1
|
Minhas S, Pandey RP, Hasan SW. Emerging nanomaterials incorporated in membranes for polyfluoroalkyl substances (PFAS) removal from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123888. [PMID: 39736225 DOI: 10.1016/j.jenvman.2024.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Water purification become more challenging day by day, due to novel anthropogenic pollutants such as per- and polyfluoroalkyl substances (PFAS) used in nonstick cookware, firefighting foams, packaging etc. PFAS has adverse effects on human health and ecosystem and their physicochemical properties and unique molecular structures make the conventional water treatment methods more challenging. Among the novel PFAS removal technologies, nanomaterials incorporated in membranes are regarded as promising membrane technology for the treatment of PFAS. This review explores the incorporation of nanomaterials in membranes for PFASs removal, examining both current applications and future prospects. Nanomaterials possessing excellent features when incorporated in membranes can enhance their properties and hence makes this technology a potential candidate for PFAS removal. In this critical review, the relationships between membrane performance and properties are studied. Challenges and limitations such as high production costs, stability of nanomaterials within membranes, non-uniform distribution of nanomaterials in membrane matrices, and potential toxicity associated with nanomaterials are identified. This analysis also underscores research gap, prompting further exploration and development such as large-scale production and commercialization of mixed matrix membrane systems, optimization of membrane fabrication techniques, and the exploration of additional 2D nanomaterials.
Collapse
Affiliation(s)
- Sana Minhas
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Rashtbari S, Dehghan G, Khataee A, Khataee S, Orooji Y. A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo 2Ti 2AlC 3 MXene precursor-modified electrode. CHEMOSPHERE 2024; 370:144012. [PMID: 39716601 DOI: 10.1016/j.chemosphere.2024.144012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Various commercial and industrial products widely use highly toxic eight-carbon-chain perfluorooctanesulfonate (PFOS), posing a significant threat to the health of living organisms. In this study, the electrochemical detection of PFOS was achieved by developing a carbon paste electrode (CPE) using the Mo2Ti2AlC3 MAX phase. Mo2Ti2AlC3 was synthesized and directly used to construct the CPE. The electrochemical performance of the prepared sensor was tested using various electrochemical techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometric titration. The developed electrochemical sensor exhibited two linear ranges from 0.001 to 0.09 μM and from 1.1 to 62.6 μM, with a detection limit of 0.04 nM. The sensor demonstrated high sensitivity, measuring 145.1 μA μM-1 cm-2, and a response time of 5 s for PFOS quantification at a working potential of 0.3 V. Additionally, the sensor demonstrated outstanding resistance to typical interfering chemicals. The applicability and reliability of the developed sensor for PFOS determination were further tested in real samples, yielding recoveries in the range of 92.6-108.2%, with relative standard deviation (RSD) values between 1.8% and 3.7%. The Mo2Ti2AlC3 MAX phase-based electrochemical sensor is simple, rapid, sensitive, and cost-effective, making it a promising approach for the quantification of PFOS in environmental water and soil samples.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemical Engineering, Istanbul Technical University, 34469, Istanbul, Türkiye.
| | - Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
Chen Q, Wang J, Su Z, Tian L, Huang F, Liu T, Graham N, Li G, Yu W. Per- and polyfluoroalkyl substances (PFAS) at low concentration improve coagulation efficiency but induce higher membrane fouling in drinking water treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125201. [PMID: 39490509 DOI: 10.1016/j.envpol.2024.125201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFAS) in surface water has been widely reported in recent years. Many techniques, e.g., adsorption, have been investigated to remove PFAS from contaminated waters. However, the underlying impacts of PFAS on conventional drinking water treatment have been overlooked so far. In this study, we hypothesized whether PFAS have significant impacts on algae in surface water, which in turn may influence the performance of typical treatment processes (e.g., coagulation/membrane filtration). Therefore, we sampled a representative surface water (drinking water source) in Beijing, China, and dosed 2 representative PFAS compounds, at environment concentrations, to conduct bench-scale treatment tests. Results showed that the presence of PFAS caused larger flocs during coagulation and more severe ultrafiltration (UF) membrane fouling, compared with a control solution without PFAS. Specifically, PFAS at a low concentration (0.1 μg/L) led to the greatest influence on floc growth and UF membrane fouling; compared with the solution without PFAS, the floc size increased by 1.6 times and membrane flux declined more than 10%. These effects were evidenced by the stress response of algae under PFAS stimulus, secreting more biopolymers (mainly polysaccharides), rather than by PFAS directly. Overall, this study has demonstrated that the presence of PFAS can have both beneficial, and undesirable, indirect effects on water treatment in real applications, through its impact on algae in surface water sources.
Collapse
Affiliation(s)
- Qianyi Chen
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Junling Wang
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China.
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, 100081, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Huang J, Song G, Hao M, He Y, Hao H, Li R, Shi B, Huang X. Efficient removal of per- and polyfluoroalkyl substances (PFASs) from stored rainwater by composite metal salt /polydimethyldiallylammonium chloride coagulants. CHEMOSPHERE 2024; 366:143494. [PMID: 39374667 DOI: 10.1016/j.chemosphere.2024.143494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
Stored rainwater, the primary source of drinking water in the villages and towns of the Loess Plateau in northwest China, has been found to contain per- and polyfluoroalkyl substances (PFASs) and lacks necessary treatment measures. Coagulation is a common water treatment process, and enhancing its efficacy in removing PFASs can significantly improve treatment efficiency, reduce costs, and minimize the environmental and health risks associated with perfluorinated compounds. This study investigated the removal efficiency of perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) using inorganic salt coagulants alone and in combination with polydimethyldiallylammonium chloride (PDMDAAC). The results indicated that the removal efficiencies of the four PFASs by polyferric chloride (PFCl) and polyaluminum chloride (PACl) increased with alkalinity. PDMDAAC significantly enhanced the coagulation removal efficiency of the four PFASs. The removal efficiency of the four PFASs was highest when the raw water pH was near 7. Within the molecular weight range of 0-500,000 for PDMDAAC, the removal efficiency of the four PFASs increased with increasing molecular weight. Charge neutralization is the primary coagulation mechanism for the removal of anionic PFASs. Therefore, this study provides guidance for selecting coagulants to remove PFASs from stored rainwater.
Collapse
Affiliation(s)
- Junhao Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, Henan, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, Henan, China
| | - Mingming Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yitian He
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotian Hao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, Henan, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Fang X, Jin L, Sun X, Huang H, Wang Y, Ren H. A data-driven analysis to discover research hotspots and trends of technologies for PFAS removal. ENVIRONMENTAL RESEARCH 2024; 251:118678. [PMID: 38493846 DOI: 10.1016/j.envres.2024.118678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/24/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The frequent detection of persistent per- and polyfluoroalkyl substances (PFAS) in organisms and environment coupled with surging evidence for potential detrimental impacts, have attracted widespread attention throughout the world. In order to reveal research hotspots and trends of technologies for PFAS removal, herein, we performed a data-driven analysis of 3975 papers and 436 patents from Web of Science Core Collection and Derwent Innovation Index databases up to 2023. The results showed that China and the USA led the way in the research of PFAS removal with outstanding contributions to publications. The progression generally transitioned from accidental discovery of decomposition, to experimentation with removal effects and mechanisms of existing methods, and finally to enhanced defluorination and mechanism-driven design approaches. The keywords co-occurrence network and technology classification together revealed the main knowledge framework, which was constructed and correlated through contaminants, substrates, materials, processes and properties. Moreover, adsorption was demonstrated to be the dominant removal process among the current studies. Subsequently, we concluded the principles, advances and drawbacks of enrichment and separation, biological methods, advanced oxidation and reduction processes. Further exploration indicated the hotspots such as alternatives and precursors for PFAS ("genx": 1.258, "f-53b": 0.337), degradable mineralization technologies ("photocatalytic degrad": 0.529, "hydrated electron": 0.374), environment-friendly remediation technologies ("phytoremedi": 0.939, "constructed wetland": 0.462) and combination with novel materials ("metal-organic framework": 1.115, "layered double hydroxid": 0.559) as well as computer science ("molecular dynamics simul": 0.559, "machine learn"). Furthermore, the future direction of technological innovation might lie in high-performance processes that minimize secondary pollution, the development of recyclable and renewable treatment agents, and collaborative control strategies for multiple pollutants. Overall, this study offers comprehensive and objective review for researchers and industry professionals in this field, enabling rapid access to knowledge guidance and insights into research frontiers.
Collapse
Affiliation(s)
- Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| |
Collapse
|
6
|
Hubert M, Meyn T, Hansen MC, Hale SE, Arp HPH. Per- and polyfluoroalkyl substance (PFAS) removal from soil washing water by coagulation and flocculation. WATER RESEARCH 2024; 249:120888. [PMID: 38039821 DOI: 10.1016/j.watres.2023.120888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Soil washing is currently attracting attention as a promising remediation strategy for land contaminated with per- and polyfluoroalkyl substances (PFAS). In the soil washing process, the contaminant is transferred from the soil into the liquid phase, producing a PFAS contaminated process water. One way to treat such process water is to use coagulation and flocculation; however, few studies are available on the performance of coagulation and flocculation for removing PFAS from such process water. This study evaluated 6 coagulants and flocculants (polyaluminium chloride (PACl), zirconium oxychloride octahydrate, cationic and anionic polyacrylamide, Polyclay 685 and Perfluor Ad®), for the treatment of a proxy PFAS contaminated washing water, spiked with PFAS concentrations found at typical Aqueous Film Forming Foam (AFFF) contaminated sites. PFAS removal efficiencies (at constant pH) varied greatly depending on the coagulants and flocculants, as well as the dosage used and the targeted PFAS. All tested coagulants and flocculants reduced the turbidity by >95%, depending on the dosage. Perfluor Ad®, a specially designed coagulant, showed the highest removal efficiency for all longer chain (>99%) and shorter chain PFAS (>68%). The cationic polyacrylamide polymer removed longer chain PFAS up to an average of 80%, whereas average shorter chain PFAS removal was lower (<30%). The two metal-based coagulants tested, PACl and zirconium, removed longer chain PFAS by up to an average of 61% and shorter chain PFAS up to 48%. Polyclay 685, a mixture of powdered activated carbon (PAC) and aluminium sulphate, removed longer chain PFAS by 90% and shorter chain PFAS on average by 76%, when very high dosages of the coagulant were used (2,000 mg/L). PFAS removal efficiencies correlated with chain length and headgroup. Shorter chain PFAS removal was dependent on electrostatic interaction with the precipitating flocs, whereas for longer chain PFAS, hydrophobic interactions between apolar functional groups and flocs created by the coagulant/flocculant, dissolved organic matter and suspended solids played a major role. The results of this study showed that by selecting the most efficient coagulant and aqueous conditions, a greater amount of PFAS can be removed from process waters in soil washing facilities, and thus included as part of various treatment trains.
Collapse
Affiliation(s)
- Michel Hubert
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.
| | - Thomas Meyn
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Sarah E Hale
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; DVGW-Technologiezentrum Wasser, 76139 Karsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), NO-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
7
|
Tolaymat T, Robey N, Krause M, Larson J, Weitz K, Parvathikar S, Phelps L, Linak W, Burden S, Speth T, Krug J. A critical review of perfluoroalkyl and polyfluoroalkyl substances (PFAS) landfill disposal in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167185. [PMID: 37734620 PMCID: PMC10842600 DOI: 10.1016/j.scitotenv.2023.167185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Landfills manage materials containing per- and polyfluoroalkyl substances (PFAS) from municipal solid waste (MSW) and other waste streams. This manuscript summarizes state and federal initiatives and critically reviews peer-reviewed literature to define best practices for managing these wastes and identify data gaps to guide future research. The objective is to inform stakeholders about waste-derived PFAS disposed of in landfills, PFAS emissions, and the potential for related environmental impacts. Furthermore, this document highlights data gaps and uncertainties concerning the fate of PFAS during landfill disposal. Most studies on this topic measured PFAS in liquid landfill effluent (leachate); comparatively fewer have attempted to estimate PFAS loading in landfills or other effluent streams such as landfill gas (LFG). In all media, the reported total PFAS heavily depends on waste types and the number of PFAS included in the analytical method. Early studies which only measured a small number of PFAS, predominantly perfluoroalkyl acids (PFAAs), likely report a significant underestimation of total PFAS. Major findings include relationships between PFAS effluent and landfill conditions - biodegradable waste increases PFAS transformation and leaching. Based on the results of multiple studies, it is estimated that 84% of PFAS loading to MSW landfills (7.2 T total) remains in the waste mass, while 5% leaves via LFG and 11% via leachate on an annual basis. The environmental impact of landfill-derived PFAS has been well-documented. Additional research is needed on PFAS in landfilled construction and demolition debris, hazardous, and industrial waste in the US.
Collapse
Affiliation(s)
- Thabet Tolaymat
- The Center for Environmental Solutions and Emergency Management, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA.
| | - Nicole Robey
- Innovative Technical Solutions, Gainesville, FL, USA
| | - Max Krause
- The Center for Environmental Solutions and Emergency Management, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Judd Larson
- RTI International, Research Triangle Park, NC, USA
| | - Keith Weitz
- RTI International, Research Triangle Park, NC, USA
| | | | - Lara Phelps
- The Center for Environmental Measurements and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William Linak
- The Center for Environmental Measurements and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Susan Burden
- Office of Science Advisor, Policy and Engagement, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Tom Speth
- The Center for Environmental Solutions and Emergency Management, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Jonathan Krug
- The Center for Environmental Measurements and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Deng J, Han J, Hou C, Zhang Y, Fang Y, Du W, Li M, Yuan Y, Tang C, Hu X. Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation. CHEMOSPHERE 2023; 341:140051. [PMID: 37660789 DOI: 10.1016/j.chemosphere.2023.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
In order to solve the problem of efficient desorption of per- and polyfluoroalkyl substances (PFAS) and regeneration of adsorbents, a novel biochar composite was prepared based on the quaternary ammonium groups and hydrophobicity of sulfobetaine polymer, which can be used for the efficient removal of various PFASs and has great regeneration ability. Through adsorption, regeneration and degradation experiment, the comprehensive effect of the novel biochar composite on the whole process of removal of PFAS was systematically investigated. The results showed that the maximum adsorption capacity of PFOS, PFOA, PFBS, and PFBA reached 634 mg/g, 536 mg/g, 301 mg/g and 264 mg/g, respectively. The adsorption process involved hydrophobicity, electrostatic, pore diffusion and complexation. The NaI + NaOH solution was used at 50 °C to achieve efficient regeneration of the adsorbent, which can be recycled more than 4 times. When the vacuum-ultraviolet (VUV)/sulfite reduction system was used for deep degradation of the regenerated solution, the effect of hydrated electrons on PFAS was enhanced due to the inclusion of NaI and NaOH in the regeneration reagent, resulting in an increase in the degradation efficiency (89.1%-99.9%) and defluorination efficiency (63.3%-84.1%). Based on the performance of BC-P(SB-co-AM) and the treatment efficiency of PFAS, the design idea of the whole process treatment technology of PFAS proposed in this work is expected to hold great promise in environmental applications. This work provides a novel idea and system for the efficient adsorption removal and desorption of PFAS, and subsequent deep degradation.
Collapse
Affiliation(s)
- Jiaqin Deng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China.
| | - Jianing Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ying Fang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - WanXuan Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
9
|
Zhang C, Dong J, Zhang P, Sun L, Yang L, Wang W, Zou X, Chen Y, Shang Q, Feng D, Zhu G. Unique fluorophilic pores engineering within porous aromatic frameworks for trace perfluorooctanoic acid removal. Natl Sci Rev 2023; 10:nwad191. [PMID: 37671322 PMCID: PMC10476896 DOI: 10.1093/nsr/nwad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 09/07/2023] Open
Abstract
Perfluorooctanoic acid (PFOA), a representative of per/polyfluorinated alkyl substances, has become a persistent water pollutant of widespread concern due to its biological toxicity and refractory property. In this work, we design and synthesize two porous aromatic frameworks (PAF) of PAF-CF3 and PAF-C2F5 using fluorine-containing alkyl based monomers in tetrahedral geometry. Both PAFs exhibit nanosized pores (∼1.0 nm) of high surface areas (over 800 m2 g-1) and good fluorophilicity. Remarkable adsorption capacity (˃740 mg g-1) and superior efficiency (˃24 g mg-1 h-1) are achieved toward the removal of PFOA with 1 μg L-1 concentration owing to unique C-F···F-C interactions. In particular, PAF-CF3 and PAF-C2F5 are able to reduce the PFOA concentration in water to 37.9 ng L-1 and 43.3 ng L-1, below EPA regulations (70 ng L-1). The reusability and high efficiency give both PAFs a great potential for sewage treatment.
Collapse
Affiliation(s)
- Chi Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao266237, China
| | - Liu Yang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Yunning Chen
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Qingkun Shang
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Danyang Feng
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun130024, China
| |
Collapse
|
10
|
Jiang Y, Hu Y, Yu Z, Lv Y, Liu Y, Li X, Lin C, Ye X, Yang G, Liu M. Rapid PFOS mineralization with peroxydisulfate activation process mediated by N modified Fe-based catalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115364. [PMID: 37586198 DOI: 10.1016/j.ecoenv.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
As the cheap and efficient catalysts, the iron-based catalysts have been considered as one of the most promising catalysts for peroxydisulfate (PDS) activation and the development of high-performance iron-based catalysts are attracting growing attentions. In this work, a magnetic Fe-based catalysts (Fe/NC-1000) was obtained by using Fe modified ZIF-8 as the precursor and used to activate the PDS for the degradation of perfluorooctane sulphonate (PFOS). Morphology and structure analysis showed that the resulted Fe/NC-1000 catalyst was displayed porous spheres (40-60 nm) and mainly composed of Fe0, FeNx and carbon. When Fe/NC-1000 was employed to activate the PDS (0.1 g/L of catalyst dosage, 0.5 g/L of PDS dosage and at initial pH of 4.6), the Fe/NC-1000/PDS system exhibited excellent efficiency (97.9 ± 0.1) % for PFOS (10 mg/L) degradation within 30 min. The quenching tests and EPR results revealed that the Fe/NC-1000/PDS system degraded PFOS primarily through singlet oxygen (1O2) evolution and electron-transfer process. Besides, based on the degradation byproducts determined by LC-MS-MS, the PFOS first occurred de-sulfonation to form PFOA, and then the resulted PFOA underwent stepwise defluorination in the Fe/NC-1000/PDS system. Density Functional Theory (DFT) calculations and electrochemistry tests strongly confirmed that Fe/NC-1000 exhibited high electron transfer efficiency, resulting in promoted performance on activating PDS. Importantly, the results of Ecological Structure-Activity Relationship (ECOSAR) analysis showed that the intermediates were lowly toxic during the PFOS degradation, manifesting a green process for PFOS removal. This study would provide more understandings for the persulfate activation process mediated by Fe-based catalysts for Perfluorinated alkyl substances (PFAS) elimination.
Collapse
Affiliation(s)
- Yanting Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yihui Hu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Zhendong Yu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaojuan Li
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Guifang Yang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian University, Putian 351100, China
| |
Collapse
|
11
|
Zhang K, Kujawski D, Spurrell C, Wang B, Crittenden JC. Screening ionic liquids for efficiently extracting perfluoroalkyl chemicals (PFACs) from wastewater. J Environ Sci (China) 2023; 127:866-874. [PMID: 36522114 DOI: 10.1016/j.jes.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquid extraction (LLE) using ionic liquids (ILs)-based methods to remove perfluoroalkyl chemicals (PFACs), such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), from wastewater, is an important strategy. However, the lack of physicochemical and LLE data limits the selection of the most suitable ILs for the extraction of PFACs. In this work, 1763 ILs for PFACs extraction from water were systematically screened using COSMOtherm to estimate the infinite dilution activity coefficient (lnγ∞)of PFOA and PFOS in water and ILs. To evaluate the accuracy of COSMOtherm, 8 ILs with various lnγ∞ values were selected, and their extraction efficiency (E) and distribution coefficient (Dexp) were measured experimentally. The results showed that the predicted lnγ∞ decreased as the increase of experimental extraction efficiency of PFOA or PFOS, while the tendency of predicted distribution coefficient (Dpre) was consistent with the experimental (Dexp) results. This work provides an efficient basis for selecting ILs for the extraction of PFACs from wastewater.
Collapse
Affiliation(s)
- Kaihang Zhang
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David Kujawski
- Refinery Water Engineering and Associates, Hydrocarbon Processing Water and Waste Technology, Inc., Houston, TX 77042, USA
| | | | - Bing Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110000, China.
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Gravesen CR, Lee LS, Choi YJ, Silveira ML, Judy JD. PFAS release from wastewater residuals as a function of composition and production practices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121167. [PMID: 36731742 PMCID: PMC10597385 DOI: 10.1016/j.envpol.2023.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of highly persistent contaminants that have been linked to human health effects at low exposure concentrations. Public concerns exist that land-application of biosolids may result in the release of PFAS into terrestrial and aquatic ecosystems. The relative importance of inorganic constituents such as Fe and Al, which are known to impact PFAS retention/release behavior in soils, on PFAS release from wastewater residuals (WWRs, i.e., biosolids and sewage sludges) is not well understood. Here, we examine native concentrations and WWR-water partition coefficients of a range of PFAS in the context of WWRs characteristics including oxalate-extractable Fe and Al, organic matter (OM), dissolved organic carbon, and total protein content. Total PFAS concentrations, which included perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, fluorotelomer sulfonates and some sulfonamides, ranged from ∼480 to 3500 μg PFAS kg-1 dry weight. PFAS WWR-water partition coefficients ranged from ∼10 to 20,000 L kg-1, consistent with the literature. PFAS partitioning was significantly correlated to oxalate extractable Al and Fe as well as bulk OM and protein content. These results have important implications for wastewater treatment facilities that recycle Al- and Fe-based drinking water treatment residuals in terms of both PFAS retention and loading.
Collapse
Affiliation(s)
- Caleb R Gravesen
- University of Florida, Department of Soil and Water Sciences, Gainesville, FL, USA
| | - Linda S Lee
- Purdue University, Department of Agronomy, West Lafayette, IN, USA; Purdue University, Ecological Sciences & Engineering Interdisciplinary Graduate Program, West Lafayette, IN, USA; Purdue University, Environmental & Ecological Engineering, West Lafayette, IN, USA
| | - Youn Jeong Choi
- Purdue University, Department of Agronomy, West Lafayette, IN, USA
| | - Maria L Silveira
- University of Florida, Range Cattle Research and Education Center, Ona, FL, USA
| | - Jonathan D Judy
- University of Florida, Department of Soil and Water Sciences, Gainesville, FL, USA.
| |
Collapse
|
13
|
Li Y, Lv L, Yang L, He L, Chen Y, Wu L, Zhang Z. Boosting degradation and defluorination efficiencies of PFBS in a vacuum-ultraviolet/S(Ⅳ) process with iodide involvement. CHEMOSPHERE 2023; 313:137531. [PMID: 36509188 DOI: 10.1016/j.chemosphere.2022.137531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Perfluorobutane sulfonate (PFBS) is considered to be a promising alternative of perfluorooctane sulfonates (PFOS), while it is also hazardous. The UV/S (Ⅳ) system has been confirmed to be effective for PFOS removal from water, while it is inefficient for PFBS decomposition. A hybrid vacuum-ultraviolet (VUV)/S (Ⅳ)/KI process was investigated for the degradation of PFBS in aqueous solution. With KI involvement, the degradation rate of PFBS was boosted from 1.8802 μg h-1 up to 3.5818 μg h-1 in the VUV/S (Ⅳ) process. Alkaline conditions significantly increased the degradation efficiency of PFBS, which can be explained that S (Ⅳ) was dominated by SO32- rather than HSO3- and H2SO3 in alkaline conditions. Cl-, HCO3-, NO3-, NO2-, and HA would inhibit the performance of the VUV/S (Ⅳ)/KI process via various reactions. In addition, the toxicity of PFBS was significantly reduced by the VUV/S (Ⅳ)/KI process. Even in actual waters, the VUV/S (Ⅳ)/KI process also presented a satisfying performance in the degradation of PFBS.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lixin Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| |
Collapse
|
14
|
Qiao Q, Singh S, Patidar R, Wang L, Li Y, Shi J, Chandra Srivastava V, Lo SL. Contribution of electrolyte in parametric optimization of perfluorooctanoic acid during electro-oxidation: Active chlorinated and sulfonated by-products formation and distribution. CHEMOSPHERE 2023; 312:137202. [PMID: 36370760 DOI: 10.1016/j.chemosphere.2022.137202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The present study investigated the roles of peroxydisulfate (PDS) radicals and sulfate radicals (SO4•-) that formed from sulfate (SO42-) during electrochemical oxidation of perfluorooctanoic acid (PFOA). The effect of operating parameters such as different types of electrolytes (NaCl, NaClO4, and Na2SO4), initial pH, current density, dose of electrolyte, and initial concentration of PFOA using electrochemical oxidation for perfluorooctanoic acid (PFOA) decomposition study was investigated. A difference in the removal efficiency with different electrolytes (i.e., Cl-, ClO4-, and SO42-) illustrated an increasing effect of electrooxidation of PFOA in the order of ClO4- < Cl- < SO42-, which suggested that •OH induced oxidation and direct e- transfer reaction continued to play a crucial role in oxidation of PFOA. At the optimum treatment condition of j = 225.2 Am-2, Na2SO4 concentration = 1.5 gL-1, [PFOA]o = 50 mgL-1 and initial pH = 3.8 maximum PFOA removal of 92% and TOC removal of 80% was investigated at 240 min. The formation of three shorter-chain perfluorocarboxylates (i.e., perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) and formate (HCOO-) ions were detected as by-products of PFOA electro-oxidation, showing that the C-C bond first broken in C7F15 and then mineralized into CO2, and fluoride ion (F-). The fluorine recovery as F- ions and the organic fluorine as the shorter-chain by-products were also obtained. The degradation kinetic has also been studied using the nth-order kinetic model.
Collapse
Affiliation(s)
- Qicheng Qiao
- School of Environmental and Biological Engineering, Nantong College of Science and Technology, Nantong City, Jiangsu, 226007, PR China
| | - Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India; Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, PR China.
| | - Ritesh Patidar
- Department of Petroleum Engineering, Rajasthan Technical University, Kota, 324010, Rajasthan, India
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology Xuzhou City, Jiangsu, 221116, PR China
| | - Ya Li
- School of Environmental and Biological Engineering, Nantong College of Science and Technology, Nantong City, Jiangsu, 226007, PR China
| | - Jian Shi
- School of Chemical Engineering and Technology, Nantong University, Nantong City, Jiangsu, 226007, PR China
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, PR China; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
15
|
Chen Y, Zhang H, Liu Y, Bowden JA, Tolaymat TM, Townsend TG, Solo-Gabriele HM. Concentrations of perfluoroalkyl and polyfluoroalkyl substances before and after full-scale landfill leachate treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:110-120. [PMID: 36084369 PMCID: PMC10463282 DOI: 10.1016/j.wasman.2022.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Many consumer and industrial products, industrial wastes and dewatered sludge from municipal wastewater treatment plants containing per- and polyfluoroalkyl substances (PFAS) are disposed of in landfills at the end of their usage, with PFAS in these products leached into landfill leachates. On-site leachate treatment is one possible method to reduce PFAS in leachates. Many landfills are equipped with on-site leachate treatment systems, but few full-scale facilities have been systematically evaluated for PFAS concentration changes. The objective of this study was to evaluate a cross-section of full-scale on-site landfill treatment systems to measure changes in PFAS concentrations. Leachate samples were collected before and after treatment from 15 facilities and were evaluated for 26 PFAS, including 11 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulfonic acids (PFSAs), and 8 perfluoroalkyl acid precursors (PFAA-precursors). Transformation of precursors was evaluated by the total oxidizable precursor (TOP) assay. Results showed no obvious reductions in total measured PFAS (∑26PFAS) for on-site treatment systems including ponds, aeration tanks, powdered activated carbon (PAC), and sand filtration. Among evaluated on-site treatment systems, only systems fitted with reverse osmosis (RO) showed significant reductions (98-99 %) of ∑26PFAS in the permeate. Results from the TOP assay showed that untargeted PFAA-precursors converted into targeted short-chain PFCAs increasing ∑26PFAS in oxidized samples by 30 %, on average. Overall, results of this study confirm the efficacy of RO systems and suggest the presence of additional precursors beyond those measured in this study.
Collapse
Affiliation(s)
- Yutao Chen
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Hekai Zhang
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Yalan Liu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - John A Bowden
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States; Center for Environmental and Human Toxicology & Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Thabet M Tolaymat
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
16
|
Ambaye TG, Vaccari M, Prasad S, Rtimi S. Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58405-58428. [PMID: 35754080 DOI: 10.1007/s11356-022-21513-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, due to an increase in urbanization and industrialization around the world, a large volume of per- and poly-fluoroalkyl substances (PFAS) containing materials such as aqueous film-forming foam (AFFF), protective coatings, landfill leachates, and wastewater are produced. Most of the polluted wastewaters are left untreated and discharged into the environment, which causes high environmental risks, a threat to human beings, and hampered socioeconomic growth. Developing sustainable alternatives for removing PFAS from contaminated soil and water has attracted more attention from policymakers and scientists worldwide under various conditions. This paper reviews the recent emerging technologies for the degradation or sorption of PFAS to treat contaminated soil and water. It highlights the mechanisms involved in removing these persistent contaminants at a molecular level. Recent advances in developing nanostructured and advanced reduction remediation materials, challenges, and perspectives in the future are also discussed. Among the variety of nanomaterials, modified nano-sized iron oxides are the best sorbents materials due to their specific surface area and photogenerated holes and appear extremely promising in the remediation of PFAS from contaminated soil and water.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, New Delhi, 110012, India
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, CH-1201, Geneva, Switzerland.
| |
Collapse
|
17
|
Hwang JH, Li Sip YY, Kim KT, Han G, Rodriguez KL, Fox DW, Afrin S, Burnstine-Townley A, Zhai L, Lee WH. Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). CHEMOSPHERE 2022; 296:134001. [PMID: 35181416 DOI: 10.1016/j.chemosphere.2022.134001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.
Collapse
Affiliation(s)
- Jae-Hoon Hwang
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuen Yee Li Sip
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 18323, South Korea
| | - Gaehee Han
- Water Quality Research Center, Waterworks Headquarters of Daegu Metropolitan City, Daegu, 42423, South Korea
| | - Kelsey L Rodriguez
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - David W Fox
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Sajia Afrin
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Alex Burnstine-Townley
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Lei Zhai
- NanoScience Technology Center and Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Woo Hyoung Lee
- Department of Civil, Environmental, And Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
18
|
Smith SJ, Wiberg K, McCleaf P, Ahrens L. Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate. ACS ES&T WATER 2022; 2:841-851. [PMID: 35603039 PMCID: PMC9112282 DOI: 10.1021/acsestwater.2c00032] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 05/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are of concern for their ubiquity in the environment combined with their persistent, bioaccumulative, and toxic properties. Landfill leachate is often contaminated with these chemicals, and therefore, the development of cost-efficient water treatment technologies is urgently needed. The present study investigated the applicability of a pilot-scale foam fractionation setup for the removal of PFAS from natural landfill leachate in a novel continuous operating mode. A benchmark batch test was also performed to compare treatment efficiency. The ΣPFAS removal efficiency plateaued around 60% and was shown to decrease for the investigated process variables air flow rate (Q air), collected foam fraction (%foam) and contact time in the column (t c). For individual long-chain PFAS, removal efficiencies above 90% were obtained, whereas the removal for certain short-chain PFAS was low (<30%). Differences in treatment efficiency between enriching mode versus stripping mode as well as between continuous versus batch mode were negligible. Taken together, these findings suggest that continuous foam fractionation is a highly applicable treatment technology for PFAS contaminated water. Coupling the proposed cost- and energy-efficient foam fractionation pretreatment to an energy-intensive degradative technology for the concentrated foam establishes a promising strategy for on-site PFAS remediation.
Collapse
Affiliation(s)
- Sanne J. Smith
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| | - Karin Wiberg
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| | - Philip McCleaf
- Uppsala
Water and Waste AB, P.O.
Box 1444, SE-751 44 Uppsala, Sweden
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750
07 Uppsala, Sweden
| |
Collapse
|
19
|
Huang S, Sima M, Long Y, Messenger C, Jaffé PR. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127699. [PMID: 34799154 DOI: 10.1016/j.jhazmat.2021.127699] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic incubations were performed with biosolids obtained from an industrial wastewater treatment plant (WWTP) that contained perfluorooctanoic acid (PFOA), and with per- and polyfluoroalkyl substances- (PFAS) free, laboratory-generated, biosolids that were spiked with PFOA. Biosolid slurries were incubated for 150 days as is, after augmenting with either Acidimicrobium sp. Strain A6 or ferrihydrite, or with both, Acidimicrobium sp. Strain A6 and ferrihydrite. Autoclaved controls were run in parallel. Only the biosolids augmented with both, Acidimicrobium sp. Strain A6 and ferrihydrite showed a decrease in the PFOA concentration, in excess of 50% (total, dissolved, and solid associated). Higher concentrations of PFOA in the biosolids spiked with PFOA and no previous PFAS exposure allowed to track the production of fluoride to verify PFOA defluorination. The buildup of fluoride over the incubation time was observed in these biosolid incubations spiked with PFOA. A significant increase in the concentration of perfluoroheptanoic acid (PFHpA) over the incubations of the filter cake samples from the industrial WWTP was observed, indicating the presence of a non-identified precursor in these biosolids. Results show that anaerobic incubation of PFAS contaminated biosolids, after augmentation with Fe(III) and Acidimicrobium sp. Strain A6 can result in PFAS defluorination.
Collapse
Affiliation(s)
- Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ying Long
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Blvd, Newark, DE 19713, USA
| | - Courtney Messenger
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Blvd, Newark, DE 19713, USA
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Li YF, Hu CY, Lee YC, Lo SL. Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. CHEMOSPHERE 2022; 288:132665. [PMID: 34710459 DOI: 10.1016/j.chemosphere.2021.132665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, the electrocoagulation (EC) of perfluorooctanoic acid (PFOA) by an aluminum electrode with the addition of zinc salt was investigated. Adding ZnCl2 successfully prevented a rise in pH during EC and increased the efficiency from 73.7% to over 99%. In addition, the longer the carbon chain of a PFA was, the better the removal of that PFA by electrocoagulation. The main functions of ZnCl2 were to prevent the rise in pH and improve flotation because the flocs with added ZnCl2 were easy to gather together and had a faster floating speed. The XPS results demonstrated the occurrence of bonding between aluminum and fluoride. This finding indicates that complexation between aluminum and fluoride may be the main mechanism for removal when aluminum electrodes are used to remove perfluoroalkyl (PFA) compounds.
Collapse
Affiliation(s)
- Yueh-Feng Li
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Ching-Yao Hu
- School of Public Health, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan, ROC
| | - Yu-Chi Lee
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, 10673, Taiwan, ROC; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan, ROC.
| |
Collapse
|
21
|
Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation. WATER 2022. [DOI: 10.3390/w14010123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation (PREC) treatment of two typical azo dyes with different functional groups, involving methyl orange (MO) and alizarin yellow (AY), using Fe-Fe electrodes. Based upon the comparative analysis of three main parameters, including current intensity, pH, and electrolyte, the optimal color removal rates for MO and AY could be achieved at a rate of up to 98.7% and 98.6%, respectively, when the current intensity is set to 0.6 A, the pH is set at 6.0, and the electrolyte is selected as NaCl. An accurate predicted method of response surface methodology (RSM) was established to optimize the PREC process involving the three parameters above. The reaction time was the main influence for both azo dyes, while the condition of PREC treatment for AY simulated wastewater was time-saving and energy conserving. According to the further UV–Vis spectrophotometry analysis throughout the procedure of the PREC process, the removal efficiency for AY was better than that of MO, potentially because hydroxyl groups might donate electrons to iron flocs or electrolyze out hydroxyl free radicals. The present study revealed that the functional groups might pose a vital influence on the removal efficiencies of the PREC treatment for those two azo dyes.
Collapse
|
22
|
Jin T, Peydayesh M, Mezzenga R. Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. ENVIRONMENT INTERNATIONAL 2021; 157:106876. [PMID: 34534787 DOI: 10.1016/j.envint.2021.106876] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Water purification from per- and poly-fluoroalkyl substances (PFASs), as a group of persistent and mobile fluoro-organic contaminants, is receiving increasing attention worldwide due to the ubiquitous presence of these highly toxic compounds. To reduce the risk of exposure of human life to PFASs and their dispersion in the environment, various techniques, primarily based on membrane technologies, have been rapidly developed. Here we critically review and analyze the current state-of-the-art of membrane-based techniques for PFASs removal, including direct membrane filtrations, adsorption-based membranes, and hybrid membrane processes. Membranes performance, treatment efficiencies, characteristic parameters and mechanisms for PFASs removal are discussed in detail. We highlight and discuss advantages and limitations, as well as challenges and prospects of individual membrane-based PFASs treatments, pointing towards the practical and sustainable application of these technologies.
Collapse
Affiliation(s)
- Tonghui Jin
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland; ETH Zurich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Wang C, Wu L, Zhang YT, Wei W, Ni BJ. Unravelling the impacts of perfluorooctanoic acid on anaerobic sludge digestion process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149057. [PMID: 34328882 DOI: 10.1016/j.scitotenv.2021.149057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a type of persistent organic pollutant that has been detected in wastewater treatment systems, subsequently entering the waste activated sludge (WAS) anaerobic digesters. Nevertheless, how PFOA affects the anaerobic digestion of WAS has never been reported till now. In this study, a series of batch digesters were set up to assess the performance of the anaerobic sludge digestion processes with exposures to different levels of PFOA. Experimental results revealed that the increased PFOA concentration (3-60 μg/g-TS) caused the 11.1-19.2% decrease in methane production than the control. Correspondingly, the relative abundances of several key microbes related to acidification (e.g., Longilinea sp.) and methanation (e.g., Methanosaeta sp.) decreased when exposed to PFOA, as demonstrated by microbial community analysis. Further investigations based on modelling and intermediate metabolites analysis confirmed the inhibition of acidification and methanation caused by PFOA, thus decreasing the methane production potential of WAS in anaerobic digestion.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
24
|
Rodríguez-Varela M, Durán-Álvarez JC, Jiménez-Cisneros B, Zamora O, Prado B. Occurrence of perfluorinated carboxylic acids in Mexico City's wastewater: A monitoring study in the sewerage and a mega wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145060. [PMID: 33609836 DOI: 10.1016/j.scitotenv.2021.145060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
An analytical method based on liquid chromatography coupled to mass spectrometry was validated to quantify five perfluorinated carboxylic acids (PFCA) namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluoroundecanoic acid (PFUnA), in wastewater produced in a megacity. Sampling was performed on a monthly basis, obtaining samples from the undergrounded sewerage system and the main open-air canal transporting wastewater out the city. Steady levels of the sum of the target PFCA (ƩPFCA) were determined on both sites through the study: 419.4 ± 24.3 ng L-1 in undergrounded sewage and 591.1 ± 39 ng L-1 in the open-air canal. Short-chain PFCA (PFBA, PFHxA, and PFHpA) were abundant, while concentrations of PFOA and PFUnA remained lower in both sampling sites. The open-air canal was transected in four sampling points, which were sampled throughout the monitoring campaign, finding that furtive discharges of municipal and industrial wastewater increased the levels of short-chain PFCA, while those of PFOA and PFUnA were depleted. Relevant concentrations of PFBA (176.9 ± 3.3 ng L-1), PFHxA (133.4 ± 2.5 ng L-1), PFHpA (116.6 ± 3.9 ng L-1), PFOA (133.1 ± 3.5 ng L-1), and PFUnA (23.5 ± 6.5 ng L-1) were found 60 km downstream, where the wastewater transported by the open-air canal is used in irrigation. A fraction of sewage is treated in a conventional wastewater treatment plant. The concentration of short-chain PFCA increased in effluent, adding extra loads of PFBA, PFHxA, and PFHpA to the environment.
Collapse
Affiliation(s)
- Mario Rodríguez-Varela
- Posgrado en Ciencias Químicas, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacan, Ciudad de México 04510, Mexico
| | - Juan C Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacan, Ciudad de México 04510, Mexico
| | - Blanca Jiménez-Cisneros
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de Mexico 04510, Mexico
| | - Olivia Zamora
- Instituto de Geología y LANGEM, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Blanca Prado
- Instituto de Geología y LANGEM, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico.
| |
Collapse
|
25
|
Li Y, He L, Lv L, Xue J, Wu L, Zhang Z, Yang L. Review on plant uptake of PFOS and PFOA for environmental cleanup: potential and implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30459-30470. [PMID: 33893912 DOI: 10.1007/s11356-021-14069-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have gained increasing concern due to their persistent characteristics, wide distribution, biotoxicity, and bioaccumulative properties. The current remediation technologies for PFOA and PFOS are primarily focused on physical and chemical techniques. Phytoremediation has provided promising alternatives to traditional cleanup technologies due to their low operational costs, low maintenance requirements, end-use value, and aesthetic nature. In this review, uptake, translocation, and toxic effects of PFOS and PFOA are summarized and discussed. Several potential hyperaccumulators of PFOS and PFOA are provided according to the existing data. Biomass, chlorophyll, soluble protein, enzyme activities, oxidative stress, and other variables are assessed for potential indicator of PFOS/PFOA biotoxicity. The various studies on multiple scales are compared for identifying the threshold values. Several important implications and recommendations for future research are proposed at the end. This review provides an overview of current studies on plant uptake of PFOS and PFOA from the perspective of phytoremediation.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Lixin Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianming Xue
- New Zealand Forest Research Institute Limited (Scion), Christchurch, 8440, New Zealand
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
26
|
Polyacrylonitrile fiber functionalized with fluorous hyperbranched polyethylenimine for selective removal of perfluorooctane sulfonate (PFOS) in firefighting wastewaters. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Efficient and selective sequestration of perfluorinated compounds and hexavalent chromium ions using a multifunctional spinel matrix decorated carbon backbone N-rich polymer and their mechanistic investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Zhang K, Kujawski D, Spurrell C, Wang D, Yan J, Crittenden JC. Extraction of PFOA from dilute wastewater using ionic liquids that are dissolved in N-octanol. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124091. [PMID: 33212410 DOI: 10.1016/j.jhazmat.2020.124091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Polyfluoroalkyl Substances (PFAS) such as perfluorooctanoic acid (PFOA) are resistant to biodegradation leading to adverse health outcomes. Therefore, PFAS removal from drinking water is paramount. Liquid-liquid extraction processes can remove them from water; however, the hydrophobic and oleophobic properties of PFOA lead to the low extraction efficiency and severe emulsification, especially for the ppm-levels concentration of PFOA. Therefore, we introduced ionic liquid (IL) methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([A336][NTf2]) as extractant into octanol. We found that using hexadecyl trimethyl ammonium bromide (CTAB) as an extractant caused severe and stable emulsion. In comparison, [A336][NTf2] could suppress the emulsification with high extraction efficiency. The extraction performance of PFOA was examined as a function of various parameters. The results showed that the extraction efficiency was strongly dependent on the concentration of IL and aqueous pH. Further research revealed the extraction mechanisms at the molecular-level, and density functional theory (DFT) and molecular dynamic (MD) simulation agreed with the trends in the experiment. We determined that the extraction efficiency of PFOA from water could be up to 88.21 wt% for the optimized condition, indicating that the extraction system of [A336][NTf2] + octanol was efficient for separating PFOA from the diluted aqueous solution.
Collapse
Affiliation(s)
- Kaihang Zhang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Kujawski
- Refinery Water Engineering & Associates\Hydrocarbon Processing Water & Waste Technology, Inc., 15634 Wallisville Rd., Houston, TX 77042, USA
| | - Chris Spurrell
- Chevron USA, 1702 South East Ellsworth Road, Vancouver, WA 98664, USA
| | - Dong Wang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Junchen Yan
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
29
|
Xing Y, Li Q, Chen X, Fu X, Ji L, Wang J, Li T, Zhang Q. Different transport behaviors and mechanisms of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123435. [PMID: 32717541 DOI: 10.1016/j.jhazmat.2020.123435] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in soil aroused increasing concern, however there is little information about their transport in porous media, which is urgently needed to better control their environmental risks. In this study, saturated sand columns (considering the coupled effect of solution cation type and pH) and a two-site nonequilibrium transport model (TSM) were used to investigate the transport behaviors and mechanisms of PFOA and PFOS. Breakthrough data and the TSM parameters showed PFOA had higher mobility than PFOS, and divalent cation could inhibit their transport by increasing the nonequilibrium interactions between them and the sand. pH had little influence on PFOA migration when there was only monovalent cation in the solution since PFOA had limited affinity with the sand, however, polyvalent cation could provide additional adsorption sites for it through cation bridging and enhance the effect of pH. Differently, decreasing pH inhibited the transport of PFOS more significantly, and the effect was stronger than that of changing cation type. That proved mechanisms like hydrogen-bonding which were sensitive to solution pH played an important role in PFOS migration. These results provide important scientific basis to the remediation strategy and the migration prediction model development of PFOA and PFOS.
Collapse
Affiliation(s)
- Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
30
|
Yan W, Qian T, Zhang L, Wang L, Zhou Y. Interaction of perfluorooctanoic acid with extracellular polymeric substances - Role of protein. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123381. [PMID: 32652414 DOI: 10.1016/j.jhazmat.2020.123381] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is nonbiodegradable, and adsorption is the main pathway for its removal in wastewater treatment plants (WWTPs). This study compared the capability of three types of sludge on adsorbing PFOA and investigated the role of extracellular polymeric substances (EPS) in the adsorption process. Results show that enhanced biological phosphorus removal (EBPR) sludge had the highest adsorption capacity for PFOA. Studies on the interaction between EPS and PFOA reveal that proteins play a crucial role in binding PFOA to EPS/sludge. Specifically, the aromatic and amide groups on the structure of protein can attract the C-F chains and carboxylic head of PFOA via hydrophobic interaction and electrostatic attraction, respectively. EPS of EBPR sludge has the highest amount of protein and binding sites, thus exhibits the highest adsorption capability for PFOA. This study reveals the interaction mechanism between PFOA and sludge EPS and provides new insight into the function of EPS in perfluoroalkyl substances removal in WWTPs.
Collapse
Affiliation(s)
- Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Tingting Qian
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
31
|
Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Lee DY, Choi GH, Rho JH, Lee HS, Park SW, Oh KY, Kim JH. Comparison of the plant uptake factor of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) from the three different concentrations of PFOA and PFOS in soil to spinach and Welsh onion. ACTA ACUST UNITED AC 2020. [DOI: 10.3839/jabc.2020.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Deuk-Yeong Lee
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Geun-Hyoung Choi
- Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Jin-Ho Rho
- Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Hyo-Sup Lee
- Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Sang-Won Park
- Chemical Safety Division, Agro-Food Safety and Crop Protection Department, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Kyeong-Yeol Oh
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
33
|
Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116911] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Removal of Perfluorooctanoic Acid and Microcystins from Drinking Water by Electrocoagulation. J CHEM-NY 2020. [DOI: 10.1155/2020/1836264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) and microcystins are some of the well-known chemical contaminants in drinking water in the USA. Despite the availability of filtration technologies like ion-exchange resins, activated-carbon, and high-pressure membrane filters, these contaminants still remain widespread in the environment. In the present study, two innovative aspects of electrocoagulation techniques were tested, (a) cheap and easy-to-operate field-unit instead of hi-tech electrocoagulation and (b) reverse-polarity instead of conventional polarity, and applied to remove PFOA and microcystins from drinking water sources. The method presented here outperformed commercial activated-carbon filtration by nearly 40%. When the efficiency of electrocoagulation was examined in terms of voltage discharge, pH, and reverse-polarity, the results averaged 80% decontamination for individual treatment, while their combined effects produced 100% detoxification in 10–40 minutes, exceeding recently published results. The method shows great economic promise for water and wastewater treatment and chemical recycling.
Collapse
|
35
|
Yang L, He L, Xue J, Ma Y, Xie Z, Wu L, Huang M, Zhang Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122405. [PMID: 32120220 DOI: 10.1016/j.jhazmat.2020.122405] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have attracted global attention due to their chemical durability, wide distribution, biotoxicity and bioaccumulative properties. Persulfate is a promising alternative to H2O2 for advanced oxidation processes and effective for organic removal. In this review, persulfate activation methods and operational factors in persulfate-based PFOA / PFOS degradation are analyzed and summarized. Moreover, the decomposing mechanisms of PFOA and PFOS are outlined in terms of molecular structures based a series of proposed pathways. PFOS could be converted to PFOA with the attack of SO4- and OH. And then PFOA defluorination occurs with one CF2 unit missing in each round and the similar procedure would occur continuously with sufficient SO4- and OH until entire decomposition. In addition, several knowledge gaps and research needs for further in-depth studies are identified. This review provides an overview for better understanding of the mechanisms and prospects in persulfate-based degradation of PFOA and PFOS.
Collapse
Affiliation(s)
- Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch 8440, New Zealand; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhiyong Xie
- Centre for Materials and Coastal Research, Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, 21502, Germany
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen ABI5 8QH, UK.
| |
Collapse
|
36
|
Bao J, Yu WJ, Liu Y, Wang X, Liu ZQ, Duan YF. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. CHEMOSPHERE 2020; 248:125951. [PMID: 32000036 DOI: 10.1016/j.chemosphere.2020.125951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Severe contaminations of perfluoroalkanesulfonic acids (PFSAs) existed in the natural groundwater beneath a fluorochemical industrial park (FIP) in Fuxin of China. In the present study, systematic researches were performed to determine the best conditions of efficient treatment for 1 mg L-1 of PFSAs in the synthetic groundwater samples with the periodically reverse electrocoagulation (PREC) using the Al-Zn electrodes. Based upon the orthogonal experiments, the removal efficiencies of perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) could reach 87.4%, 95.6%, and 100%, respectively, within the initial 10 min, under the optimal conditions of voltage at 12.0 V, pH at 7.0, and stirring speed at 400 rpm. In addition, the optimized PREC technique was further applied to remove the PFSA contaminations from the natural groundwater samples of the Fuxin FIP, subsequently generating the removal efficiencies of three target PFSA analytes in the range between 59.0% and 100% at 60 min. Moreover, the SEM-EDS analyses showed the hydroxide flocs formed during the process of PREC treatment had clear characteristics of floc aggregates, with the major constituents of O, Al, C, N, Zn, and F elements. As a result, long-chain PFHxS and PFOS tended to be eliminated completely from the natural groundwater by their absorptions on the Al-Zn hydroxide flocs, potentially because of their higher hydrophobicity compared with short-chain PFBS.
Collapse
Affiliation(s)
- Jia Bao
- School of Science, Shenyang University of Technology, Shenyang, 110870, China.
| | - Wen-Jing Yu
- School of Science, Shenyang University of Technology, Shenyang, 110870, China
| | - Yang Liu
- School of Science, Shenyang University of Technology, Shenyang, 110870, China.
| | - Xin Wang
- School of Science, Shenyang University of Technology, Shenyang, 110870, China
| | - Zhi-Qun Liu
- School of Science, Shenyang University of Technology, Shenyang, 110870, China
| | - Yan-Fang Duan
- School of Science, Shenyang University of Technology, Shenyang, 110870, China
| |
Collapse
|
37
|
Li P, Zhi D, Zhang X, Zhu H, Li Z, Peng Y, He Y, Luo L, Rong X, Zhou Y. Research progress on the removal of hazardous perfluorochemicals: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109488. [PMID: 31499465 DOI: 10.1016/j.jenvman.2019.109488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 05/27/2023]
Abstract
Perfluorinated substances are global and ubiquitous pollutants. The persistent organic pollution of perfluorochemicals (PFCs) have drawn attentions worldwide. In view of the current need for sustainable development, many researchers began to study the remediation techniques for PFCs. Due to its unique hydrophobic and oil-phobic characteristics, the requirements for the PFCs removal process are different, so that their remediation techniques are still under continuous exploration. Hence, this review summarized the removal behaviors of various PFCs on different materials which supply a good foundation for future investigations in this field. It is evident from previous literature that every remediation techniques for PFCs has its own advantages. Among various currently evaluated removal methods, adsorption seems to be one of the most commonly used and recognized techniques for PFCs pollution control. Other innovative and promising techniques, such as physical and/or chemical methods, have also been tested for their effectiveness in removing perfluorinated compounds.
Collapse
Affiliation(s)
- Peipei Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongmei Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhiyong Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yangzhou He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
38
|
Regulation of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS) in Drinking Water: A Comprehensive Review. WATER 2019. [DOI: 10.3390/w11102003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are receiving global attention due to their persistence in the environment through wastewater effluent discharges and past improper industrial waste disposal. They are resistant to biological degradation and if present in wastewater are discharged into the environment. The US Environmental Protection Agency (USEPA) issued drinking water Health Advisories for PFOA and PFOS at 70 ng/L each and for the sum of the two. The need for an enforceable primary drinking water regulation under the Safe Drinking Water Act (SDWA) is currently being assessed. The USEPA faces stringent legal constraints and technical barriers to develop a primary drinking water regulation for PFOA and PFOS. This review synthesizes current knowledge providing a publicly available, comprehensive point of reference for researchers, water utilities, industry, and regulatory agencies to better understand and address cross-cutting issues associated with regulation of PFOA and PFOS contamination of drinking water.
Collapse
|
39
|
Siriwardena DP, Crimi M, Holsen TM, Bellona C, Divine C, Dickenson E. Influence of groundwater conditions and co‐contaminants on sorption of perfluoroalkyl compounds on granular activated carbon. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/rem.21603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Michelle Crimi
- Institute for a Sustainable EnvironmentClarkson UniversityPotsdam New York
| | - Thomas M. Holsen
- Department of Civil and Environmental EngineeringClarkson UniversityPotsdam New York
| | - Christopher Bellona
- Department of Civil and Environmental EngineeringColorado School of MinesGolden Colorado
| | | | | |
Collapse
|
40
|
Zhao C, Hu G, Hou D, Yu L, Zhao Y, Wang J, Cao A, Zhai Y. Study on the effects of cations and anions on the removal of perfluorooctane sulphonate by nanofiltration membrane. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
McGregor R. In Situ
treatment of PFAS-impacted groundwater using colloidal activated Carbon. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21558] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Liu L, Li D, Li C, Ji R, Tian X. Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:206-214. [PMID: 29550554 DOI: 10.1016/j.jhazmat.2018.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/06/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
Due to considerable application of perfluorooctanoic acid (PFOA) and its refractory degradation, the widespread distribution of PFOA has already resulted in its' risks to environment and organisms. However, the intrinsic characteristic of pristine multi-walled carbon nanotubes (MWCNTs) limited their application for removing PFOA from aqueous medium. Therefore, three nano-metals (nano-crystalline iron, copper and zinc) grafted MWCNTs were synthesized and characterized by BET-N2, TEM, FTIR, XPS and XRD as well as MWCNTs (as the control treatment) in this study. The results showed that nano metals were well grafted on the surface of MWCNTs. Adsorption were investigated by using radioactive labeled PFOA (14C-PFOA) to quantify the trace PFOA. Adsorption kinetics showed the adsorption of PFOA on the metal doped MWCNTs (MDCNTs) was controlled by intra-particle diffusion. Adsorption isotherms showed the sorption amounts on the MDCNTs were higher than the control. This attributed much to the hydrophobic interaction, electrostatic interaction and the formation of the inner sphere complexes. Ionic strength (0-100 mM) and ionic species (Ca2+) had little effects on the sorption of MDCNTs. PFOA adsorption on MDCNTs strongly depended on pH value in the medium. These results provide an innovative approach for removing trace PFOA from liquid medium.
Collapse
Affiliation(s)
- Longfei Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Deyun Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Chengliang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| | - Xiaofei Tian
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| |
Collapse
|
43
|
Liu L, Liu Y, Li C, Ji R, Tian X. Improved sorption of perfluorooctanoic acid on carbon nanotubes hybridized by metal oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15507-15517. [PMID: 29569201 DOI: 10.1007/s11356-018-1728-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are often used as adsorbent because of their strong adsorption capacity. However, due to the nature of MWCNTs, their ability to adsorb perfluorooctanoic acid (PFOA), a highly hydrophobic pollutant, is low. In this study, MWCNTs were modified by three nano metal oxides (nano iron oxide, copper oxide, and zinc oxide). The pristine (as the control) and modified MWCNTs were characterized by BET-N2, TEM, FTIR, XPS, and XRD, which showed that nano metal oxides were well hybridized on the surface of MWCNTs. Radioactive-labeled PFOA (14C-PFOA) was used to quantify it at trace level. Adsorption kinetics showed that intra-particle diffusion was the control step of PFOA adsorbing on metal oxides hybridized MWCNTs (MOHCNTs). Adsorption capacity of PFOA on the MOHCNTs was higher than that on the control due to electrostatic and hydrophobic interactions. In addition, PFOA formed inner-sphere complexes with metal oxide nanoparticles via ligand exchange. The alteration of PFOA adsorption capacity by increasing ionic strength was attributed to the aggregation degree of MWCNTs, electrostatic shielding, and/or salting out effect. The presence of Ca2+ increased the adsorption, owing to not only its higher electrostatic shielding ability than Na+ but also its formation of bridge between PFOA and MOHCNTs. PFOA adsorption on MOHCNTs strongly depended on medium pH value. These results provide an innovative approach for removing trace PFOA from liquid medium.
Collapse
Affiliation(s)
- Longfei Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanli Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengliang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China.
| | - Xiaofei Tian
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
44
|
Omorodion H, Palenzuela M, Ruether M, Twamley B, Platts JA, Baker RJ. A rationally designed perfluorinated host for the extraction of PFOA from water utilising non-covalent interactions. NEW J CHEM 2018. [DOI: 10.1039/c7nj03026f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three hosts for the encapsulation of perfluorooctanoic acid have been synthesized. The host:guest complexes have been characterized by multinuclear NMR spectroscopy in solution and the solid state.
Collapse
Affiliation(s)
| | - Miguel Palenzuela
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Manuel Ruether
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Brendan Twamley
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | | | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
45
|
Mudumbi JBN, Ntwampe SKO, Matsha T, Mekuto L, Itoba-Tombo EF. Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:402. [PMID: 28721589 DOI: 10.1007/s10661-017-6084-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Between the late 1940s and early 1950s, humans manufactured polyfluoroalkyl compounds (PFCs) using electrochemical fluorination and telomerisation technologies, whereby hydrogen atoms are substituted by fluorine atoms, thus conferring unnatural and unique physicochemical properties to these compounds. Presently, there are wide ranges of PFCs, and owing to their bioaccumulative properties, they have been detected in various environmental matrices and in human sera. It has thus been suggested that they are hazardous. Hence, this review aims at highlighting the recent development in PFC research, with a particular focus on perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), the most studied and predominantly found PFCs in various environmental matrices, although recent reports have included perfluorobutane sulfonate (PFBS), which was previously regarded as innocuously harmless, when compared to its counterparts, PFOA and PFOS. As such, proper investigations are thus required for a better understanding of short-chain PFC substitutes, which have been suggested as suitable replacements to long-chained PFCs, although these substitutes have also been suggested to pose various health risks comparable to those associated with long-chain PFCs. Similarly, several novel technologies, such as PFC reduction using zero-valent iron, including removal at point of use, adsorption and coagulation, have been proposed. However, regardless of how efficient removers some of these techniques have proven to be, short-chain PFCs remain a challenge to overcome for scientists, in this regard.
Collapse
Affiliation(s)
- John Baptist Nzukizi Mudumbi
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Tandi Matsha
- Department of Bio-Medical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Elie Fereche Itoba-Tombo
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
46
|
Jia S, Yang Z, Ren K, Tian Z, Dong C, Ma R, Yu G, Yang W. Removal of antibiotics from water in the coexistence of suspended particles and natural organic matters using amino-acid-modified-chitosan flocculants: A combined experimental and theoretical study. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:593-601. [PMID: 27348257 DOI: 10.1016/j.jhazmat.2016.06.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 05/10/2023]
Abstract
Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water.
Collapse
Affiliation(s)
- Shuying Jia
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhen Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China.
| | - Kexin Ren
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China
| | - Ziqi Tian
- Department of Chemistry, University of California, Riverside, CA 92521, United States
| | - Chang Dong
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China
| | - Ruixue Ma
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China
| | - Ge Yu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiben Yang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
47
|
Zhuo Q, Luo M, Guo Q, Yu G, Deng S, Xu Z, Yang B, Liang X. Electrochemical Oxidation of Environmentally Persistent Perfluorooctane Sulfonate by a Novel Lead Dioxide Anode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Wang Y, Lin H, Jin F, Niu J, Zhao J, Bi Y, Li Y. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:542-550. [PMID: 27037875 DOI: 10.1016/j.scitotenv.2016.03.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion.
Collapse
Affiliation(s)
- Yujuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Fangyuan Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Jinbo Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Bi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ying Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
49
|
Niu J, Li Y, Shang E, Xu Z, Liu J. Electrochemical oxidation of perfluorinated compounds in water. CHEMOSPHERE 2016; 146:526-538. [PMID: 26745381 DOI: 10.1016/j.chemosphere.2015.11.115] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design).
Collapse
Affiliation(s)
- Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Enxiang Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zesheng Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jinzi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
50
|
Zhang D, Luo Q, Gao B, Chiang SYD, Woodward D, Huang Q. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. CHEMOSPHERE 2016; 144:2336-2342. [PMID: 26606188 DOI: 10.1016/j.chemosphere.2015.10.124] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons.
Collapse
Affiliation(s)
- Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Qi Luo
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | - Qingguo Huang
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|