1
|
Fan J, Arrazolo LK, Du J, Xu H, Fang S, Liu Y, Wu Z, Kim JH, Wu X. Effects of Ionic Interferents on Electrocatalytic Nitrate Reduction: Mechanistic Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12823-12845. [PMID: 38954631 DOI: 10.1021/acs.est.4c03949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.
Collapse
Affiliation(s)
- Jinling Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Leslie K Arrazolo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jiaxin Du
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Huimin Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Siyu Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Xuanhao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
2
|
Roy R, Kempter L, Philippe A, Bollinger E, Grünling L, Sivagnanam M, Meyer F, Feckler A, Seitz F, Schulz R, Bundschuh M. Aging of nanosized titanium dioxide modulates the effects of dietary copper exposure on Daphnia magna - an assessment over two generations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116031. [PMID: 38309236 DOI: 10.1016/j.ecoenv.2024.116031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.
Collapse
Affiliation(s)
- Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany.
| | - Lucas Kempter
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Allan Philippe
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Lea Grünling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | | | - Frederik Meyer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Alexander Feckler
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Frank Seitz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
Salvestrini S, Debord J, Bollinger JC. Enhanced Sorption Performance of Natural Zeolites Modified with pH-Fractionated Humic Acids for the Removal of Methylene Blue from Water. Molecules 2023; 28:7083. [PMID: 37894563 PMCID: PMC10609103 DOI: 10.3390/molecules28207083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This work explores the effect of humic acids (HA) fractionation on the sorption ability of a natural zeolite (NYT)-HA adduct. HA were extracted from compost, fractionated via the pH fractionation method, and characterized via UV-Vis spectroscopy and gel permeation chromatography. The HA samples were immobilized onto NYT via thermal treatment. The resulting adducts (NYT-HA) were tested for their ability to remove methylene blue (MB) from an aqueous solution. It was found that the sorption performance of NYT-HA strongly depends on the chemical characteristics of humic acids. Sorption capacity increased with the molecular weight and hydrophobicity degree of the HA fractions. Hydrophobic and π-π interactions are likely the primary mechanisms by which MB interacts with HA. The sorption kinetic data conform to the pseudo-second-order model. The Freundlich isotherm model adequately described the sorption equilibrium and revealed that the uptake of MB onto NYT-HA is endothermic in nature.
Collapse
Affiliation(s)
- Stefano Salvestrini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Jean Debord
- Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 87042 Limoges, France;
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Faculté des Sciences et Techniques, Université de Limoges, 87060 Limoges, France;
| |
Collapse
|
4
|
Zheng J, Yang Y, Dai Z, Wang J, Xia Y, Li C. Preparation of manganese dioxide/hollow mesoporous silica spheres (MnO2/HMSS) composites for removal of Sr(Ⅱ) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
5
|
Wu Y, Zhao Y, Liu Y, Niu J, Zhao T, Bai X, Hussain A, Li YY. Insights into heavy metals shock on anammox systems: Cell structure-based mechanisms and new challenges. WATER RESEARCH 2023; 239:120031. [PMID: 37172374 DOI: 10.1016/j.watres.2023.120031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/31/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) as a low-carbon and energy-saving technology, has shown unique advantages in the treatment of high ammonia wastewater. However, wastewater usually contains complex heavy metals (HMs), which pose a potential risk to the stable operation of the anammox system. This review systematically re-evaluates the HMs toxicity level from the inhibition effects and the inhibition recovery process, which can provide a new reference for engineering. From the perspective of anammox cell structure (extracellular, anammoxosome membrane, anammoxosome), the mechanism of HMs effects on cellular substances and metabolism is expounded. Furthermore, the challenges and research gaps for HMs inhibition in anammox research are also discussed. The clarification of material flow, energy flow and community succession under HMs shock will help further reveal the inhibition mechanism. The development of new recovery strategies such as bio-accelerators and bio-augmentation is conductive to breaking through the engineered limitations of HMs on anammox. This review provides a new perspective on the recognition of toxicity and mechanism of HMs in the anammox process, as well as the promotion of engineering applicability.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Tianyang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhao Bai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Arif Hussain
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Efficient removal and sensing of copper(II) ions by alkaline earth metal-based metal–organic frameworks. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Xiao Y, Tang W, Peijnenburg WJGM, Zhang X, Wu J, Xu M, Xiao H, He Y, Luo L, Yang G, Chen C, Tu L. Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114770. [PMID: 35202947 DOI: 10.1016/j.jenvman.2022.114770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs), heavy metals and natural organic matter may co-exist in the water bodies. Currently, knowledge on their interaction effects on the behaviors and fates of NPs and heavy metal ions is rather limited, which is critical to comprehensively understand their environmental risk. In this study, the aggregation, solubility and Cd-adsorption of CuO NPs co-existing with humic acid (HA) and Cd2+ upon different solution pH and contact sequences were determined. In the ternary systems of CuO NPs, HA and Cd2+, pH was more important than the contact sequence of the components in affecting the NP aggregation, while the contact sequence was a predominant factor in determining the NP solubility. Pre-equilibration of CuO NPs and HA before addition of Cd2+ resulted in the highest solubility and lowest aggregation of the NPs, relative to other sequences of addition of the components. The adsorption capacity of CuO NPs for Cd-ions increased with an increasing pH value from 5 to 9. HA significantly enhanced the Cd-adsorption capacity of CuO NPs at pH 7 and 9, while at pH 5 a non-significant effect was observed. The results are helpful to better estimate the behaviors and fates of CuO NPs and Cd2+ when they coexisting in natural waters.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Wei Tang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300, RA, Leiden, the Netherlands
| | - Xiaohong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Min Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
8
|
Roy R, Kandrapu VK, Kempter L, Islam R, Kalčíková G, Schulz R, Bundschuh M. Nanosized titanium dioxide elevates toxicity of cationic metals species for Daphnia - have aging and natural organic matter an unexpected impact? Nanotoxicology 2022; 16:16-28. [PMID: 35085470 DOI: 10.1080/17435390.2022.2027538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In aquatic ecosystems, nanosized titanium dioxide particles (nTiO2) likely interact with natural organic matter (NOM) and may alter the ecotoxicity of co-occurring metals. The magnitude of changes in toxicity may be modulated by the duration of interactions (i.e. aging) between these factors. As those interactions are hardly addressed in literature, the present study aimed at assessing the impact of aging durations (0, 1, 3 and 6 days) on metals with mainly cationic (silver (Ag), cadmium (Cd)) or anionic (arsenic (As)) toxic ions in combination with three nTiO2 levels (0.0, 0.6 and 3.0 mg/L) and two NOM levels (0 versus 8 mg TOC/L). The interaction of these factors was additionally investigated for two aging scenarios: in one scenario nTiO2 were aged together with one of the metals, while in other scenario metals were added to aged nTiO2. Subsequently, their combined acute effects on Daphnia magna were assessed. The results uncovered that nTiO2 elevate the toxicity of metals with mainly cationic species (i.e. Ag+ and Cd2+) with the effect size depending on their valence electron. Contrary, nTiO2 have no impact on the metal with mainly anionic species (i.e. HAsO42-). Furthermore, NOM reduced metal toxicity only for Ag and aging duration had a limited impact on the test outcome suggesting that relevant interactions between metal and nTiO2 occur rather quick (below 24 h). These findings suggest that the charge of metals' most toxic species is the determining factor for its interaction with nanoparticles and the resulting ecotoxicological effect assessment.
Collapse
Affiliation(s)
- Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Vinod Kumar Kandrapu
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Lucas Kempter
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Rezaul Islam
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
9
|
de Almeida MLS, Lima ACP, Nagahama KDJ, Santos TSM. Application of the Southwell Plot method to determine equilibrium time in phosphate adsorption. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103841. [PMID: 34089984 DOI: 10.1016/j.jconhyd.2021.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Among the different factors that influence the liquid-solid adsorption technique, equilibrium time is one of the most relevant and requires a large number of experiments over a long period of time for its determination. This work evaluates the Southwell Plot as a further tool that can contribute to determining the equilibrium time in adsorption processes. It can also optimize the operating conditions in a batch system for the removal of phosphate in adsorbents produced from domestic sewage sludge and clam shell residue. Sewage sludge and clam shell residues were ground, sieved and sintered at 700 °C for 1 h. The material was characterized by thermal analyses (TG/DTG), chemical analysis (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and adsorption studies. The kinetic studies were investigated by varying the initial concentration of the phosphate solution and mass of the adsorbent. The equilibrium time was determined by applying the Southwell Plot method to the kinetic data and the results showed some fluctuations as a function of the adsorbent mass. At 0.30 g of the adsorbent in 30 mL of the phosphate solution, regardless of the initial phosphate concentration, the equilibrium time determined by the Southwell Plot was 4 h. The maximum phosphate adsorption capacity in this condition, determined by the Langmuir equation, was 49.45 mg g-1.
Collapse
Affiliation(s)
- Maíra Luane S de Almeida
- Programa de Pós-Graduação em Engenharia Civil e Ambiental, Universidade Estadual de Feira de Santana (UEFS), Av. Nordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - Adriano C P Lima
- Programa de Pós-Graduação em Engenharia Civil e Ambiental, Universidade Estadual de Feira de Santana (UEFS), Av. Nordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - Koji de J Nagahama
- Programa de Pós-Graduação em Engenharia Civil e Ambiental, Universidade Estadual de Feira de Santana (UEFS), Av. Nordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil
| | - Tereza S M Santos
- Programa de Pós-Graduação em Engenharia Civil e Ambiental, Universidade Estadual de Feira de Santana (UEFS), Av. Nordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil.
| |
Collapse
|
10
|
Xiao Y, Du Y, Xiao Y, Zhang X, Wu J, Yang G, He Y, Zhou Y, Peijnenburg WJGM, Luo L. Elucidating the effects of TiO 2 nanoparticles on the toxicity and accumulation of Cu in soybean plants (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112312. [PMID: 33989917 DOI: 10.1016/j.ecoenv.2021.112312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) pollution is common in the soil. Due to the widespread application of TiO2 NPs, there is a high propensity for the co-occurrence of TiO2 nanoparticles (NPs) and Cu in agricultural soils. It is therefore imperative to evaluate the joint effects of TiO2 NPs and Cu on crops. In this study, the mutual effects of TiO2 NPs and Cu on their toxicity and accumulation in soybean seedlings and on their fates in a hydroponic system were determined. When Cu was at levels of 1 and 2 mg/L, the co-occurring TiO2 NPs at a non-toxic concentration (10 mg/L) significantly enhanced the toxicity and accumulation of Cu and Ti in soybeans, and inhibited the translocation of Cu from soybean roots to shoots. However, when the Cu concentration for co-exposure was ≥ 5 mg/L, such mutual effects disappeared. The amount of Cu ions adsorbed onto TiO2 NPs after 48 h of co-exposure gradually increased from 31 to 118 mg/g when the Cu concentration was increased from 1 to 20 mg/L. The aggregation and sedimentation of TiO2 NPs were significantly increased after 48 h of co-exposure with the Cu at a concentration higher than 5 mg/L, as compared to the single TiO2 NPs exposure. The increasing aggregation and sedimentation might reduce the bioavailability of TiO2 NPs associated with the adsorbed Cu to soybeans, and consequently alleviate or even neutralize the enhanced toxicity and accumulation of Cu in soybeans exerted by the co-existing TiO2 NPs. Our results thus suggest that consideration of the impact of TiO2 NPs on the phytotoxicity of heavy metals, and specifically Cu, needs to be interpreted with care, and highlight the importance of integrating the interaction and fates of TiO2 NPs and metals into their risk assessment.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ying Du
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yue Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xiaohong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300 RA Leiden, The Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
11
|
Zhang P, Xu XY, Zhang XL, Zou K, Liu BZ, Qing TP, Feng B. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124526. [PMID: 33218909 DOI: 10.1016/j.jhazmat.2020.124526] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 05/25/2023]
Abstract
Microbial extracellular polymeric substances (EPS) coating nanoparticles (NPs) surface can form NPs-EPS corona, which significantly affect the adsorption of NPs to toxic substances and alter the ecotoxicological effect of NPs. In this work, the EPS coronas on TiO2 NPs (TNPs) and CeO2 NPs (CNPs) were characterized and the adsorption characteristics of NPs with and without EPS corona to five heavy metals were investigated in single-metal and multiple-metal systems. The results of spectral analysis showed that NPs-EPS corona exhibited new crystalline phases and abundant functional groups. Moreover, 42 and 13 proteins were identified in the TNPs-EPS and CNPs-EPS coronas, respectively. The rates of Cd2+, Pb2+, Cu2+, Ni2+ and Ag+ adsorption by NPs-EPS corona increased to values that were 6.7-7.6, 4.4-5.1, 4.2-5.5, 3.9-4.9 and 8.5-8.8 times those of NPs without EPS corona, respectively, in single-metal system. NPs-EPS coronas are effective in absorbing Ag+, Pb2+ and Cu2+ compared with Cd2+and Ni2+ in multiple metal adsorption. These results indicated that NPs-EPS corona effectively adsorb and remove heavy metals by forming NPs-EPS-metal complexes and inducing precipitation. However, NPs-EPS corona can enhance the toxicity of NPs by accumulating highly-toxic heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Xue-Lin Zhang
- Cotton Sciences Research Institute of Hunan, Changde 415101, Hunan, China
| | - Kui Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bing-Zhi Liu
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
12
|
Abbas Q, Yousaf B, Mujtaba Munir MA, Cheema AI, Hussain I, Rinklebe J. Biochar-mediated transformation of titanium dioxide nanoparticles concerning TiO 2NPs-biochar interactions, plant traits and tissue accumulation to cell translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116077. [PMID: 33338960 DOI: 10.1016/j.envpol.2020.116077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) application in variety of commercial products would likely release these NPs into the environment. The interaction of TiO2NPs with terrestrial plants upon uptake can disturb plants functional traits and can also transfer to the food chain members. In this study, we investigated the impact of TiO2NPs on wheat (Triticum aestivum L.) plants functional traits, primary macronutrients assimilation, and change in the profile of bio-macromolecule. Moreover, the mechanism of biochar-TiO2NPs interaction, immobilization, and tissue accumulation to cell translocation of NPs in plants was also explored. The results indicated that the contents of Ti in wheat tissues was reduced about 3-fold and the Ti transfer rate (per day) was reduced about 2 fold at the 1000 mg L-1 exposure level of TiO2NPs in biochar amended exposure medium. Transmission electron microscopy (TEM) with elemental mapping confirmed that Ti concentrated in plant tissues in nano-form. The interactive effect of TiO2NPs + biochar amendment on photosynthesis related and gas exchange traits was observed at relatively low TiO2NPs exposure level (200 mg L-1), which induced the positive impact on wheat plants proliferation. TiO2NPs alone exposure to wheat also modified the plant's bio-macromolecules profile with the reduction in the assimilation of primary macronutrients, which could affect the food crop nutritional value and quality. X-ray photoelectron spectroscopy (XPS) chemical analysis of biochar + TiO2NPs showed an additional peak, which indicated the binding interaction of NPs with biochar. Moreover, Fourier-transform infrared (FTIR) spectroscopy confirmed that the biochar carboxyl group is the main functionality involved in the bonding process with TiO2NPs. These findings will help for a mechanistic understanding of the role of biochar in the reduction of NPs bioavailability to primary producers of the terrestrial environment.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Environmental Engineering Department, Middle East Technical University, Ankara, 06800, Turkey
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Environmental Engineering Department, Middle East Technical University, Ankara, 06800, Turkey.
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Imran Hussain
- CAS Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| |
Collapse
|
13
|
Narouei FH, Kirk KA, Andreescu S. Electrochemical Quantification of Lead Adsorption on TiO
2
Nanoparticles. ELECTROANAL 2021. [DOI: 10.1002/elan.202060152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Kevin A. Kirk
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|
14
|
Abdolahpur Monikh F, Vijver MG, Guo Z, Zhang P, Darbha GK, Peijnenburg WJGM. Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: Role of dissolved organic matter. WATER RESEARCH 2020; 186:116410. [PMID: 32932097 DOI: 10.1016/j.watres.2020.116410] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 05/09/2023]
Abstract
There is a debate on whether the Trojan horse principle is occurring for nanoscale plastic debris (NPD < 1 µm). It is realized that NPD have a high capacity to sorb environmental contaminants such as metals from the surrounding environment compared to their microplastic counterparts, which influences the sorbed contaminants' uptake. Herein, we studied the influence of dissolved organic matter (DOM) on the time-resolved sorption of ionic silver (Ag+) onto polymeric nanomaterials, as models of NPD, as a function of particle size (300 and 600 nm) and chemical composition [polystyrene (PS) and polyethylene (PE)]. Subsequently, the toxicity of NPD and their co-occurring (adsorbed and absorbed) Ag+ on Daphnia magna was determined. Silver nitrate was mixed with 1.2 × 105 NPD particles/mL for 6 days. The extent of Ag+ sorption onto NPD after 6 days was as follows: 600 nm PS-NPD > 300 nm PS-NPD > 300 nm PE-NPD. The presence of DOM in the system increased the sorption of Ag+ onto 300 nm PS-NPD and PE-NPD, whereas DOM decreased the sorption onto 600 nm PS-NPD. Exposure to 1 mg/L NPD or 1 µg/L Ag+ was not toxic to daphnids. However, the mixture of these concentrations of PS-NPD and Ag+ induced toxicity for both sizes (300 and 600 nm). The addition of DOM (1, 10 and 50 mg/L) to the system inhibited the combined toxicity of Ag+ and NPD regardless of the size and chemical composition. Taken together, in natural conditions where the concentration of DOM is high e.g. in freshwater ecosystems, the sorption of metals onto NPD depends on the size and chemical composition of the NPD. Nevertheless, under realistic field conditions where the concentration of DOM is high, the uptake of contaminants in D. magna that is influenced by the Trojan horse principles could be negligible.
Collapse
Affiliation(s)
- Fazel Abdolahpur Monikh
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, Netherlands.
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, Netherlands
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gopala Krishna Darbha
- Department of Earth Sciences & Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| |
Collapse
|
15
|
Zhang Y, Yin M, Sun X, Zhao J. Implication for adsorption and degradation of dyes by humic acid: Light driven of environmentally persistent free radicals to activate reactive oxygen species. BIORESOURCE TECHNOLOGY 2020; 307:123183. [PMID: 32217436 DOI: 10.1016/j.biortech.2020.123183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Humic acid (HA) was applied as the biosorbent for the adsorption and degradation of dyes in the presence of environmentally persistent free radicals (EPFRs). Scanning Electron Microscope (SEM) analysis showed that the microstructure of the HA surface and the thermal stability was analyzed by thermogravimetric analysis (TGA). Following irradiation, semiquinone EPFRs (g-factor > 2.0045) were generated on the HA surface. Both O2 and the addition of H2O2 were able to promote the generation of hydroxyl and superoxide radicals for the degradation of dye in aqueous solution. Furthermore, adsorption was observed to remove large amounts of the dyes, while the instantaneous free radical degradation process reduced the dyes to the lower concentration. In addition, a linear relationship was observed between the consumption of EPFRs and dye degradation rates. In ternary systems, HA conformed to Langmuir (476.19-1250.12 mg/L) and pseudo-second-order kinetic models. This work offers new insights into HA-EPFRs and their potential applications.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Muchen Yin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xuedi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jing Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| |
Collapse
|
16
|
Wei W, Han X, Zhang M, Zhang Y, Zhang Y, Zheng C. Macromolecular humic acid modified nano-hydroxyapatite for simultaneous removal of Cu(II) and methylene blue from aqueous solution: Experimental design and adsorption study. Int J Biol Macromol 2020; 150:849-860. [DOI: 10.1016/j.ijbiomac.2020.02.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
|
17
|
Guo J, Yan C, Luo Z, Fang H, Hu S, Cao Y. Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(II) and arsenic(V) adsorption. J Environ Sci (China) 2019; 85:168-176. [PMID: 31471023 DOI: 10.1016/j.jes.2019.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) and arsenic (As) are two of the most toxic elements. However, the chemical behaviors of these two elements are different, making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(II) and As(V) removal. To solve this problem, we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB), a novel ternary material, to perform this task, wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties. The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(II) and 35.59 mg/g for As(V), which is much higher compared to pristine biochar (11.06 mg/g, 0 mg/g for Cd(II) and As(V), respectively). The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(II) to HFMB, while ligand exchange was the adsorption mechanism that bound As(V).
Collapse
Affiliation(s)
- Jianhua Guo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongda Fang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shugang Hu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinglan Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
18
|
Singaraj SG, Mahanty B, Balachandran D, Padmaprabha A. Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30044-30054. [PMID: 31410837 DOI: 10.1007/s11356-019-06164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Presence of carcinogenic chromium, i.e., Cr(VI), in different industrial effluents necessitates design and development of effective abatement technologies. Nanosorbent consisting of iron oxide nanoparticles functionalized with soil-derived humic acid was employed for removal of Cr(VI). The point of zero charge for both humic acid and nanoparticles as estimated from pH shift experiments was between pH 8 and 9. Adsorption isotherm from batch experiments at neutral pH followed Langmuir model with projected maximum adsorption capacities for humic acid coated nanoparticles (24.13 mg/g) much higher than its uncoated counterpart (2.82 mg/g). Adsorption was process very fast and kinetics could be described with pseudo-second-order model (R2 > 0.98), for both nanoparticles. High E4/E6 ratio of extracted humic acid and Fourier transform infrared spectroscopy of coated nanoparticles (20-100 nm) indicated enrichment of hydroxyl, carboxylic, and aliphatic groups on surface leading for the better adsorption. Humic acid coated and uncoated nanoparticles regenerated with EDTA, NaOH, urea, Na2CO3, and NaCl treatments retained 35.90-59.67 and 26.37-36.28% of their initial adsorption capacities, respectively, in 2nd cycle. Experimental controls (virgin nanoparticles subjected to an identical regenerating environment) revealed irreversible surface modification as the cause for loss of their adsorption capacities.
Collapse
Affiliation(s)
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641114, India.
| | - Darshan Balachandran
- Department of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641114, India
| | - Anamika Padmaprabha
- Department of Biotechnology, Karunya Institute of Technology & Sciences, Coimbatore, 641114, India
| |
Collapse
|
19
|
Slomberg DL, Ollivier P, Miche H, Angeletti B, Bruchet A, Philibert M, Brant J, Labille J. Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:338-346. [PMID: 30513425 DOI: 10.1016/j.scitotenv.2018.11.279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Predicting nanoparticle (NP) fate in the environment continues to remain a challenge, especially for natural surface water systems, where NPs can hetero-aggregate with natural organic and mineral suspended matter. Here we present the interactions and aggregation behavior of TiO2 NPs with natural organic matter (NOM) in a natural lake water. NP fate in a synthetic water of the same pH and ionic composition was also tested in the presence and absence of NOM analogs to gain insight into the different stabilizing effects of each NOM type. Several complementary analytical techniques were utilized to assess lake NOM composition, including pyrolysis-gas chromatography-mass spectrometry, gel permeation chromatography, the polarity rapid-assessment method, and Nanoparticle Tracking Analysis. In the natural lake water, the TiO2 NPs preferentially interacted with mostly anionic NOM of high and medium molecular weight (~1200-1450 and 400-520 Da). Specifically, strong interactions with proteins and polyhydroxy aromatics were observed. NP fate and stability were determined in both raw lake water containing mineral particulate matter and total NOM (NOMtot) and filtered lake water containing only NOM <0.8 μm (NOM<0.8), with different aggregation profiles observed over time. Additionally, three times the number of TiO2 NPs remained in suspension when only NOM<0.8 was present compared to the unfiltered water containing mineral particulate matter and NOMtot. These results demonstrate the contrasting NP fates in the aquatic environment according to the presence of NOMtot vs. NOM<0.8 and further suggest that the use of pure NOM analogs may not accurately represent NP interactions and fate in the natural system.
Collapse
Affiliation(s)
- Danielle L Slomberg
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Patrick Ollivier
- BRGM, 3 av. C. Guillemin, BP 36009, 45060 Orleans Cedex 2, France
| | - Hélène Miche
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Auguste Bruchet
- Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE)-Suez Environnement, 38 Rue du Président Wilson, F-78230 Le Pecq, France
| | - Marc Philibert
- Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE)-Suez Environnement, 38 Rue du Président Wilson, F-78230 Le Pecq, France
| | - Jonathan Brant
- Department of Civil and Architectural Engineering, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, United States
| | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France.
| |
Collapse
|
20
|
de Oliveira LL, Suquila FA, de Oliveira FM, Scheel GL, Tarley CR. Synthesis and application of restricted access material-ion imprinted poly(allylthiourea) for selective separation of Cd2+ and humic acid exclusion. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Li Y, Chen H, Wang F, Zhao F, Han X, Geng H, Gao L, Chen H, Yuan R, Yao J. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1334-1342. [PMID: 30268984 DOI: 10.1016/j.envpol.2018.09.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the role of natural organic matter (NOM) in the environmental processes of silver nanoparticles (AgNP) and the uptake and accumulation of AgNP in wheat. Different NOMs (Suwannee River humic acids [SRHA], fulvic acid [FA]) and Ag elements (Ag(0) and Ag+) were incubated in a hydroponic media for 15 days. The results showed that the NOM (10 mg C L-1) altered the dissolution, stabilization, uptake and accumulation of AgNP. The dissolution of AgNP declined in the presence of NOM. Compared with FA, the dissolved Ag+ decreased much more from 0.30 mg L-1 to 0.10 mg L-1 in the presence of SRHA. The fluorescence quenching results indicated that SRHA exhibited stronger binding to Ag+ than that of FA, and the quenching constants Ksv were 0.1309 (SRHA) and 0.0074 (FA), respectively. CO, CH, COC, and MeOH were involved in the interaction between NOM and AgNP. The NOM decreased the accumulated content of Ag in wheat. Hence, NOM alleviated the inhibition of AgNP to wheat growth. SRHA reduced the Ag content of wheat roots approximately 3-fold. These results clearly indicated the importance of NOM on altering the behavior, fate and toxicity of AgNP in an environment.
Collapse
Affiliation(s)
- Yong Li
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Haiyan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, 10012, Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China.
| | - Furong Zhao
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Xiaomin Han
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Ling Gao
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Jun Yao
- School of Water Resource and Environmental Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| |
Collapse
|
22
|
Abstract
An increasing amount of TiO2 engineered nanoparticles (TNP) is released into soils and sediments, increasing the need for dedicated detection methods. Titanium is naturally present in soils at concentrations typically much higher than the estimated concentrations for TNP. Therefore, a precise knowledge of this natural background, including the colloidal fraction, is required for developing adapted strategies for detecting TNP. In this study, we characterized the natural colloidal Ti-background by analyzing eight soils with different properties and origins. A combination of X-ray fluorescence analysis and ICP-OES was used for determining the silicate bound fraction, which was a minor fraction for all soils (0–32%). The colloidal fraction obtained by extracting colloids from soil prior to ICP-OES measurements ranged between 0.3% and 7%. Electron microscopy and hydrodynamic chromatography confirmed that Ti in the form of colloids or larger particles was mostly present as TiO2 minerals with a fraction smaller than 100 nm. The size distribution mode of the extracted colloids determined using hydrodynamic chromatography ranged between 80 and 120 nm. The chromatograms suggested a broad size distribution with a significant portion below 100 nm. In addition to these data, we also discuss possible implications of our findings for the method development for detecting TNP in soils.
Collapse
|
23
|
Cui Z, Gan J, Fan J, Xue Y, Zhang R. Size-Dependent Surface Basicity of Nano-CeO2 and Desorption Kinetics of CO2 on Its Surface. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zixiang Cui
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Junzhen Gan
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Jie Fan
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Yongqiang Xue
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Rong Zhang
- Department of Applied Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
24
|
Mahdavi S, Molodi P, Zarabi M. Functionalized MgO, CeO2 and ZnO nanoparticles with humic acid for the study of nitrate adsorption efficiency from water. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3408-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Deng J, Liu Y, Liu S, Zeng G, Tan X, Huang B, Tang X, Wang S, Hua Q, Yan Z. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interface Sci 2017; 506:355-364. [DOI: 10.1016/j.jcis.2017.07.069] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
26
|
Xie J, Han X, Wang W, Zhou X, Lin J. Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:347-353. [PMID: 28668752 DOI: 10.1016/j.jhazmat.2017.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/03/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
The role of humic acid concentration in the microbially-mediated reductive solubilization of Pu(IV) polymers remains unclear until now. The effects of humic concentration (0-150.5mg/L) on the rate and extent of reduction of polymeric Pu(IV) were studied under anaerobic and pH 7.2 conditions. The results show that Shewanella putrefaciens, secreting flavins as endogenous electron shuttles, cannot notably stimulate the reduction of polymeric Pu(IV). In the presence of humic acids, the reduction rate of polymeric Pu(IV) increased with increasing humic concentrations (0-15.0mg/L): e.g., a 102-fold increase from 4.1×10-15 (HA=0) to 4.2×10-13mol Pu(III)aq/h (HA=15.0mg/L). The bioreduced humic acids by S. putrefaciens facilitated the extracellular electron transfer to Pu(IV) polymers and thus the reduction of polymeric Pu(IV) to Pu(III)aq became thermodynamically favorable. However, the reduction rate did not increase but decrease with increasing humic concentrations from 15.0 to 150.5mg/L. Humic coatings formed on the polymer surfaces at relatively high humic concentrations limited the electron transfer to the polymers and thus decreased the reduction rate. The finding of the dynamic role of humic acids in the bioreductive solubilization may be helpful in evaluating Pu mobility in the geosphere.
Collapse
Affiliation(s)
- Jinchuan Xie
- Northwest Institute of Nuclear Technology, P. O. Box 69-14, Xi'an City, Shanxi Province 710024, PR China.
| | - Xiaoyuan Han
- Northwest Institute of Nuclear Technology, P. O. Box 69-14, Xi'an City, Shanxi Province 710024, PR China
| | - Weixian Wang
- Northwest Institute of Nuclear Technology, P. O. Box 69-14, Xi'an City, Shanxi Province 710024, PR China
| | - Xiaohua Zhou
- Northwest Institute of Nuclear Technology, P. O. Box 69-14, Xi'an City, Shanxi Province 710024, PR China
| | - Jianfeng Lin
- Northwest Institute of Nuclear Technology, P. O. Box 69-14, Xi'an City, Shanxi Province 710024, PR China
| |
Collapse
|
27
|
Wang L, Lu Y, Yang C, Chen C, Huang W, Dang Z. Effects of Cd(II) on the stability of humic acid-coated nano-TiO 2 particles in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23144-23152. [PMID: 28828557 DOI: 10.1007/s11356-017-9905-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
The stability of nanoparticles (NPs) in aquatic environments is important to evaluate their adverse effects on aquatic ecosystems and human health. Nanoparticle stability is known to be influenced by coexisting ions and dissolved organic matter. This study was designed to investigate the effects of coexisting low-level Cd(II) on the stability of humic acid-coated nano-TiO2 (HA-TiO2) particles in aquatic environments by measuring their aggregation kinetics through time-resolved dynamic light scattering (DLS) and monitoring suspended HA-TiO2 concentrations via optical absorbance changes over time. The particles exhibited aggregation behavior consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The results showed that Cd(II) concentration, pH, and ionic strength had various effects on the aggregation kinetics of the HA-TiO2 NPs. The HA-TiO2 particles aggregated faster as the Cd(II) concentration increased whereas the stability of the nanoparticles increased as the solution pH increased or ionic strength decreased regardless of the Cd(II) concentration. At the fixed pH and ionic strength conditions, the addition of Cd(II) promoted aggregation of nanoparticles, leading to higher attachment efficiencies. The enhanced aggregation of the HA-TiO2 NPs in the presence of coexisting cadmium ions in aqueous solutions indicated that the fate and transport of nanoparticles could be greatly affected by heavy metals in aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yixin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Chengyu Chen
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Weilin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
28
|
Lin J, Zhang Z, Zhan Y. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12195-12211. [PMID: 28353102 DOI: 10.1007/s11356-017-8873-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.
Collapse
Affiliation(s)
- Jianwei Lin
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China.
| | - Zhe Zhang
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Shanghai, 201306, China
| |
Collapse
|
29
|
Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg Chem Appl 2017; 2017:4101735. [PMID: 28373829 PMCID: PMC5360948 DOI: 10.1155/2017/4101735] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023] Open
Abstract
Although nanoparticles (NPs) have made incredible progress in the field of nanotechnology and biomedical research and their applications are demanded throughout industrial world particularly over the past decades, little is known about the fate of nanoparticles in ecosystem. Concerning the biosafety of nanotechnology, nanotoxicity is going to be the second most priority of nanotechnology that needs to be properly addressed. This review covers the chemical as well as the biological concerns about nanoparticles particularly titanium dioxide (TiO2) NPs and emphasizes the toxicological profile of TiO2 at the molecular level in both in vitro and in vivo systems. In addition, the challenges and future prospects of nanotoxicology are discussed that may provide better understanding and new insights into ongoing and future research in this field.
Collapse
|
30
|
Adsorption Properties of Nano-MnO₂-Biochar Composites for Copper in Aqueous Solution. Molecules 2017; 22:molecules22010173. [PMID: 28117702 PMCID: PMC6155803 DOI: 10.3390/molecules22010173] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 11/16/2022] Open
Abstract
There is a continuing need to develop effective materials for the environmental remediation of copper-contaminated sites. Nano-MnO2–biochar composites (NMBCs) were successfully synthesized through the reduction of potassium permanganate by ethanol in a biochar suspension. The physicochemical properties and morphology of NMBCs were examined, and the Cu(II) adsorption properties of this material were determined using various adsorption isotherms and kinetic models. The adsorption capacity of NMBCs for Cu(II), which was enhanced by increasing the pH from 3 to 6, was much larger than that of biochar or nano-MnO2. The maximum adsorption capacity of NMBCs for Cu(II) was 142.02 mg/g, which was considerably greater than the maximum adsorption capacities of biochar (26.88 mg/g) and nano-MnO2 (93.91 mg/g). The sorption process for Cu(II) on NMBCs fitted very well to a pseudo-second-order model (R2 > 0.99). Moreover, this process was endothermic, spontaneous, and hardly influenced by ionic strength. The mechanism of Cu(II) adsorption on NMBCs mainly involves the formation of complexes between Cu(II) and O-containing groups (e.g., COO–Cu and Mn–O–Cu). Thus, NMBCs may serve as effective adsorbents for various environmental applications, such as wastewater treatment or the remediation of copper-contaminated soils.
Collapse
|
31
|
Fan W, Peng R, Li X, Ren J, Liu T, Wang X. Effect of titanium dioxide nanoparticles on copper toxicity to Daphnia magna in water: Role of organic matter. WATER RESEARCH 2016; 105:129-137. [PMID: 27611640 DOI: 10.1016/j.watres.2016.08.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/28/2016] [Indexed: 05/29/2023]
Abstract
Inevitably released into natural water, titanium dioxide nanoparticles (nano-TiO2) may affect the toxicity of other contaminants. Ubiquitous organic matter (OM) may influence their combined toxicity, which has been rarely reported. This study investigated the effect of nano-TiO2 on Cu toxicity to Daphnia magna and the role of OM (dissolved or particle surface bound) in inducing combined effects. The effect of nano-TiO2 on heavy metal accumulation depended on the adsorption capacity for heavy metals of nano-TiO2 and the uptake of nano-TiO2-metal complexes by organisms. Nano-TiO2 significantly decreased Cu accumulation in D. magna, but the reducing effect of nano-TiO2 was eliminated in the presence of humic acid (HA, a model OM). In the Cu and HA solution, nano-TiO2 slightly affected the bioavailability of Cu2+ and Cu-HA complexes and thus slightly influenced Cu toxicity. The nanoparticle surface-bound HA reduced the effect of nano-TiO2 on the speciation of the accumulated Cu; therefore, the combined effects of nano-TiO2 and Cu on biomarkers similarly weakened. HA-altered Cu speciation may be the main factor responsible for the influence of HA on the combined effects of nano-TiO2 and Cu. This study provides insights into the combined effects of nano-TiO2 and heavy metals in natural water.
Collapse
Affiliation(s)
- Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China.
| | - Ruishuang Peng
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Jinqian Ren
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tong Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiangrui Wang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
32
|
Zhou Y, Zhang Y, Li G, Jiang T. Effects of metal cations on the fulvic acid (FA) adsorption onto natural iron oxide in iron ore pelletizing process. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2016.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Mahmoodi NM, Mokhtari-Shourijeh Z. Preparation of aminated nanoporous nanofiber by solvent casting/porogen leaching technique and dye adsorption modeling. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Wang G, Qi J, Wang S, Wei Z, Li S, Cui J, Wei W. Surface-bound humic acid increased rhodamine B adsorption on nanosized hydroxyapatite. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1185729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Gang Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Jingjing Qi
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
| | - Shuangyan Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
| | - Zhenggui Wei
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Shiyin Li
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
| | - Jing Cui
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
| | - Wei Wei
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of the Environment, Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
35
|
He X, Sanders S, Aker WG, Lin Y, Douglas J, Hwang HM. Assessing the effects of surface-bound humic acid on the phototoxicity of anatase and rutile TiO₂ nanoparticles in vitro. J Environ Sci (China) 2016; 42:50-60. [PMID: 27090694 DOI: 10.1016/j.jes.2015.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/17/2015] [Accepted: 05/22/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cytotoxicity of two different crystal phases of TiO2 nanoparticles, with surface modification by humic acid (HA), to Escherichia coli, was assessed. The physicochemical properties of TiO2 nanoparticles were thoroughly characterized. Three different initial concentrations, namely 50, 100, and 200 ppm, of HA were used for synthesis of HA coated TiO2 nanoparticles (denoted as A/RHA50, A/RHA100, and A/RHA200, respectively). Results indicate that rutile (LC50 (concentration that causes 50% mortality compared the control group)=6.5) was more toxic than anatase (LC50=278.8) under simulated sunlight (SSL) irradiation, possibly due to an extremely narrow band gap. It is noted that HA coating increased the toxicity of anatase, but decreased that of rutile. Additionally, AHA50 and RHA50 had the biggest differences compared to uncoated anatase and rutile with LC50 of 201.9 and 21.6, respectively. We then investigated the formation of reactive oxygen species (ROS) by TiO2 nanoparticles in terms of hydroxyl radicals (·OH) and superoxide anions (O2(·-)). Data suggested that O2(·-) was the main ROS that accounted for the higher toxicity of rutile upon SSL irradiation. We also observed that HA coating decreased the generation of ·OH and O2(·-) on rutile, but increased O2(·-) formation on anatase. Results from TEM analysis also indicated that HA coated rutile tended to be attached to the surface of E. coli more than anatase.
Collapse
Affiliation(s)
- Xiaojia He
- Department of Biology, Jackson State University, Jackson, MS, USA
| | - Sabrieon Sanders
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - Winfred G Aker
- Environmental Science Ph.D. Program, Jackson State University, Jackson, MS, USA
| | - Yunfeng Lin
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS, USA
| | - Jessica Douglas
- School of Polymers and High Performance Materials, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Huey-Min Hwang
- Department of Biology, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
36
|
Yang L, Wei Z, Zhong W, Cui J, Wei W. Modifying hydroxyapatite nanoparticles with humic acid for highly efficient removal of Cu(II) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Shan C, Ma Z, Tong M. Efficient removal of free and nitrilotriacetic acid complexed Cd(II) from water by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:479-485. [PMID: 26247623 DOI: 10.1016/j.jhazmat.2015.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 06/04/2023]
Abstract
Poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles (FSPV) were developed to remove both free Cd(II) and nitrilotriacetic acid (NTA) complexed Cd(II) from water. The adsorption capacity of NTA-complexed Cd(II) (42.1 mg/g) was larger than that of free Cd(II) (24.8 mg/g). Free Cd(II) and NTA-complexed Cd(II) could be reduced from 50 μg/L to below 5 μg/L within 10 and 20 min, respectively. FSPV could effectively remove trace free and NTA-complexed Cd(II) over broad pH ranges of 5-10 and 5-11, respectively. Moreover, the presence of seven coexisting ions (up to 100 mM) including four cations (Na(+), K(+), Ca(2+), and Mg(2+)) and three anions (Cl(-), NO3(-), and SO4(2-)) all slightly promoted the removal of both free and NTA-complexed Cd(II) onto FSPV. The removal of free Cd(II) or NTA-complexed Cd(II) was not obviously affected by the presence of Ni(II) and Co(II) (50 μg/L), humic acid (up to 3 mg/L as TOC) or alginate (up to 8 mg/L as TOC). In addition, FSPV could be regenerated with 10 mM HCl in 10 min, and the removal of both types of Cd(II) maintained above 95% in five consecutive adsorption/regeneration cycles. Therefore, FSPV could be utilized as promising adsorbent for both free and NTA-complexed Cd(II).
Collapse
Affiliation(s)
- Chao Shan
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhiyao Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
38
|
Gao X, Gu Y, Huang S, Zhen G, Deng G, Xie T, Zhao Y. Comparison of alternative remediation technologies for recycled gravel contaminated with heavy metals. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:1005-1014. [PMID: 26416851 DOI: 10.1177/0734242x15602963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To evaluate the effects of different remediation methods on heavy metals contaminated recycled gravel, three immobilization agents (monopotassium phosphate, lime, nano-iron) and two mobilization agents (glyphosate, humic acid (HA)) were studied and compared. Results indicated that nano-iron powder was found to be more effective to immobilize Zn, Cu, Pb and Cd. Meanwhile, glyphosate presents a higher mobilization effect than HA with removal rates of about 66.7% for Cd, more than 80% for Cr, Cu and Zn, and the highest removal percentage of 85.9% for Cr. After the mobilization by glyphosate, the leaching rates of Zn, Cu and Cr were about 0.8%, and below 0.2% for Pb and Cd. The leaching rates after nano-iron powder treatment were 1.18% for Zn, 0.96% for Cr, 0.61% for Cu, 0.45% for Pb and Cd not detected. The formation and disappearance of metal (Zn/Cu/Cr/Pb/Cd) compounds were firmly confirmed through X-ray diffraction and scanning electron microscopy analyses on crystalline phases and morphological surface structures.
Collapse
Affiliation(s)
- Xiaofeng Gao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, P.R. China
| | - Yilu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, P.R. China
| | - Sheng Huang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, P.R. China
| | | | - Guannan Deng
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, P.R. China
| | - Tian Xie
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, P.R. China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, P.R. China
| |
Collapse
|
39
|
Wang Y, Peng C, Fang H, Sun L, Zhang H, Feng J, Duan D, Liu T, Shi J. MITIGATION OF Cu(II) PHYTOTOXICITY TO RICE (ORYZA SATIVA) IN THE PRESENCE OF TiO₂ AND CeO₂ NANOPARTICLES COMBINED WITH HUMIC ACID. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1588-96. [PMID: 25771918 DOI: 10.1002/etc.2953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 02/20/2015] [Indexed: 05/12/2023]
Abstract
Engineered nanoparticles (NPs) and natural organic matter (NOM) in the environment may interact with background contaminants such as heavy metals and modify their bioavailability and toxicity. In the present study, the combined influences of 2 common NPs (TiO2 and CeO2 ) and humic acid (HA; as a model NOM) on Cu(II) phytotoxicity to rice were investigated by a 3-d root elongation assay performed on filter paper media. The results showed that the adsorption coefficients of bare TiO2 and CeO2 NPs (100 mg/L) toward Cu(2+) are 2.65 and 4.37, respectively, at an initial concentration of 10 mg/L, suggesting that Cu(II) could be strongly adsorbed by NPs, whereas HA-coated TiO2 and CeO2 NPs further enhanced the adsorption coefficients to 4.37 and 6.85, respectively. In addition, compared with Cu-alone treatment, the addition of bare TiO2 and CeO2 NPs (1000 mg/L) increased the length of rice root by 32.5% and 39.0%, respectively; however, the presence of HA-coated TiO2 and CeO2 NPs increased the root length by 90.2% and 100.1%, respectively, which indicated that the mitigation effect of HA-coated NPs on Cu(II) phytotoxicity was more visible than that of bare NPs. The results demonstrated that coexistence of NPs and HA significantly alleviated Cu(II) phytotoxicity as a result of a decrease in bioavailable soluble Cu(II) concentration, which contributes to an understanding of the potential behavior of NPs in the environment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Cheng Peng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Huaxiang Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Lijuan Sun
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Hai Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiabei Feng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Dechao Duan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Tingting Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiyan Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
40
|
Vale G, Franco C, Brunnert AM, Correia dos Santos MM. Adsorption of Cadmium on Titanium Dioxide Nanoparticles in Freshwater Conditions - A Chemodynamic Study. ELECTROANAL 2015. [DOI: 10.1002/elan.201500153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M. Nanosized titanium dioxide reduces copper toxicity--the role of organic material and the crystalline phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1815-1822. [PMID: 25556663 DOI: 10.1021/es506243d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (nTiO2) are expected to interact with natural substances and other chemicals in the environment, however little is known about their combined effects. Therefore, this study assessed the toxicity of copper (Cu) in combination with varying crystalline phases (anatase, rutile, and the mixture) of nTiO2 and differing organic materials on Daphnia magna. The nanoparticles reduced the Cu-toxicity depending on the product (0.3- to 2-fold higher 48-h EC50). This decrease in toxicity coincided with a lowered Cu-concentration in the water column, which was driven by the adsorption of Cu to nTiO2-depending on available surface area and structure-and their subsequent sedimentation. In the presence of organic material and nTiO2, the Cu-toxicity was further reduced (up to 7-fold higher 48-h EC50). This observation can be explained by a reduced Cu-bioavailability as a result of complexation and adsorption by the organic material and nTiO2, respectively. Thus, the crystalline phase composition, which is determining the surface area and structure of nTiO2, seems to be of major importance for the toxicity reduction of heavy metals, while the influence of the organic materials was mainly driven by the quantity and quality of humic substances.
Collapse
Affiliation(s)
- Ricki R Rosenfeldt
- Institute for Environmental Sciences, University of Koblenz-Landau , Fortstrasse 7, 76829 Landau/Palatinate, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Liu Q, Zheng Y, Zhong L, Cheng X. Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat. J Environ Sci (China) 2015; 28:29-36. [PMID: 25662235 DOI: 10.1016/j.jes.2014.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 05/22/2023]
Abstract
Pollution of antibiotics, a type of emerging contaminant, has become an issue of concern, due to their overuse in human and veterinary application, persistence in environment and great potential risk to human and animal health even at trace level. In this work, a novel adsorbent, Fe3O4 incorporated polyacrylonitrile nanofiber mat (Fe-NFM), was successfully fabricated via electrospinning and solvothermal method, targeting to remove tetracycline (TC), a typical class of antibiotics, from aqueous solution. Field emission scanning electron microscopy and X-ray diffraction spectroscopy were used to characterize the surface morphology and crystal structure of the Fe-NFM, and demonstrated that Fe-NFM was composed of continuous, randomly distributed uniform nanofibers with surface coating of Fe3O4 nanoparticles. A series of adsorption experiments were carried out to evaluate the removal efficiency of TC by the Fe-NFM. The pseudo-second-order kinetics model fitted better with the experimental data. The highest adsorption capacity was observed at initial solution pH4 while relative high adsorption performance was obtained from initial solution pH4 to 10. The adsorption of TC on Fe-NFM was a combination effect of both electrostatic interaction and complexation between TC and Fe-NFM. Freundlich isotherm model could better describe the adsorption isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was 315.31 mg/g. Compared to conventional nanoparticle adsorbents which have difficulties in downstream separation, the novel nanofiber mat can be simply installed as a modular compartment and easily separated from the aqueous medium, promising its huge potential in drinking and wastewater treatment for micro-pollutant removal.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuming Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lubin Zhong
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoxia Cheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Experimental study and modeling of photocatalytic reduction of Pb2+ by WO3/TiO2 nanoparticles. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Ray PZ, Shipley HJ. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: a review. RSC Adv 2015. [DOI: 10.1039/c5ra02714d] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schematic of inorganic adsorbents (INA) for heavy metal removal.
Collapse
Affiliation(s)
| | - Heather J. Shipley
- University of Texas-San Antonio
- Dept. of Civil and Environmental Engineering
- San Antonio
- USA
| |
Collapse
|
45
|
Shvets O, Belyakova L. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:643-656. [PMID: 25464306 DOI: 10.1016/j.jhazmat.2014.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/26/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
Nanoporous β-cyclodextrin-containing silicas which differ by functional substituents of wide edge of attached cyclic oligosaccharide molecules (alcohol, bromoacetyl, thiosemicarbazidoacetyl groups) have been synthesized. The structure and chemical composition of the surface, porosity of obtained materials, their chemical and thermal stability have been characterized by scanning electron microscopy, IR spectroscopy, thermogravimetry, nitrogen ad-desorption, elemental and chemical analyses of solid surface. Sorption of trace amounts of cadmium (II) in the presence of ten- and hundred-fold excess of hardness salts by synthesized organosilicas has been studied. It has been demonstrated that the sorption equilibrium is reached after 30 min. The sorption of trace amounts of cadmium (II) from multi-component solutions does not decrease, but even increases in the presence of hardness salts, simulating soft and hard water. Coefficients of distribution and selectivity as well as the sorption parameters of Langmuir and Freundlich equations have been calculated. It was found that the driving force of cadmium (II) sorption on the surface of functional β-cyclodextrin-containing silicas is the formation of inclusion complexes "β-cyclodextrin-nitrate-anion". It has been proved the formation of supramolecular structures on the surface of synthesized organosilicas as a result of cadmium (II) sorption. Chemical composition of supermolecules depends on the structure of surface active centers.
Collapse
Affiliation(s)
- Oleksandra Shvets
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., Kiev 03164, Ukraine.
| | - Lyudmila Belyakova
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Str., Kiev 03164, Ukraine.
| |
Collapse
|
46
|
Majedi SM, Kelly BC, Lee HK. Combined effects of water temperature and chemistry on the environmental fate and behavior of nanosized zinc oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 496:585-593. [PMID: 25108799 DOI: 10.1016/j.scitotenv.2014.07.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Information on the effects of water temperature, among several environmental factors, on predicting the behavior, fate, and exposure risks of engineered nanoparticles (NPs), is scarce. In the present work, the behavior and fate of commercial zinc oxide (ZnO) NPs with an average diameter of 52 nm were extensively investigated in U.S. Environmental Protection Agency standard, synthetic freshwater media with varying pH and hardness containing 2mg C/L of humic acid as a natural organic matter (NOM) surrogate, in the temperature range from 4 °C to 45 °C, representing very cold to warm waters. While a constant increase of ZnO hydrodynamic diameter was observed with increasing the temperature, results of analysis of variance showed that the temperature effect was insignificant in the samples with enhanced ionic strength, and water chemistry had more pronounced effects than the temperature on the rate of ZnO NP aggregation. With increase of the water temperature, the NP surface charge was partially reduced. ZnO NP dissolution and surface adsorption of NOM and zinc ions were found to be exothermic processes, and the latter was significantly decreased when temperature was increased in all test matrices. This study provides useful information for assessing environmental risks of ZnO NPs in aqueous matrices with various water chemistries and temperatures.
Collapse
Affiliation(s)
- Seyed Mohammad Majedi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; National University of Singapore Environmental Research Institute, T-Lab Building #02-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
47
|
Philippe A, Schaumann GE. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8946-62. [PMID: 25082801 DOI: 10.1021/es502342r] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This contribution critically reviews the state of knowledge on interactions of natural colloids and engineered nanoparticles with natural dissolved organic materials (DOM). These interactions determine the behavior and impact of colloids in natural system. Humic substances, polysaccharides, and proteins present in natural waters adsorb onto the surface of most colloids. We outline major adsorption mechanisms and structures of adsorption layers reported in the literature and discuss their generality on the basis of particle type, DOM type, and media composition. Advanced characterization methods of both DOM and colloids are needed to address insufficiently understood aspects as DOM fractionation upon adsorption, adsorption reversibility, and effect of capping agent. Precise knowledge on adsorption layer helps in predicting the colloidal stability of the sorbent. While humic substances tend to decrease aggregation and deposition through electrostatic and steric effects, bridging-flocculation can occur in the presence of multivalent cations. In the presence of DOM, aggregation may become reversible and aggregate structure dynamic. Nonetheless, the role of shear forces is still poorly understood. If traditional approaches based on the DLVO-theory can be useful in specific cases, quantitative aggregation models taking into account DOM dynamics, bridging, and disaggregation are needed for a comprehensive modeling of colloids stability in natural media.
Collapse
Affiliation(s)
- Allan Philippe
- Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University Koblenz-Landau , Fortstraße 7, D-76829, Landau, Germany
| | | |
Collapse
|
48
|
Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:1014-27. [PMID: 24095965 DOI: 10.1016/j.scitotenv.2013.09.044] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/15/2013] [Accepted: 09/15/2013] [Indexed: 05/22/2023]
Abstract
Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.
Collapse
Affiliation(s)
- Wang-Wang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review deals with adsorption of metal ions, particularly those considered as hazardous, on clays and some inorganic solids and covers the publication years 2000–2013 describing and quantifying the use of isotherms to obtain the adsorption capacities of the solids.
Collapse
|
50
|
Loosli F, Le Coustumer P, Stoll S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. WATER RESEARCH 2013; 47:6052-63. [PMID: 23969399 DOI: 10.1016/j.watres.2013.07.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 05/26/2023]
Abstract
The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles.
Collapse
Affiliation(s)
- Frédéric Loosli
- University of Geneva, F.-A. Forel Institute, Group of Environmental Physical Chemistry, 10 route de Suisse, 1290 Versoix, Switzerland.
| | | | | |
Collapse
|