1
|
Chomanskis Ž, Jonkus V, Danielius T, Paulauskas T, Orvydaitė M, Melaika K, Rukšėnas O, Hendrixson V, Ročka S. Hypotensive Effect of Electric Stimulation of Caudal Ventrolateral Medulla in Freely Moving Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1046. [PMID: 37374250 DOI: 10.3390/medicina59061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: An altered sympathetic function is established in primary arterial hypertension (PAH) development. Therefore, PAH could be targeted by applying an electric current to the medulla where reflex centers for blood pressure control reside. This study aims to evaluate the electric caudal ventrolateral medulla (CVLM) stimulation effect on blood pressure and animal survivability in a freely moving rat model. Materials and Methods: A total of 20 Wistar rats aged 12-16 weeks were randomly assigned to either: the experimental group (n = 10; electrode tip implanted in CVLM region) or the control group (n = 10; tip implanted 4 mm above the CVLM in the cerebellum). After a period of recovery (4 days), an experimental phase ensued, divided into an "OFF stimulation" period (5-7 days post-surgery) and an "ON stimulation" period (8-14 days post-surgery). Results: Three animals (15%, one in the control, two in the experimental group) dropped out due to postoperative complications. Arterial pressure in the experimental group rats during the "OFF stimulation" period decreased by 8.23 mm Hg (p = 0.001) and heart rate by 26.93 beats/min (p = 0.008). Conclusions: From a physiological perspective, CVLM could be an effective deep brain stimulation (DBS) target for drug-resistant hypertension: able to influence the baroreflex arc directly, having no known direct integrative or neuroendocrine function. Targeting the baroreflex regulatory center, but not its sensory or effector parts, could lead to a more predictable effect and stability of the control system. Although targeting neural centers in the medullary region is considered dangerous and prone to complications, it could open a new vista for deep brain stimulation therapy. A possible change in electrode design would be required to apply CVLM DBS in clinical trials in the future.
Collapse
Affiliation(s)
- Žilvinas Chomanskis
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vytautas Jonkus
- Faculty of Physics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tadas Danielius
- Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Tomas Paulauskas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Monika Orvydaitė
- Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | | | - Osvaldas Rukšėnas
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Vaiva Hendrixson
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Saulius Ročka
- Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| |
Collapse
|
2
|
Cárdenas G, Chávez-Canales M, Espinosa AM, Jordán-Ríos A, Malagon DA, Murillo MFM, Araujo LVT, Campos RLB, Wong-Chew RM, González LER, Cresencio KI, Velázquez EG, de la Cerda MR, Leyva Y, Hernández-Ruiz J, Hernández-Medel ML, León-Hernández M, Quero KM, Monciváis AS, Díaz SH, Martínez IRZ, Martínez-Cuazitl A, Salazar INM, Sarmiento EB, Peña AF, Hernández PS, Reynoso RIA, Reyes DM, del Río Ambriz LR, Bonilla RAA, Cruz J, Huerta L, Fierro NA, Hernández M, Pérez-Tapia M, Meneses G, Espíndola-Arriaga E, Rosas G, Chinney A, Mendoza SR, Hernández-Aceves JA, Cervantes-Torres J, Rodríguez AF, Alor RO, Francisco SO, Salazar EA, Besedovsky H, Romano MC, Bobes RJ, Jung H, Soldevila G, López-Alvarenga J, Fragoso G, Laclette JP, Sciutto E. Intranasal dexamethasone: a new clinical trial for the control of inflammation and neuroinflammation in COVID-19 patients. Trials 2022; 23:148. [PMID: 35164840 PMCID: PMC8845269 DOI: 10.1186/s13063-022-06075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background By end December of 2021, COVID-19 has infected around 276 million individuals and caused over 5 million deaths worldwide. Infection results in dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells of the central nervous system are also affected, triggering an uncontrolled neuroinflammatory response. Low doses of glucocorticoids, administered orally or intravenously, reduce mortality among moderate and severe COVID-19 patients. However, low doses administered by these routes do not reach therapeutic levels in the CNS. In contrast, intranasally administered dexamethasone can result in therapeutic doses in the CNS even at low doses. Methods This is an approved open-label, multicenter, randomized controlled trial to compare the effectiveness of intranasal versus intravenous dexamethasone administered in low doses to moderate and severe COVID-19 adult patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be randomized into two groups (intravenous vs. intranasal) at a 1:1 ratio. Both groups will be treated with the corresponding dexamethasone scheme for 10 days. The primary outcome of the study will be clinical improvement, defined as a statistically significant reduction in the NEWS-2 score of patients with intranasal versus intravenous dexamethasone administration. The secondary outcome will be the reduction in mortality during hospitalization. Conclusions This protocol is currently in progress to improve the efficacy of the standard therapeutic dexamethasone regimen for moderate and severe COVID-19 patients. Trial registration ClinicalTrials.govNCT04513184. Registered November 12, 2020. Approved by La Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS) with identification number DI/20/407/04/36. People are currently being recruited. Graphical abstract ![]()
REVIVAL is a multicenter, open-label, randomized, controlled study to compare the standard low doses of intravenous dexamethasone with weight-adjusted low doses of intranasal dexamethasone. Intranasal dexamethasone can reach the respiratory tract more effectively than intravenous administration. Intranasal dexamethasone can reach the central nervous system in therapeutic concentrations, even at low doses. REVIVAL aims to reduce central failures and sequelae by controlling not only systemic inflammation but also neuroinflammation.
Collapse
|
3
|
Ghali MGZ. Dynamic changes in arterial pressure following high cervical transection in the decerebrate rat. J Spinal Cord Med 2021; 44:399-410. [PMID: 31525149 PMCID: PMC8081319 DOI: 10.1080/10790268.2019.1639974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Objective: Spinal transection has variable effects on arterial pressure, with some investigators demonstrating a precipitous decline and others reporting only a minimal decrease below normal. Recovery of arterial pressure following spinalization occurs with varying time courses - in some cases over days and in others over weeks to months. Given these findings, we sought to systematically test the hypothesis that in the unanesthetized decerebrate rat, arterial pressure would recover to pre-transection values over an acute time course.Design: Experiments were performed on a total of six Sprague-Dawley unanesthetized decerebrate adult male rats. In four rats, we determined dynamic changes in arterial pressure and heart rate in response to C1 transection.Results: Immediately following spinal cord injury, there were significant decreases in systolic blood (SBP) and mean arterial pressure (MAP), but not diastolic blood pressure (DBP). SBP, DBP, and MAP were significantly greater 170 min post-transection compared to immediate and 5 min-post transection values and were not statistically significantly different from pre-transection control. Heart rate decreased significantly following transection, but not immediately following the spinal cord injury. Lung inflation elicited depressor responses in all animals tested (n = 4 animals) and in three animals resulted in bradycardia. Hypercapnia tests effected a decrease in arterial pressure and heart rate (n = 3 animals).Conclusions: We demonstrate that in the unanesthetized decerebrate spinalized animal, arterial pressure is reduced by spinal transection and recovers over an acute time course to pre-transection values.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
George Zaki Ghali M. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur J Neurosci 2020; 52:3879-3902. [PMID: 32227408 DOI: 10.1111/ejn.14727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/01/2020] [Accepted: 03/22/2020] [Indexed: 01/12/2023]
Abstract
Neural circuitry residing within the medullary ventral respiratory column nuclei and dorsal respiratory group interact with the Kölliker-Fuse and medial parabrachial nuclei to generate the core breathing rhythm and pattern during resting conditions. Triphasic eupnea consists of inspiratory [I], post-inspiratory [post-I], and late-expiratory [E2] phases. Mesencephalic zones exert modulatory influences upon respiratory rhythm-generating circuitry, sympathetic oscillators, and parasympathetic nuclei. The earliest evidence supporting the existence of midbrain control of breathing derives from studies conducted by Martin and Booker in 1878. These authors demonstrated electrical stimulation of the deep layers of the mesencephalic colliculi in the rabbit augmented ventilation and sequentially elicited chest wall tremors and tetany. Investigations performed during the past several decades would demonstrate stimlation of distributed zones within the midbrain reticular formation elicits starkly disparate effects upon respiratory phase switching. Schmid, Böhmer, and Fallert demonstrated electrical stimulation of the nucleus rubre and emanating axon bundles alternately elicits or inhibits the activity of medullary expiratory- or inspiratory-related units and phrenic nerve discharge with differential latency. A series of studies would later indicate the red nucleus mediates hypoxic ventilatory depression. Periaqueductal gray matter neurons exhibit extensive afferent and efferent interconnectivity with suprabulbar, brainstem, and spinal cord zones aptly positioning these units to modulate breathing, autonomic outflow, nociception locomotion, micturtion, and sexual behavior. Experimental stimulatory activation of the tectal colliculi and periaqueductal gray matter via electrical current or glutamate, D,L-homocysteinic acid, or bicuculline microinjections coordinately modulates neuromotor inspiratory bursting frequency and amplitude and discharge of pre-Bötzinger complex, ventrolateral medullary late-I and post-I, and ventrolateral nucleus tractus solitarius decrementing early-I and augmenting and decrementing late-I neurons, elicits expiratory outflow and vocalization, and blunt the Hering-Breuer reflex in unanesthetzed decerebrate and anesthetized preprations of the cat and rat. Stimulation of the mesencephalic colliuli or dorsal divisions of the PAG potently amplifes renal sympathetic neural efferent activity, dynamic arterial pressure magnitude, and myocardial contraction frequency and elicits various behavioral defense responses. Elicited physiological effects exhibit extensive locoregional heterogeneity and variably enlist requisite contributions from the dorsomedial hypothalamus and/or lateral parabrachial nuclei. Stimulation of the dorsal mesencephalon occasionally elicits dynamic increases of arterial pressure magnitude exhibiting prominent oscillatory variability coherent with phrenic nerve discharge, perhaps by generating intra-neuraxial hysteresis, serving to intermittently deliver blood to organ vascular beds under high pressure in order to prevent organ edema, microcirculatory dysfunction, and downregulation of vascular smooth muscle alpha adrenergic receptors. Chemosensitive mesencephalic caudal raphé units and projections of hypoxia-sensitive units in the caudal hypothalamus to the periaqueductal gray matter may imply the existence of a diencephalo-smesencephalic chemosensitive network modulating breathing and sympathetic discharge.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas.,Department of Neurological Surgery, University of California, San Francisco, California.,Department of Neurological Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Farmer DGS, Pracejus N, Dempsey B, Turner A, Bokiniec P, Paton JFR, Pickering AE, Burguet J, Andrey P, Goodchild AK, McAllen RM, McMullan S. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J Physiol 2019; 597:3407-3423. [DOI: 10.1113/jp277661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/23/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- David G. S. Farmer
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Natasha Pracejus
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Bowen Dempsey
- Neuroscience Paris‐Saclay Institute (Neuro‐PSI) CNRS Gif‐Sur‐Yvette France
| | - Anita Turner
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| | - Phillip Bokiniec
- Department of Neuroscience Max Delbrück Center for Molecular Medicine (MDC) Berlin‐Buch, Germany Neuroscience Research Center and Cluster of Excellence NeuroCure Charité‐Universitätsmedizin Berlin Germany
| | - Julian F. R. Paton
- Department of Physiology Faculty of Medical & Health Sciences University of Auckland Park Road Grafton Auckland New Zealand
| | - Anthony E. Pickering
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences University of Bristol Bristol UK
| | - Jasmine Burguet
- Institut Jean‐Pierre Bourgin INRA AgroParisTech CNRS Université Paris‐Saclay Versailles France
| | - Philippe Andrey
- Institut Jean‐Pierre Bourgin INRA AgroParisTech CNRS Université Paris‐Saclay Versailles France
| | - Ann K. Goodchild
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| | - Robin M. McAllen
- Florey Institute of Neuroscience and Mental Health University of Melbourne Parkville VIC Australia
| | - Simon McMullan
- Faculty of Medicine & Health Science Macquarie University North Ryde NSW Australia
| |
Collapse
|
6
|
Abstract
Reticulospinal (RS) neurons provide the spinal cord with the executive signals for a large repertoire of motor and autonomic functions, ensuring at the same time that these functions are adapted to the different behavioral contexts. This requires the coordinated action of many RS neurons. In this mini-review, we examine how the RS neurons that carry out specific functions distribute across the three parts of the brain stem. Extensive overlap between populations suggests a need to explore multi-functionality at the single cell-level. We next contrast functional diversity and homogeneity in transmitter phenotype. Then, we examine the molecular genetic mechanisms that specify brain stem development and likely contribute to RS neurons identities. We advocate that a better knowledge of the developmental lineage of the RS neurons and a better knowledge of RS neuron activity across multiple behaviors will help uncover the fundamental principles behind the diversity of RS systems in mammals.
Collapse
Affiliation(s)
| | - Andrea Giorgi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Segiet A, Smykiewicz P, Kwiatkowski P, Żera T. Tumour necrosis factor and interleukin 10 in blood pressure regulation in spontaneously hypertensive and normotensive rats. Cytokine 2019; 113:185-194. [DOI: 10.1016/j.cyto.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/30/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
|
8
|
Abstract
The autonomic nervous system has widespread innervation to nearly every organ system in the body. In order to understand the basics of autonomic function, knowledge of the neuroanatomy of the autonomic nervous system is necessary. Frequently considered to control the "fight or flight" and "rest and digest" functions, the autonomic nervous system has an intricate network of connections to finely tune the systemic response to nearly any situation. Although traditionally considered two discrete systems (sympathetic and parasympathetic), the enteric nervous system is now considered a third component of the autonomic nervous system. This chapter reviews the background of the neuroanatomical distribution of the autonomic nervous system in order to facilitate understanding the basics of autonomic function.
Collapse
Affiliation(s)
- Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. J Hypertens 2018. [PMID: 28650915 DOI: 10.1097/hjh.0000000000001427] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
: Although medullary control of blood pressure (BP) has been extensively studied, the contribution of critical regions, such as pressor sites in the caudal medulla and upper cervical spinal cord and the lateral tegmental field, remains controversial and underappreciated. A series of pressor sites caudal to the caudal ventrolateral medulla (CVLM), including the caudal pressor area (CPA) and medullocervical pressor area, play an important role in control of BP. Activation and inhibition of these sites elicits pressor and depressor responses, respectively. Basal sympathetic tone is provided principally by the medullary lateral tegmental field and rostral ventrolateral medulla (RVLM). RVLM presympathetic neurons, which project to and drive preganglionic sympathetic somata in the intermediolateral cell column, are powerfully regulated by neurons in CVLM via tonic and phasic inhibition. The current state of knowledge is summarized thus: rostrocaudally organized columns of pressor sites caudal to CVLM extend to the upper cervical spinal cord; CPA pressor responses are RVLM-dependent; CPA mediates pressor responses by (first) inhibiting RVLM-projecting inhibitory CVLM units and (second) activating RVLM-projecting excitatory CVLM units; the chemoreflex is CPA-dependent; the baroreflex is CPA-independent; pressor responses to raphe obscurus stimulation are CPA-dependent; and medullocervical pressor area pressor responses are RVLM-independent, likely mediated by direct projections to the intermediolateral cell column. In this review, we seek to underscore and characterize the critical role played by the caudal medulla and upper cervical spinal cord in BP regulation and highlight important gaps in knowledge in interactions between the caudal medulla and other regions controlling BP, which may prove critical in revealing central mechanisms underlying pathophysiology of, and pharmacotherapeutic targets for, hypertension.
Collapse
|
10
|
Ghali MGZ. Role of the medullary lateral tegmental field in sympathetic control. J Integr Neurosci 2018; 16:189-208. [DOI: 10.3233/jin-170010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel.: ; Fax: ; E-mail:
| |
Collapse
|
11
|
Somatostatin 2 Receptor Activation in the Rostral Ventrolateral Medulla Does Not Mediate the Decompensatory Phase of Haemorrhage. Shock 2017; 50:331-338. [PMID: 28991052 DOI: 10.1097/shk.0000000000001011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decompensation, a critical phase in the response to hemorrhage, is characterized by profound sympathoinhibition and the overriding of baroreflex mediated compensation. As sympathoexcitatory neurons of the rostral ventrolateral medulla (RVLM) maintain vasomotor tone and are essential for sympathetic baroreceptor reflex function, the RVLM is the likely mediator. However, how decompensation occurs is a mystery. Our previous work demonstrated that the inhibitory neuropeptide somatostatin (SST), evokes potent sympathoinhibition. Here we test the hypothesis that, in response to hypovolemia, SST in the RVLM evokes sympathoinhibition, driving decompensation and suppressing baroreflex compensation. We evaluated neuronal activation at sites that contain SST mRNA and project to the RVLM and, in SST2A expressing neurons in the RVLM. We determined the effects on cardiovascular and sympathetic responses to haemorrhage, of bilateral blockade of SST2 receptors in both the RVLM and A1 regions. Haemorrhage in conscious rats evoked c-Fos immunoreactivity in the amygdala, periaqueductal gray, and parabrachial nuclei, regions previously associated with hemorrhage, shown to contain SST and project to the RVLM. Although c-Fos labeling was found throughout the ventrolateral medulla, only a small subset of RVLM SST2A receptor expressing neurons were activated, consistent with the idea that these neurons are inhibited during hemorrhage. However, SST2 receptor antagonists bilaterally injected in the RVLM or the A1 region did not affect the decompensation response to hemorrhage. Thus somatostatin in the RVLM does not mediate decompensation. The physiological role associated with somatostatin-induced sympathoinhibition in the RVLM together with the central mechanisms responsible for decompensation remain elusive.
Collapse
|
12
|
Grisk O. Caudal medullary and cervical spinal cord neurons in cardiovascular regulation. J Hypertens 2017; 35:1950-1951. [PMID: 28858195 DOI: 10.1097/hjh.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Olaf Grisk
- Department of Physiology, University of Greifswald, Greifswald-Karlsburg, Karlsburg, Germany
| |
Collapse
|
13
|
Dempsey B, Le S, Turner A, Bokiniec P, Ramadas R, Bjaalie JG, Menuet C, Neve R, Allen AM, Goodchild AK, McMullan S. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas. Front Neural Circuits 2017; 11:9. [PMID: 28298886 PMCID: PMC5331070 DOI: 10.3389/fncir.2017.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 01/27/2023] Open
Abstract
Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.
Collapse
Affiliation(s)
- Bowen Dempsey
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Sheng Le
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Anita Turner
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Phil Bokiniec
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Radhika Ramadas
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Clement Menuet
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Rachael Neve
- Viral Core Facility, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Andrew M Allen
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Ann K Goodchild
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Simon McMullan
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
14
|
Catecholaminergic neurons in synaptic connections with pre-Bötzinger complex neurons in the rostral ventrolateral medulla in normoxic and daily acute intermittent hypoxic rats. Exp Neurol 2017; 287:165-175. [DOI: 10.1016/j.expneurol.2016.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/12/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
|
15
|
Holstein GR, Friedrich VL, Martinelli GP. Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 2016; 234:2747-60. [PMID: 27411812 DOI: 10.1007/s00221-016-4725-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Victor L Friedrich
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio P Martinelli
- Department of Neurology, Icahn School of Medicine at Mount Sinai, Box 1140, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
16
|
Holstein GR, Friedrich VLJ, Martinelli GP. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 2016; 10:7. [PMID: 26903817 PMCID: PMC4744852 DOI: 10.3389/fnana.2016.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | | | | |
Collapse
|
17
|
Machado C, Estevez M, Perez-Nellar J, Schiavi A. Residual vasomotor activity assessed by heart rate variability in a brain-dead case. BMJ Case Rep 2015; 2015:bcr-2014-205677. [PMID: 25833905 DOI: 10.1136/bcr-2014-205677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A patient assessed by heart rate variability (HRV) methodology, beginning just after the completion of brain death (BD) diagnosis, showed remaining very low frequency (VLF) waves for approximately 10 min. A time-varying spectral analysis showed that during the first 550 s, a significant power spectral density remained in the high-frequency (HF), low-frequency (LF) and VLF bands. From 550 to 675 s, the HF oscillations totally vanished, and a marked progressive decay of the LF and VLF power density occurred. After 700 s the VLF undulations stopped and remaining small amplitude oscillations at 0.2 Hz coincided with the ventilator frequency. The VLF oscillations recorded in our case might be related to residual sympathetic vasomotor activity that progressively disappeared due to the extension of necrosis affecting the nervous centres of the lower part of the medulla and the first 2-3 cervical spine segments.
Collapse
Affiliation(s)
- Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosugery, Havana, Cuba
| | | | | | - Adam Schiavi
- Anesthesiology and Critical Care Medicine, Neurosciences Critical Care Division, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Holstein GR, Friedrich VL, Martinelli GP. Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 2015; 522:2053-74. [PMID: 24323841 DOI: 10.1002/cne.23517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/19/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | |
Collapse
|
19
|
Furlong TM, McDowall LM, Horiuchi J, Polson JW, Dampney RAL. The effect of air puff stress on c-Fos expression in rat hypothalamus and brainstem: central circuitry mediating sympathoexcitation and baroreflex resetting. Eur J Neurosci 2014; 39:1429-38. [DOI: 10.1111/ejn.12521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Teri M. Furlong
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Jaimie W. Polson
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| |
Collapse
|
20
|
Abstract
The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.
Collapse
Affiliation(s)
- Elemer Szabadi
- Division of Psychiatry, University of Nottingham, Nottingham, UK.
| |
Collapse
|
21
|
Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PGR, Abbott SBG. C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R187-204. [PMID: 23697799 DOI: 10.1152/ajpregu.00054.2013] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Turner A, Kumar N, Farnham M, Lung M, Pilowsky P, McMullan S. Rostroventrolateral medulla neurons with commissural projections provide input to sympathetic premotor neurons: anatomical and functional evidence. Eur J Neurosci 2013; 38:2504-15. [PMID: 23651135 DOI: 10.1111/ejn.12232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 01/09/2023]
Abstract
The activity of neurons in the rostral ventrolateral medulla (RVLM) is critical for the generation of vasomotor sympathetic tone. Multiple pre-sympathetic pathways converge on spinally projecting RVLM neurons, but the origin and circumstances in which such inputs are active are poorly understood. We have previously shown that input from the contralateral brainstem contributes to the baseline activity of this population: in the current study we investigate the distribution, phenotype and functional properties of RVLM neurons with commissural projections in the rat. We firstly used retrograde transport of fluorescent microspheres to identify neurons that project to the contralateral RVLM. Labelled neurons were prominent in a longitudinal column that extended over 1 mm caudal from the facial nucleus and contained hybridisation products indicating enkephalin (27%), GABA (15%) and adrenaline (3%) synthesis and included 6% of bulbospinal neurons identified by transport of cholera toxin B. Anterograde transport of fluorescent dextran-conjugate from the contralateral RVLM revealed extensive inputs throughout the RVLM that frequently terminated in close apposition with catecholaminergic and bulbospinal neurons. In urethane-anaesthetised rats we verified that 28/37 neurons antidromically activated by electrical stimulation of the contralateral pressor region were spontaneously active, of which 13 had activity locked to central respiratory drive and 15 displayed ongoing tonic discharge. In six tonically active neurons sympathoexcitatory roles were indicated by spike-triggered averages of splanchnic sympathetic nerve activity. We conclude that neurons in the RVLM project to the contralateral brainstem, form synapses with sympathetic premotor neurons, and have functional properties consistent with sympthoexcitatory function.
Collapse
Affiliation(s)
- Anita Turner
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, 2109, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Burke PGR, Sousa LO, Tallapragada VJ, Goodchild AK. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat. Eur J Neurosci 2013; 38:2260-70. [PMID: 23627348 DOI: 10.1111/ejn.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022]
Abstract
The cAMP-protein kinase A (PKA) pathway plays a critical role in regulating neuronal activity. Yet, how PKA signalling shapes the population activity of neurons that regulate respiratory rhythm and motor patterns in vivo is poorly defined. We determined the respiratory effects of focally inhibiting endogenous PKA activity in defined classes of respiratory neurons in the ventrolateral medulla and spinal cord by microinjection of the membrane-permeable PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS) in urethane-anaesthetized adult Sprague Dawley rats. Phrenic nerve activity, end-tidal CO2 and arterial pressure were recorded. Rp-cAMPS in the preBötzinger complex (preBötC) caused powerful, dose-dependent depression of phrenic burst amplitude and inspiratory period. Rp-cAMPS powerfully depressed burst amplitude in the phrenic premotor nucleus, but had no effect at the phrenic motor nucleus, suggesting a lack of persistent PKA activity here. Surprisingly, inhibition of PKA activity in the preBötC increased phrenic burst frequency, whereas in the Bötzinger complex phrenic frequency decreased. Pretreating the preBötC with strychnine, but not bicuculline, blocked the Rp-cAMPS-evoked increase in frequency, but not the depression of phrenic burst amplitude. We conclude that endogenous PKA activity in excitatory inspiratory preBötzinger neurons and phrenic premotor neurons, but not motor neurons, regulates network inspiratory drive currents that underpin the intensity of phrenic nerve discharge. We show that inhibition of PKA activity reduces tonic glycinergic transmission that normally restrains the frequency of rhythmic respiratory activity. Finally, we suggest that the maintenance of the respiratory rhythm in vivo is not dependent on endogenous cAMP-PKA signalling.
Collapse
Affiliation(s)
- P G R Burke
- Australian School of Advanced Medicine, Level 1, 2 Technology Drive, Macquarie University, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
24
|
Bowman BR, Kumar NN, Hassan SF, McMullan S, Goodchild AK. Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol 2013; 521:213-32. [PMID: 22740031 DOI: 10.1002/cne.23175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/02/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
The rostral ventrolateral medulla (RVLM) contains neurons critical for cardiovascular, respiratory, metabolic, and motor control. The activity of these neurons is controlled by inputs from multiple identified brain regions; however, the neurochemistry of these inputs is largely unknown. Gamma-aminobutyric acid (GABA) and enkephalin tonically inhibit neurons within the RVLM. The aim of this study was to identify all brain regions that provide GABAergic or enkephalinergic input to the rat RVLM. Neurons immunoreactive for cholera toxin B (CTB-ir), retrogradely transported from the RVLM, were assessed for expression of glutamic acid decarboxylase (GAD67) or preproenkephalin (PPE) mRNA using in situ hybridization. GAD67 mRNA was expressed in CTB-ir neurons in the following regions: the nucleus of the solitary tract (NTS, 6% of CTB-ir neurons), area postrema (AP, 8%), caudal ventrolateral medulla (17%), midline raphe (40%), ventrolateral periaqueductal gray (VLPAG, 15%), lateral hypothalamic area (LHA, 25%), central nucleus of the amygdala (CeA, 77%), sublenticular extended amygdala (SLEA, 86%), interstitial nucleus of the posterior limb of the anterior commissure (IPAC, 56%), bed nucleus of the stria terminals (BNST, 59%), and medial preoptic area (MPA, 53%). PPE mRNA was expressed in CTB-ir neurons in the following regions: the NTS (14% of CTB-ir neurons), midline raphe (26%), LHA (22%), zona incerta (ZI, 15%), CeA (5%), paraventricular nucleus (PVN, 13%), SLEA (66%), and MPA (26%). Thus, limited brain regions contribute GABAergic and/or enkephalinergic input to the RVLM. Multiple neurochemically distinct pathways originate from these brain regions projecting to the RVLM.
Collapse
Affiliation(s)
- Belinda R Bowman
- Australian School of Advanced Medicine, Macquarie University, 2109, NSW Australia
| | | | | | | | | |
Collapse
|
25
|
Machado-Ferrer Y, Estévez M, Machado C, Hernández-Cruz A, Carrick FR, Leisman G, Melillo R, DeFina P, Chinchilla M, Machado Y. Heart rate variability for assessing comatose patients with different Glasgow Coma Scale scores. Clin Neurophysiol 2013; 124:589-97. [DOI: 10.1016/j.clinph.2012.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/11/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022]
|
26
|
Cersosimo MG, Benarroch EE. Central control of autonomic function and involvement in neurodegenerative disorders. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:45-57. [DOI: 10.1016/b978-0-444-53491-0.00005-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Miller RL, Knuepfer MM, Wang MH, Denny GO, Gray PA, Loewy AD. Fos-activation of FoxP2 and Lmx1b neurons in the parabrachial nucleus evoked by hypotension and hypertension in conscious rats. Neuroscience 2012; 218:110-25. [PMID: 22641087 PMCID: PMC3405558 DOI: 10.1016/j.neuroscience.2012.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023]
Abstract
The parabrachial nucleus (PB) is a brainstem cell group that receives a strong input from the nucleus tractus solitarius regarding the physiological status of the internal organs and sends efferent projections throughout the forebrain. Since the neuroanatomical organization of the PB remains unclear, our first step was to use specific antibodies against two neural lineage transcription factors: Forkhead box protein2 (FoxP2) and LIM homeodomain transcription factor 1 beta (Lmx1b) to define the PB in adult rats. This allowed us to construct a cytoarchitectonic PB map based on the distribution of neurons that constitutively express these two transcription factors. Second, the in situ hybridization method combined with immunohistochemistry demonstrated that mRNA for glutamate vesicular transporter Vglut2 (Slc17a6) was present in most of the Lmx1b+ and FoxP2+ parabrachial neurons, indicating these neurons use glutamate as a transmitter. Third, conscious rats were maintained in a hypotensive or hypertensive state for 2h, and then, their brainstems were prepared by the standard c-Fos method which is a measure of neuronal activity. Both hypotension and hypertension resulted in c-Fos activation of Lmx1b+ neurons in the external lateral-outer subdivision of the PB (PBel-outer). Hypotension, but not hypertension, caused c-Fos activity in the FoxP2+ neurons of the central lateral PB (PBcl) subnucleus. The Kölliker-Fuse nucleus as well as the lateral crescent PB and rostral-most part of the PBcl contain neurons that co-express FoxP2+ and Lmx1b+, but none of these were activated after blood pressure changes. Salt-sensitive FoxP2 neurons in the pre-locus coeruleus and PBel-inner were not c-Fos activated following blood pressure changes. In summary, the present study shows that the PBel-outer and PBcl subnuclei originate from two different neural progenitors, contain glutamatergic neurons, and are affected by blood pressure changes, with the PBel-outer reacting to both hypo- and hypertension, and the PBcl signaling only hypotensive changes.
Collapse
Affiliation(s)
- Rebecca L. Miller
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark M. Knuepfer
- Department of Pharmacological & Physiological Science, St. Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - Michelle H. Wang
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George O. Denny
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul A. Gray
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, 660 S. Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Gowen MF, Ogburn SW, Suzuki T, Sugiyama Y, Cotter LA, Yates BJ. Collateralization of projections from the rostral ventrolateral medulla to the rostral and caudal thoracic spinal cord in felines. Exp Brain Res 2012; 220:121-33. [PMID: 22623097 DOI: 10.1007/s00221-012-3122-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/04/2012] [Indexed: 12/14/2022]
Abstract
Stimulation of vestibular receptors elicits distinct changes in blood flow to the forelimb and hindlimb, showing that the nervous system has the capacity to produce changes in sympathetic outflow which are specific for a particular region of the body. However, it is unclear whether the rostral ventrolateral medulla (RVLM), the primary region of the brainstem that regulates sympathetic outflow to vascular smooth muscle, has the appropriate connectivity with sympathetic preganglionic neurons to generate anatomically patterned responses. To make this determination, the retrograde fluorescent tracer Fast Blue was injected into the T(4) spinal cord segment of cats, which regulates upper body blood flow, whereas Fluoro-Ruby was injected into the T(10) segment to label projections to a region of the spinal cord that regulates lower body blood flow. More neurons were single-labeled by a particular tracer (92 %) than were double labeled by both tracers (8 %), supporting the notion that the RVLM can regulate sympathetic outflow from a limited number of spinal cord segments. Since a large fraction of RVLM neurons that control sympathetic outflow in rodents contain epinephrine, we additionally determined whether the tracer-labeled cells were immunopositive for the enzyme tyrosine hydroxylase (TH), which participates in the synthesis of catecholamines. Double labeling by the two tracers injected into the spinal cord was more common for TH-immunopositive neurons than for the general population of RVLM neurons: 19 % of the TH-positive cells contained both Fast Blue and Fluoro-Ruby, 30 % contained one of the tracers, and 51 % were not labeled by either tracer. Furthermore, many spinally projecting neurons in close proximity to the RVLM catecholaminergic neurons (41 % of the population) were not immunopositive for TH, suggesting that feline RVLM is neurochemically heterogeneous.
Collapse
Affiliation(s)
- Michael F Gowen
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
29
|
Parker LM, Tallapragada VJ, Kumar NN, Goodchild AK. Distribution and localisation of Gα proteins in the rostral ventrolateral medulla of normotensive and hypertensive rats: focus on catecholaminergic neurons. Neuroscience 2012; 218:20-34. [PMID: 22626648 DOI: 10.1016/j.neuroscience.2012.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 02/07/2023]
Abstract
About 860 G-protein-coupled receptors (GPCRs) mediate their actions via heterotrimeric G-proteins. Their activation releases Gα from Gβλ subunits. The type of Gα subunit dictates the major signalling proteins involved: adenylyl cyclase, PLC and rhoGEF. The rostral ventrolateral medulla (RVLM), containing the rostral C1 (rC1) cell group, sets and maintains the tonic and reflex control of blood pressure and a plethora of inputs converge onto these neurons. We determined the relative abundance of 10 Gα subunit mRNAs, representing the four major families, within the RVLM, using quantitative RT-PCR. In situ hybridisation (ISH) combined with immunohistochemistry (IHC) was used to quantify and compare this expression in rC1 with that in the A1 and A5 cell groups. The relative abundance of Gα subunit mRNAs and a comparison of gene expression levels were quantitatively determined in normotensive and hypertensive rat strains. All 10 Gα mRNAs were detected in the RVLM of Sprague-Dawley (SD) rats with relative abundance such that Gαs>Gαi2>Gαo>Gαq>GαL>Gα11>Gαi3>Gαi1>Gα12>Gα13. The high abundance of Gα mRNAs signalling via adenylyl cyclase indicates the importance of associated GPCRs. Within the rC1 and A1 groups similar differential Gα mRNA expression profiles were seen with Gαs being found in all rC1 cells, Gα11 absent and Gαi3 rarely expressed. Thus functionally distinct subgroups exist within the rC1 and A1 cell groups as differing distributions of Gα subunits must reflect the array of GPCRs that influence their activity. In contrast, all A5 cells expressed all Gα mRNAs suggesting a functionally homogeneous group. When the 10 Gα mRNAs of the RVLM in spontaneously hypertensive rats (SHR) were compared quantitatively to Wistar-Kyoto (WKY), only Gαs and Gα12 were significantly elevated. However when the expression in normotensive SD and WKY was compared with SHR no significant differences were evident. These findings demonstrate a range of GPCR signalling capabilities in brainstem neurons important for homeostasis and suggest a prominent role for signalling via adenylyl cyclase.
Collapse
Affiliation(s)
- L M Parker
- The Australian School of Advanced Medicine, 2 Technology Place, Macquarie University, 2109 NSW, Australia
| | | | | | | |
Collapse
|
30
|
Holstein GR, Friedrich Jr. VL, Martinelli GP, Ogorodnikov D, Yakushin SB, Cohen B. Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol 2012; 3:4. [PMID: 22403566 PMCID: PMC3289126 DOI: 10.3389/fneur.2012.00004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
- Department of Neuroscience, Mount Sinai School of MedicineNew York, NY, USA
- Department of Anatomy/Functional Morphology, Mount Sinai School of MedicineNew York, NY, USA
| | | | | | - Dmitri Ogorodnikov
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Sergei B. Yakushin
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| | - Bernard Cohen
- Department of Neurology, Mount Sinai School of MedicineNew York, NY, USA
| |
Collapse
|
31
|
Caudal nuclei of the rat nucleus of the solitary tract differentially innervate respiratory compartments within the ventrolateral medulla. Neuroscience 2011; 190:207-27. [PMID: 21704133 DOI: 10.1016/j.neuroscience.2011.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 12/15/2022]
Abstract
A substantial array of respiratory, cardiovascular, visceral and somatic afferents are relayed via the nucleus of the solitary tract (NTS) to the brainstem (and forebrain). Despite some degree of overlap within the NTS, specificity is maintained in central respiratory reflexes driven by second order afferent relay neurons in the NTS. While the topographic arrangement of respiratory-related afferents targeting the NTS has been extensively investigated, their higher order brainstem targets beyond the NTS has only rarely been defined with any precision. Nonetheless, the various brainstem circuits serving blood gas homeostasis and airway protective reflexes must clearly receive a differential innervation from the NTS in order to evoke stimulus appropriate behavioral responses. Accordingly, we have examined the question of which specific NTS nuclei project to particular compartments within the ventral respiratory column (VRC) of the ventrolateral medulla. Our analyses of NTS labeling after retrograde tracer injections in the VRC and the nearby neuronal groups controlling autonomic function indicate a significant distinction between projections to the Bötzinger complex and preBötzinger complex compared to the remainder of the VRC. Specifically, the caudomedial NTS, including caudal portions of the medial solitary nucleus and the commissural division of NTS project relatively densely to the region of the retrotrapezoid nucleus and rostral ventrolateral medullary nucleus as well as to the rostral ventral respiratory group while avoiding the intervening Bötzinger and preBötzinger complexes. Area postrema appears to demonstrate a pattern of projections similar to that of caudal medial and commissural NTS nuclei. Other, less pronounced differential projections of lateral NTS nuclei to the various VRC compartments are additionally noted.
Collapse
|
32
|
Holstein GR, Friedrich VL, Kang T, Kukielka E, Martinelli GP. Direct projections from the caudal vestibular nuclei to the ventrolateral medulla in the rat. Neuroscience 2011; 175:104-17. [PMID: 21163335 PMCID: PMC3029471 DOI: 10.1016/j.neuroscience.2010.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/23/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023]
Abstract
While the basic pathways mediating vestibulo-ocular, -spinal, and -collic reflexes have been described in detail, little is known about vestibular projections to central autonomic sites. Previous studies have primarily focused on projections from the caudal vestibular region to solitary, vagal and parabrachial nuclei, but have noted a sparse innervation of the ventrolateral medulla. Since a direct pathway from the vestibular nuclei to the rostral ventrolateral medulla would provide a morphological substrate for rapid modifications in blood pressure, heart rate and respiration with changes in posture and locomotion, the present study examined anatomical evidence for this pathway using anterograde and retrograde tract tracing and immunofluorescence detection in brainstem sections of the rat medulla. The results provide anatomical evidence for direct pathways from the caudal vestibular nuclear complex to the rostral and caudal ventrolateral medullary regions. The projections are conveyed by fine and highly varicose axons that ramify bilaterally, with greater terminal densities present ipsilateral to the injection site and more rostrally in the ventrolateral medulla. In the rostral ventrolateral medulla, these processes are highly branched and extremely varicose, primarily directed toward the somata and proximal dendrites of non-catecholaminergic neurons, with minor projections to the distal dendrites of catecholaminergic cells. In the caudal ventrolateral medulla, the axons of vestibular nucleus neurons are more modestly branched with fewer varicosities, and their endings are contiguous with both the perikarya and dendrites of catecholamine-containing neurons. These data suggest that vestibular neurons preferentially target the rostral ventrolateral medulla, and can thereby provide a morphological basis for a short latency vestibulo-sympathetic pathway.
Collapse
Affiliation(s)
- G R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
33
|
Sugiyama Y, Suzuki T, Yates BJ. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body. Exp Brain Res 2011; 210:515-27. [PMID: 21267550 DOI: 10.1007/s00221-011-2550-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/31/2010] [Indexed: 01/30/2023]
Abstract
Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
34
|
Holstein GR, Martinelli GP, Friedrich VL. Anatomical observations of the caudal vestibulo-sympathetic pathway. J Vestib Res 2011; 21:49-62. [PMID: 21422542 PMCID: PMC3570023 DOI: 10.3233/ves-2011-0395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vestibular system senses the movement and position of the head in space and uses this information to stabilize vision, control posture, perceive head orientation and self-motion in three-dimensional space, and modulate autonomic and limbic activity in response to locomotion and changes in posture. Most vestibular signals are not consciously perceived and are usually appreciated through effector pathways classically described as the vestibulo-ocular, vestibulo-spinal, vestibulo-collic and vestibulo-autonomic reflexes. The present study reviews some of the recent data concerning the connectivity and chemical anatomy of vestibular projections to autonomic sites that are important in the sympathetic control of blood pressure.
Collapse
Affiliation(s)
- Gay R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
35
|
Geerling JC, Shin JW, Chimenti PC, Loewy AD. Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 2010; 518:1460-99. [PMID: 20187136 DOI: 10.1002/cne.22283] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL), and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made. Major findings include: 1) In the midbrain, the PVH projects lightly to the ventral tegmental area, Edinger-Westphal nucleus, ventrolateral periaqueductal gray matter, reticular formation, pedunculopontine tegmental nucleus, and dorsal raphe nucleus. 2) In the dorsal pons, the PVH projects heavily to the pre-locus coeruleus, yet very little to the catecholamine neurons in the locus coeruleus, and selectively targets the viscerosensory subregions of the parabrachial nucleus. 3) In the ventral medulla, the superior salivatory nucleus, retrotrapezoid nucleus, compact and external formations of the nucleus ambiguous, A1 and caudal C1 catecholamine neurons, and caudal pressor area receive dense axonal projections, generally exceeding the PVH projection to the rostral C1 region. 4) The medial nucleus of the solitary tract (including A2 noradrenergic and aldosterone-sensitive neurons) receives the most extensive projections of the PVH, substantially more than the dorsal vagal nucleus or area postrema. Our findings suggest that the PVH may modulate a range of homeostatic functions, including cerebral and ocular blood flow, corneal and nasal hydration, ingestive behavior, sodium intake, and glucose metabolism, as well as cardiovascular, gastrointestinal, and respiratory activities.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
36
|
Burke P, Abbott S, McMullan S, Goodchild A, Pilowsky P. Somatostatin selectively ablates post-inspiratory activity after injection into the Bötzinger complex. Neuroscience 2010; 167:528-39. [DOI: 10.1016/j.neuroscience.2010.01.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/15/2010] [Accepted: 01/30/2010] [Indexed: 11/26/2022]
|
37
|
Spary EJ, Maqbool A, Batten TFC. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat 2009; 38:185-96. [PMID: 19505570 DOI: 10.1016/j.jchemneu.2009.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.
Collapse
Affiliation(s)
- Emma J Spary
- Division of Cardiovascular and Neuronal Remodelling, Worsley Building, LIGHT Institute, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|