1
|
Zhang L, Chen Y, Feng D, Xing Z, Wang Y, Bai Y, Shi D, Li H, Fan X, Xia J, Wang J. Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections. J Control Release 2025; 379:191-201. [PMID: 39793653 DOI: 10.1016/j.jconrel.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MNs) for transdermal delivery of antibacterial agents. Spheroidal copper-DNA antibacterial nanoparticles (Cu-CpG NPs; CpG represents short single-stranded synthetic DNA molecules of cytosine and guanine) are synthesized with copper ions and CpG oligodeoxynucleotides (ODNs), followed by polydopamine (PDA) coating to obtain Cu-CpG@PDA. Doping Cu-CpG@PDA into rCol-MNs yields Cu-CpG@PDA-loaded rCol-MNs. These microneedles combine the photothermal conversion property of PDA, antibacterial properties of copper ions, innate immune activation of CpG ODNs, and skin regenerating ability of rCol XVII, allowing the treatment of SSTI and also regenerating the damaged skin. In a mouse model, we show that the Cu-CpG@PDA-loaded rCol-MNs rescue skin wound infections, facilitate the orderly deposition of collagen at the wound site, and promote the healing of infected full-thickness wounds without noticeable scar formation. rCol-MNs serve as a transdermal delivery vehicle and, simultaneously, a reservoir of skin-regenerating recombinant collagen, bringing combined benefits of infection control and skin regeneration. SIGNIFICANCE STATEMENT: Treatment of soft tissue infection requires the delivery of antibacterial agents into the soft tissue or dermis while providing a regenerating environment for open wounds. Here, we devise recombinant collagen microneedles (rCol-MNs) to meet both requirements.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Xiaoju Fan
- Jiangsu Trautec Medical Technology Co., Ltd, Changzhou 213200, PR China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
2
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
3
|
Shu W, Kilroy S, Ní Annaidh A, O'Cearbhaill ED. Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery. Acta Biomater 2025; 194:233-245. [PMID: 39710220 DOI: 10.1016/j.actbio.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions. This may impede the accuracy of MNs pre-clinical assessments. Here, we develop a multiphysics finite element model which simulates the biomechanics of microneedle skin penetration and the subsequent permeation of therapeutics. Employing the aqueous pore path hypothesis, we consider how strain (induced through the insertion of a MN), affects pore geometry in the skin and therefore the diffusion of therapeutics. Our models show that considering the insertion-induced skin deformation alone reduces the transdermal permeation of insulin by 25 %, while considering the effect of strain can reduce the overall permeation by a further 45 % over 24 h. Our model also indicates that once the mechanical strain is removed i.e. through removal or dissolution of the array, the permeation through the skin will recover. Furthermore, our results indicate that the delivery of high molecular weight compounds may be most susceptible to strain-induced changes in drug permeation. These findings could have significant implications for the preferred type of microneedle administration when targeting, for example, intradermal or transdermal delivery. STATEMENT OF SIGNIFICANCE: This manuscript presents an advanced computational model of microneedle insertion into human skin. Here, we adopt a multiphysics modelling strategy, where we predict the influence of microneedle insertion on skin deformation and strain and how that influences subsequent therapeutic permeation through the skin. Our model predicts that whether or not the microneedle remains in situ, the resultant change in tissue deformation and strain has a major impact on how quickly the therapeutic diffuses through the skin. This has important implications for transdermal device design, administration strategies and protocols and associated clinical studies, where either intradermal or transdermal therapeutic delivery is being targetted.
Collapse
Affiliation(s)
- Wenting Shu
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Kilroy
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Wang X, Yue J, Guo S, Rahmatulla A, Li S, Liu Y, Chen Y. Dissolving microneedles: A transdermal drug delivery system for the treatment of rheumatoid arthritis. Int J Pharm 2025; 671:125206. [PMID: 39799999 DOI: 10.1016/j.ijpharm.2025.125206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time. It can damage the skin, eyes, heart, kidney, and lung. Oral medications, intra-articular injections, and other treatments are being used; nevertheless, they have drawbacks, including low bioavailability, numerous adverse effects, and poor patient compliance. Dissolving microneedles (DMNs) are a safe and painless method for transdermal drug delivery, achieved through their ability to physically penetrate the epidermal barrier. They enable targeted drug delivery, significantly enhancing the bioavailability of medications and improving patient compliance. DMNs are particularly effective in delivering both lipophilic and high molecular weight biomolecules. The superior bioavailability of DMNs is demonstrated by the fact that low-dose DMN administration can achieve up to 25.8 times higher bioavailability compared to oral administration. This paper provides a comprehensive review of recent advancements in the use of DMNs for RA treatment, encompassing various materials (such as hyaluronic acid, chitosan, etc.), fabrication techniques (such as the two-step casting method, photopolymerization), and performance evaluations (including morphology, mechanical properties, skin penetration capability, solubility, and pharmacodynamics). Additionally, a thorough safety assessment has been conducted, revealing that DMNs cause minimal skin irritation and exhibit low cytotoxicity, ensuring their safety for clinical application. DMNs provide a highly effective and promising alternative to oral and injectable drug delivery systems, offering a novel therapeutic approach for RA patients that significantly improves treatment outcomes and enhances their quality of life.
Collapse
Affiliation(s)
- Xueni Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Jiang Yue
- Department of Endocrinology and Metabolism Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shijie Guo
- Shengzhou Silk Protein Biotechnology Application Research Institute Zhejiang China
| | - Aysha Rahmatulla
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Shuangshuang Li
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China
| | - Yang Liu
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin China.
| |
Collapse
|
5
|
Patil A, Rajput A, Subbappa P, Pawar A. Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression. Int J Pharm 2025; 671:125257. [PMID: 39855281 DOI: 10.1016/j.ijpharm.2025.125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 23 full factorial design approach. The optimized nanostructured lipid carriers formulation (Batch B7) demonstrated a particle size of 158.71 ± 0.56 nm, a narrow size distribution (0.266 ± 0.006), high entrapment efficiency (59.60 ± 0.34 %), and a zeta potential of -23.2 ± 2.21 mV. Furthermore, x-ray diffraction and differential scanning calorimetry studies revealed the amorphous transformation of selegiline within the nanostructured lipid carrier. Transmission Electron Microscopy study has shown that nanostructured lipid carrier particles had a spherical shape with a smooth surface. These optimized nanostructured lipid carriers were then incorporated into a microneedle array patch for transdermal delivery. The selegiline-loaded nanostructured lipid carrier microneedle array patch exhibited no skin irritation in a rabbit model. It enhanced drug diffusion ex vivo (1.13-fold compared to pure selegiline-loaded microneedle array patch) with 90 % drug release in 12 h. The pharmacokinetic study demonstrated a steady and controlled release profile with a half-life of 29.9 ± 0.14 h and AUC0-t (26.57 ± 0.51 μg/ml*h) of selegiline loaded nanostructured lipid carrier microneedle array patch. On the contrary, a pure selegiline-loaded microneedle array patch showed a short half-life of 6.5 ± 0.26 h and AUC0-t (20.90 ± 0.31 μg/ml*h). The sustained release profile and prolonged half-life in plasma and the brain suggest improved therapeutic efficacy. Histopathology analysis revealed no significant toxicity to vital organs. Thus, a selegiline nanostructured lipid carrier-loaded microneedle array patch can increase brain bioavailability compared to a pure selegiline-loaded microneedle array patch for managing depression.
Collapse
Affiliation(s)
- Anuradha Patil
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Praveen Subbappa
- Alliance Management and Supply Chain, Azurity Pharmaceuticals, Inc., 8 Cabot Road, Suite 2000, Woburn, MA 01801, USA
| | - Atmaram Pawar
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
6
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
7
|
Seong KY, Kim MJ, Lee H, Kim S, Kim S, Kim HS, Jung EM, An BS, Yang SY. One-touch embeddable microneedles for hair loss treatment. Int J Pharm 2025; 669:125020. [PMID: 39626847 DOI: 10.1016/j.ijpharm.2024.125020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
With increasing clinical demands for painless and easy administration of medications, such as for hair loss, microneedles (MNs) have been widely exploited for facilitating drug permeation in a minimally invasive manner. However, precise dose control and long-term drug delivery without the infection risk through punctured holes have remained unresolved. Herein, we developed swellable microneedles (MNs) with an air-pocket structure, enabling shear-induced implantation inside the skin. The air-pocket MNs (AP-MNs) were prepared by one-step molding process with genipin-crosslinked gelatin solutions. This MN design induced mechanical difference following insertion due to selective hydration at the inserted MN tips, causing them to break at the interface between the swollen tip and the non-inserted column. The AP-MNs (80-90 %) were embedded into the skin and played a barrier function by tightly sealing punctured holes. Minoxidil (MXD) for hair loss treatment were quantitatively loaded in the AP-MNs depending on swellable tip heights, with 90 % of loaded MXD in the AP-MN tips released over 48 h. In animal studies, the MXD-loaded AP-MNs exhibited higher efficiency than topical application for hair loss treatment. These results indicate that the design of shear-induced embeddable MNs could provide a high-efficiency, convenient, safe, and potentially self-administered method for drug delivery.
Collapse
Affiliation(s)
- Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea; Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sodam Kim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Semin Kim
- SNvia Co., Ltd., PNU AVEC, Busan 46285, Republic of Korea
| | - Hoon-Soo Kim
- Department of Dermatology, School of Medicine, Pusan National University, Busan 49241, Republic of Korea
| | - Eui-Man Jung
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
8
|
Visscher M, Frijlink HW, Hinrichs WLJ. What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review. Pharmaceutics 2025; 17:124. [PMID: 39861771 PMCID: PMC11769129 DOI: 10.3390/pharmaceutics17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin. A successful penetration into the upper skin layers may be challenging because of the elastic nature of the skin; therefore, a minimum insertion force is required to overcome the total resistance force of the skin. In addition, the microneedles need to stay intact, which requires a certain mechanical strength, and be able to resist the required insertion force. In addition to the type of material with which the DMNAs are produced, the geometry of the DMNAs will also have a profound effect, not only on the mechanical strength but also on the number of insertions and penetration depth into the skin. In this review, the effects of shape, aspect ratio, length, width of the base, tip diameter and angle, and spacing of DMNAs on the aforementioned effect parameters were evaluated to answer the following question: 'What is the optimal geometry of dissolving microneedle arrays?'.
Collapse
Affiliation(s)
| | | | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands; (M.V.); (H.W.F.)
| |
Collapse
|
9
|
Hulimane Shivaswamy R, Binulal P, Benoy A, Lakshmiramanan K, Bhaskar N, Pandya HJ. Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. ACS MATERIALS AU 2025; 5:115-140. [PMID: 39802146 PMCID: PMC11718548 DOI: 10.1021/acsmaterialsau.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.
Collapse
Affiliation(s)
| | - Pranav Binulal
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Aloysious Benoy
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Kaushik Lakshmiramanan
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Nitu Bhaskar
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Hardik Jeetendra Pandya
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| |
Collapse
|
10
|
Kim M, Kang G, Min HS, Lee Y, Park S, Jung H. Evolution of microneedle applicators for vaccination: the role of the latch applicator in optimizing dissolving microneedle-based immunization. Expert Opin Drug Deliv 2024; 21:1823-1835. [PMID: 39460635 DOI: 10.1080/17425247.2024.2422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Dissolving microneedles (DMN) offer advantages in vaccine delivery, such as enhanced immunogenicity and simplified administration, by targeting immune-rich layers of the skin. However, these benefits require precise and consistent delivery, which poses practical challenges. To address this, specialized applicators are essential for ensuring the accurate deployment of DMNs, making this technology a viable alternative to traditional methods, particularly in low- and middle-income countries (LMICs), where healthcare infrastructure is limited. AREAS COVERED In this review, we examine the advancements in DMN-based vaccination and applicator design, focusing on their joint effort. These innovations have improved the precision and efficiency of DMN vaccine delivery. Complex and costly early-stage applicators have evolved into simpler and more cost-effective designs. We highlight these developments in this review, with the latch applicator as a key example of a feature that enhances vaccine delivery. EXPERT OPINION Although applicator development has advanced DMN-based vaccination toward practical use, challenges remain. Key areas for further optimization include user friendliness, cost, packaging volume, and wear time. Once optimized, DMN vaccination may become a highly effective and accessible tool for global immunization, supporting efforts to achieve worldwide vaccine equality.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | - Hye Su Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Youjin Lee
- Department of Integrative Biotechnology, Yonsei University, Inchon, Republic of Korea
| | - Shinyoung Park
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Juvic Inc, Seoul, Republic of Korea
- Department of Integrative Biotechnology, Yonsei University, Inchon, Republic of Korea
| |
Collapse
|
11
|
Gu C, Fang S, Liu L, Chen B, Xu L, Shao M, Sun J, Qian H, Wang W. Local Release of Copper Manganese Oxide Using HA Microneedle for Improving the Efficacy of Drug-Resistant Wound Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406377. [PMID: 39370574 DOI: 10.1002/smll.202406377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The production of bacterial toxins and excessive accumulation of reactive oxygen species (ROS) can induce localized oxidative stress, triggering an exaggerated immune response that impedes wound healing and culminates in chronic wounds. To address this issue, a microneedle (MN) system loaded with copper-manganese oxide (CMO) is developed to modulate the hyperimmune response in wounds. CMO@MN exhibits excellent antimicrobial and anti-inflammatory properties by effectively killing bacteria, scavenging ROS, and modulating macrophage polarization through their multiple enzymatic activities and photothermal properties. RNA sequencing revealed that CMO@MN improved the therapeutic effect on the infected skin of mice by balancing the ratio of M1/M2 macrophages and promoting cell migration and angiogenesis through the regulation of relevant pathways. Overall, this CMO@MN patch skillfully balances the complex issues between the immune response and wound healing and has potential applications in the treatment of other serious bacterial infections.
Collapse
Affiliation(s)
- Cheng Gu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Shu Fang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| |
Collapse
|
12
|
Pham HP, Vo VT, Nguyen TQ. Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01740-5. [PMID: 39557783 DOI: 10.1007/s13346-024-01740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Microneedle technology has emerged as an advanced method for transdermal drug delivery, which focuses on diverse fabrication techniques to develop microneedles with various models and geometries. This study explores the application of Computer Numerical Control (CNC) milling technology to create microneedle master molds with extremely sharp tips. We examined the effects of two key machining parameters, feed rate and ramp angle, on the tip sharpness of the microneedles. Our results showed that increasing both the feed rate and ramp angle could significantly reduce machining time. However, a higher feed rate also led to larger tip diameters and notable tip defects. Conversely, changes in the ramp angle at a constant feed rate had minimal impact on tip size. We identified an optimal condition balancing cutting time and tip sharpness at a feed rate of 100 mm/min and a ramp angle of 1.5°. Additionally, we assessed the CNC's capability to produce needles with different tip angles. The findings confirm that needles with varying tip angles maintained tip diameters below 10 μm, with needles having a 50° tip angle exhibiting the sharpest tips at approximately 3.3 μm. Further compression, insertion and diffusion tests were conducted to evaluate the performance of needles with different geometries.
Collapse
Affiliation(s)
- Hong-Phuc Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Van-Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Guillot AJ, Martínez-Navarrete M, Giner RM, Recio MC, Santos HA, Cordeiro AS, Melero A. Cyanocobalamin-loaded dissolving microneedles diminish skin inflammation in vivo. J Control Release 2024; 375:537-551. [PMID: 39299488 DOI: 10.1016/j.jconrel.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Inflammatory diseases of the skin have a considerable high prevalence worldwide and negatively impact the patients' quality of life. First-line standard therapies for these conditions inherently entail important side effects when used long-term, particularly complicating the management of chronic cases. Therefore, there is a need to develop novel therapeutic strategies to offer reliable alternative treatments. Abnormally high reactive oxygen species (ROS) levels are characteristic of this kind of illnesses, and therefore a reasonable therapeutic goal. Cyanocobalamin, also known as Vitamin B12, possesses notable antioxidant and ROS-scavenging properties which could make it a possible therapeutic alternative. However, its considerable molecular weight restricts passive diffusion through the skin and forces the use of an advanced transdermal delivery system. Here, we present several prototypes of Cyanocobalamin-loaded Dissolving Microarray Patches (B12@DMAPs) with adequate mechanical properties to effectively penetrate the stratum corneum barrier, allowing drug deposition into the skin structure. Ex vivo penetration and permeability studies noted an effective drug presence within the dermal skin layers; in vitro compatibility studies in representative cell skin cell lines such as L929 fibroblasts and HaCaT keratinocytes ensured their safe use. The in vivo efficacy of the selected prototype was tested in a delayed-type hypersensitivity murine model that mimics an inflammatory skin process. Several findings such as a reduction of MPO-related photon emission in a bioluminescence study, protection against histological damage, and decrease of inflammatory cytokines levels point out the effectivity of B12@DMAPs to downregulate the skin inflammatory environment. Overall, B12@DMAPs offer a cost-effective translational alternative for improving patients' skin healthcare.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen. Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Rosa Maria Giner
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Maria Carmen Recio
- Department of Pharmacology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Helder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen. Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical, Health and Social Care Innovations, De Montfort University, The Gateway LE1 9BH, Leicester, United Kingdom.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Ave. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
14
|
Pünnel LC, Palmtag M, Lunter DJ, Perry JL. Development of 3D printed microneedles of varied needle geometries and lengths, designed to improve the dermal delivery of topically applied psoriasis treatments. Eur J Pharm Biopharm 2024; 204:114523. [PMID: 39393714 DOI: 10.1016/j.ejpb.2024.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The aim of this study was to investigate the impact of using microneedle patches in addition to topical therapy for the treatment of psoriasis. Using continuous liquid interface production (CLIP) 3D printing we manufactured round microneedle array patches (MAPs) with a diameter of 14 mm. Needle geometries were varied from square pyramidal, conical, and obelisk, with varied needle lengths of 400 µm, 600 µm, 800 µm, or 1000 µm. MAPs were characterized for force to fracture, skin penetration, skin damage, as well as their ability to deliver a novel oleogel-based corticosteroid (betamethasone dipropionate (BDP) formulation into ex-vivo porcine skin. We found that the obelisk shaped MAPs are more durable compared to the conical and square pyramidal-shaped MAPs. When the obelisk shaped MAPs were used in combination with the oleogel-based BDP formulation, the amount of BDP penetrating the skin was significantly increased with greater needle lengths.
Collapse
Affiliation(s)
- Larissa Carine Pünnel
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Maria Palmtag
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dominique Jasmin Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | - Jillian L Perry
- Eshelman School of Pharmacy, Department of Pharmacoengineering and Molecular Pharmacology, Center for Nano and Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Soorani M, Anjani QK, Larrañeta E, Donnelly RF, Das DB. Modelling insertion behaviour of PVP (Polyvinylpyrrolidone) and PVA (Polyvinyl Alcohol) microneedles. Int J Pharm 2024; 664:124620. [PMID: 39179007 DOI: 10.1016/j.ijpharm.2024.124620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/18/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
A comprehensive investigation into the effects of nonlinear material behaviour of polymeric (MN) and skin on the dynamics of the MN insertion in skin was undertaken in this study using experiments and numerical simulations. The nonlinearity of the material behaviour was incorporated by employing the Ramberg-Osgood and neo-Hookean equations for stress-strain relationships for the MN materials and skin, respectively. For this purpose, a characteristic type of dissolving MN array was selected. This type of MN is made by a combination of poly(vinyl alcohol) and poly(vinyl pyrrolidone). The numerical simulations were validated using experimental investigations where the MNs were fabricated using laser-engineered silicone micromould templates technology. Young's modulus, Poisson's ratio, and compression breaking force for the MN polymers were determined using a texture analyser. The alignment between experimental findings and simulation data underscores the accuracy of the parameters determined through mechanical testing and mathematical calculations for both MN materials (PVP/PVA) and skin behaviour during the MN insertion. This study has demonstrated a strong alignment between the experimental findings and computational simulations, confirming the accuracy of the established parameters for MNs and skin interactions for modelling MN insertion behaviour in skin, providing a solid foundation for future research in this area.
Collapse
Affiliation(s)
- M Soorani
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - Q K Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - E Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - R F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - D B Das
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom.
| |
Collapse
|
16
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
17
|
Apolinário AC, Naser YA, Volpe-Zanutto F, Vora LK, Sabri AH, Li M, Hutton ARJ, McCarthy HO, Lopes LB, Donnelly RF. Novel lipid nanovesicle-loaded dissolving microarray patches for fenretinide in breast cancer chemoprevention. J Control Release 2024; 374:76-88. [PMID: 39111598 DOI: 10.1016/j.jconrel.2024.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The retinoid fenretinide (FENR) is a promising compound for preventing breast cancer recurrence but faces challenges due to poor solubility and low bioavailability. This study explores the development of dissolving microneedles (MNs) containing FENR-loaded ethosomes for minimally invasive breast cancer chemoprevention, aiming to enhance local drug distribution. Ethosomes were formulated using ethanol, propylene glycol, soya lecithin, water, and polysorbate 80 micelles. MNs were created from poly(vinyl alcohol) and poly(vinylpyrrolidone) hydrogels by adding polymer powder directly into ethosomes suspensions, reducing manufacturing time and cost. Two methods were used to load ethosomes into high-density moulds: 1) only in the needle area, and 2) in both the needle area and baseplate. Dynamic light scattering confirmed nanostructures in the hydrogels and MNs. Micelle-based ethosomes dissolved MNs in 15 min, compared to 30 min for other MNs. Skin deposition studies showed greater drug deposition (up to 10 μg/patch) and enhanced skin permeation of FENR (up to 40 μg) with Method 2. In-vivo studies in rats demonstrated that oral administration resulted in plasma FENR levels below 10 ng/g in the first three hours, whereas MN administration delayed delivery, reaching a maximum plasma concentration of 52 ng/g at 48 h. Skin deposition of FENR from MNs decreased from 3 μg/g on day 1 to <0.3 μg/g by the last day. This study indicates that MNs are a potential minimally invasive dosage form for delivering FENR, offering a new approach for breast cancer chemoprevention.
Collapse
Affiliation(s)
- Alexsandra Conceição Apolinário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
18
|
Shin JY, Han D, Yoon KY, Jeong DH, Park YI. Clinical Safety and Efficacy Evaluation of a Dissolving Microneedle Patch Having Dual Anti-Wrinkle Effects With Safe and Long-Term Activities. Ann Dermatol 2024; 36:215-224. [PMID: 39082657 PMCID: PMC11291098 DOI: 10.5021/ad.23.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Anti-aging products are widely used, but the desire for safe and more efficient anti-aging products continues to increase. Dissolving microneedle patches (MNPs) have provided a more efficient transdermal drug delivery solution. MNP is a promising candidate for developing better anti-aging products. OBJECTIVE To develop a more efficient anti-aging MNP product, we fabricated a dual anti-wrinkle microneedle patch (named DA-MNP) using droplet extension (DEN®) technology and evaluated its skin puncture ability, safety, and efficacy through clinical studies. METHODS A DA-MNP comprising hyaluronic acid (HA) polymer backbone, acetyl octapeptide-3, and L-ascorbic acid 2-glucoside and sodium cyclic lysophosphatidic acid was fabricated using DEN® technology. Placebo MNPs comprising only HA were also fabricated. Twenty-four healthy subjects were enrolled in this comparative clinical study. The DA-MNP or placebo MNP was separately applied to the left and right eyes of subjects for overnight. Assessments, including wrinkle improvement, trans-epidermal water loss (TEWL), eye lifting and adverse effects were evaluated at each scheduled visit day for 28 days. RESULTS The DA-MNP showed mechanical strength enough for puncturing the stratum corneum. Compared to placebo MNP group, the DA-MNP treated group showed an effective eye wrinkles improvement and better anti-aging of skin, with reduced TEWL, enhanced skin elasticity and lifting, and no adverse effects. CONCLUSION The present study demonstrated that the fabricated DA-MNP exhibited fast acting on deep wrinkles and enhanced anti-aging efficacy, with no skin safety concern. Thus, this DA-MNP may serve as a new transdermal delivery solution for skin wrinkling and aging.
Collapse
Affiliation(s)
- Ju Yeop Shin
- Raphas Co., Ltd., Seoul, Korea
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Korea
| | | | | | | | - Yong Il Park
- Department of Biotechnology, Graduate School, The Catholic University of Korea, Bucheon, Korea.
| |
Collapse
|
19
|
Nguyen HX, Kipping T, Banga AK. Polymeric Microneedles Enhance Transdermal Delivery of Therapeutics. Pharmaceutics 2024; 16:845. [PMID: 39065542 PMCID: PMC11280287 DOI: 10.3390/pharmaceutics16070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
This research presents the efficacy of polymeric microneedles in improving the transdermal permeation of methotrexate across human skin. These microneedles were fabricated from PLGA Expansorb® 50-2A and 50-8A and subjected to comprehensive characterization via scanning electron microscopy, Fourier-transform infrared spectroscopy, and mechanical analysis. We developed and assessed a methotrexate hydrogel for physicochemical and rheological properties. Dye binding, histological examinations, and assessments of skin integrity demonstrated the effective microporation of the skin by PLGA microneedles. We measured the dimensions of microchannels in the skin using scanning electron microscopy, pore uniformity analysis, and confocal microscopy. The skin permeation and disposition of methotrexate were researched in vitro. PLGA 50-8A microneedles appeared significantly longer, sharper, and more mechanically uniform than PLGA 50-2A needles. PLGA 50-8A needles generated substantially more microchannels, as well as deeper, larger, and more uniform channels in the skin than PLGA 50-2A needles. Microneedle insertion substantially reduced skin electrical resistance, accompanied by an elevation in transepidermal water loss values. PLGA 50-8A microneedle treatment provided a significantly higher cumulative delivery, flux, diffusion coefficient, permeability coefficient, and predicted steady-state plasma concentration; however, there was a shorter lag time than for PLGA 50-2A needles, base-treated, and untreated groups (p < 0.05). Conclusively, skin microporation using polymeric microneedles significantly improved the transdermal delivery of methotrexate.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam;
| | - Thomas Kipping
- MilliporeSigma, a Business of Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Ajay K. Banga
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| |
Collapse
|
20
|
Limcharoen B, Wanichwecharungruang S, Kröger M, Sansureerungsikul T, Schleusener J, Lena Klein A, Banlunara W, Meinke MC, Darvin ME. Dissolvable microneedles in the skin: Determination the impact of barrier disruption and dry skin on dissolution. Eur J Pharm Biopharm 2024; 199:114303. [PMID: 38657740 DOI: 10.1016/j.ejpb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Dissolvable microneedles (DMNs), fabricated from biocompatible materials that dissolve in both water and skin have gained popularity in dermatology. However, limited research exists on their application in compromised skin conditions. This study compares the hyaluronic acid-based DMNs penetration, formation of microchannels, dissolution, and diffusion kinetics in intact, barrier-disrupted (tape stripped), and dry (acetone-treated) porcine ear skin ex vivo. After DMNs application, comprehensive investigations including dermoscopy, stereomicroscope, skin hydration, transepidermal water loss (TEWL), optical coherence tomography (OCT), reflectance confocal laser scanning microscopy (RCLSM), confocal Raman micro-spectroscopy (CRM), two-photon tomography combined with fluorescence lifetime imaging (TPT-FLIM), histology, and scanning electron microscopy (SEM) were conducted. The 400 µm long DMNs successfully penetrated the skin to depths of ≈200 µm for dry skin and ≈200-290 µm for barrier-disrupted skin. Although DMNs fully inserted into all skin conditions, their dissolution rates were high in barrier-disrupted and low in dry skin, as observed through stereomicroscopy and TPT-FLIM. The dissolved polymer exhibited a more significant expansion in barrier-disrupted skin compared to intact skin, with the smallest increase observed in dry skin. Elevated TEWL and reduced skin hydration levels were evident in barrier-disrupted and dry skins compared to intact skin. OCT and RCLSM revealed noticeable skin indentation and pronounced microchannel areas, particularly in barrier-disrupted and dry skin. Additional confirmation of DMN effects on the skin and substance dissolution was obtained through histology, SEM, and CRM techniques. This study highlights the impact of skin condition on DMN effectiveness, emphasizing the importance of considering dissolvability and dissolution rates of needle materials, primarily composed of hyaluronic acid, for optimizing DMN-based drug delivery.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Titiporn Sansureerungsikul
- Mineed Technology, 928 Block 28, Building D, Chulalongkorn 7 Alley, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, 10330, Thailand
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| | - Maxim E Darvin
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Germany.
| |
Collapse
|
21
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
22
|
Anjani QK, Nainggolan ADC, Li H, Miatmoko A, Larrañeta E, Donnelly RF. Parafilm® M and Strat-M® as skin simulants in in vitro permeation of dissolving microarray patches loaded with proteins. Int J Pharm 2024; 655:124071. [PMID: 38554738 DOI: 10.1016/j.ijpharm.2024.124071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | | | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andang Miatmoko
- Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia; Stem Cell Research and Development Center, Airlangga University, Institute of Tropical Disease Building, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
23
|
Vulpe G, Liu G, Oakley S, Yang G, Ajith Mohan A, Waldron M, Sharma S. Lab on skin: real-time metabolite monitoring with polyphenol film based subdermal wearable patches. LAB ON A CHIP 2024; 24:2039-2048. [PMID: 38411270 DOI: 10.1039/d4lc00073k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The advent of digital technologies has spurred the development of wearable sensing devices marking a significant shift in obtaining real-time physiological information. The principal objective is to transition from blood-centric monitoring to minimally invasive modalities, which will enable movement from specialised settings to more accessible environments such as the practices of general practitioners or even home settings. While subcutaneously implanted continuous monitoring devices have demonstrated this transition, detection of analytes from sample matrices like skin interstitial fluid (ISF), is a frontier that offers attractive minimally invasive routes for detection of biomarkers. This manuscript presents a comprehensive overview of our work in subdermal wearable biosensing patches for the simultaneous monitoring of glucose and lactate from ISF in ambulatory conditions. The performance of the subdermal wearable glucose monitoring patch was evaluated over a duration of three days, which is the longest reported duration reported till date. The subdermal wearable lactate sensing patch was worn for the duration of the exercise. Our findings highlight a critical observation that biofouling effects become apparent after a 24 h period. The data presented in this manuscript extends on the knowledge in the areas of continuous metabolite monitoring by introducing multifunctional polyphenol polymer films that can be used for both glucose and lactate monitoring with appropriate modifications. This study underscores the potential of subdermal wearable patches as versatile tools for real-time metabolite monitoring, positioning them as valuable assets in the evolution of personalised healthcare in diverse settings.
Collapse
Affiliation(s)
- Georgeta Vulpe
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
| | - Guoyi Liu
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Chongqing 400044, China
| | - Sam Oakley
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
| | - Guanghao Yang
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Chongqing 400044, China
| | - Arjun Ajith Mohan
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
| | - Mark Waldron
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
| | - Sanjiv Sharma
- Faculty of Science and Engineering, Swansea University, Fabian Way, Bay Campus, Swansea SA1 8EN, UK.
| |
Collapse
|
24
|
Loh JM, Lim YJL, Tay JT, Cheng HM, Tey HL, Liang K. Design and fabrication of customizable microneedles enabled by 3D printing for biomedical applications. Bioact Mater 2024; 32:222-241. [PMID: 37869723 PMCID: PMC10589728 DOI: 10.1016/j.bioactmat.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Microneedles (MNs) is an emerging technology that employs needles ranging from 10 to 1000 μm in height, as a minimally invasive technique for various procedures such as therapeutics, disease monitoring and diagnostics. The commonly used method of fabrication, micromolding, has the advantage of scalability, however, micromolding is unable to achieve rapid customizability in dimensions, geometries and architectures, which are the pivotal factors determining the functionality and efficacy of the MNs. 3D printing offers a promising alternative by enabling MN fabrication with high dimensional accuracy required for precise applications, leading to improved performance. Furthermore, enabled by its customizability and one-step process, there is propitious potential for growth for 3D-printed MNs especially in the field of personalized and on-demand medical devices. This review provides an overview of considerations for the key parameters in designing MNs, an introduction on the various 3D-printing techniques for fabricating this new generation of MNs, as well as highlighting the advancements in biomedical applications facilitated by 3D-printed MNs. Lastly, we offer some insights into the future prospects of 3D-printed MNs, specifically its progress towards translation and entry into market.
Collapse
Affiliation(s)
- Jia Min Loh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Jie Larissa Lim
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jin Ting Tay
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Hong Liang Tey
- National Skin Centre (NSC), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, Singapore
| |
Collapse
|
25
|
Vora LK, Tekko IA, Zanutto FV, Sabri A, Choy RKM, Mistilis J, Kwarteng P, Jarrahian C, McCarthy HO, Donnelly RF. A Bilayer Microarray Patch (MAP) for HIV Pre-Exposure Prophylaxis: The Role of MAP Designs and Formulation Composition in Enhancing Long-Acting Drug Delivery. Pharmaceutics 2024; 16:142. [PMID: 38276512 PMCID: PMC10819247 DOI: 10.3390/pharmaceutics16010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Microarray patches (MAPs) have shown great potential for efficient and patient-friendly drug delivery through the skin; however, improving their delivery efficiency for long-acting drug release remains a significant challenge. This research provides an overview of novel strategies aimed at enhancing the efficiency of MAP delivery of micronized cabotegravir sodium (CAB Na) for HIV pre-exposure prophylaxis (PrEP). The refinement of microneedle design parameters, including needle length, shape, density, and arrangement, and the formulation properties, such as solubility, viscosity, polymer molecular weight, and stability, are crucial for improving penetration and release profiles. Additionally, a bilayer MAP optimization step was conducted by diluting the CAB Na polymeric mixture to localize the drug into the tips of the needles to enable rapid drug deposition into the skin following MAP application. Six MAP designs were analyzed and investigated with regard to delivery efficiency into the skin in ex vivo and in vivo studies. The improved MAP design and formulations were found to be robust and had more than 30% in vivo delivery efficiency, with plasma levels several-fold above the therapeutic concentration over a month. Repeated weekly dosing demonstrated the robustness of MAPs in delivering a consistent and sustained dose of CAB. In summary, CAB Na MAPs were able to deliver therapeutically relevant levels of drug.
Collapse
Affiliation(s)
- Lalitkumar K. Vora
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ismaiel A. Tekko
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Fabiana Volpe Zanutto
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Akmal Sabri
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Robert K. M. Choy
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | - Jessica Mistilis
- PATH, 2201 Westlake Avenue, Seattle, DC 98121, USA; (R.K.M.C.); (J.M.)
| | | | | | - Helen O. McCarthy
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (L.K.V.); (I.A.T.); (F.V.Z.); (A.S.)
| |
Collapse
|
26
|
Khan S, Minhas MU. Micro array patch assisted transdermal delivery of high dose, ibuprofen sodium using thermoresponsive sodium alginate/poly (vinylcaprolactam) in situ gels depot. Int J Biol Macromol 2023; 252:126464. [PMID: 37619682 DOI: 10.1016/j.ijbiomac.2023.126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Current study reports the combined technique of microneedle array patches and thermoresponsive gels. Microneedles array patch mediated insitu skin depots were evaluated for sustain drug delivery using sodium alginate/Poly (vinylcaprolactam) thermoresponsive gels. Their phase transition property from sol-gel state was monitored with AR2000 rheometer. Ibuprofen sodium was loaded in optimized formulations. The non-soluble cross-linked microneedle array patches (MAPs) were prepared from variable biocompatible polymers using silicone micromoulds. The fabricated MAPs were evaluated for mechanical stability, inskin dissolution, insertion forces and moisture contents. The penetration depth of MAPs in neonatal rabbit skin was tracked by optical coherence tomography. The optimized MAPs (GP10000) were used as microporation source in skin owing to their stable nature. Pores formation in skin samples after MAPs treatment was confirmed by optical coherence tomography, dye binding and skin integrity analysis. The invitro permeation of Ibuprofen sodium from formulations was studied using Franz cells across intact skin and MAPs applied skin. It was concluded from the results that Ibuprofen sodium permeation was observed for longer time through MAPs treated skin as compared to intact skin. Confocal study confirmed the diffusion of drug loaded formulations in deeper tissues with higher intensity.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research, 17W Science Park, Hong Kong.
| | | |
Collapse
|
27
|
Kim JC, Choi JA, Park H, Yang E, Noh S, Kim JS, Kim MJ, Song M, Park JH. Pharmaceutical and Immunological Evaluation of Cholera Toxin A1 Subunit as an Adjuvant of Hepatitis B Vaccine Microneedles. Pharm Res 2023; 40:3059-3071. [PMID: 37914841 DOI: 10.1007/s11095-023-03623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine. METHODS In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine. RESULTS All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin. In experiments with mice, the addition of CTA1 led to improved IgG immune response compared to the use of an aluminum hydroxide-based formulation and intramuscular administration of HBV. In addition, CTA1 induced CD8 + T cell response as much as in which the aluminum hydroxide-based formulation induced. CONCLUSIONS CTA1 is an adjuvant that satisfies both the delivery efficiency and the immunological characteristics required for vaccine microneedles. CTA1 will be used as a potential adjuvant through vaccine microneedles.
Collapse
Affiliation(s)
- Jong-Chan Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Jung-Ah Choi
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Hayan Park
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Eunji Yang
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Shinyoung Noh
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Ji-Seok Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Moon-Jin Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea
| | - Manki Song
- Science Unit, International Vaccine Institute, Seoul, South Korea.
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, South Korea.
| |
Collapse
|
28
|
Potts MR, Evans SL, Pullin R, Coulman SA, Birchall JC, Wyatt H. An analysis of the relationship between microneedle spacing, needle force and skin strain during the indentation phase prior to skin penetration. Comput Methods Biomech Biomed Engin 2023; 26:1719-1731. [PMID: 36420964 DOI: 10.1080/10255842.2022.2136486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022]
Abstract
Microneedle (MN) array patches present a promising new approach for the minimally invasive delivery of therapeutics and vaccines. However, ensuring reproducible insertion of MNs into the skin is challenging. The spacing and arrangement of MNs in an array are critical determinants of skin penetration and the mechanical integrity of the MNs. In this work, the finite element method was used to model the effect of MN spacing on needle reaction force and skin strain during the indentation phase prior to skin penetration. Spacings smaller than 2-3 mm (depending on variables, e.g., skin stretch) were found to significantly increase these parameters.
Collapse
Affiliation(s)
| | - Sam L Evans
- School of Engineering, Cardiff University, Cardiff, UK
| | - Rhys Pullin
- School of Engineering, Cardiff University, Cardiff, UK
| | - Sion A Coulman
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Hayley Wyatt
- School of Engineering, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Darvin ME. Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies. Pharmaceutics 2023; 15:2272. [PMID: 37765241 PMCID: PMC10538180 DOI: 10.3390/pharmaceutics15092272] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment-a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Collapse
|
30
|
Makvandi P, Shabani M, Rabiee N, Anjani QK, Maleki A, Zare EN, Sabri AHB, De Pasquale D, Koskinopoulou M, Sharifi E, Sartorius R, Seyedhamzeh M, Bochani S, Hirata I, Paiva-Santos AC, Mattos LS, Donnelly RF, Mattoli V. Engineering and Development of a Tissue Model for the Evaluation of Microneedle Penetration Ability, Drug Diffusion, Photothermal Activity, and Ultrasound Imaging: A Promising Surrogate to Ex Vivo and In Vivo Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210034. [PMID: 36739591 DOI: 10.1002/adma.202210034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/13/2023] [Indexed: 05/05/2023]
Abstract
Driven by regulatory authorities and the ever-growing demands from industry, various artificial tissue models have been developed. Nevertheless, there is no model to date that is capable of mimicking the biomechanical properties of the skin whilst exhibiting the hydrophilicity/hydrophobicity properties of the skin layers. As a proof-of-concept study, tissue surrogates based on gel and silicone are fabricated for the evaluation of microneedle penetration, drug diffusion, photothermal activity, and ultrasound bioimaging. The silicone layer aims to imitate the stratum corneum while the gel layer aims to mimic the water-rich viable epidermis and dermis present in in vivo tissues. The diffusion of drugs across the tissue model is assessed, and the results reveal that the proposed tissue model shows similar behavior to a cancerous kidney. In place of typical in vitro aqueous solutions, this model can also be employed for evaluating the photoactivity of photothermal agents since the tissue model shows a similar heating profile to skin of mice when irradiated with near-infrared laser. In addition, the designed tissue model exhibits promising results for biomedical applications in optical coherence tomography and ultrasound imaging. Such a tissue model paves the way to reduce the use of animals testing in research whilst obviating ethical concerns.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Majid Shabani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, 56025, Pisa, Italy
- Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Aziz Maleki
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | | | | | - Daniele De Pasquale
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Maria Koskinopoulou
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, 65178-38736, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Shayesteh Bochani
- Zanjan Pharmaceutical, Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Ikue Hirata
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, Coimbra, 3000-548, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, Coimbra, 3000-548, Portugal
| | - Leonardo S Mattos
- Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| |
Collapse
|
31
|
Baykara D, Bedir T, Ilhan E, Mutlu ME, Gunduz O, Narayan R, Ustundag CB. Fabrication and optimization of 3D printed gelatin methacryloyl microneedle arrays based on vat photopolymerization. Front Bioeng Biotechnol 2023; 11:1157541. [PMID: 37251572 PMCID: PMC10214010 DOI: 10.3389/fbioe.2023.1157541] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Microneedles (MNs) are micrometer-sized arrays that can penetrate the skin in a minimally invasive manner; these devices offer tremendous potential for the transdermal delivery of therapeutic molecules. Although there are many conventional techniques for manufacturing MNs, most of them are complicated and can only fabricate MNs with specific geometries, which restricts the ability to adjust the performance of the MNs. Herein, we present the fabrication of gelatin methacryloyl (GelMA) MN arrays using the vat photopolymerization 3D printing technique. This technique allows for the fabrication of high-resolution and smooth surface MNs with desired geometries. The existence of methacryloyl groups bonded to the GelMA was verified by 1H NMR and FTIR analysis. To examine the effects of varying needle heights (1000, 750, and 500 µm) and exposure times (30, 50, and 70 s) on GelMA MNs, the height, tip radius, and angle of the needles were measured; their morphological and mechanical properties were also characterized. It was observed that as the exposure time increased, the height of the MNs increased; moreover, sharper tips were obtained and tip angles decreased. In addition, GelMA MNs exhibited good mechanical performance with no breakage up to 0.3 mm displacement. These results indicate that 3D printed GelMA MNs have great potential for transdermal delivery of various therapeutics.
Collapse
Affiliation(s)
- Dilruba Baykara
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Tuba Bedir
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
| | - Elif Ilhan
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Mehmet Eren Mutlu
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology and Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Roger Narayan
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, United States
| | - Cem Bulent Ustundag
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| |
Collapse
|
32
|
Jeon C, Choi J, Shin J, Min HS, Nam J, Jeon S, Kim J, Kim Y, Sim J, Ahn H, Kim M, Yang H, Jung H. Micro-pillar tunnel stamp for enhanced transdermal delivery of topical drug formulations. Acta Biomater 2023; 160:112-122. [PMID: 36764594 DOI: 10.1016/j.actbio.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Dissolving microneedles (DMNs), despite their minimally invasive drug administration, face challenges in skin insertion and drug-loading capacity, which lead to less effective drug delivery. The micro-pillar tunnel stamp (MPTS) was designed to enhance the transdermal delivery efficacy of externally provided topical formulations via the creation of microchannels. The tunnel and canal of the MPTS enable the simultaneous application of DMNs and topical drugs. The application of micro-pillar-polycaprolactone (MP-PCL), which is a DMN made of a slowly dissolving polymer, exhibited a drug permeation rate 1.3-fold and 2.6-fold higher than that of micro-pillar-hyaluronic acid (MP-HA), a DMN made of a rapidly dissolving polymer, and the topical group, respectively. The base diameter of MP-PCL was set to 700 μm for maximized delivery efficacy, achieving 2.8-fold higher L-ascorbic acid accumulation than that of the topical group. In vivo analysis showed that, compared to topical administration, MPTS-delivered lidocaine had 5-fold greater permeation and the MPTS-delivered group showed 1.25-fold higher skin residual amount, confirming enhanced delivery. Thus, the optimized MPTS system can be presented as an attractive alternative to overcome the limitations of the existing MN systems such as incomplete insertion and limited drug-loading capacity, enhancing the delivery of topical formulations in the transdermal market. STATEMENT OF SIGNIFICANCE: We developed a micro-pillar tunnel stamp (MPTS) to enhance the delivery of externally provided topical formulations. The functional tunnel and canal of the MPTS enabled the simultaneous application of a dissolving microneedle (DMN) array insertion and administration of external topical drugs. Upon insertion, the DMNs created skin microchannels that allowed the externally administered drug to diffuse. DMNs were fabricated using polycaprolactone (PCL), a slowly dissolving polymer, to maintain their structure inside the skin and prolong the opening duration of the microchannels. This system achieved significantly improved delivery of topically administered external drugs via integration with slowly dissolving DMNs, while offering the possibility of its development as a universal delivery system for various topical pharmaceuticals.
Collapse
Affiliation(s)
- Chansol Jeon
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwoo Shin
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Su Min
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeehye Nam
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Seonghun Jeon
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeongin Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Youseong Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeeho Sim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeri Ahn
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minkyung Kim
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Huisuk Yang
- Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Building 123, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Juvic Inc., 272 Digital-ro, Guro-gu, Seoul 08389, Republic of Korea.
| |
Collapse
|
33
|
Naser YA, Tekko IA, Vora LK, Peng K, Anjani QK, Greer B, Elliott C, McCarthy HO, Donnelly RF. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J Control Release 2023; 356:416-433. [PMID: 36878320 DOI: 10.1016/j.jconrel.2023.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Hydrogel-forming microarray patches (HF-MAPs) are used to circumvent the skin barrier and facilitate the noninvasive transdermal delivery of many hydrophilic substances. However, their use in the delivery of hydrophobic agents is a challenging task. This work demonstrates, for the first time, the successful transdermal long-acting delivery of the hydrophobic atorvastatin (ATR) via HF-MAPs using poly(ethylene)glycol (PEG)-based solid dispersion (SD) reservoirs. PEG-based SDs of ATR were able to completely dissolve within 90 s in vitro. Ex vivo results showed that 2.05 ± 0.23 mg of ATR/0.5 cm2 patch was delivered to the receiver compartment of Franz cells after 24 h. The in vivo study, conducted using Sprague Dawley rats, proved the versatility of HF-MAPs in delivering and maintaining therapeutically-relevant concentrations (> 20 ng·mL-1) of ATR over 14 days, following a single HF-MAP application for 24 h. The long-acting delivery of ATR suggests the successful formation of hydrophobic microdepots within the skin, allowing for the subsequent sustained delivery as they gradually dissolve over time, as shown in this work. When compared to the oral group, the use of the HF-MAP formulation improved the overall pharmacokinetics profile of ATR in plasma, where significantly higher AUC values resulting in ∼10-fold higher systemic exposure levels were obtained. This novel system offers a promising, minimally-invasive, long-acting alternative delivery system for ATR that is capable of enhancing patient compliance and therapeutic outcomes. It also proposes a unique promising platform for the long-acting transdermal delivery of other hydrophobic agents.
Collapse
Affiliation(s)
- Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Aleppo, Syria
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ke Peng
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brett Greer
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
34
|
Zhao L, Vora LK, Kelly SA, Li L, Larrañeta E, McCarthy HO, Donnelly RF. Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. J Control Release 2023; 356:196-204. [PMID: 36868520 DOI: 10.1016/j.jconrel.2023.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Antibiotic resistance is one of the most serious health problems today and is expected to worsen in the coming decades. It has been suggested that antibiotic administration routes that bypass the human gut could potentially tackle this problem. In this work, an antibiotic hydrogel-forming microarray patch (HF-MAP) system, which can be used as an alternative antibiotic delivery technology, has been fabricated. Specifically, poly(vinyl alcohol)/poly(vinylpyrrolidone) (PVA/PVP) microarray showed excellent swelling properties with >600% swelling in PBS over 24 h. The tips on the HF-MAP were proven to be able to penetrate a skin model which is thicker than stratum corneum. The antibiotic (tetracycline hydrochloride) drug reservoir was mechanically robust and dissolved completely in an aqueous medium within a few minutes. In vivo animal studies using a Sprague Dawley rat model showed antibiotic administration using HF-MAP achieved a sustained release profile, in comparison with animals receiving oral gavage and intravenous (IV) injection, with a transdermal bioavailability of 19.1% and an oral bioavailability of 33.5%. The maximum drug plasma concentration for HF-MAP group reached 7.40 ± 4.74 μg/mL at 24 h, whereas the drug plasma concentration for both oral (5.86 ± 1.48 μg/mL) and IV (8.86 ± 4.19 μg/mL) groups peaked soon after drug administration and had decreased to below the limit of detection at 24 h. The results demonstrated that antibiotics can be delivered by HF-MAP in a sustained manner.
Collapse
Affiliation(s)
- Li Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
35
|
Iachina I, Eriksson AH, Bertelsen M, Petersson K, Jansson J, Kemp P, Engell KM, Brewer JR, Nielsen KT. Dissolvable microneedles for transdermal drug delivery showing skin pentation and modified drug release. Eur J Pharm Sci 2023; 182:106371. [PMID: 36621615 DOI: 10.1016/j.ejps.2023.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.
Collapse
Affiliation(s)
- Irina Iachina
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - André H Eriksson
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Malene Bertelsen
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jörgen Jansson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Pernille Kemp
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karen M Engell
- Small Molecule Early Pharmaceutical Development, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kim T Nielsen
- Advanced Analytical and Structural Chemistry, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark.
| |
Collapse
|
36
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
37
|
De Decker I, Logé T, Hoeksema H, Speeckaert MM, Blondeel P, Monstrey S, Claes KEY. Dissolving microneedles for effective and painless intradermal drug delivery in various skin conditions: A systematic review. J Dermatol 2023; 50:422-444. [PMID: 36700529 DOI: 10.1111/1346-8138.16732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Intra- and transdermal administration of substances via percutaneous injection is effective but considered painful, and inconvenient in addition to bringing forth biohazardous waste material. In contrast to injection, topical drug application, which includes ointments, creams and lotions, increases the local drug load. Moreover, it has reduced side effects compared to systemic administration. However, the epidermis poses a barrier to high molecular weight substances, limiting the delivery efficiency. Dissolving microneedles (DMN) are hydrophilic, mostly polymer-based constructs that are capable of skin penetration and were developed to provide painless and direct dermal drug delivery. This systematic review provides a comprehensive overview of the available clinical evidence for the use of DMN to treat various skin conditions. According to the PRISMA statement, a systematic search for articles on the use of DMN for dermatological indications was conducted on three different databases (Pubmed, Embase, and the Cochrane library). Only human clinical trials were considered. Qualitative assessment was done by two separate reviewers using the Cochrane risk of bias (RoB 2) and Chambers' criteria assessment tools. The search yielded 1090 articles. After deduplication and removal of ineligible records, 889 records were screened on title and abstract. Full text screening was done for 18 articles and ultimately 17 articles were included of which 15 were randomized controlled trials and two were case series. The quality assessment showed that the majority of included studies had low to no risk of bias. Clinical data supports that DMN are an excellent, effective, and pain free drug delivery method for multiple dermatological disorders including skin aging, hyperpigmentation, psoriasis, warts, and keloids by supplying a painless and effective vehicle for intradermal/intralesional drug administration. Microneedle technology provides a promising non- to minimally-invasive alternative to percutaneous injection.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Thomas Logé
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | | | - Phillip Blondeel
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
38
|
Mittal N, Sharma G, Katare OP, Bhadada SK. A Narrative Review on Non-Invasive Drug Delivery of Teriparatide: A Ray of Hope. Crit Rev Ther Drug Carrier Syst 2023; 40:117-140. [PMID: 37585311 DOI: 10.1615/critrevtherdrugcarriersyst.2023045480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In the field of pharmaceutical biotechnology and formulation development, various protein and peptide-based drugs have been used for therapeutic and clinical implications. These are mainly given via parenteral routes like intravenous, subcutaneous or intramuscular delivery. Teriparatide, also known as PTH 1-34, is a U.S. Food & Drug Administartion-approved anabolic drug to treat osteoporosis is currently available in market only as subcutaneous injection. The quest for elimination of needle in case of given peptidal delivery to replace it with alternative routes like nasal, buccal, transdermal and pulmonary pathways has driven meticulous drug research. The pharmaceutical scientists are working on innovation and approaches involving new materials and methods to develop the formulations for protein and peptides by noninvasive routes. Lately, various approaches have been carried out which involve many strategies and technologies to deliver teriparatide via alternative routes. But, physicochemical instability, proteolytic degradation, low bioavailability, etc. are some obstacles to develop suitable delivery system for teriparatide. This review intends to gather the overall developments in delivery systems specific to teriparatide which meant for better convenience and avoids vulnerability of multiple subcutaneous injections. In addition, the article emphasizes on the successes to develop noninvasive technologies and devices, and new milestones for teriparatide delivery.
Collapse
Affiliation(s)
- Neeraj Mittal
- Department of Endocrinology, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India; Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Om Parkash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
39
|
Sargioti N, Levingstone TJ, O’Cearbhaill ED, McCarthy HO, Dunne NJ. Metallic Microneedles for Transdermal Drug Delivery: Applications, Fabrication Techniques and the Effect of Geometrical Characteristics. Bioengineering (Basel) 2022; 10:24. [PMID: 36671595 PMCID: PMC9855189 DOI: 10.3390/bioengineering10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Current procedures for transdermal drug delivery (TDD) have associated limitations including poor administration of nucleic acid, small or large drug molecules, pain and stress for needle phobic people. A painless micro-sized device capable of delivering drugs easily and efficiently, eliminating the disadvantages of traditional systems, has yet to be developed. While polymeric-based microneedle (MN) arrays have been used successfully and clinically as TDD systems, these devices lack mechanical integrity, piercing capacity and the ability to achieve tailored drug release into the systemic circulation. Recent advances in micro/nano fabrication techniques using Additive Manufacturing (AM), also known as 3D printing, have enabled the fabrication of metallic MN arrays, which offer the potential to overcome the limitations of existing systems. This review summarizes the different types of MNs used in TDD and their mode of drug delivery. The application of MNs in the treatment of a range of diseases including diabetes and cancer is discussed. The potential role of solid metallic MNs in TDD, the various techniques used for their fabrication, and the influence of their geometrical characteristics (e.g., shape, size, base diameter, thickness, and tip sharpness) on effective TDD are explored. Finally, the potential and the future directions relating to the optimization of metallic MN arrays for TDD are highlighted.
Collapse
Affiliation(s)
- Nikoletta Sargioti
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
| | - Eoin D. O’Cearbhaill
- UCD Centre for Biomedical Engineering, School of Mechanical and Materials Engineering, University College Dublin, D04 R7R0 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
| | - Helen O. McCarthy
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Collins Avenue, D09 Y074 Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, D09 Y074 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 Y074 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 Y074 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 Y074 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
- School of Chemical Science, Dublin City University, D09 Y074 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
40
|
Tai M, Zhang C, Ma Y, Yang J, Mai Z, Li C, Leng G. Acne and its post-inflammatory hyperpigmentation treatment by applying anti-acne dissolving microneedle patches. J Cosmet Dermatol 2022; 21:6913-6919. [PMID: 36059276 DOI: 10.1111/jocd.15352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acne is a significant problem in young people. At present, most acne treatment products are topically applied cosmetics, whose efficacy is limited by the stratum corneum. The dissolving microneedle technique can effectively deliver drug molecules into the body. In this study, dissolving microneedles containing anti-acne ingredients were tested for human efficacy and safety. METHODS We conducted a 28-day clinical efficacy and safety trial on 30 individuals with visible facial acne. During the trial, anti-acne microneedle (AA-DMN) patches were applied to designated skin areas once daily for 28 consecutive days. Skin pigmentation was measured using a Courage + Khazaka skin melanin and hemoglobin test probe Mexameter MX18. Acne volume was measured using a Canfieldsci skin rapid optical imaging system PRIMOS. In addition, skin irritation was evaluated via self-report and dermatologist's examination. RESULTS The AA-DMN patches showed good efficacy including improvement of skin pigmentation and reduced acne volume. Acne volume was reduced by 12.34% after 3 days of patch use and further reduced by 10.01% after 7 continuous days of use. After 28 days of treatment, skin melanin decreased by 5.88% and heme decreased by 7.83%. No adverse reactions were observed in any of the participants. CONCLUSIONS Anti-acne microneedle patches showed an excellent effect in reducing acne and post-inflammatory hyperpigmentation (PIH), without adverse skin reactions. The novel AA-DMN patch is a safe and effective anti-acne treatment.
Collapse
Affiliation(s)
- Meiling Tai
- Infinitus (China) Company Ltd, Jiangmen, China
| | - Chenggong Zhang
- Organic Functional Materials and Applied Technology Institute, SuZhou, China
| | - Yonghao Ma
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Jian Yang
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | | | - Chengguo Li
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Gang Leng
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| |
Collapse
|
41
|
Peng K, Li M, Himawan A, Domínguez-Robles J, Vora LK, Duncan R, Dai X, Zhang C, Zhao L, Li L, Larrañeta E, Donnelly RF. Amphotericin B- and Levofloxacin-Loaded Chitosan Films for Potential Use in Antimicrobial Wound Dressings: Analytical Method Development and Its Application. Pharmaceutics 2022; 14:2497. [PMID: 36432684 PMCID: PMC9693580 DOI: 10.3390/pharmaceutics14112497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Levofloxacin (LVX) and amphotericin B (AMB) have been widely used to treat bacterial and fungal infections in the clinic. Herein, we report, for the first time, chitosan films loaded with AMB and LVX as wound dressings to combat antimicrobial infections. Additionally, we developed and validated a high-performance liquid chromatography (HPLC) method coupled with a UV detector to simultaneously quantify both AMB and LVX. The method is easy, precise, accurate and linear for both drugs at a concentration range of 0.7-5 µg/mL. The validated method was used to analyse the drug release, ex vivo deposition and permeation from the chitosan films. LVX was released completely from the chitosan film after a week, while approximately 60% of the AMB was released. Ex vivo deposition study revealed that, after 24-hour application, 20.96 ± 13.54 µg of LVX and approximately 0.35 ± 0.04 µg of AMB was deposited in porcine skin. Approximately 0.58 ± 0.16 µg of LVX permeated through the skin. AMB was undetectable in the receptor compartment due to its poor solubility and permeability. Furthermore, chitosan films loaded with AMB and LVX were found to be able to inhibit the growth of both Candida albicans and Staphylococcus aureus, indicating their potential for antimicrobial applications.
Collapse
Affiliation(s)
- Ke Peng
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ross Duncan
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Xianbing Dai
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chunyang Zhang
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Li Zhao
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luchi Li
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
42
|
Kim Y, Min HS, Shin J, Nam J, Kang G, Sim J, Yang H, Jung H. Film-trigger applicator (FTA) for improved skin penetration of microneedle using punching force of carboxymethyl cellulose film acting as a microneedle applicator. Biomater Res 2022; 26:53. [PMID: 36199121 PMCID: PMC9533547 DOI: 10.1186/s40824-022-00302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Background Dissolving microneedle (DMN) is a transdermal drug delivery system that creates pore in the skin and directly deliver drug through the pore channel. DMN is considered as one of the promising system alternatives to injection because it is minimally invasive and free from needle-related issues. However, traditional DMN patch system has limitations of incomplete insertion and need of complex external devices. Here, we designed film-trigger applicator (FTA) system that successfully delivered DMN inside the skin layers using fracture energy of carboxymethyl cellulose (CMC) film via micropillars. We highlighted advantages of FTA system in DMN delivery compared with DMN patch, including that the film itself can act as DMN applicator. Methods FTA system consists of DMNs fabricated on the CMC film, DMN array holder having holes aligned to DMN array, and micropillars prepared using general purpose polystyrene. We analyzed punching force on the film by micropillars until the film puncture point at different CMC film concentrations and micropillar diameters. We also compared drug delivery efficiency using rhodamine B fluorescence diffusion and skin penetration using optical coherence tomography (OCT) of FTA with those of conventional DMN patch. In vivo experiments were conducted to evaluate DMN delivery efficiency using C57BL/6 mice and insulin as a model drug. Results FTA system showed enhanced delivery efficiency compared with that of the existing DMN patch system. We concluded CMC film as a successful DMN applicator as it showed enhanced DMN penetration in OCT and rhodamine B diffusion studies. Further, we applied FTA on shaved mouse dorsal skin and observed successful skin penetration. The FTA group showed higher level of plasma insulin in vivo than that of the DMN patch group. Conclusions FTA system consisting of simple polymer film and micropillars showed enhanced DMN delivery than that of the existing DMN patch system. Because FTA works with simple finger force without sticky patch and external devices, FTA is a novel and promising platform to overcome the limitations of conventional microneedle patch delivery system; we suggest FTA as a next generation applicator for microneedle application in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00302-5.
Collapse
Affiliation(s)
- Youseong Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hye Su Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jiwoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jeehye Nam
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Geonwoo Kang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Jeeho Sim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Huisuk Yang
- Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea. .,Juvic Inc, 208Ho, 272, Digital-ro, Guro-gu, Seoul, 08389, Republic of Korea.
| |
Collapse
|
43
|
Anjani QK, Sabri AHB, McGuckin MB, Li H, Hamid KA, Donnelly RF. In Vitro Permeation Studies on Carvedilol Containing Dissolving Microarray Patches Quantified Using a Rapid and Simple HPLC-UV Analytical Method. AAPS PharmSciTech 2022; 23:273. [PMID: 36195761 DOI: 10.1208/s12249-022-02422-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Analytical method validation is a vital element of drug formulation and delivery studies. Here, high-performance liquid chromatography in conjunction with UV detection (HPLC-UV) has been used to produce a straightforward, quick, yet sensitive analytical approach to quantify carvedilol (CAR). A C18 column was used to isolate the analyte from the mixture by isocratic elution with a mobile phase comprising a mixture of 0.1% v/v trifluoroacetic acid in water and acetonitrile in a ratio of 65:35 v/v at a flow rate of 0.6 mL min-1. Linearity was observed for CAR concentrations within the range of 1.5-50 μg mL-1 (R2 = 0.999) in phosphate buffer saline and within the range of 0.2-6.2 μg mL-1 (R2 = 0.9999) in methanol. The International Council on Harmonization (ICH) requirements were followed throughout the validation of the isocratic approach, rendering it specific, accurate, and precise. Moreover, robustness tests indicated that the method remained selective and specific despite small deliberate changes to environmental and operational factors. An efficient extraction procedure was also developed to extract and quantify CAR from excised neonatal porcine skin, resulting in recovery rates ranging from 95 to 97%. The methods reported here have been successfully utilised to evaluate CAR permeation, both transdermally and intradermally following application of a dissolving microarray patch (MAP) to excised neonatal porcine skin.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.,Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar, 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Mary B McGuckin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300, Puncak Alam, Malaysia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
44
|
Anjani QK, Sabri AHB, Domínguez-Robles J, Moreno-Castellanos N, Utomo E, Wardoyo LAH, Larrañeta E, Donnelly RF. Metronidazole nanosuspension loaded dissolving microarray patches: An engineered composite pharmaceutical system for the treatment of skin and soft tissue infection. BIOMATERIALS ADVANCES 2022; 140:213073. [PMID: 35964387 DOI: 10.1016/j.bioadv.2022.213073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Bacteroides fragilis is one of the most common causative group of microorganisms that is associated with skin and soft tissue infections (SSTI). Metronidazole (MTZ) is the drug of choice used in the treatment of SSTI caused by the bacterium. However, owing to its physiochemical properties, MTZ have limited skin permeation, which render the drug unsuitable for the treatment of deep-rooted SSTIs. One strategy to overcome this limitation is to reformulate MTZ into nanosuspension which will then be loaded into dissolving microarray patches (MAPs) for the treatment of SSTIs caused by B. fragilis. Herein, we report for the first time on the preparation and optimisation of MAP loaded with MTZ nanosuspension (MTZ-NS). After screening a range of polymeric surfactants, we identified that Soluplus® resulted in the formation of MTZ-NS with the smallest particle size (115 nm) and a narrow PDI of 0.27. Next, the MTZ-NS was further optimised using a design of experiments (DoE) approach. The optimised MTZ-NS was then loaded into dissolving MAPs with varying MTZ-NS content. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell proliferation assays along with LIVE/DEAD™ staining on the 3T3L1 cell line showed that the MTZ-NS loaded dissolving MAPs displayed minimal toxicity and acceptable biocompatibility. In vitro dermatokinetic studies showed that the MTZ-NS loaded MAPs were able to deliver the nitroimidazole antibiotic across all strata of the skin resulting in a delivery efficiency of 95 % after a 24-hour permeation study. Lastly, agar plating assay using bacterial cultures of B. fragilis demonstrated that MTZ-NS loaded MAP resulted in complete bacterial inhibition in the entire plate relative to the control group. Should this formulation be translated into clinical practice, this pharmaceutical approach may provide a minimally invasive strategy to treat SSTIs caused by B. fragilis.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Natalia Moreno-Castellanos
- Basic Science Department, Faculty of Health, Universidad Industrial de Santander, Bucaramanga 680001, Colombia
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Luki Ahmadi Hari Wardoyo
- Fakultas Seni Rupa dan Desain, Institut Teknologi Bandung, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
45
|
Tabriz AG, Viegas B, Okereke M, Uddin MJ, Lopez EA, Zand N, Ranatunga M, Getti G, Douroumis D. Evaluation of 3D Printability and Biocompatibility of Microfluidic Resin for Fabrication of Solid Microneedles. MICROMACHINES 2022; 13:mi13091368. [PMID: 36143991 PMCID: PMC9505489 DOI: 10.3390/mi13091368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 05/27/2023]
Abstract
In this study, we have employed Digital Light Processing (DLP) printing technology for the fabrication of solid microneedle (MN) arrays. Several arrays with various geometries, such as cones, three-sided pyramids and four-sided pyramids, with different height to aspect ratios of 1:1, 2:1 and 3:1, were printed. Post-processing curing optimizations showed that optimal mechanical properties of the photocurable resin were obtained at 40 °C and 60 min. Ex vivo skin studies showed that piercing forces, penetration depth and penetration width were affected by the MN geometry and height to aspect ratio. Cone-shaped MNs required lower applied forces to penetrate skin and showed higher penetration depth with increasing height to aspect ratio, followed by three-sided and four-sided printed arrays. Cytotoxicity studies presented 84% cell viability of human fibroblasts after 2.5 h, suggesting the very good biocompatibility of the photocurable resin. Overall, DLP demonstrated excellent printing capacity and high resolution for a variety of MN designs.
Collapse
Affiliation(s)
- Atabak Ghanizadeh Tabriz
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Beatriz Viegas
- School of Science and Technology, NOVA University Lisbon, 2829-516 Almada, Portugal
| | - Michael Okereke
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Md Jasim Uddin
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| | - Elena Arribas Lopez
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Nazanin Zand
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Medhavi Ranatunga
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Giulia Getti
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham ME4 4TB, UK
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK
| |
Collapse
|
46
|
Kirkby M, Sabri AB, Scurr D, Moss G. Microneedle-Mediated Permeation Enhancement of Chlorhexidine Digluconate: Mechanistic Insights Through Imaging Mass Spectrometry. Pharm Res 2022; 39:1945-1958. [PMID: 35689005 PMCID: PMC9314308 DOI: 10.1007/s11095-022-03309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Chlorhexidine digluconate (CHG) is a first-line antiseptic agent typically applied to the skin as a topical solution prior to surgery due to its efficacy and safety profile. However, the physiochemical properties of CHG limits its cutaneous permeation, preventing it from reaching potentially pathogenic bacteria residing within deeper skin layers. Thus, the utility of a solid oscillating microneedle system, Dermapen®, and a CHG-hydroxyethylcellulose (HEC) gel were investigated to improve the intradermal delivery of CHG. METHODS Permeation of CHG from the commercial product, Hibiscrub®, and HEC-CHG gels (containing 1% or 4% CHG w/w) was assessed in intact skin, or skin that had been pre-treated with microneedles of different array numbers, using an Franz diffusion cells and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). RESULTS Gels containing 1% and 4% CHG resulted in significantly increased depth permeation of CHG compared to Hibiscrub® (4% w/v CHG) when applied to microneedle pre-treated skin, with the effect being more significant with the higher array number. ToF-SIMS analysis indicated that the depth of dermal penetration achieved was sufficient to reach the skin strata that typically harbours pathogenic bacteria, which is currently inaccessible by Hibiscrub®, and showed potential lateral diffusion within the viable epidermis. CONCLUSIONS This study indicates that HEC-CHG gels applied to microneedle pre-treated skin may be a viable strategy to improve the permeation CHG into the skin. Such enhanced intradermal delivery may be of significant clinical utility for improved skin antisepsis in those at risk of a skin or soft tissue infection following surgical intervention.
Collapse
Affiliation(s)
- Melissa Kirkby
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK
| | - Akmal Bin Sabri
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - David Scurr
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gary Moss
- School of Pharmacy and Bioengineering, Keele University, Keele, ST5 5BG, UK.
| |
Collapse
|
47
|
Drug delivery with dissolving microneedles: Skin puncture, its influencing factors and improvement strategies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Khan S, Minhas MU, Singh Thakur RR, Aqeel MT. Microneedles Assisted Controlled and Improved Transdermal Delivery of High Molecular Drugs via Insitu Forming Depot Thermoresponsive Poloxamers Gels in Skin Microchannels. Drug Dev Ind Pharm 2022; 48:265-278. [PMID: 35899871 DOI: 10.1080/03639045.2022.2107662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin considered as an attractive route for variety of drug molecules administration. However it proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across stratum corneum layer. In current study novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles arrays. The phase transition of poloxamers at various concentrations from sol-gel was evaluated using AR2000 rheometer to confirm microneedles-assisted insitu forming depots. Temperature test confirmed gelation between 32-37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedles (MNs) arrays (600 µm) prepared from Gantrez S-97, PEG 10000 and Gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From insitu dissolution profile Gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight® OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From invitro permeation, it was concluded that 20% w/w PF127® gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of Gelatin MNs.
Collapse
Affiliation(s)
- Samiullah Khan
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| | | | | | - Muhammad Tahir Aqeel
- Margalla College of Pharmacy, Margalla Institute of Health Sciences, Rawalpindi, Pakistan
| |
Collapse
|
49
|
A 3D-printed transepidermal microprojection array for human skin microbiome sampling. Proc Natl Acad Sci U S A 2022; 119:e2203556119. [PMID: 35867832 PMCID: PMC9335308 DOI: 10.1073/pnas.2203556119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skin microbiome sampling is currently performed with tools such as swabs and tape strips to collect microbes from the skin surface. However, these conventional approaches may be unable to detect microbes deeper in the epidermis or in epidermal invaginations. We describe a sampling tool with a depth component, a transepidermal microprojection array (MPA), which captures microbial biomass from both the epidermal surface and deeper skin layers. We leveraged the rapid customizability of 3D printing to enable systematic optimization of MPA for human skin sampling. Evaluation of sampling efficacy on human scalp revealed the optimized MPA was comparable in sensitivity to swab and superior to tape strip, especially for nonstandard skin surfaces. We observed differences in species diversity, with the MPA detecting clinically relevant fungi more often than other approaches. This work delivers a tool in the complex field of skin microbiome sampling to potentially address gaps in our understanding of its role in health and disease.
Collapse
|
50
|
Liu RX, He YT, Liang L, Hu LF, Liu Y, Yu RX, Chen BZ, Cui Y, Guo XD. Mechanical evaluation of polymer microneedles for transdermal drug delivery: In vitro and in vivo. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|