15. World J Gastroenterol 2018; 24:2173-2180. [PMID: 29853735 PMCID: PMC5974579 DOI: 10.3748/wjg.v24.i20.2173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the effects of hepatitis E virus (HEV) on the production of type I interferons (IFNs) and determine the underlying mechanisms.
METHODS We measured the production of interferon (IFN)-alpha and -beta (-α/β) in genotype 3 HEV-infected C3A cells at different time points (0, 8, 12, 24, 48, 72 and 120 h) by enzyme-linked immunosorbent assay (ELISA). The expression levels of IFN-stimulated gene (ISG)15 in HEV-infected C3A cells at different time points were tested by western blotting. The plasmid-expressing open reading frame 3 (ORF3) or control plasmids (green fluorescent protein-expressing) were transfected into C3A cells, and the levels of IFN-α/β and ISG15 were evaluated, respectively. Furthermore, the plasmid-expressing ISG15 or small interfering RNA-inhibiting ISG15 was transfected into infected C3A cells. Then, the production of IFN-α/β was also measured by ELISA.
RESULTS We showed that genotype 3 HEV could enhance the production of IFN-α/β and induce elevation of ISG15 in C3A cells. HEV ORF3 protein could enhance the production of IFN-α/β and the expression of ISG15. Additionally, ISG15 silencing enhanced the production of IFN-α/β. Overexpression of ISG15 resulted in the reduction of IFN-α/β.
CONCLUSION HEV may promote production of IFN-α/β and expression of ISG15 via ORF3 in the early stages, and increased ISG15 subsequently inhibited the production of IFN-α/β.
Collapse
Affiliation(s)
- Min Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ying Huang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510700, Guangdong Province, China
| | - Man He
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Ju Peng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - De-Ying Tian
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
33
|
High seroprevalence of hepatitis E virus in the ethnic minority populations in Yunnan, China. PLoS One 2018; 13:e0197577. [PMID: 29787589 PMCID: PMC5963781 DOI: 10.1371/journal.pone.0197577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) infection is relatively high in the southern regions of China. Yunnan, located in southwestern China, has the highest number of ethnic groups. However, HEV infection in the ethnic population is largely unknown. Therefore, we aimed to investigate the seropositive rate, risk factor, and clinical impact of HEV infection in the ethnic groups of Yunnan. We recruited 1912 individuals from four minority groups in three prefectures of Yunnan province. Epidemiological records on potential risk factors for exposure to HEV and blood biochemical index were analyzed. All the serum samples were tested for anti-HEV IgM/IgG by enzyme-linked immunosorbent assay, and the IgM-positive samples were subjected to nested reverse transcription-PCR to detect HEV RNA. Overall, 1273 individuals (66.58%) were positive for anti-HEV IgG, 16 (0.84%) for anti-HEV IgM, and 64 (3.35%) for anti-HEV IgG and IgM both; none of them had detectable HEV RNA. Multivariate analysis revealed a strong statistical association between ethnic origin and HEV IgG seroprevalence. Anti-HEV IgG reactivity in the Hani ethnic (82.3%; 401/487) population was higher than that in the Naxi (71.9%, 340/473), Bulang (65.1%; 302/464), and Wa (60.2%; 294/488) ethnic populations (p < 0.0001). Older age and male sex were independently associated with the risk of past HEV infection. Moreover, anti-HEV IgG-positive individuals showed significantly higher levels of total and direct bilirubin and alanine amino transferase but significantly lower levels of globulin and low-density lipoprotein, than the respective levels in anti-HEV IgG-negative individuals. Thus, the seroprevalence of HEV infection is high in the ethnic populations of Yunnan, China. It is therefore necessary to increase the surveillance of specific risk groups and raise awareness about the possible infectious diseases to help limit the HEV transmission here.
Collapse
|
34
|
Abstract
Acute liver failure (ALF) is an uncommon syndrome with a highly variable and unpredictable clinical course. The initial diagnostic evaluation is typically performed in a non-intensive care unit (ICU) setting, like the emergency department or general hospital ward. Prompt restoration of intravascular volume with intravenous fluids and correction of electrolyte, metabolic, and acid-base disturbances are important initial interventions in the management of ALF and can be safely accomplished in non-ICU settings in many patients. Similarly, therapies such as administration of N-acetylcysteine for acetaminophen-induced ALF and other cause-specific interventions can also be administered in non-ICU settings, thus minimizing delay.
Collapse
Affiliation(s)
- Andres F Carrion
- Texas Tech University Health Sciences Center El Paso, 4800 Alberta Avenue, El Paso, TX 79905, USA.
| | - Paul Martin
- Gastroenterology and Hepatology, University of Miami Miller School of Medicine, 1120 NW 14th Street, Miami, FL 33136, USA
| |
Collapse
|
35
|
Babu R, Kanianchalil K, Sahadevan S, Nambiar R, Kumar A. Liver transplantation for acute liver failure due to hepatitis E in a pregnant patient. Indian J Anaesth 2018; 62:908-910. [PMID: 30532332 PMCID: PMC6236778 DOI: 10.4103/ija.ija_149_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rakesh Babu
- Department of Anaesthesiology and Liver Transplant, Aster MIMS Hospital, Calicut, Kerala, India
| | - Kishore Kanianchalil
- Department of Anaesthesiology and Liver Transplant, Aster MIMS Hospital, Calicut, Kerala, India
| | - Sajeesh Sahadevan
- Department of Anaesthesiology and Liver Transplant, Aster MIMS Hospital, Calicut, Kerala, India
| | - Rajesh Nambiar
- Department of Anaesthesiology and Liver Transplant, Aster MIMS Hospital, Calicut, Kerala, India
| | - Anish Kumar
- Head of Medical Gastroenterology, Aster MIMS, Calicut, Kerala, India
| |
Collapse
|
36
|
Nan Y, Wu C, Zhao Q, Zhou EM. Zoonotic Hepatitis E Virus: An Ignored Risk for Public Health. Front Microbiol 2017; 8:2396. [PMID: 29255453 PMCID: PMC5723051 DOI: 10.3389/fmicb.2017.02396] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatitis E virus (HEV) is a quasi-enveloped, single-stranded positive-sense RNA virus. HEV belongs to the family Hepeviridae, a family comprised of highly diverse viruses originating from various species. Since confirmation of HEV's zoonosis, HEV-induced hepatitis has been a public health concern both for developing and developed countries. Meanwhile, the demonstration of a broad host range for zoonotic HEV suggests the existence of a variety of transmission routes that could lead to human infection. Moreover, anti-HEV antibody serosurveillance worldwide demonstrates a higher than expected HEV prevalence rate that conflicts with the rarity and sporadic nature of reported acute hepatitis E cases. In recent years, chronic HEV infection, HEV-related acute hepatic failure, and extrahepatic manifestations caused by HEV infection have been frequently reported. These observations suggest a significant underestimation of the number and complexity of transmission routes previously predicted to cause HEV-related disease, with special emphasis on zoonotic HEV as a public health concern. Significant research has revealed details regarding the virology and infectivity of zoonotic HEV in both humans and animals. In this review, the discovery of HEV zoonosis, recent progress in our understanding of the zoonotic HEV host range, and classification of diverse HEV or HEV-like isolates from various hosts are reviewed in a historic context. Ultimately, this review focuses on current understanding of viral pathogenesis and cross-species transmission of zoonotic HEV. Moreover, host factors and viral determinants influencing HEV host tropism are discussed to provide new insights into HEV transmission and prevalence mechanisms.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Xianyang, China
| |
Collapse
|
37
|
Ahn HS, Han SH, Kim YH, Park BJ, Kim DH, Lee JB, Park SY, Song CS, Lee SW, Choi C, Myoung J, Choi IS. Adverse fetal outcomes in pregnant rabbits experimentally infected with rabbit hepatitis E virus. Virology 2017; 512:187-193. [PMID: 28982029 DOI: 10.1016/j.virol.2017.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023]
Abstract
Hepatitis E virus (HEV) causes severe hepatitis in pregnant women, with associated poor fetal outcomes. To study HEV viral pathogenesis, pregnant rabbits were infected with low- and high-dose rabbit HEV at 2 weeks gestation. HEV was identified in the serum, feces, and liver tissue of infected rabbits, and dose-dependent fetal mortality rates ranging from 67% to 80% were observed. The aspartate transaminase (AST)/alanine transaminase ratio was significantly higher (P < 0.01) in high-dose infected rabbits than low-dose infected and negative control rabbits 14 days post infection (dpi). Tumor necrosis factor-α (TNF-α) was significantly higher in low-dose (P < 0.01) and high-dose infected rabbits (P < 0.001) than in negative controls 7 dpi. High-dose HEV-infected rabbits produced significantly more interferon-γ (IFN-γ; P < 0.05) than negative control rabbits at 7 and 14 dpi. High levels of AST, TNF-α, and IFN-γ may substantially influence adverse fetal outcomes in pregnant rabbits infected with high-dose HEV.
Collapse
Affiliation(s)
- Hee-Seop Ahn
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Hoon Han
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yong-Hyun Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung-Joo Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hwi Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joong-Bok Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seung-Yong Park
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Won Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
Baptista-González H, Trueba-Gómez R, Rosenfeld-Mann F, Roque-Álvarez E, Méndez-Sánchez N. Low prevalence of IgG antibodies against antigens of HEV genotypes 1 and 3 in women with a high-risk pregnancy. J Med Virol 2017; 89:2051-2054. [PMID: 28617960 DOI: 10.1002/jmv.24878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/06/2017] [Indexed: 12/28/2022]
Abstract
The aim of the study was to assess whether high-risk pregnant women have a higher prevalence of HEV during the perinatal period. This was a cross-sectional study of 428 patients: Group 1, 127 women with a high-risk pregnancy; Group 2, 97 asymptomatic people with reactivity to HCV or HBV; Group 3, 94 patients with clinical symptoms suggestive of HEV infection; and Group 4, 110 healthy blood donors from an urban area of Mexico City. ELISA was used to measure antibody to HEV genotypes 1 and 3. The prevalence rates of anti-HEV IgG antibodies were 0.79% in Group 1, 2.1% in Group 2, 7.4% in Group 3, and 0% in Group 4. Women with a high-risk pregnancy did not have a higher prevalence of HEV infection in this clinical setting.
Collapse
Affiliation(s)
| | - Rocío Trueba-Gómez
- Perinatal Hematology, National Institute of Perinatology, Mexico City, Mexico
| | | | - Elsa Roque-Álvarez
- Medica Sur Clinic & Foundation, Liver Research Unit, Mexico City, Mexico
| | | |
Collapse
|
39
|
Verma N, Sharma M, Biswal M, Taneja S, Batra N, Kumar A, Dhiman RK. Hepatitis E Virus Induced Acute Liver Failure with Scrub Typhus Coinfection in a Pregnant Woman. J Clin Exp Hepatol 2017; 7:158-160. [PMID: 28663682 PMCID: PMC5478934 DOI: 10.1016/j.jceh.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
Coinfections contribute significantly to diagnostic challenges of acute febrile illnesses, especially in endemic areas. The confusion caused by overlapping clinical features impedes timely management. Herein, we report an unusual, previously unreported case of a pregnant woman suffering from a coinfection of scrub typhus and hepatitis E virus. A 25-year-old, 31-week pregnant woman presented with jaundice for 5 days and altered sensorium for 2 days. She had features of both viral acute liver failure (ALF) and tropical infections mimicking ALF, including hyperbilirubinemia, coagulopathy, anemia, thrombocytopenia, intravascular hemolysis, and hepatosplenomegaly. Etiological workup revealed rare coinfection of hepatitis E and scrub typhus. Despite all supportive measures, the patient succumbed to her illness (i.e., absent brainstem reflexes and intracranial bleed secondary to coagulopathy) and had poor fetal outcome, which resulted in stillbirth. ALF in a pregnant woman is a medical and obstetric emergency. It can result from varied etiologies that though differ in their incidence, mode of occurrence, and pregnancy outcome, can clinically masquerade as each other, causing diagnostic dilemma. This unusual case report highlights the significance of keeping all such possibilities in mind while managing a pregnant woman with ALF, especially in a country like India where maternal and perinatal mortality rates, the core indicators of national health, are still among the highest in the world.
Collapse
Affiliation(s)
- Nipun Verma
- Department of Hepatology, PGIMER, Chandigarh, India
| | - Megha Sharma
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Sunil Taneja
- Department of Hepatology, PGIMER, Chandigarh, India
- Address for correspondence: Sunil Taneja, Assistant Professor, Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.Department of Hepatology, Post Graduate Institute of Medical Education and ResearchChandigarh160012India
| | - Nitya Batra
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | - Abhay Kumar
- Department of Medical Microbiology, PGIMER, Chandigarh, India
| | | |
Collapse
|
40
|
Wendon, J, Cordoba J, Dhawan A, Larsen FS, Manns M, Samuel D, Simpson KJ, Yaron I, Bernardi M. EASL Clinical Practical Guidelines on the management of acute (fulminant) liver failure. J Hepatol 2017; 66:1047-1081. [PMID: 28417882 DOI: 10.1016/j.jhep.2016.12.003] [Citation(s) in RCA: 528] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
The term acute liver failure (ALF) is frequently applied as a generic expression to describe patients presenting with or developing an acute episode of liver dysfunction. In the context of hepatological practice, however, ALF refers to a highly specific and rare syndrome, characterised by an acute abnormality of liver blood tests in an individual without underlying chronic liver disease. The disease process is associated with development of a coagulopathy of liver aetiology, and clinically apparent altered level of consciousness due to hepatic encephalopathy. Several important measures are immediately necessary when the patient presents for medical attention. These, as well as additional clinical procedures will be the subject of these clinical practice guidelines.
Collapse
|
41
|
Acute Liver Failure Due to Hepatitis E Virus Infection Is Associated with Better Survival than Other Etiologies in Indian Patients. Dig Dis Sci 2017; 62:1058-1066. [PMID: 28130708 DOI: 10.1007/s10620-017-4461-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Hepatitis E virus (HEV) is a global disease and an important cause of acute liver failure (ALF) in the Indian subcontinent. The aim of this study was to assess the differences in the course of HEV-ALF as compared to other etiologies of ALF. METHODS We compared the clinical course, complications, and outcomes of HEV-ALF with other etiologies. We assessed the prognostic factors and compared existing prognostic scores in HEV-ALF patients. RESULTS One thousand four hundred and sixty-two ALF patients were evaluated between January 1986 and December 2015. HEV was the etiology of ALF in 419 (28.7%) cases, whereas non-A non-E hepatitis, HBV and anti-tuberculosis therapy (ATT) were the etiologies in 527 (36.0%), 128 (8.8%), and 103 (7.0%) cases, respectively. The frequency of cerebral edema in HEV-ALF (41.3%) was lower than that in non-A non-E ALF (52.9%; P < 0.001) and HBV-ALF (52.8%; P = 0.024). Infection and seizures were significantly less in patients with HEV-ALF compared to non-A non-E and HBV-ALF (P = 0.038 and 0.022, respectively). The survival of HEV-ALF patients was significantly better (55.1%, P < 0.001) than patients of other etiologies-including ATT (30.0%), non-A non-E (38.1%) and HBV (35.9%). In HEV-ALF patients, age, female sex, cerebral edema, prothrombin time >60 s, infection, and total bilirubin were observed as independent predictors of outcome on multivariate logistic regression analysis. Model for end-stage liver disease, acute liver failure study group model and King's College Hospital criteria had poor discriminative accuracy for outcome (area under receiver operator characteristic curve 0.63-0.64) in HEV-ALF. CONCLUSIONS Hepatitis E virus-associated ALF has a better outcome than ALF of other etiologies.
Collapse
|
42
|
A Case of Acute Hepatitis E Infection in a Patient with Non-Hodgkin Lymphoma Treated Successfully with Ribavirin. Case Rep Gastrointest Med 2017; 2017:8941218. [PMID: 28182129 PMCID: PMC5274689 DOI: 10.1155/2017/8941218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 11/23/2022] Open
Abstract
We present the case of a man who, following immunosuppressive treatment for non-Hodgkin lymphoma, became infected with viral hepatitis E. Acute hepatitis E virus infection should be considered in patients with deranged liver function on a background of haematological malignancies or immunosuppression, even without travel to endemic regions. Whilst clearance is usually spontaneous in immune-competent individuals, these at-risk groups may develop a more complicated and protracted disease course. Thus awareness is important as additional treatment with ribavirin or pegylated interferon may be required, as in this case, in order to help achieve eradication.
Collapse
|
43
|
Affiliation(s)
- Sandeep Satsangi
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India
| | - Radha K Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India
| |
Collapse
|
44
|
Devhare PB, Desai S, Lole KS. Innate immune responses in human hepatocyte-derived cell lines alter genotype 1 hepatitis E virus replication efficiencies. Sci Rep 2016; 6:26827. [PMID: 27230536 PMCID: PMC4882509 DOI: 10.1038/srep26827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV) is a significant health problem in developing countries causing sporadic and epidemic forms of acute viral hepatitis. Hepatitis E is a self-limiting disease; however, chronic HEV infections are being reported in immunocompromised individuals. The disease severity is more during pregnancy with high mortality (20-25%), especially in third trimester. Early cellular responses after HEV infection are not completely understood. We analyzed innate immune responses associated with genotype-I HEV replication in human hepatoma cell lines (Huh7, Huh7.5 and HepG2/C3A) using HEV replicon system. These cells supported HEV replication with different efficiencies due to the cell type specific innate immune responses. HepG2/C3A cells were less supportive to HEV replication as compared to Huh7.5 and S10-3 cells. Reconstitution of the defective RIG-I and TLR3 signaling in Huh7.5 cells enabled them to induce higher level antiviral responses and restrict HEV replication, suggesting the involvement of both RIG-I and TLR3 in sensing HEV RNA and downstream activation of interferon regulatory factor 3 (IRF3) to generate antiviral responses. Inhibition of IRF3 mediated downstream responses in HepG2/C3A cells by pharmacological inhibitor BX795 significantly improved HEV replication efficiency implying the importance of this study in establishing a better cell culture system for future HEV studies.
Collapse
Affiliation(s)
- Pradip B. Devhare
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Swapnil Desai
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| | - Kavita S. Lole
- Hepatitis Division, National Institute of Virology, Microbial Containment Complex, Pashan, Pune, India
| |
Collapse
|
45
|
Zhao Y, Jin H, Zhang X, Wang B, Liu P. Viral hepatitis vaccination during pregnancy. Hum Vaccin Immunother 2016; 12:894-902. [PMID: 26833263 PMCID: PMC4962971 DOI: 10.1080/21645515.2015.1132129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/27/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022] Open
Abstract
Viral hepatitis is a serious global public health problem. It is also a common cause of jaundice and gestational complications in pregnant women. Moreover, infected mothers can transmit the virus to their fetus or neonate, which may increase disease burden and decrease quality of life. To date, commercial vaccines have been developed for hepatitis A, B, and E and are available to the general population. The Advisory Committee on Immunization Practices currently accepts emergency vaccination against hepatitis A and B during pregnancy due to benefits that overweight the potential risks. While there are limited data from trials with limited numbers of samples that suggest the efficacy or safety of hepatitis B and E vaccines in pregnant women, additional data are necessary to provide evidence of vaccination during pregnancy.
Collapse
Affiliation(s)
- Yueyuan Zhao
- School of Public Health, Southeast University, Nanjing, China
| | - Hui Jin
- School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Nanjing, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Bei Wang
- School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Nanjing, China
| | - Pei Liu
- School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
46
|
Shalimar, Acharya SK. Management in acute liver failure. J Clin Exp Hepatol 2015; 5:S104-15. [PMID: 26041950 PMCID: PMC4442864 DOI: 10.1016/j.jceh.2014.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022] Open
Abstract
Acute liver failure (ALF) is a rare, potentially fatal complication of severe hepatic illness resulting from various causes. In a clinical setting, severe hepatic injury is usually recognised by the appearance of jaundice, encephalopathy and coagulopathy. The central and most important clinical event in ALF is occurrence of hepatic encephalopathy (HE) and cerebral edema which is responsible for most of the fatalities in this serious clinical syndrome. The pathogenesis of encephalopathy and cerebral edema in ALF is unique and multifactorial. Ammonia plays a central role in the pathogenesis. The role of newer ammonia lowering agents is still evolving. Liver transplant is the only effective therapy that has been identified to be of promise in those with poor prognostic factors, whereas in the others, aggressive intensive medical management has been documented to salvage a substantial proportion of patients. A small fraction of patients undergo liver transplant and the remaining are usually treated with medical therapy. Therefore, identification of the complications and causes of death in such patients, and use of appropriate prognostic models to identify those who need liver transplant and those who can be managed with medical treatment is a vital component of therapeutic strategy. In this review, we discuss the various pathogenetic mechanisms and treatment options available.
Collapse
Key Words
- AASLD, American Association For the Study of Liver
- ALF, Acute Liver Failure
- ALFED, Acute Liver Failure Early Dynamic Model
- BBB, Blood Brain Barrier
- BCAA, Branched Chain Amino acid
- CBF, Cerebral Blood Flow
- CPP, Cerebral Perfusion Pressure
- CVVHD, Continuous Veno-Venous Hemodialysis
- FFP, Fresh Frozen Plasma
- GM-CSF, Granulocyte Macrophage Colony Stimulating Factor
- HE, Hepatic Encephalopathy
- ICU, Intensive Care Unit
- IEI, Icterus Encephalopathy Interval
- IL-1β, Interleukin-1 beta
- IL6, Interlekin 6
- INR, International Normalized Ratio
- LOLA, l-Ornithine L Aspartate
- LOPA
- LOPA, l-Ornithine Phenyl Acetate
- MAP, Mean Arterial Pressure
- NAC, N-Acetyl Cysteine
- NO, Nitric Oxide
- OLT, Orthotopic Liver Transplantation
- PCWP, Pulmonary Capillary Wedge Pressure
- PEEP, Positive End Expiratory Pressure
- PT, Prothrombin Time
- SIMV, Synchronous Intermittent mandatory Ventilation
- SIRS, Systemic Inflammatory Response Syndrome
- SPEAR, Selective Parenteral and Enteral Antibiotic Regimen
- TNF-α, Tumor Necrosis Factor alfa
- UCD, Urea Cycle Disorder
- USALF, United States Acute liver Failure Study Group
- ammonia
- cerebral edema
Collapse
Affiliation(s)
| | - Subrat K. Acharya
- Address for correspondence: Subrat K. Acharya, Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
47
|
Agrawal S, Dhiman RK. Hepatobiliary quiz-8 (2013). J Clin Exp Hepatol 2013; 3:357-61. [PMID: 25755526 PMCID: PMC4216931 DOI: 10.1016/j.jceh.2013.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Radha K. Dhiman
- Address for correspondence: Radha K. Dhiman, Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
48
|
Kumar A, Saraswat VA. Hepatitis E and Acute-on-Chronic Liver Failure. J Clin Exp Hepatol 2013; 3:225-30. [PMID: 25755504 PMCID: PMC3940130 DOI: 10.1016/j.jceh.2013.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis (AVH) globally. It causes large scale epidemics of AVH across the low- and middle income countries in Asia and Africa, and also causes sporadic cases of AVH in the same geographical region. AVH due to HEV is usually an acute, self-limiting illness, similar in clinical presentation to AVH caused by hepatitis A virus (HAV). When HEV causes AVH in patients of chronic liver disease it may worsen rapidly to a syndrome called acute-on-chronic liver failure (ACLF) leading to very high mortality. Acute deterioration of liver function in a patient with compensated chronic liver disease is the characteristic feature of ACLF. The typical disease course of patients with ACLF is the appearance of organ failure, which progresses to multi-organ failure and death. Many publications have reported HEV as one of the leading causes for ACLF from Asia and Africa, where HEV is endemic. The mortality rate of HEV-related ACLF (HEV-ACLF) ranges from 0% to 67% with a median being 34%. These patients require admission in the intensive care unit and they benefit from a team approach of clinicians with expertise in both hepatology and critical care. The goals of treatment are to prevent further deterioration in liver function, reverse precipitating factors, and support failing organs. Liver transplantation is required in selected patients to improve survival and quality of life. One preliminary report suggests that ribavirin may be an effective and safe drug for treatment of HEV-ACLF however this requires validation in large trials.
Collapse
Key Words
- ACLF, acute-on-chronic liver failure
- APASL, Asia–Pacific Association for the Study of Liver
- AVH, acute viral hepatitis
- CHB, chronic hepatitis B
- HAV, hepatitis A virus
- HBV, hepatitis B virus
- HEV, hepatitis E virus
- HEV-ACLF, HEV-related ACLF
- ICU, intensive care unit
- INR, international normalized ratio
- MELD, model for end-stage liver disease
- acute-on-chronic liver failure
- cirrhosis
- hepatitis E virus
- liver failure
- ribavirin
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Gastroenterology & Hepatology, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110 060, India,Address for correspondence: Ashish Kumar, Associate Professor & Consultant Hepatologist, Department of Gastroenterology & Hepatology, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110 060, India. Tel.: +91 9312792573.
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|