1
|
Shoji T, Iida M, Matsumoto M, Yuyama KI, Tsuboi Y. Measurements of Spontaneous and External Stimuli Molecular Release Processes from a Single Optically Trapped Poly(lactic- co-glycolic) Acid Microparticle and a Liposome Containing Gold Nanospheres. Anal Chem 2024. [PMID: 39078103 DOI: 10.1021/acs.analchem.3c05950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We investigated the single particle kinetics of the molecular release processes from two types of microcapsules used as drug delivery systems (DDS): biodegradable poly(lactic-co-glycolic) acid (PLGA) and a light-triggered-degradable liposome encapsulating gold nanospheres (liposome-GNP). To optimize the design of DDS capsules, it is highly desirable to develop a method for real-time monitoring of the release process. Using a combination of optical tweezers and confocal fluorescence microspectroscopy we successfully analyzed a single optically trapped PLGA particle and liposome-GNPs in solution. From temporal decay profiles of the fluorescence intensity, we determined the time constant τ of the release processes. We demonstrated that the release rate of spontaneously degradable microcapsules (PLGA) decreased with increasing size, while conversely, the release rate of external stimuli-degradable microcapsules (liposome-GNPs) increased in proportion to their size. This result is explained by the differences in the disruption mechanisms of the capsules, with PLGA undergoing hydrolysis and the GNPs in the liposome-GNP undergoing a photoacoustic effect under nanosecond pulsed laser irradiation. The present approach offers a way forward to an alternative microanalysis system for single drug delivery nanocarriers.
Collapse
Affiliation(s)
- Tatsuya Shoji
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Field of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Miyako Iida
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuhiro Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
2
|
Enzian P, Kleineberg N, Kirchert E, Schell C, Rahmanzadeh R. Light-Induced Liposomal Drug Delivery with an Amphiphilic Porphyrin and Its Chlorin and Bacteriochlorin Analogues. Mol Pharm 2024; 21:609-621. [PMID: 38189667 DOI: 10.1021/acs.molpharmaceut.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The development of targeted drug delivery mechanisms in the human body is a matter of growing interest in medical science. The selective release of therapeutic agents at a specific target site can increase the therapeutical efficiency and at the same time reduce the side effects. Light-sensitive liposomes can release a drug by an externally controlled light trigger. Liposomes containing photosensitizers that can be activated in the longer wavelength range (650-800 nm) are particularly intriguing for medical purposes. This is because light penetration into a tissue is more efficient within this wavelength range, increasing their potential applications. For this study, liposomes with an encapsulated amphiphilic photosensitizer, the porphyrin 5,10-DiOH (5,10-di(4-hydroxyphenyl)-15,20-diphenyl-21,23H-porphyrin), its chlorin (5,10-DiOH-chlorin) and its bacteriochlorin (5,10-DiOH-bacteriochlorin) were synthesized. The porphyrin 5,10-DiOH showed previously effective cargo release after liposomal encapsulation when irradiated at a wavelength of 420 nm. The new synthesized chlorin and bacteriochlorin photosensitizers show additional absorption bands in the longer wavelength range, which would enable excitation in deeper layers of tissue. Effective cargo release with chlorin at a longer wavelength of 650 nm and bacteriochlorin at 740 nm was possible. Irradiation of chlorin allowed more than 75% of the cargo to be released and more than 60% for bacteriochlorin. The new liposomes would enable selective drug release in deeper tissue layers and expand the range of possible applications.
Collapse
Affiliation(s)
- Paula Enzian
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, Lübeck 23562, Germany
- Medical Laser Center Lübeck, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| | - Nina Kleineberg
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| | - Elisabeth Kirchert
- Por-Lab, Porphyrin-Laboratories GmbH, Blauenkrog 15, Scharbeutz 23684, Germany
| | - Christian Schell
- Por-Lab, Porphyrin-Laboratories GmbH, Blauenkrog 15, Scharbeutz 23684, Germany
| | - Ramtin Rahmanzadeh
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, Lübeck 23562, Germany
- Medical Laser Center Lübeck, Peter-Monnik-Weg 4, Lübeck 23562, Germany
| |
Collapse
|
3
|
Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Sci Rep 2023; 13:2230. [PMID: 36754981 PMCID: PMC9908940 DOI: 10.1038/s41598-023-28678-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.
Collapse
|
4
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
5
|
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112540. [PMID: 35973287 DOI: 10.1016/j.jphotobiol.2022.112540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 μg/mL) and LC90 (18.3 μg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khalid T Nawaf
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Anbar Health Department, Anbar province, Ministry of Health, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Faculty of Medicine, Department of Ophthalmology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
6
|
Yuan Z, Gottsacker C, He X, Waterkotte T, Park YC. Repetitive drug delivery using Light-Activated liposomes for potential antimicrobial therapies. Adv Drug Deliv Rev 2022; 187:114395. [DOI: 10.1016/j.addr.2022.114395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
|
7
|
Liposomes containing nanoparticles: preparation and applications. Colloids Surf B Biointerfaces 2022; 218:112737. [DOI: 10.1016/j.colsurfb.2022.112737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
|
8
|
Zhigaltsev IV, Tam YYC, Kulkarni JA, Cullis PR. Synthesis and Characterization of Hybrid Lipid Nanoparticles Containing Gold Nanoparticles and a Weak Base Drug. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7858-7866. [PMID: 35708310 DOI: 10.1021/acs.langmuir.2c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hybrid lipid nanoparticles containing gold nanoparticles (LNP-GNPs) and drugs have potential for imaging applications as well as triggered release of LNP contents in response to pulsed laser or X-ray radiation mediated by the GNPs. However, methods to synthesize LNP-GNP systems that efficiently entrap GNPs (the potential triggered release and imaging agent) and then load and retain the drug cargo in a manner that may have clinical applications have proven elusive. Here, we develop a straightforward "bottom-up" approach to manufacture drug-loaded LNP-GNP systems. We show that negatively charged GNPs of 5 nm diameter can be stably loaded into LNPs containing 10 mol % ionizable cationic lipid using an ethanol dilution, rapid mixing approach and that these systems also exhibit aqueous compartments. Further, we show that such systems can also entrap ammonium sulfate, enabling pH-dependent loading of the weak base anti-cancer drug doxorubicin into the aqueous compartments. Cryo-transmission electron microscopy (Cryo-TEM) imaging clearly demonstrates the presence of GNPs in the interior of the resulting hybrid nanostructures as well as the formation of electron-dense drug precipitates in the aqueous core of the LNP-GNPs. The approach described here is a robust and straightforward method to generate hybrid LNP-GNP-drug and other LNP-metal nanoparticle-drug systems with potential applications for a variety of triggered release protocols.
Collapse
Affiliation(s)
- Igor V Zhigaltsev
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
González-Ayón MA, Licea-Rodriguez J, Méndez ER, Licea-Claverie A. NVCL-Based Galacto-Functionalized and Thermosensitive Nanogels with GNRDs for Chemo/Photothermal-Therapy. Pharmaceutics 2022; 14:pharmaceutics14030560. [PMID: 35335936 PMCID: PMC8951641 DOI: 10.3390/pharmaceutics14030560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Dual-function nanogels (particle size from 98 to 224 nm) synthesized via surfactant-free emulsion polymerization (SFEP) were tested as smart carriers toward synergistic chemo- and photothermal therapy. Cisplatin (CDDP) or doxorubicin (DOX) and gold nanorods (GNRDs) were loaded into galacto-functionalized PNVCL-based nanogels, where the encapsulation efficiency for CDDP and DOX was around 64 and 52%, respectively. PNVCL-based nanogels were proven to be an efficient delivery vehicle under conditions that mimic the tumor site in vitro. The release of CDDP or DOX was slower at pH 7.4 and 37 °C than at tumor conditions of pH 6 and 40 °C. On the other hand, in the systems with GNRDs at pH 7.4 and 37 °C, the sample was irradiated with a 785 nm laser for 10 min every hour, obtaining that the release profiles were even higher than in the conditions that simulated a cancer tissue (without irradiation). Thus, the present study demonstrates the synergistic effect of chemo- and photothermal therapy as a promising dual function in the potential future use of PNVCL nanogels loaded with GNRDs and CDDP/DOX to achieve an enhanced chemo/phototherapy in vivo.
Collapse
Affiliation(s)
- Mirian A. González-Ayón
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
- Correspondence: (M.A.G.-A.); (A.L.-C.)
| | - Jacob Licea-Rodriguez
- División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, B. C., Mexico; (J.L.-R.); (E.R.M.)
- Cátedras CONACYT-Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, B. C., Mexico
| | - Eugenio R. Méndez
- División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, B. C., Mexico; (J.L.-R.); (E.R.M.)
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Apartado Postal 1166, Tijuana 22454, Mexico
- Correspondence: (M.A.G.-A.); (A.L.-C.)
| |
Collapse
|
10
|
Ota N, Miyauchi T, Shimizu H. 221 K Local Photothermal Heating in a Si Plasmonic Waveguide Loaded with a Co Thin Film. SENSORS 2021; 21:s21196634. [PMID: 34640954 PMCID: PMC8512839 DOI: 10.3390/s21196634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Photothermal heaters are important devices for optical switches and memories based on the thermo-optic/magneto-optic effect and phase change materials. We demonstrated photothermal heating in Si plasmonic waveguides loaded with Co thin films by measuring the resistance change upon inputting transverse-magnetic (TM) mode light. Temperature rise is proportional to the light intensity with clear polarization dependence. The photothermal conversion efficiency was estimated at 36 K/mW and maximum temperature rise was estimated at 221 K at steady state upon the inputting 6.3 mW TM mode light for the 400 nm-wide, 8 µm-long and 189 nm-thick Co film deposited on the Si wire waveguide with 129 nm-thick SiO2 buffer layer. The method to increase the efficiency is discussed based on the experimental and simulation results considering the thickness of the SiO2 buffer layer, Co layer and Si core layer, waveguide width, and wavelength. Local photothermal heaters in this study can be applied to a variety of fields including optical switches/memories without electrical control signals in photonic integrated circuits, on-chip optical sensors, and a lab-on-a-chip in biology, chemistry, and medicine.
Collapse
Affiliation(s)
- Nana Ota
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan;
| | - Tomohiro Miyauchi
- Department of Industrial Technology and Innovation, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan;
| | - Hiromasa Shimizu
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan;
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
- Correspondence: ; Tel.: +81-42-388-7996
| |
Collapse
|
11
|
Yuan Z, Das S, Lazenby RA, White RJ, Park YC. Repetitive drug releases from light-activatable micron-sized liposomes. Colloids Surf A Physicochem Eng Asp 2021; 625:126778. [PMID: 34321715 PMCID: PMC8312686 DOI: 10.1016/j.colsurfa.2021.126778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, a novel light activatable micron-sized liposomal drug carrier that has a unique capability to release drug repetitively in proportion to the cycle number of short irradiation (5 s) of near-infrared (NIR) pulsed laser is reported. We synthesized methotrexate (MTX)-loaded liposomes based on a modified reverse-phase evaporation method. Gold nanorods (AuNR) were attached to the liposomal surfaces, enabling the liposomes to release drug under short NIR irradiation via the photothermal effect. The concentrations of methotrexate (MTX) released from the liposomes were 10.6, 29.8, 43.7 and 65.9 μg/mL after one, two, three or four NIR laser cycles (1.1 W at 1064 nm, 5 s per cycle), respectively. The current finding will provide possible solution to the previously reported inconsistency in drug release from light activatable liposomal drug carriers at each activation cycle. The repeatability of drug release described in this work is believed to be due to reversible nature of the liposomes. The liposomes release drug via lipid bilayer melting when irradiated by laser due to gold nanorods' plasmonic heat on the lipid bilayer surface and quickly regain their original structure once the laser source is removed. We provided evidence of the reversible liposomal structures by monitoring the change of number densities of liposomes using a microelectrode sensor with different laser irradiation durations and powers. We also assessed the micron-sized liposome with respect to long-term stability, drug encapsulation efficiency, and drug-releasing efficiency, demonstrating the possibility of utilizing these liposomes as long-term drug delivery vehicles for various drugs.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Saikat Das
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Robert A Lazenby
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Yoonjee C Park
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
12
|
Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021; 15:3881-3891. [PMID: 34531650 PMCID: PMC8439440 DOI: 10.2147/dddt.s324580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine drug delivery systems hold great potential for the therapy of many diseases, especially cancer. However, the controlled drug delivery systems of nanomedicine bring many challenges to clinical practice. These difficulties can be attributed to the high batch-to-batch variations and insufficient production rate of traditional preparation methods, as well as a lack of technology for fast screening of nanoparticulate drug delivery structures with high correlation to in vivo tests. These problems may be addressed through microfluidic technology. Microfluidics, for example, can not only produce nanoparticles in a well-controlled, reproducible, and high-throughput manner, but it can also continuously create three-dimensional environments to mimic physiological and/or pathological processes. This overview gives a top-level view of the microfluidic devices advanced to put together nanoparticulate drug delivery systems, including drug nanosuspensions, polymer nanoparticles, polyplexes, structured nanoparticles and therapeutic nanoparticles. Additionally, highlighting the current advances of microfluidic systems in fabricating the more and more practical fashions of the in vitro milieus for fast screening of nanoparticles was reviewed. Overall, microfluidic technology provides a promising technique to boost the scientific delivery of nanomedicine and nanoparticulate drug delivery systems. Nonetheless, digital microfluidics with droplets and liquid marbles is the answer to the problems of cumbersome external structures, in addition to the rather big pattern volume. As the latest work is best at the proof-of-idea of liquid-marble-primarily based on totally virtual microfluidics, computerized structures for developing liquid marble, and the controlled manipulation of liquid marble, including coalescence and splitting, are areas of interest for bringing this platform toward realistic use.
Collapse
Affiliation(s)
- Fikadu Ejeta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
13
|
Tao L, Zhang X, Song L, Hu H, Liu L, Ye J, Wang D. Efficient Methanol-to-Olefins Conversion Via Photothermal Effect Over TiN/SAPO-34 Catalyst. Catal Letters 2021. [DOI: 10.1007/s10562-021-03757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Ronchi A, Sterzi A, Gandolfi M, Belarouci A, Giannetti C, Fatti ND, Banfi F, Ferrini G. Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. ULTRASONICS 2021; 114:106403. [PMID: 33677164 DOI: 10.1016/j.ultras.2021.106403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly. Each cluster is characterized by a fingerprint time-resolved trace, synthesizing the common features of the thermo-acoustics response of the composing elements. The protocol is robust and widely applicable, not relying on any specific knowledge of the physical mechanisms involved. The present route constitutes an alternative diagnostic tool for on-chip non-destructive testing of individual nano-objects.
Collapse
Affiliation(s)
- Andrea Ronchi
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium; Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Andrea Sterzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Marco Gandolfi
- CNR-INO, Via Branze 45, 25123 Brescia, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Ali Belarouci
- Institut des Nanotechnologies de Lyon - CNRS - Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Claudio Giannetti
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Natalia Del Fatti
- FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France
| | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France.
| | - Gabriele Ferrini
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy.
| |
Collapse
|
15
|
García MC, Naitlho N, Calderón-Montaño JM, Drago E, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. Cholesterol Levels Affect the Performance of AuNPs-Decorated Thermo-Sensitive Liposomes as Nanocarriers for Controlled Doxorubicin Delivery. Pharmaceutics 2021; 13:pharmaceutics13070973. [PMID: 34199018 PMCID: PMC8309145 DOI: 10.3390/pharmaceutics13070973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Stimulus-responsive liposomes (L) for triggering drug release to the target site are particularly useful in cancer therapy. This research was focused on the evaluation of the effects of cholesterol levels in the performance of gold nanoparticles (AuNPs)-functionalized L for controlled doxorubicin (D) delivery. Their interfacial and morphological properties, drug release behavior against temperature changes and cytotoxic activity against breast and ovarian cancer cells were studied. Langmuir isotherms were performed to identify the most stable combination of lipid components. Two mole fractions of cholesterol (3.35 mol% and 40 mol%, L1 and L2 series, respectively) were evaluated. Thin-film hydration and transmembrane pH-gradient methods were used for preparing the L and for D loading, respectively. The cationic surface of L allowed the anchoring of negatively charged AuNPs by electrostatic interactions, even inducing a shift in the zeta potential of the L2 series. L exhibited nanometric sizes and spherical shape. The higher the proportion of cholesterol, the higher the drug loading. D was released in a controlled manner by diffusion-controlled mechanisms, and the proportions of cholesterol and temperature of release media influenced its release profiles. D-encapsulated L preserved its antiproliferative activity against cancer cells. The developed liposomal formulations exhibit promising properties for cancer treatment and potential for hyperthermia therapy.
Collapse
Affiliation(s)
- Mónica C. García
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina;
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, UNITEFA, Córdoba X5000HUA, Argentina
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (N.N.); (A.M.R.)
- Correspondence: (M.C.G.); (M.L.G.-R.); Tel./Fax: +54-351-5353865 (M.C.G.); +34-954556397 (M.L.G.-R.)
| | - Nabila Naitlho
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (N.N.); (A.M.R.)
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (J.M.C.-M.); (M.L.-L.)
| | - Estrella Drago
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain; (E.D.); (M.R.); (F.P.-D.)
| | - Manuela Rueda
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain; (E.D.); (M.R.); (F.P.-D.)
| | - Marcela Longhi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina;
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, UNITEFA, Córdoba X5000HUA, Argentina
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (N.N.); (A.M.R.)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (J.M.C.-M.); (M.L.-L.)
| | - Francisco Prieto-Dapena
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/Prof. García González s/n, 41012 Seville, Spain; (E.D.); (M.R.); (F.P.-D.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González 2, 41012 Seville, Spain; (N.N.); (A.M.R.)
- Correspondence: (M.C.G.); (M.L.G.-R.); Tel./Fax: +54-351-5353865 (M.C.G.); +34-954556397 (M.L.G.-R.)
| |
Collapse
|
16
|
Zuraw-Weston SE, Siavashpouri M, Moustaka ME, Gerling T, Dietz H, Fraden S, Ribbe AE, Dinsmore AD. Membrane Remodeling by DNA Origami Nanorods: Experiments Exploring the Parameter Space for Vesicle Remodeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6219-6231. [PMID: 33983740 DOI: 10.1021/acs.langmuir.1c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report an experimental study of long, slender nanorods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle concentration, adhesion strength, and membrane tension in determining the membrane morphology. We combined giant unilamellar vesicles with oppositely charged nanorods, carefully tuning the adhesion strength, membrane tension, and particle concentration. With increasing adhesion strength, the primary behaviors observed were membrane deformation, vesicle-vesicle adhesion, and vesicle rupture. These behaviors were observed in well-defined regions in the parameter space with sharp transitions between them. We observed the deformation of the membrane resulting in tubulation, textured surfaces, and small and large lipid-particle aggregates. These responses are robust and repeatable and provide a new physical understanding of the dependence on the shape, binding affinity, and particle concentration in membrane remodeling. The design principles derived from these experiments may lead to new bioinspired membrane-based materials.
Collapse
Affiliation(s)
- Sarah E Zuraw-Weston
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| | - Mahsa Siavashpouri
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Maria E Moustaka
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Thomas Gerling
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Hendrik Dietz
- Department of Physics, Technical University of Munich, James-Franck-Str., 1, Garching D-85748, Germany
| | - Seth Fraden
- Department of Physics, Brandeis University, Abelson-Bass-Yalem, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, Silvio O. Conte National Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Anthony D Dinsmore
- Department of Physics, University of Massachusetts Amherst, Hasbrouck Lab, 666 North Pleasant Street, Amherst, Massachusetts 01002, United States
| |
Collapse
|
17
|
Kim JA, Long W, Kim JC. Preparation of dimethylaminopropyl octadecanamide/stearic acid vesicles incorporating azobenzene and their UV-responsive release property. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04806-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Alwattar JK, Mneimneh AT, Abla KK, Mehanna MM, Allam AN. Smart Stimuli-Responsive Liposomal Nanohybrid Systems: A Critical Review of Theranostic Behavior in Cancer. Pharmaceutics 2021; 13:355. [PMID: 33800292 PMCID: PMC7999181 DOI: 10.3390/pharmaceutics13030355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
The epoch of nanotechnology has authorized novel investigation strategies in the area of drug delivery. Liposomes are attractive biomimetic nanocarriers characterized by their biocompatibility, high loading capacity, and their ability to reduce encapsulated drug toxicity. Nevertheless, various limitations including physical instability, lack of site specificity, and low targeting abilities have impeded the use of solo liposomes. Metal nanocarriers are emerging moieties that can enhance the therapeutic activity of many drugs with improved release and targeted potential, yet numerous barriers, such as colloidal instability, cellular toxicity, and poor cellular uptake, restrain their applicability in vivo. The empire of nanohybrid systems has shelled to overcome these curbs and to combine the criteria of liposomes and metal nanocarriers for successful theranostic delivery. Metallic moieties can be embedded or functionalized on the liposomal systems. The current review sheds light on different liposomal-metal nanohybrid systems that were designed as cellular bearers for therapeutic agents, delivering them to their targeted terminus to combat one of the most widely recognized diseases, cancer.
Collapse
Affiliation(s)
- Jana K. Alwattar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Amina T. Mneimneh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Kawthar K. Abla
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
| | - Mohammed M. Mehanna
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Beirut Arab University, Beirut 11072809, Lebanon; (J.K.A.); (A.T.M.); (K.K.A.)
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed N. Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
19
|
Phummirat P, Mann N, Preece D. Applications of Optically Controlled Gold Nanostructures in Biomedical Engineering. Front Bioeng Biotechnol 2021; 8:602021. [PMID: 33553114 PMCID: PMC7856143 DOI: 10.3389/fbioe.2020.602021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Since their inception, optical tweezers have proven to be a useful tool for improving human understanding of the microscopic world with wide-ranging applications across science. In recent years, they have found many particularly appealing applications in the field of biomedical engineering which harnesses the knowledge and skills in engineering to tackle problems in biology and medicine. Notably, metallic nanostructures like gold nanoparticles have proven to be an excellent tool for OT-based micromanipulation due to their large polarizability and relatively low cytotoxicity. In this article, we review the progress made in the application of optically trapped gold nanomaterials to problems in bioengineering. After an introduction to the basic methods of optical trapping, we give an overview of potential applications to bioengineering specifically: nano/biomaterials, microfluidics, drug delivery, biosensing, biophotonics and imaging, and mechanobiology/single-molecule biophysics. We highlight the recent research progress, discuss challenges, and provide possible future directions in this field.
Collapse
Affiliation(s)
- Pisrut Phummirat
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| | - Nicholas Mann
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| | - Daryl Preece
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Trout CJ, Clapp JA, Griepenburg JC. Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02062e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on interactions which govern release from plasmonic carrier systems including liposomes, polymersomes, and nanodroplets under pulsed irradiation.
Collapse
Affiliation(s)
- Cory J. Trout
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Department of Applied Physics, Rutgers University-Newark, 101 Warren St., Newark, NJ 07102, USA
| | - Jamie A. Clapp
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| | - Julianne C. Griepenburg
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| |
Collapse
|
21
|
A supercritical assisted process for the production of amoxicillin-loaded liposomes for antimicrobial applications. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104842] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Zhang K, Li X, Yu C, Wang Y. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front Cell Infect Microbiol 2020; 10:359. [PMID: 32850471 PMCID: PMC7399198 DOI: 10.3389/fcimb.2020.00359] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Biofilms are communities of microorganisms that are attached to a biological or abiotic surface and are surrounded by a self-produced extracellular matrix. Cells within a biofilm have intrinsic characteristics that are different from those of planktonic cells. Biofilm resistance to antimicrobial agents has drawn increasing attention. It is well-known that medical device- and tissue-associated biofilms may be the leading cause for the failure of antibiotic treatments and can cause many chronic infections. The eradication of biofilms is very challenging. Many researchers are working to address biofilm-related infections, and some novel strategies have been developed and identified as being effective and promising. Nevertheless, more preclinical studies and well-designed multicenter clinical trials are critically needed to evaluate the prospects of these strategies. Here, we review information about the mechanisms underlying the drug resistance of biofilms and discuss recent progress in alternative therapies and promising strategies against microbial biofilms. We also summarize the strengths and weaknesses of these strategies in detail.
Collapse
Affiliation(s)
- Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Chen Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
23
|
Skóra B, Szychowski KA, Gmiński J. A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. Eur J Pharm Biopharm 2020; 154:153-165. [PMID: 32681962 DOI: 10.1016/j.ejpb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Interest in the use of metallic nanoparticles (NPs) in medicine is constantly increasing. The key challenge to the introduction of NPs into anticancer treatment is to limit the contact of their surface with healthy cells and to enable specific targeting of certain tissues, for example, cancerous cells. These aspects have raised a question whether the recent methods of drug delivery allow restricting the contact of NPs with healthy and/or nontarget cells. NPs can be restricted by encapsulation, which involves entrapping them into organic layers. This review is the first to present the different approaches for the encapsulation of metallic NPs, using liposomes, dendrimers, and proteins. The types and methods of entrapping are shown in an accessible way, enriched with graphics, and the pros and cons of these methods are disputable. Furthermore, the potential uses of NP complexes in medicine are described.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
24
|
Enzian P, Schell C, Link A, Malich C, Pries R, Wollenberg B, Rahmanzadeh R. Optically Controlled Drug Release from Light-Sensitive Liposomes with the New Photosensitizer 5,10-DiOH. Mol Pharm 2020; 17:2779-2788. [PMID: 32543848 DOI: 10.1021/acs.molpharmaceut.9b01173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The delivery of therapeutic drugs to a specific cellular site is a challenge in the treatment of different diseases. Liposomes have been widely studied as vehicles for drug delivery, and recent research begins to show the potential of the light-controlled opening of liposomes. Liposomes with photoactive molecules can release their cargo upon light irradiation for localized drug release. Light as an external trigger can be controlled temporally and spatially with high precision. In this study, we investigate the potential of light-sensitive liposomes with four photosensitizers and two lipid formulations for light-induced release. To investigate the permeabilization of the liposomes, calcein was encapsulated in high concentration inside the liposomes so that the calcein fluorescence is quenched. If calcein is released from the liposome, quenching is avoided, and the fluorescence increases. We demonstrated that liposomes with the sensitizers benzoporphyrine derivative monoacid (BPD), chlorine e6 (Ce6), Al(III) phthalocyanine chloride disulfonic acid (AlPcS2), and 5,10-di-(4-hydroxyphenyl)-15,20-diphenyl-21,23H-porphyrin (5,10-DiOH) release cargo effectively after irradiation. Liposomes with 5,10-DiOH showed a quicker release compared to the other sensitizers upon irradiation at 420 nm. Further, we observed through fractionated irradiation, that most of the release took place during light application, while the permeability of the liposome decreased shortly after light exposure. This effect was stronger with liposomes containing less cholesterol.
Collapse
Affiliation(s)
- Paula Enzian
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Christian Schell
- Por-Lab, Porphyrin-Laboratories GmbH, Blauenkrog 15, 23684 Scharbeutz, Germany
| | - Astrid Link
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Carina Malich
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, Clinic for ENT and HNS, University Hospital of Schleswig-Holstein, Campus Luübeck, Ratzeburger Allee 160, 23538 Luübeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Clinic for ENT and HNS, University Hospital of Schleswig-Holstein, Campus Luübeck, Ratzeburger Allee 160, 23538 Luübeck, Germany
| | - Ramtin Rahmanzadeh
- Institute of Biomedical Optics, University of Lübeck, Peter-Monnik-Weg 4, 23562 Lübeck, Germany
| |
Collapse
|
25
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
26
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
27
|
Yang M, Yang W, Chen L, Ding M, Li C, Shi D. A Novel Synthesis of Fe 3O 4@SiO 2@Au@Porous SiO 2 Structure for NIR Irradiation-Induced DOX Release and Cancer Treatment. Dose Response 2020; 18:1559325820906662. [PMID: 32110171 PMCID: PMC7026820 DOI: 10.1177/1559325820906662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 01/29/2023] Open
Abstract
Doxorubicin (DOX) alone or in combination has been widely used for numerous cancers, including breast, lung, bladder, and so on. In this article, a core/shell/shell structured Fe3O4@SiO2@Au@porous SiO2 particles for the drug delivery and release of DOX was demonstrated, with the aid of near-infrared irradiation. Fe3O4 was used to direct the transportation and delivery of the drug-loaded composite to the target tissues and organs under an external magnetic field, the first layer of SiO2 was used for Au nanoparticle attachment, Au acted as the agent for light-thermal conversion, and the porous SiO2 was used to load DOX. The morphology of the nanoparticles was studied by transmission electron microscopy, and the porous structure was characterized by N2 adsorption/desorption curves. The drug delivery system displayed high drug loading capacity, and the release behavior was largely impacted by the environmental pH. Furthermore, the cytotoxicity of Fe3O4@SiO2@Au@porous SiO2 and DOX loaded Fe3O4@SiO2@Au@porous SiO2 was studied through in vitro 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay.
Collapse
Affiliation(s)
- Meng Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wenhua Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Chen
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Mingjian Ding
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Chenhao Li
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Dongliang Shi
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
28
|
Dovydenko IS, Laricheva YA, Korchagina KV, Grigoryeva AE, Ryabchikova EI, Kompankov NB, Pischur DP, Gushchin AL, Apartsin EK, Sokolov MN. Interaction of Hydrophobic Tungsten Cluster Complexes with a Phospholipid Bilayer. J Phys Chem B 2019; 123:8829-8837. [PMID: 31539247 DOI: 10.1021/acs.jpcb.9b06006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoconstructions composed of lipid vesicles and inorganic units (nanoparticles, metal complexes) arouse much interest across materials science and nanotechnology as hybrid materials combining useful functionalities from both parts. Ideally, these units are to be embedded into the bilayer to keep the biophysical performance of lipid vesicles having inorganic moieties screened from the environment. This can be achieved by doping a lipid bilayer with cluster complexes of transition metals. In this work, we report the preparation of nanoparticles from trinuclear W3S4 cluster complexes and egg phosphatidylcholine. A systematic study of their properties was performed by the differential scanning calorimetry, NMR spectroscopy, dynamic light scattering, and transmission electron microscopy. Phospholipids and clusters have been found to spontaneously self-assemble into novel cluster-lipid hybrid materials. The behavior of clusters in the hydrophobic lipid environment is determined by the structure of the ligands and cluster-to-lipid ratio. Intact cluster complexes bearing compact hydrophobic ligands are embedded into the hydrophobic midplane of a lipid bilayer, whereas cluster complexes bearing larger ligands drive the aggregation of lipids and cluster complexes. Considering these differences, it could be possible to obtain different self-assembled associates such as cluster-doped liposomes or lipid-covered crystals. These cluster-lipid hybrids can be a platform for the design of new materials for nanotechnology.
Collapse
Affiliation(s)
- Ilya S Dovydenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , 8, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Yuliya A Laricheva
- Nikolaev Institute of Inorganic Chemistry, SB RAS , 3, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Kseniya V Korchagina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , 8, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Alina E Grigoryeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , 8, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Elena I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , 8, Lavrentiev Ave. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogov Str. , Novosibirsk 630090 , Russia
| | - Nikolay B Kompankov
- Nikolaev Institute of Inorganic Chemistry, SB RAS , 3, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Denis P Pischur
- Nikolaev Institute of Inorganic Chemistry, SB RAS , 3, Lavrentiev Ave. , Novosibirsk 630090 , Russia
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry, SB RAS , 3, Lavrentiev Ave. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogov Str. , Novosibirsk 630090 , Russia
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , 8, Lavrentiev Ave. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogov Str. , Novosibirsk 630090 , Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, SB RAS , 3, Lavrentiev Ave. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogov Str. , Novosibirsk 630090 , Russia
| |
Collapse
|
29
|
Zuraw-Weston S, Wood DA, Torres IK, Lee Y, Wang LS, Jiang Z, Lázaro GR, Wang S, Rodal AA, Hagan MF, Rotello VM, Dinsmore AD. Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction. NANOSCALE 2019; 11:18464-18474. [PMID: 31577313 PMCID: PMC7155749 DOI: 10.1039/c9nr06570a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While cells offer numerous inspiring examples in which membrane morphology and function are controlled by interactions with viruses or proteins, we still lack design principles for controlling membrane morphology in synthetic systems. With experiments and simulations, we show that spherical nanoparticles binding to lipid-bilayer membrane vesicles results in a remarkably rich set of collective morphologies that are controllable via the particle binding energy. We separately study cationic and anionic particles, where the adhesion is tuned by addition of oppositely charged lipids to the vesicles. When the binding energy is weak relative to a characteristic membrane-bending energy, vesicles adhere to one another and form a soft solid gel, a novel and useful platform for controlled release. With larger binding energy, a transition from partial to complete wrapping of the nanoparticles causes a remarkable vesicle destruction process culminating in rupture, nanoparticle-membrane tubules, and an apparent inversion of the vesicles. These findings help unify the diverse phenomena observed previously. They also open the door to a new class of vesicle-based, closed-cell gels that are more than 99% water and can encapsulate and release on demand, and show how to drive intentional membrane remodeling for shape-responsive systems.
Collapse
|
30
|
Naitlho N, Prieto-Dapena F, Rabasco AM, Rueda M, González-Rodríguez ML. Didodecyldimethylammonium Bromide Role in Anchoring Gold Nanoparticles onto Liposome Surface for Triggering the Drug Release. AAPS PharmSciTech 2019; 20:294. [PMID: 31432298 DOI: 10.1208/s12249-019-1492-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Liposomes with their capacity to anchor gold nanoparticles (AuNPs) onto their surface are used in the treatment of several pathologies such as cancer. The objective of this work was the optimization of the vesicle composition by using cationic agents in order to reinforce the anchoring process of AuNPs, and for the study of the influence of local temperature and vesicle size on drug release. A Plackett-Burman design was conducted to determine the optimal composition for the anchoring of AuNPs. A comprehensive study of the influence of lipid bilayer composition on the surface charge, size, and polydispersity index (PdI) of liposomes was carried out. Afterwards, in vitro release studies by dialysis were performed and several release parameters were evaluated as a function of temperature. Cholesterol was fixed as the rigid agent and Didodecyldimethylammonium bromide (DDAB) was selected as the cationic lipid into the liposome bilayer. Photomicrographs revealed that DDAB facilitated the anchoring of AuNPs onto the liposomal surface. The anchoring of AuNPs also enhanced the amount and rate of calcein released, especially in extruded samples, at several incubating temperatures. In addition, it was observed that both the anchoring of AuNPs and the calcein release were improved by increasing the surface of the vesicles. The contributions of liposome composition (DDAB inclusion, incubation temperature, anchoring of AuNPs) and size and surface availability of the vesicles on calcein release could be used to design improved lipid nanostructures for the controlled release of anticancer drugs.
Collapse
|
31
|
Al Harthi S, Alavi SE, Radwan MA, El Khatib MM, AlSarra IA. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer's disease. Sci Rep 2019; 9:9563. [PMID: 31266990 PMCID: PMC6606601 DOI: 10.1038/s41598-019-46032-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/17/2019] [Indexed: 11/29/2022] Open
Abstract
This study aims to prepare, characterize and evaluate the pharmacokinetics of liposomal donepezil HCl (LDH) dispersed into thiolated chitosan hydrogel (TCH) in rabbits. Various hydrogels including TCH were prepared, and after characterization, TCH was selected for subsequent evaluations, due to the promising results. TCH was then incorporated with LDH prepared by reverse phase evaporation method. The hydrogel was characterized using scanning electron microscope, dialysis membrane technique, and ultra-performance liquid chromatography methods. The optimized resultant was then evaluated in terms of pharmacokinetics in an in vivo environment. The mean size of LDH and drug entrapment efficiency were 438.7 ± 28.3 nm and 62.5% ± 0.6, respectively. The controlled drug release pattern results showed that the half-life of the loaded drug was approximately 3.5 h. Liposomal hydrogel and free liposomes were more stable at 4 °C compared to those in 20 °C. The pharmacokinetics study in the rabbit showed that the optimized hydrogel increased the mean peak drug concentration and area under the curve by 46% and 39%, respectively, through nasal route compared to the oral tablets of DH. Moreover, intranasal delivery of DH through liposomal hydrogel increased the mean brain content of the drug by 107% compared to the oral DH tablets. The results suggested that liposomes dispersed into TCH is a promising device for the nasal delivery of DH and can be considered for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sitah Al Harthi
- Department of Pharmaceutical Science, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Riyadh, Saudi Arabia
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Seyed Ebrahim Alavi
- School of Pharmacy, The University of Queensland, Woolloongabba, 4102, Australia
| | - Mahasen Ali Radwan
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Egyptian Russian University, Bader City, Egypt
| | - Mona Mohamed El Khatib
- Department of Pharmaceutics, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Department of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ibrahim Abdullah AlSarra
- Department of Pharmaceutical Science, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
32
|
Photocracking Silica: Tuning the Plasmonic Photothermal Degradation of Mesoporous Silica Encapsulating Gold Nanoparticles for Cargo Release. INORGANICS 2019. [DOI: 10.3390/inorganics7060072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The degradation of bionanomaterials is essential for medical applications of nanoformulations, but most inorganic-based delivery agents do not biodegrade at controllable rates. In this contribution, we describe the controllable plasmonic photocracking of gold@silica nanoparticles by tuning the power and wavelength of the laser irradiation, or by tuning the size of the encapsulated gold cores. Particles were literally broken to pieces or dissolved from the inside out upon laser excitation of the plasmonic cores. The photothermal cracking of silica, probably analogous to thermal fracturing in glass, was then harnessed to release cargo molecules from gold@silica@polycaprolactone nanovectors. This unique and controllable plasmonic photodegradation has implications for nanomedicine, photopatterning, and sensing applications.
Collapse
|
33
|
Soft poly(N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Abstract
Although the eye is an accessible organ for direct drug application, ocular drug delivery remains a major challenge due to multiple barriers within the eye. Key barriers include static barriers imposed by the cornea, conjunctiva, and retinal pigment epithelium and dynamic barriers including tear turnover and blood and lymphatic clearance mechanisms. Systemic administration by oral and parenteral routes is limited by static blood-tissue barriers that include epithelial and endothelial layers, in addition to rapid vascular clearance mechanisms. Together, the static and dynamic barriers limit the rate and extent of drug delivery to the eye. Thus, there is an ongoing need to identify novel delivery systems and approaches to enhance and sustain ocular drug delivery. This chapter summarizes current and recent experimental approaches for drug delivery to the anterior and posterior segments of the eye.
Collapse
Affiliation(s)
- Burcin Yavuz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.,Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Uday B Kompella
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 12850 East Montview Blvd., C238-V20, Aurora, CO, 80045, USA.
| |
Collapse
|
35
|
Viitala L, Pajari S, Gentile L, Määttä J, Gubitosi M, Deska J, Sammalkorpi M, Olsson U, Murtomäki L. Shape and Phase Transitions in a PEGylated Phospholipid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3999-4010. [PMID: 30789270 PMCID: PMC6727609 DOI: 10.1021/acs.langmuir.8b03829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/18/2019] [Indexed: 05/23/2023]
Abstract
Poly(ethylene glycol) (PEG) polymers and PEG-conjugated lipids are widely used in bioengineering and drug transport applications. A PEG layer in a drug carrier increases hydrophilic repulsion, inhibits membrane fusion and serum opsonin interactions, and prolongs the storage and circulation time. It can also change the carrier shape and have an influence on many properties related to the content release of the carrier. In this paper, we focus on the physicochemical effects of PEGylation in the lipid bilayer. We introduce laurdanC as a fluorophore for shape recognition and phase transition detection. Together with laurdanC, cryogenic transmission electron microscopy, differential scanning calorimetry, molecular dynamics simulations, and small-angle X-ray scattering/wide-angle X-ray scattering, we acquire information of the particle/bilayer morphology and phase behavior in systems containing 1,2-dipalmitoyl- sn-glycero-3-phosphocholine:1,2-distearoyl- sn-glycero-3-phosphoethanolamine-PEG(2000) with different fractions. We find that PEGylation leads to two important and potentially usable features of the system. (1) Spherical vesicles present a window of elevated chain-melting temperatures and (2) lipid packing shape-controlled liposome-to-bicelle transition. The first finding is significant for targets requiring multiple release sequences and the second enables tuning the release by composition and the PEG polymer length. Besides drug delivery systems, the findings can be used in other smart soft materials with trigger-polymers as well.
Collapse
Affiliation(s)
- Lauri Viitala
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Saija Pajari
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Luigi Gentile
- Physical
Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- Department
of Biology, MEMEG Unit, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
- PRPDepartment
of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Jukka Määttä
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Marta Gubitosi
- Physical
Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Jan Deska
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Ulf Olsson
- Physical
Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Lasse Murtomäki
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
36
|
Tobias A, Rooke W, Hanks TW. Incorporation of gold nanoparticles into the bilayer of polydiacetylene unilamellar vesicles. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-018-4441-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Stimuli‐Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle‐Associated Drug‐Delivery Systems. Macromol Biosci 2018; 18:e1800207. [DOI: 10.1002/mabi.201800207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
| | - Zhan Yuin Ong
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
- School of MedicineUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
38
|
Jaggers RW, Bon SAF. Structure and behaviour of vesicles in the presence of colloidal particles. SOFT MATTER 2018; 14:6949-6960. [PMID: 30117508 DOI: 10.1039/c8sm01223g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This review highlights recent studies that investigate the structural changes and behaviour of synthetic vesicles when they are exposed to colloidal particles. We will show examples to demonstrate the power of combining particles and vesicles in generating exciting supracolloidal structures. These suprastructures have a wide range of often responsive behaviours that take advantage of both the mechanical and morphological support provided by the vesicles and the associated particles with preset functionality. This review includes applications spanning a variety of disciplines, including chemistry, biology, physics and medicine.
Collapse
Affiliation(s)
- Ross W Jaggers
- BonLab, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
39
|
Lajunen T, Nurmi R, Wilbie D, Ruoslahti T, Johansson NG, Korhonen O, Rog T, Bunker A, Ruponen M, Urtti A. The effect of light sensitizer localization on the stability of indocyanine green liposomes. J Control Release 2018; 284:213-223. [DOI: 10.1016/j.jconrel.2018.06.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
40
|
Wang S, Xin J, Zhang L, Zhou Y, Yao C, Wang B, Wang J, Zhang Z. Cantharidin-encapsulated thermal-sensitive liposomes coated with gold nanoparticles for enhanced photothermal therapy on A431 cells. Int J Nanomedicine 2018; 13:2143-2160. [PMID: 29692611 PMCID: PMC5901154 DOI: 10.2147/ijn.s156240] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Plasmonic nanostructure-mediated photothermal therapy (PTT) is a promising alternative therapy for the treatment of skin cancer and other diseases. However, the insufficient efficiency of PTT at irradiation levels tolerable to tissues and the limited biodegradability of nanomaterials are still crucial challenges. In this study, a novel nanosystem for PTT based on liposome–nanoparticle assemblies (LNAs) was established. Materials and methods Thermal-sensitive liposomes (TSLs) encapsulating cantharidin (CTD) were coated with gold nanoparticles (GNPs) and used in near-infrared (NIR) illumination-triggered PTT and thermally induced disruption on A431 cells. Results The coated GNPs disintegrated into small particles of 5–6 nm after disruption of TSLs, allowing their clearance by the liver and kidneys. CTD encapsulated in the TSLs was released into cytoplasm after PTT. The released CTD increased the apoptosis of PTT-treated tumor cells by blocking the heat shock response (HSR) and inhibiting the expression of HSP70 and BAG3 inhibiting the expression of HSP70 and BAG3 with the synergistic enhancement of CTD, the new nanosystem CTD-encapsulated TSLs coated with GNPs (CTD-TSL@GNPs) had an efficient PTT effect using clinically acceptable irradiation power (200 mW//cm2) on A431 cells. Conclusion The developed CTD-TSL@GNPs may be a promising PTT agent for clinical skin cancer therapy.
Collapse
Affiliation(s)
- Sijia Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Xin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Luwei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yicheng Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Bing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev 2018; 127:58-84. [PMID: 29425769 DOI: 10.1016/j.addr.2018.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
Abstract
Dermal and transdermal drug delivery (due to its non-invasiveness, avoidance of the first-pass metabolism, controlling the rate of drug input over a prolonged time, etc.) have gained significant acceptance. Several methods are employed to overcome the permeability barrier of the skin, improving drug penetration into/through skin. Among chemical penetration enhancement methods, nanocarriers have been extensively studied. When applied alone, nanocarriers mostly deliver drugs to skin and can be used to treat skin diseases. To achieve effective transdermal drug delivery, nanocarriers should be applied with physical methods, as they act synergistically in enhancing drug penetration. This review describes combined use of frequently used nanocarriers (liposomes, novel elastic vesicles, lipid-based and polymer-based nanoparticles and dendrimers) with the most efficient physical methods (microneedles, iontophoresis, ultrasound and electroporation) and demonstrates superiority of the combined use of nanocarriers and physical methods in drug penetration enhancement compared to their single use.
Collapse
|
42
|
Chitgupi U, Shao S, Carter KA, Huang WC, Lovell JF. Multicolor Liposome Mixtures for Selective and Selectable Cargo Release. NANO LETTERS 2018; 18:1331-1336. [PMID: 29384679 DOI: 10.1021/acs.nanolett.7b05025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many approaches exist for stimuli-triggered cargo release from nanocarriers, but few can provide for on-demand release of multiple payloads, selectively. Here, we report the synthesis of purpurin-phospholipid (Pur-P), a lipid chromophore that has near-infrared absorbance red-shifted by 30 nm compared to a structurally similar pyropheophorbide-phospholipid (Pyr-P). Liposomes containing small amounts of either Pur-P or Pyr-P exhibited similar physical properties and fluorescence self-quenching. Loaded with distinct cargos, Pur-P and Pyr-P liposomes were mixed into a single colloidal suspension and selectively released cargo depending on irradiation wavelength. Spatiotemporal control of distinct cargo release was achieved by controlling multicolor laser placement. Using basic orange and doxorubicin anthraquinones, multidimensional cytotoxicity gradients were established to gauge efficacy against cancer cells using light-released drug. Wavelength selectivity of cargo release was maintained following intramuscular administration to mice.
Collapse
Affiliation(s)
- Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Kevin A Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
43
|
Mathiyazhakan M, Wiraja C, Xu C. A Concise Review of Gold Nanoparticles-Based Photo-Responsive Liposomes for Controlled Drug Delivery. NANO-MICRO LETTERS 2018; 10:10. [PMID: 30393659 PMCID: PMC6199057 DOI: 10.1007/s40820-017-0166-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 05/18/2023]
Abstract
The focus of drug delivery is shifting toward smart drug carriers that release the cargo in response to a change in the microenvironment due to an internal or external trigger. As the most clinically successful nanosystem, liposomes naturally come under the spotlight of this trend. This review summarizes the latest development about the design and construction of photo-responsive liposomes with gold nanoparticles for the controlled drug release. Alongside, we overview the mechanism involved in this process and the representative applications.
Collapse
Affiliation(s)
- Malathi Mathiyazhakan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
44
|
Silbaugh DA, Ferrer-Tasies L, Faraudo J, Veciana J, Ventosa N, Korgel BA. Highly Fluorescent Silicon Nanocrystals Stabilized in Water Using Quatsomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14366-14377. [PMID: 29182881 DOI: 10.1021/acs.langmuir.7b03539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent silicon (Si) nanocrystals (2.8 nm diameter) were incorporated into surfactant assemblies of cetyltrimethylammonium bromide (CTAB) and cholesterol, called quatsomes. In water, the quatsome-Si nanocrystal assemblies remain fluorescent and well-dispersed for weeks. In contrast to Si nanocrystals, alkanethiol-capped gold (Au) nanocrystals do not form stable dispersions in water with quatsomes. Cryogenic transmission electron microscopy (cryo-TEM) confirmed that the Si nanocrystal-quatsome structures do not change over the course of several weeks. The long-term stability of the Si nanocrystal-quatsome assemblies, their fluorescence, and biocompatibility makes them attractive candidates for medical applications.
Collapse
Affiliation(s)
- Dorothy A Silbaugh
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712-1062, United States
| | - Lidia Ferrer-Tasies
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB , Campus UAB s/n; E-08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Nanomol group , Campus UAB s/n; E-08193Cerdanyola del Vallès, Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB , Campus UAB s/n; E-08193 Cerdanyola del Vallès, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB , Campus UAB s/n; E-08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Nanomol group , Campus UAB s/n; E-08193Cerdanyola del Vallès, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB , Campus UAB s/n; E-08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Nanomol group , Campus UAB s/n; E-08193Cerdanyola del Vallès, Spain
| | - Brian A Korgel
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin , Austin, Texas 78712-1062, United States
| |
Collapse
|
45
|
Lin W, Murphy CJ. A Demonstration of Le Chatelier's Principle on the Nanoscale. ACS CENTRAL SCIENCE 2017; 3:1096-1102. [PMID: 29104926 PMCID: PMC5658755 DOI: 10.1021/acscentsci.7b00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 05/25/2023]
Abstract
Photothermal desorption of molecules from plasmonic nanoparticles is an example of a light-triggered molecular release due to heating of the system. However, this phenomenon ought to work only if the molecule-nanoparticle interaction is exothermic in nature. In this study, we compare protein adsorption behavior onto gold nanoparticles for both endothermic and exothermic complexation reactions, and demonstrate that Le Chatelier's principle can be applied to predict protein adsorption or desorption on nanomaterial surfaces. Polyelectrolyte-wrapped gold nanorods were used as adsorption platforms for two different proteins, which we were able to adsorb/desorb from the nanorod surface depending on the thermodynamics of their interactions. Furthermore, we show that the behaviors hold up under more complex biological environments such as fetal bovine serum.
Collapse
|
46
|
Malekkhaiat Häffner S, Malmsten M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv Colloid Interface Sci 2017; 248:105-128. [PMID: 28807368 DOI: 10.1016/j.cis.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.
Collapse
Affiliation(s)
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
47
|
|
48
|
Shirmardi Shaghasemi B, Virk MM, Reimhult E. Optimization of Magneto-thermally Controlled Release Kinetics by Tuning of Magnetoliposome Composition and Structure. Sci Rep 2017; 7:7474. [PMID: 28784989 PMCID: PMC5547053 DOI: 10.1038/s41598-017-06980-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
Stealth (PEGylated) liposomes have taken a central role in drug formulation and delivery combining efficient transport with low nonspecific interactions. Controlling rapid release at a certain location and time remains a challenge dependent on environmental factors. We demonstrate a highly efficient and scalable way to produce liposomes of any lipid composition containing homogeneously dispersed monodisperse superparamagnetic iron oxide nanoparticles in the membrane interior. We investigate the effect of lipid composition, particle concentration and magnetic field actuation on colloidal stability, magneto-thermally actuated release and passive release rates. We show that the rate and amount of encapsulated hydrophilic compound released by actuation using alternating magnetic fields can be precisely controlled from stealth liposomes with high membrane melting temperature. Extraordinarily low passive release and temperature sensitivity at body temperature makes this a promising encapsulation and external-trigger-on-demand release system. The introduced feature can be used as an add-on to existing stealth liposome drug delivery technology.
Collapse
Affiliation(s)
- Behzad Shirmardi Shaghasemi
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mudassar Mumtaz Virk
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
49
|
Development of light-driven gas-forming liposomes for efficient tumor treatment. Int J Pharm 2017; 525:218-225. [DOI: 10.1016/j.ijpharm.2017.04.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 01/13/2023]
|
50
|
Bouchaala R, Anton N, Anton H, Vandamme T, Vermot J, Smail D, Mély Y, Klymchenko AS. Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. Colloids Surf B Biointerfaces 2017; 156:414-421. [PMID: 28551576 DOI: 10.1016/j.colsurfb.2017.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022]
Abstract
Light is an attractive trigger for release of active molecules from nanocarriers in biological systems. Here, we describe a phenomenon of light-induced release of a fluorescent dye from lipid nano-droplets under visible light conditions. Using auto-emulsification process we prepared nanoemulsion droplets of 32nm size encapsulating the hydrophobic analogue of Nile Red, NR668. While these nano-droplets cannot spontaneously enter the cells on the time scale of hours, after illumination for 30s under the microscope at the wavelength of NR668 absorption (535nm), the dye showed fast accumulation inside the cells. The same phenomenon was observed in zebrafish, where nano-droplets initially staining the blood circulation were released into endothelial cells and tissues after illumination. Fluorescence correlation spectroscopy revealed that laser illumination at relatively low power (60mW/cm2) could trigger the release of the dye into recipient media, such as 10% serum or blank lipid nanocarriers. The photo-release can be inhibited by deoxygenation with sodium sulfite, suggesting that at least in part the release could be related to a photochemical process involving oxygen, though a photo-thermal effect could also take place. Finally, we showed that illumination of NR668 can provoke the release into the cells of another highly hydrophobic dye co-encapsulated into the lipid nanocarriers. These results suggest dye-loaded lipid nano-droplets as a prospective platform for preparation of light-triggered nanocarriers of active molecules.
Collapse
Affiliation(s)
- Redouane Bouchaala
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France; Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Nicolas Anton
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Halina Anton
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Julien Vermot
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U964, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 ILLKIRCH, France
| | - Djabi Smail
- Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Yves Mély
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|