1
|
Rossier B, Jordan O, Allémann E, Rodríguez-Nogales C. Nanocrystals and nanosuspensions: an exploration from classic formulations to advanced drug delivery systems. Drug Deliv Transl Res 2024; 14:3438-3451. [PMID: 38451440 PMCID: PMC11499347 DOI: 10.1007/s13346-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Nanocrystals and nanosuspensions have become realistic approaches to overcome the formulation challenges of poorly water-soluble drugs. They also represent a less-known but versatile platform for multiple therapeutic applications. They can be integrated into a broad spectrum of drug delivery systems including tablets, hydrogels, microneedles, microparticles, or even functionalized liposomes. The recent progresses, challenges, and opportunities in this field are gathered originally together with an informative case study concerning an itraconazole nanosuspension-in-hydrogel formulation. The translational aspects, historical and current clinical perspectives are also critically reviewed here to shed light on the incoming generation of nanocrystal formulations.
Collapse
Affiliation(s)
- Benjamin Rossier
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
| | - Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.
| |
Collapse
|
2
|
Atia HA, Shahien MM, Ibrahim S, Ahmed EH, Elariny HA, Abdallah MH. Plant-Based Nanovesicular Gel Formulations Applied to Skin for Ameliorating the Anti-Inflammatory Efficiency. Gels 2024; 10:525. [PMID: 39195054 DOI: 10.3390/gels10080525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is a vascular response that occurs when the immune system responds to a range of stimuli including viruses, allergens, damaged cells, and toxic substances. Inflammation is accompanied by redness, heat, swelling, discomfort, and loss of function. Natural products have been shown to have considerable therapeutic benefits, and they are increasingly being regarded as feasible alternatives for clinical preventative, diagnostic, and treatment techniques. Natural products, in contrast to developed medications, not only contain a wide variety of structures, they also display a wide range of biological activities against a variety of disease states and molecular targets. This makes natural products appealing for development in the field of medicine. In spite of the progress that has been made in the application of natural products for clinical reasons, there are still factors that prevent them from reaching their full potential, including poor solubility and stability, as well limited efficacy and bioavailability. In order to address these problems, transdermal nanovesicular gel systems have emerged as a viable way to overcome the hurdles that are encountered in the therapeutic use of natural products. These systems have a number of significant advantages, including the ability to provide sustained and controlled release, a large specific surface area, improved solubility, stability, increased targeting capabilities and therapeutic effectiveness. Further data confirming the efficacy and safety of nanovesicles-gel systems in delivering natural products in preclinical models has been supplied by extensive investigations conducted both in vitro and in vivo. This study provides a summary of previous research as well as the development of novel nanovesicular gel formulations and their application through the skin with a particular emphasis on natural products used for treatment of inflammation.
Collapse
Affiliation(s)
- Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Mona M Shahien
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Marwa H Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
3
|
Guo J, Wang P, Li Y, Liu Y, Ye Y, Chen Y, Kankala RK, Tong F. Advances in hybridized nanoarchitectures for improved oro-dental health. J Nanobiotechnology 2024; 22:469. [PMID: 39113060 PMCID: PMC11305065 DOI: 10.1186/s12951-024-02680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/11/2024] Open
Abstract
On a global note, oral health plays a critical role in improving the overall human health. In this vein, dental-related issues with dentin exposure often facilitate the risk of developing various oral-related diseases in gums and teeth. Several oral-based ailments include gums-associated (gingivitis or periodontitis), tooth-based (dental caries, root infection, enamel erosion, and edentulous or total tooth loss), as well as miscellaneous diseases in the buccal or oral cavity (bad breath, mouth sores, and oral cancer). Although established conventional treatment modalities have been available to improve oral health, these therapeutic options suffer from several limitations, such as fail to eradicate bacterial biofilms, deprived regeneration of dental pulp cells, and poor remineralization of teeth, resulting in dental emergencies. To this end, the advent of nanotechnology has resulted in the development of various innovative nanoarchitectured composites from diverse sources. This review presents a comprehensive overview of different nanoarchitectured composites for improving overall oral health. Initially, we emphasize various oral-related diseases, providing detailed pathological circumstances and their effects on human health along with deficiencies of the conventional therapeutic modalities. Further, the importance of various nanostructured components is emphasized, highlighting their predominant actions in solving crucial dental issues, such as anti-bacterial, remineralization, and tissue regeneration abilities. In addition to an emphasis on the synthesis of different nanostructures, various nano-therapeutic solutions from diverse sources are discussed, including natural (plant, animal, and marine)-based components and other synthetic (organic- and inorganic-) architectures, as well as their composites for improving oral health. Finally, we summarize the article with an interesting outlook on overcoming the challenges of translating these innovative platforms to clinics.
Collapse
Affiliation(s)
- Jun Guo
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| | - Pei Wang
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yuyao Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yifan Liu
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Yingtong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yi Chen
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China.
| | - Fei Tong
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, People's Republic of China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Miatmoko A, Octavia RT, Araki T, Annoura T, Sari R. Advancing liposome technology for innovative strategies against malaria. Saudi Pharm J 2024; 32:102085. [PMID: 38690211 PMCID: PMC11059525 DOI: 10.1016/j.jsps.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
This review discusses the potential of liposomes as drug delivery systems for antimalarial therapies. Malaria continues to be a significant cause of mortality and morbidity, particularly among children and pregnant women. Drug resistance due to patient non-compliance and troublesome side effects remains a significant challenge in antimalarial treatment. Liposomes, as targeted and efficient drug carriers, have garnered attention owing to their ability to address these issues. Liposomes encapsulate hydrophilic and/or hydrophobic drugs, thus providing comprehensive and suitable therapeutic drug delivery. Moreover, the potential of passive and active drug delivery enables drug concentration in specific target tissues while reducing adverse effects. However, successful liposome formulation is influenced by various factors, including drug physicochemical characteristics and physiological barriers encountered during drug delivery. To overcome these challenges, researchers have explored modifications in liposome nanocarriers to achieve efficient drug loading, controlled release, and system stability. Computational approaches have also been adopted to predict liposome system stability, membrane integrity, and drug-liposome interactions, improving formulation development efficiency. By leveraging computational methods, optimizing liposomal drug delivery systems holds promise for enhancing treatment efficacy and minimizing side effects in malaria therapy. This review consolidates the current understanding and highlights the potential of liposome strategies against malaria.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, 2 Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Retno Sari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Kumar J, Onteru SK, Singh D. Deciphering the Drug Delivery Potential of Milk Exosome Nanovesicles for Aminobenzylpenicillin Therapeutic Efficacy against Contagious Staphylococcus Aureus in Bovine Mastitis. Adv Biol (Weinh) 2024; 8:e2300519. [PMID: 38573624 DOI: 10.1002/adbi.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/21/2024] [Indexed: 04/05/2024]
Abstract
The emergence of antimicrobial resistance and failure of antibiotic treatment are challenging tasks for managing bovine mastitis, which is mainly caused by the contagious Staphylococcus aureus (S. aureus).To overcome these difficulties, there is an urgent need for a novel drug system. In the present study, the aim is to develop next-generation therapeutics against S. aureus by harnessing the drug delivery potential of milk nanovesicles called milk exosomes (mENs). In the present work, a drug system is developed by encapsulating aminobenzylpenicillin (AMP) in mENs (mENs-AMP). Electron microscopy and zeta-sizer results indicate that the size of mENs-AMP ranged from 55.79 ± 2.8 to 85.53 ± 7.4 nm. The AMP loading efficiency in mENs is 88.61% with its sustained release. Fluorescence spectroscopy results indicated that mENs are biocompatible with mammary epithelial cells. In vitro studies show that the antibacterial activity and the minimum inhibitory concentrations of mENs-AMP are eleven times greater and four times lower than that of unencapsulated AMP, respectively. The mENs-AMP exhibit significantly higher therapeutic efficacy than AMP at the same dosage and treatment frequency. Validation of this approach is demonstrated in mastitis-affected animals through an observation in the reduction of somatic cell counts and bacterial loads in the milk of treated animals.
Collapse
Affiliation(s)
- Jitendra Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
6
|
Zhang X, Ma Y, Shi Y, Jiang L, Wang L, Ur Rashid H, Yuan M, Liu X. Advances in liposomes loaded with photoresponse materials for cancer therapy. Biomed Pharmacother 2024; 174:116586. [PMID: 38626516 DOI: 10.1016/j.biopha.2024.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.
Collapse
Affiliation(s)
- Xianwei Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Youfu Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yenong Shi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Lisheng Wang
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Haroon Ur Rashid
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
8
|
Arasu Y, Bryan E, Russell FA, Huettner N, Carey AJ, Boyd BJ, Beagley KW, Dargaville TR. Enhanced clearance of C. muridarum infection using azithromycin-loaded liposomes. Int J Pharm 2024; 650:123709. [PMID: 38101758 DOI: 10.1016/j.ijpharm.2023.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Chlamydia trachomatis is an intracellular bacterium which infects around 129 million people annually. Despite similar infection rates between sexes, most research investigating the effects of chlamydial infection on fertility has focused on females. There is now emerging evidence of a potential link between Chlamydia and impaired male fertility. The only treatments for chlamydial infection are antibiotics, with azithromycin (AZI) being one of the commonly used drugs. However, recent studies have suggested that optimizing the treatment regime is necessary, as higher concentrations of AZI may be required to effectively clear the infection in certain cell types, particularly testicular macrophages. To address this challenge, we have prepared liposomes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) loaded with AZI for clearing Chlamydia. These liposomes exhibited stability over time and were readily taken up by both macrophages and epithelial cells. Moreover, they demonstrated significant enhancement of chlamydial clearance in both cell types. In a mouse model, the drug-loaded liposomes cleared Chlamydia within the penile urethra more efficiently than the same dose of unencapsulated drug. Furthermore, the liposome-drug treatment showed significant protective effects on sperm motility and morphology, suggesting potential benefits in reducing sperm damage caused by the infection.
Collapse
Affiliation(s)
- Yanushia Arasu
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia; School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Emily Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Freya A Russell
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Nick Huettner
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Australia; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Australia
| | - Tim R Dargaville
- School of Chemistry and Physics and Centre for Materials Science, Faculty of Science, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
9
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Lv T, Meng Y, Liu Y, Han Y, Xin H, Peng X, Huang J. RNA nanotechnology: A new chapter in targeted therapy. Colloids Surf B Biointerfaces 2023; 230:113533. [PMID: 37713955 DOI: 10.1016/j.colsurfb.2023.113533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Nanoparticles have been widely studied in the fields of biotechnology, pharmacy, optics and medicine and have broad application prospects. Numerous studies have shown significant interest in utilizing nanoparticles for chemically coating or coupling drugs, aiming to address the challenges of drug delivery, including degradability and uncertainty. Furthermore, the utilization of lipid nanoparticles loaded with novel coronavirus antigen mRNA to control the COVID-19 pandemic has led to a notable surge in research on nanoparticle vaccines. Hence, nanoparticles have emerged as a crucial delivery system for disease prevention and treatment, bearing immense significance. Current research highlights that nanoparticles offer superior efficacy and potential compared to conventional drug treatment and prevention methods. Notably, for drug delivery applications, it is imperative to utilize biodegradable nanoparticles. This paper reviews the structures and characteristics of various biodegradable nanoparticles and their applications in biomedicine in order to inspire more researchers to further explore the functions of nanoparticles. RNA plays a pivotal role in regulating the occurrence and progression of diseases, but its inherent susceptibility to degradation poses a challenge. In light of this, we conducted a comprehensive review of the research advancements concerning RNA-containing biodegradable nanoparticles in the realm of disease prevention and treatment, focusing on cancer, inflammatory diseases, and viral infections.
Collapse
Affiliation(s)
- Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yingying Meng
- Department of Gastroenterology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifan Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Oncology, Jingzhou Hospital Affifiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yukun Han
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China
| | - Hongwu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| | - Jinbai Huang
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affifiliated Hospital, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
11
|
Koroleva M. Multicompartment colloid systems with lipid and polymer membranes for biomedical applications. Phys Chem Chem Phys 2023; 25:21836-21859. [PMID: 37565484 DOI: 10.1039/d3cp01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Multicompartment structures have the potential for biomedical applications because they can act as multifunctional systems and provide simultaneous delivery of drugs and diagnostics agents of different types. Moreover, some of them mimic biological cells to some extent with organelles as separate sub-compartments. This article analyses multicompartment colloidal structures with smaller sub-units covered with lipid or polymer membranes that provide additional protection for the encapsulated substances. Vesosomes with small vesicles encapsulated in the inner pools of larger liposomes are the most studied systems to date. Dendrimer molecules are enclosed by a lipid bilayer shell in dendrosomes. Capsosomes, polymersomes-in-polymer capsules, and cubosomes-in-polymer capsules are composed of sub-compartments encapsulated within closed multilayer polymer membranes. Janus or Cerberus emulsions contain droplets composed of two or three phases: immiscible oils in O/W emulsions and aqueous polymer or salt solutions that are separated into two or three phases and form connected droplets in W/O emulsions. In more cases, the external surface of engulfed droplets in Janus or Cerberus emulsions is covered with a lipid or polymer monolayer. eLiposomes with emulsion droplets encapsulated into a bilayer shell have been given little attention so far, but they have very great prospects. In addition to nanoemulsion droplets, solid lipid nanoparticles, nanostructured lipid carriers and inorganic nanoparticles can be loaded into eLiposomes. Molecular engineering of the external membrane allows the creation of ligand-targeted and stimuli-responsive multifunctional systems. As a result, the efficacy of drug delivery can be significantly enhanced.
Collapse
Affiliation(s)
- Marina Koroleva
- Mendeleev University of Chemical Technology, Miusskaya sq. 9, Moscow 125047.
| |
Collapse
|
12
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
13
|
Wang C, Zhang R, He J, Yu L, Li X, Zhang J, Li S, Zhang C, Kagan JC, Karp JM, Kuai R. Ultrasound-responsive low-dose doxorubicin liposomes trigger mitochondrial DNA release and activate cGAS-STING-mediated antitumour immunity. Nat Commun 2023; 14:3877. [PMID: 37391428 PMCID: PMC10313815 DOI: 10.1038/s41467-023-39607-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
DNA derived from chemotherapeutics-killed tumor cells is one of the most important damage-associated molecular patterns that can activate the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway in antigen-presenting cells (APCs) and promote antitumor immunity. However, conventional chemotherapy displays limited tumor cell killing and ineffective transfer of stable tumor DNA to APCs. Here we show that liposomes loaded with an optimized ratio of indocyanine green and doxorubicin, denoted as LID, efficiently generate reactive oxygen species upon exposure to ultrasound. LID plus ultrasound enhance the nuclear delivery of doxorubicin, induce tumor mitochondrial DNA oxidation, and promote oxidized tumor mitochondrial DNA transfer to APCs for effective activation of cGAS-STING signaling. Depleting tumor mitochondrial DNA or knocking out STING in APCs compromises the activation of APCs. Furthermore, systemic injection of LID plus ultrasound over the tumor lead to targeted cytotoxicity and STING activation, eliciting potent antitumor T cell immunity, which upon the combination with immune checkpoint blockade leads to regression of bilateral MC38, CT26, and orthotopic 4T1 tumors in female mice. Our study sheds light on the importance of oxidized tumor mitochondrial DNA in STING-mediated antitumor immunity and may inspire the development of more effective strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Lvshan Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Junxia Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, 100084, China
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, 100084, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
14
|
Fathi HA, Yousry C, Elsabahy M, El-Badry M, El Gazayerly ON. Effective loading of incompatible drugs into nanosized vesicles: a strategy to allow concurrent administration of furosemide and midazolam in simulated clinical settings. Int J Pharm 2023; 636:122852. [PMID: 36934884 DOI: 10.1016/j.ijpharm.2023.122852] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and BUC Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Mahmoud El-Badry
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Omaima N El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Chen Q, Guo C, Liu Z, Cao M, Wang W, Zhang D, Geng H, Diao N, Chen D. Multifunctional nanoparticles with anti-inflammatory effect for improving metabolic syndromes. J Drug Target 2023; 31:286-295. [PMID: 36315421 DOI: 10.1080/1061186x.2022.2142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndromes are a group of metabolic disorders for which the molecular mechanisms are still unclear. An increasing number of studies have implicated metabolic syndrome in the association with inflammation. Currently, lipsomes is known to improve nanoparticle hydrophobicity. Meanwhile, in drug delivery systems the application of cholesterol, which is commonly used to stabilise liposomal structures, has essentially no pharmacological effect on liposomes. Herein, we developed an 'anti-inflammatory liposome' (Phy-Lip) to effectively handle these challenges via employing Phytosterol instead of cholesterol. Different with the conventional liposomes, Phy-Lip is a much more brilliant nanoparticle with anti-inflammatory functions. In Phy-Lip, cholesterol was substituted by Phy, which works as membrane stabiliser, anti-inflammatory adjuvant at the same time. The experimental results show that Phy-Lip has a strong anti-inflammatory effect, and improves Metabolic syndromes. This study aims to provide a way to solve the challenge.
Collapse
Affiliation(s)
- Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Zhongxin Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Dandan Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| |
Collapse
|
16
|
Wang L, Evans JC, Ahmed L, Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci Rep 2023; 13:3226. [PMID: 36828860 PMCID: PMC9958112 DOI: 10.1038/s41598-023-28424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/18/2023] [Indexed: 02/26/2023] Open
Abstract
Combination chemotherapy is an established approach used to manage toxicities while eliciting an enhanced therapeutic response. Delivery of drug combinations at specific molar ratios has been considered a means to achieve synergistic effects resulting in improvements in efficacy while minimizing dose related adverse drug reactions. The benefits of this approach have been realized with the FDA approval of Vyxeos®, the first liposome formulation to deliver a synergistic drug combination leading to improved overall survival against standard of care. In the current study, we demonstrate the synergistic potential of the PARP inhibitor niraparib and doxorubicin for the treatment of ovarian cancer. Through in vitro screening in a panel of ovarian cancer cell lines, we find that niraparib and doxorubicin demonstrate consistent synergy/additivity at the majority of evaluated molar ratio combinations. Further to these findings, we report formulation of a nanoparticle encapsulating our identified synergistic combination. We describe a rational design process to achieve highly stable liposomes that are targeted with folate to folate-receptor-alpha, which is known to be overexpressed on the surface of ovarian cancer cells. With this approach, we aim to achieve targeted delivery of niraparib and doxorubicin at a pre-determined synergistic molar ratio via increased receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Lucy Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - James C Evans
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Lubabah Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
17
|
Liu WY, Hsieh YS, Ko HH, Wu YT. Formulation Approaches to Crystalline Status Modification for Carotenoids: Impacts on Dissolution, Stability, Bioavailability, and Bioactivities. Pharmaceutics 2023; 15:pharmaceutics15020485. [PMID: 36839810 PMCID: PMC9965060 DOI: 10.3390/pharmaceutics15020485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Carotenoids, including carotenes and xanthophylls, have been identified as bioactive ingredients in foods and are considered to possess health-promoting effects. From a biopharmaceutical perspective, several physicochemical characteristics, such as scanty water solubility, restricted dissolution, and susceptibility to oxidation may influence their oral bioavailability and eventually, their effectiveness. In this review, we have summarized various formulation approaches that deal with the modification of crystalline status for carotenoids, which may improve their physicochemical properties, oral absorption, and biological effects. The mechanisms involving crystalline alteration and the typical methods for examining crystalline states in the pharmaceutical field have been included, and representative formulation approaches are introduced to unriddle the mechanisms and effects more clearly.
Collapse
Affiliation(s)
- Wan-Yi Liu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Shan Hsieh
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-H.K.); (Y.-T.W.); Tel.: +886-7-3121101 (ext. 2643) (H.-H.K.); +886-7-3121101 (ext. 2254) (Y.-T.W.)
| |
Collapse
|
18
|
Yamamoto E, Hosogi N, Takechi-Haraya Y, Izutsu KI, Uchiyama N, Goda Y. Folded, undulating, and fibrous doxorubicin sulfate crystals in liposomes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102631. [PMID: 36410700 DOI: 10.1016/j.nano.2022.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
High-resolution cryogenic transmission electron microscopy (cryo-TEM) evidenced that doxorubicin sulfate crystals in liposomes (prepared by remote loading with ammonium sulfate) form folded, undulating, and fibrous crystals with a diameter of approximately 2.4 nm. An undulating, fibrous crystal considered to be undergrowth, in addition to bundles of fibrous crystals, was also observed in doxorubicin-loaded liposomes. This explains the validity of the formation of doxorubicin sulfate crystals of various shapes, e.g., curved, U-shaped, or circular, in addition to cylinder and/or rod-like crystals reported in the literature. Liposomes that do not contain crystals have inner aqueous phases with high electron density, suggesting that the doxorubicin is remotely loaded and remains as a solute without precipitation.
Collapse
Affiliation(s)
- Eiichi Yamamoto
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Naoki Hosogi
- Electron Microscopy Application Department, EM Business Unit, JEOL Ltd, 3-1-2 Musashino Akishima, Tokyo 196-8556, Japan
| | - Yuki Takechi-Haraya
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
19
|
Ravindar C, Reddy ST, Sivaramakrishna D, Damera DP, Swamy MJ. Base-triggerable lauryl sarcosinate-dodecyl sulfate catanionic liposomes: structure, biophysical characterization, and drug entrapment/release studies. SOFT MATTER 2022; 18:7814-7826. [PMID: 36196686 DOI: 10.1039/d2sm00965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Equimolar mixtures of oppositely charged single-chain amphiphiles form a variety of phases, including vesicles. Such catanionic mixed lipid systems show high stability and exhibit versatile physicochemical properties. In the present study we have investigated the aggregation behaviour of lauryl sarcosinate hydrochloride (LS·HCl) in aqueous dispersion as well as its interaction with the anionic surfactant sodium dodecyl sulfate (SDS). The CMC of LS·HCl was estimated to be ∼5 mM by isothermal titration calorimetry (ITC) and fluorescence spectroscopy using pyrene as the fluorescent probe. Turbidimetric and ITC studies on the interaction of LS·HCl with SDS demonstrated that the two surfactants form an equimolar catanionic complex. The crystal structure of the lauryl sarcosinate-dodecyl sulfate (LS-DS) complex revealed that the complex is stabilized by classical N-H⋯O as well as C-H⋯O hydrogen bonds, besides the electrostatic attraction between LS (cation) and DS (anion) and dispersion interactions between the hydrocarbon chains. Differential scanning calorimetry studies revealed that the phase transition of the equimolar LS-DS complex is significantly reduced compared to the analogous LG-DS and LA-DS complexes in the fully hydrated state. Dynamic light scattering, atomic force microscopy and transmission electron microscopy studies demonstrated that the LS-DS catanionic complex forms stable medium-sized vesicles (diameter of ∼300-500 nm). In vitro studies with 5-fluorouracil and rhodamine 6G showed efficient entrapment and release of these two anti-cancer drugs in the physiologically relevant pH range of 6.0-8.0, but with contrasting pH dependences. These observations indicate that LS-DS catanionic vesicles may find application in designing drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
20
|
Xiang H, Xu S, Li J, Li Y, Xue X, Liu Y, Li J, Miao X. Functional drug nanocrystals for cancer-target delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
An FGFR1-Binding Peptide Modified Liposome for siRNA Delivery in Lung Cancer. Int J Mol Sci 2022; 23:ijms23158380. [PMID: 35955516 PMCID: PMC9369135 DOI: 10.3390/ijms23158380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Liposome modification by targeting ligands has been used to mediate specific interactions and drug delivery to target cells. In this study, a new peptide ligand, CP7, was found to be able to effectively bind to FGFR1 through reverse molecular docking and could cooperate with VEGFR3 to achieve targeting of A549 cells. CP7 was modified on the surface of the liposome to construct a targeted and safe nanovehicle for the delivery of a therapeutic gene, Mcl-1 siRNA. Due to the specific binding between CP7 and A549 cells, siRNA-loaded liposome-PEG-CP7 showed increased cellular uptake in vitro, resulting in significant apoptosis of tumor cells through silencing of the Mcl-1 gene, which is associated with apoptosis and angiogenesis. This gene delivery system also showed significantly better antitumor activity in tumor-bearing mice in vivo. All of these suggested that siRNA-loaded liposome-PEG-CP7 could be a promising gene drug delivery system with good bioavailability and minimal side effects for treatment.
Collapse
|
23
|
Zhang J, Liu M, Zeng Z. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int J Pharm 2022; 626:122043. [PMID: 35902056 DOI: 10.1016/j.ijpharm.2022.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
In recent years, poorly water-soluble drug candidates in the drug development pipeline have been a challenging issue for the pharmaceutical industry. Many delivery systems such as nanocrystals, cocrystals, nanoparticles, and amorphous solid dispersions (ASDs) have been developed to overcome these problems. A large number of methods are utilized to realize the above delivery systems. Among all the preparation methods, the antisolvent coprecipitation method is a relatively simple, cost-effective method, offering many advantages over conventional methods. An overview of recent developments for each solubility enhancement approach using the antisolvent coprecipitation method is presented. This current review details a comprehensive overview of the antisolvent coprecipitation process and its properties, as well as the fundamentals for enhancing the solubility and bioavailability of poorly water-soluble drugs by nanotization, polymorph control with polymers and/or surfactants. Furthermore, this review also presents insights into the factors affecting the antisolvent coprecipitation process.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China.
| |
Collapse
|
24
|
Zheng Y, Xie L, Tie X, Cao L, Li Q, Quan Y, Tang L, Li Y. Remote drug loading into liposomes via click reaction. MATERIALS HORIZONS 2022; 9:1969-1977. [PMID: 35583553 DOI: 10.1039/d2mh00380e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of liposome-based drugs was severely limited due to inefficient loading strategies. Herein, we developed a click reaction-mediated loading procedure by designing an enzyme-sensitive maleimide (MAL) tag for ferrying chemotherapeutics into preformed liposomes containing glutathione (GSH). Based on this strategy, various hydrophobic drugs could be encapsulated into liposomes within 5-30 min with encapsulation efficiency >95% and loading capacity of 10-30% (w/w). The entrapped cargo could be slowly released from the liposomes, followed by rapid enzyme-mediated conversion into active drugs to exert antitumor activity under physiological conditions. The resulting drug-loaded liposomes significantly prolonged the blood circulation of cargos and displayed more potent in vivo antitumor efficacy than free drugs at the equitoxic dose. More importantly, this method is a remote drug loading strategy in nature, which is suitable for industrial production. This is the first demonstration of active loading of MAL-tagged chemotherapeutics in liposomes for improved antitumor efficacies, which has the potential to serve as a universal drug loading strategy for the development of liposomal formulations of chemotherapeutics.
Collapse
Affiliation(s)
- Yaxin Zheng
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Lei Xie
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Xiaoru Tie
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Lei Cao
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Qingyuan Li
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yue Quan
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Lingfeng Tang
- School of Pharmacy, Key Laboratory of Sichuan Province for Specific Structure of Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
25
|
Liposomes containing nanoparticles: preparation and applications. Colloids Surf B Biointerfaces 2022; 218:112737. [DOI: 10.1016/j.colsurfb.2022.112737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
|
26
|
Gao C, Liu C, Chen Q, Wang Y, Kwong CHT, Wang Q, Xie B, Lee SMY, Wang R. Cyclodextrin-mediated conjugation of macrophage and liposomes for treatment of atherosclerosis. J Control Release 2022; 349:2-15. [PMID: 35779655 DOI: 10.1016/j.jconrel.2022.06.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
Current pharmacological treatments of atherosclerosis often target either cholesterol management or inflammation management, to inhibit atherosclerotic progression, but cannot lead to direct plaque lysis and atherosclerotic regression, partly due to the poor accumulation of medicine in the atherosclerotic plaques. Due to enhanced macrophage recruitment during atheromatous plaque progression, a facilely macrophage-liposome conjugate was constructed for targeted anti-atherosclerosis therapy via synergistic plaque lysis and inflammation alleviation. Endogenous macrophage is utilized as drug-transporting cell, upon membrane-modification with β-cyclodextrin (β-CD) derivative to form β-CD decorated macrophage (CD-MP). Adamantane (ADA) modified quercetin (QT)-loaded liposome (QT-NP), can be conjugated to CD-MP via host-guest interactions between β-CD and ADA to construct macrophage-liposome conjugate (MP-QT-NP). Thus, macrophage carries liposome "hand-in-hand" to significantly increase the accumulation of anchored QT-NP in the aorta plaque in response to the plaque inflammation. In addition to anti-inflammation effects of QT, MP-QT-NP efficiently regresses atherosclerotic plaques from both murine aorta and human carotid arteries via CD-MP mediated cholesterol efflux, due to the binding of cholesterol by excess membrane β-CD. Transcriptome analysis of atherosclerotic murine aorta and human carotid tissues reveal that MP-QT-NP may activate NRF2 pathway to inhibit plaque inflammation, and simultaneously upregulate liver X receptor to promote cholesterol efflux.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao 999078, China
| | - Conghui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Yan Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing 100029, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Qingfu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao 999078, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao 999078, China.
| |
Collapse
|
27
|
Development of a magnetic MoS 2 system camouflaged by lipid for chemo/phototherapy of cancer. Colloids Surf B Biointerfaces 2022; 213:112389. [PMID: 35158219 DOI: 10.1016/j.colsurfb.2022.112389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Untargeted release of traditional chemotherapeutic drugs can damage normal tissues in the body and cause serious side effects for patients. Therefore, the research of targeted drug delivery system based on nanomaterials has become a hot topic in the field of cancer therapy. Magnetic molybdenum disulfide (mMoS2) was modified by liposomes with a cell membrane-like structure to prepare nanocarrier complex (mMoS2-Lipid) with high biocompatibility and stability. Then, combined photo-chemotherapeutic therapy was realized both in vitro and in vivo by its ultra-high photothermal conversion efficiency and excellent drug loading profile of mMoS2-Lipid. The characterization showed that the lamellar magnetic molybdenum disulfide modified by liposomes was not easy to aggregate in physiological solution, and had a lower non-specific protein adsorption rate, which was beneficial for biomedical application. In vitro cell experiments exhibited a successful cellular uptake profile of MCF-7 cells with no significant cytotoxicity, while a concentration dependent cytotoxicity for both chemotherapy alone and photo-chemotherapy combined therapy. Compared with the unmodified mMoS2, mMoS2-Lipid injected into mice through tail vein can accumulate more in the tumor site, and in vivo anti-tumor studies have shown that the synergistic treatment of the mMoS2-Lipid has an obvious inhibitory effect on the tumor with less toxic and side effects on mice. In conclusion, mMoS2-Lipid treatment system provides a safe, rapid and effective choice for the treatment of breast cancer in the future.
Collapse
|
28
|
Lu L, Xu Q, Wang J, Wu S, Luo Z, Lu W. Drug Nanocrystals for Active Tumor-Targeted Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040797. [PMID: 35456631 PMCID: PMC9026472 DOI: 10.3390/pharmaceutics14040797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.
Collapse
Affiliation(s)
- Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China; (Q.X.); (J.W.); (S.W.); (Z.L.)
- Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence:
| |
Collapse
|
29
|
Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022; 14:pharmaceutics14040778. [PMID: 35456613 PMCID: PMC9026371 DOI: 10.3390/pharmaceutics14040778] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Liposomes are highly advantageous platforms for drug delivery. To improve the colloidal stability and avoid rapid uptake by the mononuclear phagocytic system of conventional liposomes while controlling the release of encapsulated agents, modification of liposomes with well-designed polymers to modulate the physiological, particularly the interfacial properties of the drug carriers, has been intensively investigated. Briefly, polymers are incorporated into liposomes mainly using “grafting” or “coating”, defined according to the configuration of polymers at the surface. Polymer-modified liposomes preserve the advantages of liposomes as drug-delivery carriers and possess specific functionality from the polymers, such as long circulation, precise targeting, and stimulus-responsiveness, thereby resulting in improved pharmacokinetics, biodistribution, toxicity, and therapeutic efficacy. In this review, we summarize the progress in polymer-modified liposomes for drug delivery, focusing on the change in physiological properties of liposomes and factors influencing the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence: (Y.C.); (X.C.)
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China;
| | - Xuepeng Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
- Correspondence: (Y.C.); (X.C.)
| |
Collapse
|
30
|
Meng T, Qiao F, Ma S, Gao T, Li L, Hou Y, Yang J. Exploring the influence factors and improvement strategies of drug polymorphic transformation combined kinetic and thermodynamic perspectives during the formation of nanosuspensions. Drug Dev Ind Pharm 2022; 47:1867-1880. [PMID: 35362347 DOI: 10.1080/03639045.2022.2061988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanosuspensions can effectively increase saturation solubility and improve the bioavailability of poorly water-soluble drugs attributed to high loading and surface-to-volume ratio. Wet media milling has been regarded as a scalable method to prepare nanosuspensions because of its simple operation and easy scale-up. In recent years, besides particle aggregation and Ostwald ripening, polymorphic transformation induced by processing has become a critical factor leading to the instability of nanosuspensions. Therefore, this review aims to discuss the influence factors comprehensively and put forward the corresponding improvement strategies of polymorphic transformation during the formation of nanosuspensions. In addition, this review also demonstrates the implication of molecular simulation in polymorphic transformation. The competition between shear-induced amorphization and thermally activated crystallization is the global mechanism of polymorphic transformation during media milling. The factors affecting the polymorphic transformation and corresponding improvement strategies are summarized from formulation and process parameters perspectives during the formation of nanosuspensions. The development of analytical techniques has promoted the qualitative and quantitative characterization of polymorphic transformation, and some techniques can in-situ monitor dynamic transformation. The microhydrodynamic model can be referenced to study the stress intensities by analyzing formulation and process parameters during wet media milling. Molecular simulation can be used to explore the possible polymorphic transformation based on the crystal structure and energy. This review is helpful to improve the stability of nanosuspensions by regulating polymorphic transformation, providing quality assurance for nanosuspension-based products.
Collapse
Affiliation(s)
- Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Fangxia Qiao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Ting Gao
- Department of Preparation Center, General Hospital of Ningxia Medical University, No.804 Shengli South Street, Yinchuan, 750004, P. R. China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
31
|
Stimuli-responsive polymer-complexed liposome nanocarrier provides controlled release of biomolecules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Wu S, Lu L, Zhou J, Ran D, Wang S, Xu Q, Xu W, Wang J, Liu Y, Xie C, Luo Z, Lu W. All-stage targeted therapy for glioblastoma based on lipid membrane coated cabazitaxel nanocrystals. J Control Release 2022; 345:685-695. [PMID: 35346767 DOI: 10.1016/j.jconrel.2022.03.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor with poor prognosis and frequent recurrence. The blood-brain barrier (BBB), blood-brain tumor barrier (BBTB) hinder the entry of therapeutics into the glioma region. Vasculogenic mimicry (VM) formed by invasive glioma cells is also related to recurrence of GBM. VAP is a D-peptide ligand of GRP78 protein overexpressed on BBTB, VM, and glioma cells but not on normal tissues. Besides, p-hydroxybenzoic acid (pHA) can effectively traverse the BBB. Herein we developed an all-stage glioma-targeted cabazitaxel (CBZ) nanocrystal loaded liposome modified with a "Y" shaped targeting ligand composed of pHA and VAP (pV-Lip/cNC). The pure drug nanocrystal core provided high drug loading, while lipid membrane promoted the stability and circulation time. pV-Lip/cNC exhibited excellent glioma homing, barriers crossing, and tumor spheroid penetrating capability in vitro. Treatment of pV-Lip/cNC displayed enhanced CBZ accumulation in glioma and anti-glioma effect with a median survival time (53 days) significantly longer than that of cNC loaded liposomes modified with either single ligand (42 days for VAP and 45 days for pHA) in the murine orthotopic GBM model. These results indicated pV-Lip/cNC could traverse the BBB and BBTB, destruct VM, and finally kill glioma cells to realize all-stage glioma therapy.
Collapse
Affiliation(s)
- Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Danni Ran
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Songli Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; The Department of Integrative Medicine, Huashan Hospital, Fudan University, and The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
33
|
Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery. Pharmaceutics 2022; 14:302. [PMID: 35214039 PMCID: PMC8880668 DOI: 10.3390/pharmaceutics14020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.
Collapse
Affiliation(s)
- Adam J. Plaunt
- Insmed Incorporated, Bridgewater, NJ 08807, USA; (T.L.N.); (M.R.C.); (V.S.M.); (D.C.C.)
| | | | | | | | | |
Collapse
|
34
|
Lu H, Zhang S, Wang J, Chen Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front Nutr 2021; 8:783831. [PMID: 34926557 PMCID: PMC8671830 DOI: 10.3389/fnut.2021.783831] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, owing to well-controlled release, enhanced distribution and increased permeability, nanocarriers used for alternative drug and food-delivery strategies have received increasingly attentions. Nanocarriers have attracted a large amount of interest as potential carriers of various bioactive molecules for multiple applications. Drug and food-based delivery via polymeric-based nanocarriers and lipid-based nanocarriers has been widely investigated. Nanocarriers, especially liposomes, are more and more widely used in the area of novel nano-pharmaceutical or food-based design. Herein, we aimed to discuss the recent advancement of different surface-engineered nanocarriers type, along with cutting-edge applications for food and nanomedicine and highlight the alternative of phytochemical as nanocarrier. Additionally, safety concern of nanocarriers was also highlighted.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengliang Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jinling Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Chen C, Sun M, Wang J, Su L, Lin J, Yan X. Active cargo loading into extracellular vesicles: Highlights the heterogeneous encapsulation behaviour. J Extracell Vesicles 2021; 10:e12163. [PMID: 34719860 PMCID: PMC8558234 DOI: 10.1002/jev2.12163] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have demonstrated unique advantages in serving as nanocarriers for drug delivery, yet the cargo encapsulation efficiency is far from expectation, especially for hydrophilic chemotherapeutic drugs. Besides, the intrinsic heterogeneity of EVs renders it difficult to evaluate drug encapsulation behaviour. Inspired by the active drug loading strategy of liposomal nanomedicines, here we report the development of a method, named "Sonication and Extrusion-assisted Active Loading" (SEAL), for effective and stable drug encapsulation of EVs. Using doxorubicin-loaded milk-derived EVs (Dox-mEVs) as the model system, sonication was applied to temporarily permeabilize the membrane, facilitating the influx of ammonium sulfate solution into the lumen to establish the transmembrane ion gradient essential for active loading. Along with extrusion to downsize large mEVs, homogenize particle size and reshape the nonspherical or multilamellar vesicles, SEAL showed around 10-fold enhancement of drug encapsulation efficiency compared with passive loading. Single-particle analysis by nano-flow cytometry was further employed to reveal the heterogeneous encapsulation behaviour of Dox-mEVs which would otherwise be overlooked by bulk-based approaches. Correlation analysis between doxorubicin auto-fluorescence and the fluorescence of a lipophilic dye DiD suggested that only the lipid-enclosed particles were actively loadable. Meanwhile, immunofluorescence analysis revealed that more than 85% of the casein positive particles was doxorubicin free. These findings further inspired the development of the lipid-probe- and immuno-mediated magnetic isolation techniques to selectively remove the contaminants of non-lipid enclosed particles and casein assemblies, respectively. Finally, the intracellular assessments confirmed the superior performance of SEAL-prepared mEV formulations, and demonstrated the impact of encapsulation heterogeneity on therapeutic outcome. The as-developed cargo-loading approach and nano-flow cytometry-based characterization method will provide an instructive insight in the development of EV-based delivery systems.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Biological Engineering, College of Food and Biological EngineeringJimei UniversityXiamenFujianPeople's Republic of China
| | - Mengdi Sun
- Department of Biological Engineering, College of Food and Biological EngineeringJimei UniversityXiamenFujianPeople's Republic of China
| | - Jialin Wang
- Department of Biological Engineering, College of Food and Biological EngineeringJimei UniversityXiamenFujianPeople's Republic of China
| | - Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujianPeople's Republic of China
| | - Junjie Lin
- Department of Biological Engineering, College of Food and Biological EngineeringJimei UniversityXiamenFujianPeople's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenFujianPeople's Republic of China
| |
Collapse
|
36
|
Ftouh M, Kalboussi N, Abid N, Sfar S, Mignet N, Bahloul B. Contribution of Nanotechnologies to Vaccine Development and Drug Delivery against Respiratory Viruses. PPAR Res 2021; 2021:6741290. [PMID: 34721558 PMCID: PMC8550859 DOI: 10.1155/2021/6741290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
According to the Center for Disease Control and Prevention (CDC), the coronavirus disease 2019, a respiratory viral illness linked to significant morbidity, mortality, production loss, and severe economic depression, was the third-largest cause of death in 2020. Respiratory viruses such as influenza, respiratory syncytial virus, SARS-CoV-2, and adenovirus, are among the most common causes of respiratory illness in humans, spreading as pandemics or epidemics throughout all continents. Nanotechnologies are particles in the nanometer range made from various compositions. They can be lipid-based, polymer-based, protein-based, or inorganic in nature, but they are all bioinspired and virus-like. In this review, we aimed to present a short review of the different nanoparticles currently studied, in particular those which led to publications in the field of respiratory viruses. We evaluated those which could be beneficial for respiratory disease-based viruses; those which already have contributed, such as lipid nanoparticles in the context of COVID-19; and those which will contribute in the future either as vaccines or antiviral drug delivery systems. We present a short assessment based on a critical selection of evidence indicating nanotechnology's promise in the prevention and treatment of respiratory infections.
Collapse
Affiliation(s)
- Mahdi Ftouh
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nesrine Kalboussi
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
- Sahloul University Hospital, Pharmacy Department, Sousse, Tunisia
| | - Nabil Abid
- Department of Biotechnology, High Institute of Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana, Tunis, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, 5000 Monastir, Tunisia
| | - Souad Sfar
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Nathalie Mignet
- University of Paris, INSERM, CNRS, UTCBS, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Badr Bahloul
- Drug Development Laboratory LR12ES09, Faculty of Pharmacy, University of Monastir, Tunisia
| |
Collapse
|
37
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Barbălată CI, Porfire AS, Sesarman A, Rauca VF, Banciu M, Muntean D, Știufiuc R, Moldovan A, Moldovan C, Tomuță I. A Screening Study for the Development of Simvastatin-Doxorubicin Liposomes, a Co-Formulation with Future Perspectives in Colon Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101526. [PMID: 34683821 PMCID: PMC8537800 DOI: 10.3390/pharmaceutics13101526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
An increasing number of studies published so far have evidenced the benefits of Simvastatin (SIM) and Doxorubicin (DOX) co-treatment in colorectal cancer. In view of this, the current study aimed to investigate the pharmaceutical development of liposomes co-encapsulating SIM and DOX, by implementing the Quality by Design (QbD) concept, as a means to enhance the antiproliferative effect of the co-formulation on C26 murine colon cancer cells co-cultured with macrophages. It is known that the quality profile of liposomes is dependent on the critical quality attributes (CQAs) of liposomes (drug entrapped concentration, encapsulation efficiency, size, zeta potential, and drug release profile), which are, in turn, directly influenced by various formulation factors and processing parameters. By using the design of experiments, it was possible to outline the increased variability of CQAs in relation to formulation factors and identify by means of statistical analysis the material attributes that are critical (phospholipids, DOX and SIM concentration) for the quality of the co-formulation. The in vitro studies performed on a murine colon cancer cell line highlighted the importance of delivering the optimal drug ratio at the target site, since the balance antiproliferative vs. pro-proliferative effects can easily be shifted when the molar ratio between DOX and SIM changes.
Collapse
Affiliation(s)
- Cristina Ioana Barbălată
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| | - Alina Silvia Porfire
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
- Correspondence:
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre for Systems Biology, Biodiversity and Bioresources (3B), Faculty of Biology and Geology, Babes-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania; (A.S.); (V.-F.R.); (M.B.)
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, 42 Treboniu Laurian Street, 400271 Cluj-Napoca, Romania
| | - Dana Muntean
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| | - Rareș Știufiuc
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Alin Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Cristian Moldovan
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400337 Cluj-Napoca, Romania; (R.Ș.); (A.M.); (C.M.)
| | - Ioan Tomuță
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 41 Victor Babes Street, 400012 Cluj-Napoca, Romania; (C.I.B.); (D.M.); (I.T.)
| |
Collapse
|
39
|
Waghule T, Narayan Saha R, Singhvi G. UV spectroscopic method for estimation of temozolomide: Application in stability studies in simulated plasma pH, degradation rate kinetics, formulation design, and selection of dissolution media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119848. [PMID: 33933945 DOI: 10.1016/j.saa.2021.119848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Temozolomide (TMZ) is a broad spectrum alkylating agent found effective in the treatment of glioblastoma multiforme, refractory anaplastic astrocytoma, and metastatic melanoma. The major drawback associated with TMZ is pH-dependent stability and short half-life. At physiological pH, it undergoes conversion to MTIC (methyltriazine imidazole carboxamide) and AIC (amino imidazole carboxamide), resulting in only 20-30% brain bioavailability. There is a need for an analytical method for the estimation of TMZ in stability samples and nanoformulations. In this research study, analytical methods were developed for the estimation of TMZ using two media pH 1.2 (0.1 N HCl) and pH 4.5 acetate buffer, which were validated for linearity, range, precision, accuracy, limit of detection, limit of quantification, and specificity as per ICH guidelines. The % RSD was found to be <2% indicating the reliability of the method. Further, the application of the developed methods was explored. The stability of TMZ in three pH conditions (1.2, 4.5, and 7.4) and the respective degradation rate kinetics was studied. Conversion of TMZ was found to follow first order kinetics with the conversion rate of 0.0011, 0.0011, and 0.0453 h-1 in pH 1.2, 4.5, and 7.4 respectively. The developed methods accurately estimated the TMZ concentration in lipid nanoformulation (liposomes) indicated by ~100% recovery. Acetate buffer (pH 4.5) was found to be an appropriate dissolution media for TMZ loaded lipid nanoformulations. The developed methods were found to be suitable for routine analysis, for the determination of drug stability and estimation of temozolomide in lipid nanoformulations.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India; Birla Institute of Technology and Science, Pilani, Dubai Campus, United Arab Emirates
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
40
|
Gheybi F, Alavizadeh SH, Rezayat SM, Hatamipour M, Akhtari J, Faridi Majidi R, Badiee A, Jaafari MR. pH-Sensitive PEGylated Liposomal Silybin: Synthesis, In Vitro and In Vivo Anti-Tumor Evaluation. J Pharm Sci 2021; 110:3919-3928. [PMID: 34418455 DOI: 10.1016/j.xphs.2021.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 12/24/2022]
Abstract
The drug delivery systems improve the efficacy of chemotherapeutics through enhanced targeting and controlled release however, biological barriers of tumor microenvironment greatly impede the penetration of nanomedicine within the tumor. We report herein the fabrication of a PEG-detachable silybin (SLB) pH-sensitive liposome decorated with TAT-peptide. For this, Acyl hydrazide-activated PEG2000 was prepared and linked with ketone-derivatized DPPE via an acid-labile hydrazone bond to form mPEG2000-HZ-DPPE. TAT peptide was conjugated with a shorter -PEG1000-DSPE spacer and post-inserted into PEGylated liposome (DPPC: mPEG2000-DSPE: Chol). To prepare nanoliposomes (around 100 nm), first, a novel method was used to prepare SLB-Soya PC (SLB-SPC) complex, then this complex was incorporated into nanoliposomes. The pH-sensitivity and shielding effect of long PEG chain on TAT peptide was investigated using DiI liposome and FACS analysis. Pre-treatment to the lowered pH enhanced cellular association of TAT-modified pH-sensitive liposome due to the cleavage of hydrazone bond and TAT exposure. Besides, TAT-modified pH-sensitive liposomes significantly reduced cell viability compared to the plain liposome. In vivo results were very promising with pH-sensitive liposome by detaching PEG moieties upon exposure to the acidic tumor microenvironment, enhancing cellular uptake, retarding tumor growth, and prolonging the survival of 4T1 breast tumor-bearing BALB/c mice. TAT modification of pH-sensitive liposome improved cancer cell association and cytotoxicity and demonstrated potential intracellular delivery upon exposure to acidic pH. However, in in vivo studies, TAT as a targeting ligand significantly decreased the therapeutic efficacy of the formulation attributed to an inefficient tumor accumulation and higher release rate in the circulation. The results of this study indicated that pH-sensitive liposome containing SLB, which was prepared with a novel method with a significant SLB loading efficiency, is very effective in the treatment of 4T1 breast tumor-bearing BALB/c mice and merits further investigation.
Collapse
Affiliation(s)
- Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Faridi Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Hu J, Ni Z, Zhu H, Li H, Chen Y, Shang Y, Chen D, Liu H. A novel drug delivery system -- Drug crystallization encapsulated liquid crystal emulsion. Int J Pharm 2021; 607:121007. [PMID: 34391854 DOI: 10.1016/j.ijpharm.2021.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Liquid crystals (LCs) are widely used for drug delivery due to their controlled and sustained drug release properties. In this paper, drug crystallization encapsulated liquid crystal emulsion, a novel drug delivery system, was proposed. The lamellar liquid crystals formed by hydrogenated lecithin, which are similar to the skin stratum corneum lipid structure, are adopted as the drug carrier to encapsulate non-steroidal anti-inflammatory drugs (NSAIDs). As the model drug, ketoprofen exists in the hydrophobic core of emulsion as a drug crystal when squalane is used as the oil phase. The microstructure, sustained drug release behaviors, physicochemical property and biocompatibility of the system were examined by polarized light microscopy, rheological measurements, differential scanning calorimetry, X-ray diffraction, small-angle X-ray scattering, in vitro release study, and in vitro cellular cytotoxicity assay. The results have shown that the novel system lowers the drug crystal melting point and improves the thermal stability of liquid crystal structure. Besides, the excellent biocompatibility and sustained release property through the additional dissolution step of drug crystal show its application potentials in the topical cosmeceuticals. The results will also be helpful for in-depth understanding of the physical state of encapsulated drug in the liquid crystal carrier systems.
Collapse
Affiliation(s)
- Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Hanglin Li
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Daijie Chen
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
43
|
Khatib I, Ke WR, Cipolla D, Chan HK. Storage stability of inhalable, controlled-release powder formulations of ciprofloxacin nanocrystal-containing liposomes. Int J Pharm 2021; 605:120809. [PMID: 34144139 DOI: 10.1016/j.ijpharm.2021.120809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Novel inhalable and controlled release powder formulations of ciprofloxacin nanocrystals inside liposomes (CNL) were recently developed. In the present study, the storage stability of CNL powders consisting of lyoprotectant (i.e. sucrose or lactose), lipids, ciprofloxacin (CIP), and magnesium stearate or isoleucine was investigated. These powders were produced by spray drying, collected in a dry box at <15% relative humidity (RH), then stored at room temperature and either 4 or 20 %RH. Liposomal integrity, CIP encapsulation efficiency (EE), in vitro drug release (IVR), aerosol performance, and solid-state properties were examined over six months. Sucrose CNL powder exhibited consistent liposomal integrity, aerosol performance, and controlled release of CIP over six months of storage at 4 %RH. However, storage of the powder at 20 %RH for the same period caused sucrose crystallization and consequently a significant drop in EE and aerosol performance (p-values < 0.05), along with the IVR of CIP becoming similar to that of the non-crystalline CIP liposomal dispersions (f2 > 50). Lactose CNL maintained superior aerosol performance over the six months irrespective of the storage RH. However, liposomal instability occurred at both RHs within the first month of storage with a significant drop in EE and an increase in liposome size (p-values < 0.05). Moreover, the IVR assay of CIP from lactose CNL showed a less controlled release and a substantial difference (f2 < 50) from its initial value after six months regardless of the storage RHs. In conclusion, dry powder inhalers of CNL were physiochemically stable in sucrose lyoprotectant when stored below 4 %RH at room temperature for six months.
Collapse
Affiliation(s)
- Isra Khatib
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Wei-Ren Ke
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | | | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
44
|
Abstract
The host immune system is highly compromised in case of viral infections and relapses are very common. The capacity of the virus to destroy the host cell by liberating its own DNA or RNA and replicating inside the host cell poses challenges in the development of antiviral therapeutics. In recent years, many new technologies have been explored for diagnosis, prevention, and treatment of viral infections. Nanotechnology has emerged as one of the most promising technologies on account of its ability to deal with viral diseases in an effective manner, addressing the limitations of traditional antiviral medicines. It has not only helped us to overcome problems related to solubility and toxicity of drugs, but also imparted unique properties to drugs, which in turn has increased their potency and selectivity toward viral cells against the host cells. The initial part of the paper focuses on some important proteins of influenza, Ebola, HIV, herpes, Zika, dengue, and corona virus and those of the host cells important for their entry and replication into the host cells. This is followed by different types of nanomaterials which have served as delivery vehicles for the antiviral drugs. It includes various lipid-based, polymer-based, lipid-polymer hybrid-based, carbon-based, inorganic metal-based, surface-modified, and stimuli-sensitive nanomaterials and their application in antiviral therapeutics. The authors also highlight newer promising treatment approaches like nanotraps, nanorobots, nanobubbles, nanofibers, nanodiamonds, nanovaccines, and mathematical modeling for the future. The paper has been updated with the recent developments in nanotechnology-based approaches in view of the ongoing pandemic of COVID-19.Graphical abstract.
Collapse
Affiliation(s)
- Malobika Chakravarty
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
45
|
Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021; 12:683935. [PMID: 34122112 PMCID: PMC8187807 DOI: 10.3389/fphar.2021.683935] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, an inflammatory response within the central nervous system (CNS), is a main hallmark of common neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), among others. The over-activated microglia release pro-inflammatory cytokines, which induces neuronal death and accelerates neurodegeneration. Therefore, inhibition of microglia over-activation and microglia-mediated neuroinflammation has been a promising strategy for the treatment of neurodegenerative diseases. Many drugs have shown promising therapeutic effects on microglia and inflammation. However, the blood–brain barrier (BBB)—a natural barrier preventing brain tissue from contact with harmful plasma components—seriously hinders drug delivery to the microglial cells in CNS. As an emerging useful therapeutic tool in CNS-related diseases, nanoparticles (NPs) have been widely applied in biomedical fields for use in diagnosis, biosensing and drug delivery. Recently, many NPs have been reported to be useful vehicles for anti-inflammatory drugs across the BBB to inhibit the over-activation of microglia and neuroinflammation. Therefore, NPs with good biodegradability and biocompatibility have the potential to be developed as an effective and minimally invasive carrier to help other drugs cross the BBB or as a therapeutic agent for the treatment of neuroinflammation-mediated neurodegenerative diseases. In this review, we summarized various nanoparticles applied in CNS, and their mechanisms and effects in the modulation of inflammation responses in neurodegenerative diseases, providing insights and suggestions for the use of NPs in the treatment of neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yu-Jiao Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Anesthesia, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qing-Ze Fan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Sun X, Yang P, Wang S, Xing H. Multifunctional zinc phthalocyanine‐phenolic resin (
ZnPc‐PFR
)@
MSN
nanocomposite based fluorescent imaging, photothermal therapy, and
pH
‐sensitive drug release. J Appl Polym Sci 2021. [DOI: 10.1002/app.50854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangfei Sun
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Ping Yang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Shaohua Wang
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| | - Honglong Xing
- School of Chemical Engineering Anhui University of Science and Technology Huainan Anhui China
| |
Collapse
|
47
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
48
|
Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601:120571. [PMID: 33812967 DOI: 10.1016/j.ijpharm.2021.120571] [Citation(s) in RCA: 428] [Impact Index Per Article: 142.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayers enclosing an aqueous core. Being both nontoxic and biodegradable, liposomes represent a powerful delivery system for several drugs. They have improved the therapeutic efficacy of drugs through stabilizing compounds, overcoming obstacles to cellular and tissue uptake and increasing drug biodistribution to target sites in vivo, while minimizing systemic toxicity. This review offers an overview of liposomes, thought the exploration of their key fundamentals. Initially, the main design aspects to obtain a successful liposomal formulation were addressed, following the techniques for liposome production and drug loading. Before application, liposomes required an extensive characterization to assurance in vitro and in vivo performance. Thus, several properties to characterize liposomes were explored, such as size, polydispersity index, zeta potential, shape, lamellarity, phase behavior, encapsulation efficiency, and in vitro drug release. Topics related with liposomal functionalization and effective targeting strategies were also addressed, as well as stability and some limitations of liposomes. Finally, this review intends to explore the current market liposomes used as a drug delivery system in different therapeutic applications.
Collapse
|
49
|
Xu H, Li C, Wei Y, Zheng H, Zheng H, Wang B, Piao JG, Li F. Angiopep-2-modified calcium arsenite-loaded liposomes for targeted and pH-responsive delivery for anti-glioma therapy. Biochem Biophys Res Commun 2021; 551:14-20. [PMID: 33714754 DOI: 10.1016/j.bbrc.2021.02.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier (BBB) is the most critical obstacle in the treatment of central nervous system disorders, such as glioma, the most typical type of brain tumor. To overcome the BBB and enhance drug-penetration abilities, we used angiopep-2-modified liposomes to deliver arsenic trioxide (ATO) across the BBB, targeting the glioma. Angiopep-2-modified calcium arsenite-loaded liposomes (A2-PEG-LP@CaAs), with uniformly distributed hydrodynamic diameter (96.75 ± 0.57 nm), were prepared using the acetate gradient method with high drug-loading capacity (7.13 ± 0.72%) and entrapment efficiency (54.30 ± 9.81%). In the acid tumor microenvironment, arsenic was responsively released, thereby exerting an anti-glioma effect. The anti-glioma effect of A2-PEG-LP@CaAs was investigated both in vitro and in vivo. As a result, A2-PEG-LP@CaAs exhibited a potent, targeted anti-glioma effect mediated by the lipoprotein receptor-related (LRP) receptor, which is overexpressed in both the BBB and glioma. Therefore, A2-PEG-LP@CaAs could dramatically promote the anti-glioma effect of ATO, as a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Hengwu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chaoqun Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Binhui Wang
- The Affiliated Municipal Hospital of Taizhou University, Taizhou, 318000, China.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
50
|
Synthesis of Curcumin Loaded Smart pH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. FIBERS 2021. [DOI: 10.3390/fib9030019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innovation of drug delivery vehicles with controlled properties for cancer therapy is the aim of most pharmaceutical research. This study aims to fabricate a new type of smart biocompatible stealth-nanoliposome to deliver curcumin for cancer treatment. Herein, four different types of liposomes (with/without pH-responsive polymeric coating) were synthesized via the Mozafari method and then characterized with several tests, including dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), Zeta potential, and field emission scanning electron microscopes (FE-S EM). The loading and release profile of curcumin were evaluated in two pH of 7.4 and 6.6. Finally, the MTT assay was used to assess the cytotoxicity of the samples. FE-SEM results revealed a mean size of about 40 and 50 nm for smart stealth-liposome and liposome, respectively. The results of drug entrapment revealed that non-coated liposome had about 74% entrapment efficiency, while it was about 84% for PEGylated liposomes. Furthermore, the drug released pattern of the nanocarriers showed more controllable release in stealth-liposome in comparison to non-coated one. The results of the cytotoxicity test demonstrated the toxicity of drug-loaded carriers on cancer cells. Based on the results of this study, the as-prepared smart stealth pH-responsive nanoliposome could be considered as a potential candidate for cancer therapy.
Collapse
|