1
|
Wang W, Chen Z, Hasegawa H, Hirano K, Imashiro C, Morita T. Effect of driving frequency and power on droplet size atomized by a multimodal transducer. ULTRASONICS SONOCHEMISTRY 2024; 112:107166. [PMID: 39603204 PMCID: PMC11635766 DOI: 10.1016/j.ultsonch.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Ultrasonic atomization is used in various applications such as medical devices, material synthesis, and humidity control. To meet the needs of different applications, the required droplet size ranges from a few microns to several hundred microns. In this study, we realized wideband multiple-frequency atomization with a multimodal transducer, which could control the size of atomized droplets by switching operating frequencies. A parabolic reflector served to focus the incident ultrasound waves, and a circular plate was employed to excite bending modes. By comparing the results of frequency response experiments with those of finite element simulation, nine different bending modes were acquired in the range of 500-2500 kHz. Then, 734, 949, 1530, and 2063 kHz were selected to examine atomization performance for producing 1-10 μm water droplets. The relationship between the droplet diameter and the operating frequency was clarified. The droplet diameter was found to follow a log-normal distribution. At these four frequencies, the mean droplet diameter was 7.71, 6.57, 4.87, and 4.43 μm, respectively, meaning that the diameter decreased with increasing frequency. The mean droplet diameter decreased with increasing input power at 734 kHz, whereas at 2063 kHz, no significant trend was shown. Furthermore, the atomization rate was found to increase at higher power and exhibited a frequency dependence. These results indicated that the multimodal transducer has promising potential for high-frequency ultrasonic atomization and the capacity to control the droplet size.
Collapse
Affiliation(s)
- Weiquan Wang
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa 277-8563, Japan
| | - Zhirui Chen
- Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Hasegawa
- Development and Engineering Department, Industrial Cleaning Equipment Division, Kaijo Corporation, Sakae-cho 3-1-5, Hamura 205-8607, Japan
| | - Kohsuke Hirano
- Development and Engineering Department, Industrial Cleaning Equipment Division, Kaijo Corporation, Sakae-cho 3-1-5, Hamura 205-8607, Japan
| | - Chikahiro Imashiro
- Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takeshi Morita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa 277-8563, Japan; Graduate School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
2
|
Zhou X, Zhou J, Wang L, Zhao B, Ma Y, Zhang N, Chen W, Huang D. Size-tailored and acid-degradable polyvinyl alcohol microgels for inhalation therapy of bacterial pneumonia. J Mater Chem B 2024; 12:9325-9334. [PMID: 39171436 DOI: 10.1039/d4tb01224k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Administration of antibiotics via inhalation is considered an effective strategy for pneumonia treatment; however, it encounters challenges related to the development of drug formulations with precise particle sizes and controlled release profiles. Herein, size-tailored and acid-degradable polyvinyl alcohol (PVA) microgels are utilized for nebulized inhalation delivery of piperacillin (PIP) antibiotics to effectively treat pneumonia. These microgels loaded with PIP (G@PIP) were prepared through the UV-crosslinking of thermo-triggered vinyl ether methacrylate-functionalized PVA (PVAVEMA) micro-aggregates in aqueous solution. The size of G@PIP microgels could be tailored by adjusting concentrations during the crosslinking process above phase-transition temperature at 15 °C. Additionally, under simulated inflammatory acidic conditions, the G@PIP microgels degraded and released PIP with relatively high inhibition efficiency against E. coli. Furthermore, in vivo therapeutic outcomes revealed that inhalational delivery of G@PIP microgel with a medium-size of 3.5 μm (G-3.5@PIP) exhibited superior lung deposition compared to other microgel sizes owing to its reduced exhalation and enhanced diffusion capacity within the pulmonary system. The high accumulation of G-3.5@PIP significantly reduced E. coli infection and associated inflammation while maintaining the biocompatibility of the microgels. Overall, these acid-degradable PVA microgels offer a versatile and efficacious inhalation therapy for pneumonia-associated infections.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jingjing Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Lanlan Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yukun Ma
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ni Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Chen J, Ye Y, Yang Q, Fan Z, Shao Y, Wei X, Shi K, Dong J, Ma Y, Zhu J. Understanding the role of swirling flow in dry powder inhalers: Implications for design considerations and pulmonary delivery. J Control Release 2024; 373:410-425. [PMID: 39038545 DOI: 10.1016/j.jconrel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.
Collapse
Affiliation(s)
- Jiale Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China.
| | - Qingliang Yang
- College of Pharmaceutical Science, Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziyi Fan
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Ying Ma
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
4
|
Sutar AD, Verma RK, Shukla R. Quality by Design in Pulmonary Drug Delivery: A Review on Dry Powder Inhaler Development, Nanotherapy Approaches, and Regulatory Considerations. AAPS PharmSciTech 2024; 25:178. [PMID: 39095623 DOI: 10.1208/s12249-024-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Collapse
Affiliation(s)
- Ashish Dilip Sutar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
5
|
Ghozali MT, Mutiara TA. Promoting knowledge of metered dose inhaler (MDI) usage among pharmacy professional students through a mobile app. J Asthma 2024; 61:835-846. [PMID: 38236014 DOI: 10.1080/02770903.2024.2306622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/13/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Efficient asthma management necessitates optimal usage of metered-dose inhalers (MDIs). As future health professionals, pharmacy students are pivotal in disseminating accurate methodologies for MDI usage. Despite having hands-on experience, there is room to enhance their comprehension, highlighting the need for prompt patient educational interventions. OBJECTIVE This study aims to evaluate the effectiveness of a mobile app-assisted educational method in improving pharmacy students' understanding of MDI usage. METHODS A pre-experimental study was conducted from March to August 2021 with 45 participants enrolled in the Pharmacist Professional Study Program at the Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta. Using a one-group pretest-post-test design, the study measured the app's impact on students' knowledge and MDI usage skills. RESULTS The intervention significantly improved students' scores on a 9-step MDI usage checklist, with increases ranging from 0.10 to 0.50 across verbal and motor components. A Mann-Whitney U test validated these findings, showing a statistically significant p-value of 0.001. CONCLUSION The mobile app-assisted educational approach substantially enhanced pharmacy students' proficiency in MDI use. The significant rise in mean scores for the 9-step checklist, along with the notable p-value, supports the effectiveness of this intervention in healthcare education.
Collapse
Affiliation(s)
- Muhammad Thesa Ghozali
- Department of Pharmaceutical Management, School of Pharmacy, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Tasya Aulia Mutiara
- Undergraduate Program, School of Pharmacy, Universitas Muhammadiyah Yogyakarta, Indonesia
| |
Collapse
|
6
|
Peštálová A, Gajdziok J. Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples. Pharm Dev Technol 2024; 29:504-516. [PMID: 38712608 DOI: 10.1080/10837450.2024.2350530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.4 g/cm3, and the ability to avoid protective lung mechanisms, come to the forefront of the research. They are mostly prepared by spray techniques such as spray drying or lyophilization using pore-forming substances (porogens). These substances could be gaseous, solid, or liquid, and their selection depends on their polarity, solubility, and mutual compatibility with the carrier material and the drug. According to the pores-forming mechanism, porogens can be divided into groups, such as osmogens, extractable porogens, and porogens developing gases during decomposition. This review characterizes modern trends in the formulation of solid microparticles for lung delivery; describes the mechanisms of action of the most often used porogens, discusses their applicability in various formulation methods, emphasizes spray techniques; and documents discussed topics by examples from experimental studies.
Collapse
Affiliation(s)
- Andrea Peštálová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Serpelloni S, Williams ME, Caserta S, Sharma S, Rahimi M, Taraballi F. Electrospun Chitosan-Based Nanofibrous Coating for the Local and Sustained Release of Vancomycin. ACS OMEGA 2024; 9:11701-11717. [PMID: 38496925 PMCID: PMC10938330 DOI: 10.1021/acsomega.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.
Collapse
Affiliation(s)
- Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| | - Michael Ellis Williams
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Reproductive
Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8QA, U.K.
| | - Sergio Caserta
- Department
of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80138, Italy
| | - Shashank Sharma
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Maham Rahimi
- Department
of Cardiovascular Surgery, Houston Methodist
Hospital, Houston, Texas 77030-2707, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Academic Institute, Houston, Texas 77030-2707, United States
- Department
of Orthopedics and Sport Medicine, Houston
Methodist Hospital, Houston, Texas 77030-2707, United States
| |
Collapse
|
8
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
9
|
Wu TY, Huang CC, Tsai HC, Lin TK, Chen PY, Darge HF, Hong ZX, Harn HJ, Lin SZ, Lai JY, Chen YS. Mucin-mediated mucosal retention via end-terminal modified Pluronic F127-based hydrogel to increase drug accumulation in the lungs. BIOMATERIALS ADVANCES 2024; 156:213722. [PMID: 38101076 DOI: 10.1016/j.bioadv.2023.213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. β-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.
Collapse
Affiliation(s)
- Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chun-Chiang Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 302, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Tzu-Kai Lin
- Department of Dermatology, Skin Institute, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Dermatology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC.
| |
Collapse
|
10
|
Negi A, Nimbkar S, Moses JA. Engineering Inhalable Therapeutic Particles: Conventional and Emerging Approaches. Pharmaceutics 2023; 15:2706. [PMID: 38140047 PMCID: PMC10748168 DOI: 10.3390/pharmaceutics15122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Respirable particles are integral to effective inhalable therapeutic ingredient delivery, demanding precise engineering for optimal lung deposition and therapeutic efficacy. This review describes different physicochemical properties and their role in determining the aerodynamic performance and therapeutic efficacy of dry powder formulations. Furthermore, advances in top-down and bottom-up techniques in particle preparation, highlighting their roles in tailoring particle properties and optimizing therapeutic outcomes, are also presented. Practices adopted for particle engineering during the past 100 years indicate a significant transition in research and commercial interest in the strategies used, with several innovative concepts coming into play in the past decade. Accordingly, this article highlights futuristic particle engineering approaches such as electrospraying, inkjet printing, thin film freeze drying, and supercritical processes, including their prospects and associated challenges. With such technologies, it is possible to reshape inhaled therapeutic ingredient delivery, optimizing therapeutic benefits and improving the quality of life for patients with respiratory diseases and beyond.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management—Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| |
Collapse
|
11
|
Knap K, Reczyńska-Kolman K, Kwiecień K, Niewolik D, Płonka J, Ochońska D, Jeleń P, Mielczarek P, Kazek-Kęsik A, Jaszcz K, Brzychczy-Włoch M, Pamuła E. Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies. BIOMATERIALS ADVANCES 2023; 153:213540. [PMID: 37429048 DOI: 10.1016/j.bioadv.2023.213540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 μm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 μg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.
Collapse
Affiliation(s)
- Karolina Knap
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Reczyńska-Kolman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Daria Niewolik
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Dorota Ochońska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Piotr Jeleń
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Przemysław Mielczarek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Katarzyna Jaszcz
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
12
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
13
|
Bell DM, Zhang J, Top J, Bogler S, Surdu M, Slowik JG, Prevot ASH, El Haddad I. Sensitivity Constraints of Extractive Electrospray for a Model System and Secondary Organic Aerosol. Anal Chem 2023; 95:13788-13795. [PMID: 37656668 PMCID: PMC10515109 DOI: 10.1021/acs.analchem.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023]
Abstract
The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD). The fraction remaining after evaporation is compared between an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) and a scanning mobility particle sizer (SMPS), which provides a comparison between a quantified mass loss by the SMPS and the signal loss in the EESI-TOF. The sensitivity of the EESI-TOF is determined for both a simplified complex mixture (PEG-300) and also for a complex mixture of α-pinene secondary organic aerosol (SOA). For PEG-300, separation is possible on a molecule-by-molecule level with the TD and provides insights into the molecule-dependent sensitivity of the EESI-TOF, showing a higher sensitivity toward the most volatile molecule. For α-pinene SOA, sensitivity determination for specific classes is possible because of the number of molecular formula observed by the EESI-TOF. These classes are separated by their volatility and are broken down into monomers (O3-5,6-7,8+), dimers (O4-7,8+), and higher order oligomers (e.g., trimers and tetramers). Here, we show that the EESI-TOF initially measures 60.1% monomers, 32.7% dimers, and 7.2% trimers and tetramers in α-pinene SOA, but after sensitivity correction, the distribution of SOA is 37.4% monomers, 56.1% dimers, and 6.4% trimers and tetramers. These results provide a path forward for the quantification of aerosol components with the EESI-TOF in other applications and potentially for atmospheric measurements.
Collapse
Affiliation(s)
- David M. Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jun Zhang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jens Top
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Sophie Bogler
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Mihnea Surdu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jay G. Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Andre S. H. Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
14
|
Zhang K, Gao G, Zhao C, Wang Y, Wang Y, Li J. Review of the design of power ultrasonic generator for piezoelectric transducer. ULTRASONICS SONOCHEMISTRY 2023; 96:106438. [PMID: 37209631 DOI: 10.1016/j.ultsonch.2023.106438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
The power ultrasonic generator (PUG) is the core device of power ultrasonic technology (PUT), and its performance determines the application of this technology in biomedicine, semiconductor, aerospace, and other fields. With the high demand for sensitive and accurate dynamic response in power ultrasonic applications, the design of PUG has become a hot topic in academic and industry. However, the previous reviews cannot be used as a universal technical manual for industrial applications. There are many technical difficulties in establishing a mature production system, which hinder the large-scale application of PUG for piezoelectric transducers. To enhance the performance of the dynamic matching and power control of PUG, the studies in various PUT applications have been reviewed in this article. Initially, the demand design covering the piezoelectric transducer application and parameter requirements for ultrasonic and electrical signals is overall summarized, and these parameter requirements have been recommended as the technical indicators of developing the new PUG. Then the factors affecting the power conversion circuit design are analyzed systematically to realize the foundational performance improvement of PUG. Furthermore, advantages and limitations of key control technologies have been summarized to provide some different ideas on how to realize automatic resonance tracking and adaptive power adjustment, and to optimize the power control and dynamic matching control. Finally, several research directions of PUG in the future have been prospected.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Guofu Gao
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Chongyang Zhao
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yi Wang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Yan Wang
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Jianfeng Li
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| |
Collapse
|
15
|
Yang X, Sun H, Zhang Z, Ou W, Xu F, Luo L, Liu Y, Chen W, Chen J. Antiviral Effect of Ginsenosides rk1 against Influenza a Virus Infection by Targeting the Hemagglutinin 1-Mediated Virus Attachment. Int J Mol Sci 2023; 24:ijms24054967. [PMID: 36902398 PMCID: PMC10003360 DOI: 10.3390/ijms24054967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections.
Collapse
Affiliation(s)
- Xia Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhening Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Ou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ling Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (W.C.); (J.C.); Tel./Fax: +61-3-9479-3961 (W.C.); +86-20-8528-0234 (J.C.)
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (W.C.); (J.C.); Tel./Fax: +61-3-9479-3961 (W.C.); +86-20-8528-0234 (J.C.)
| |
Collapse
|
16
|
Peng J, Wang Q, Guo M, Liu C, Chen X, Tao L, Zhang K, Shen X. Development of Inhalable Chitosan-Coated Oxymatrine Liposomes to Alleviate RSV-Infected Mice. Int J Mol Sci 2022; 23:ijms232415909. [PMID: 36555548 PMCID: PMC9786244 DOI: 10.3390/ijms232415909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Human respiratory syncytial virus (RSV) infection is the most important cause of acute lower respiratory tract infection in infants, neonates, and young children, even leading to hyperinflation and atelectasis. Oxymatrine (OMT), originating from natural herbs, possessed potential antivirus activity against influenza A virus, Coxsackie B3 virus, and RSV, whereas the absence of an in vivo study indicated the difficulties in overcoming the physiological obstacles. Since RSV basically replicated in lung tissue, in this study, we fabricated and characterized a chitosan (CS)-coated liposome with OMT loaded for the treatment of lethal RSV infection via inhalation. The results uncovered that OMT, as a hydrophilic drug, was liable to diffuse in the mucus layer and penetrate through the gas-blood barrier to enter systemic circulation quickly, which might restrict its inhibitory effect on RSV replication. The CS-coated liposome enhanced the distribution and retention of OMT in lung tissue without restriction from mucus, which contributed to the improved alleviative effect of OMT on lethal RSV-infected mice. Overall, this study provides a novel inhalation therapy for RSV infection, and the CS-coated liposome might be a potential inhalable nanocarrier for hydrophilic drugs to prevent pulmonary infections.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingyang Guo
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Chunyuan Liu
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xuesheng Chen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ke Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| |
Collapse
|
17
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
18
|
Zhu M, Zhang D, Zhang L, Zhao L, Xu L, Wang B, Zhang X, Chen J, Bei Z, Wang H, Zhou D, Yang W, Song Y. Spray-Dried Inhalable Powder Formulations of Gentamicin Designed for Pneumonic Plague Therapy in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122646. [PMID: 36559140 PMCID: PMC9782578 DOI: 10.3390/pharmaceutics14122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Infection with Yersinia pestis (Y. pestis) may cause pneumonic plague, which is inevitably fatal without treatment. Gentamicin (GM), an aminoglycoside antibiotic, is a drug commonly used in the treatment of plague. However, it requires repeated intramuscular or intravenous administration. Pulmonary drug delivery is noninvasive, with the advantages of local targeting and reduced risk of systemic toxicity. In this study, GM powders were prepared using spray-drying technology. The powders displayed good physical and chemical properties and met the requirements for human pulmonary inhalation. The formulation of the powders was optimized using a 32 full factorial design. A formulation of 15% (w/w) of L-leucine was prepared, and the spray-drying process parameters using an inlet temperature of 120°C and a 15% pump rate were determined to produce the best powder. In addition, the optimized GM spray-dried powders were characterized in terms of morphology, crystallinity, powder fluidity, and aerodynamic particle size distribution analysis. In a mouse model of pneumonic plague, we compared the therapeutic effects among three administration routes, including subcutaneous injection, liquid atomization, and dry powder atomization. In conclusion, our data suggest that inhalation therapy with GM spray-dried powders is an effective treatment for pneumonic plague.
Collapse
Affiliation(s)
- Menghuan Zhu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongna Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liangliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Likun Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baogang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinyu Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jinwei Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhuchun Bei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| | - Yabin Song
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- Correspondence: (W.Y.); (Y.S.)
| |
Collapse
|
19
|
Isabel CZ, Luis AD, Samuel ES, Elizabeth PS, Dea HR, Sergio AA. “Novel mucoadhesive PLGA-PVM/MA micro-nanocomposites loaded with felodipine intended for pulmonary administration by nebulization”. Int J Pharm 2022; 628:122295. [DOI: 10.1016/j.ijpharm.2022.122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
20
|
Al-Nemrawi NK, Darweesh RS, Al-shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022; 14:4450. [PMID: 36298030 PMCID: PMC9607145 DOI: 10.3390/polym14204450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Many recent studies focus on the pulmonary delivery of vaccines as it is needle-free, safe, and effective. Inhaled vaccines enhance systemic and mucosal immunization but still faces many limitations that can be resolved using polymeric nanoparticles (PNPs). This review focuses on the use of properties of PNPs, specifically chitosan and PLGA to be used in the delivery of vaccines by inhalation. It also aims to highlight that PNPs have adjuvant properties by themselves that induce cellular and humeral immunogenicity. Further, different factors influence the behavior of PNP in vivo such as size, morphology, and charge are discussed. Finally, some of the primary challenges facing PNPs are reviewed including formulation instability, reproducibility, device-related factors, patient-related factors, and industrial-level scale-up. Herein, the most important variables of PNPs that shall be defined in any PNPs to be used for pulmonary delivery are defined. Further, this study focuses on the most popular polymers used for this purpose.
Collapse
Affiliation(s)
- Nusaiba K. Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Ruba S. Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Lubna A. Al-shriem
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Farah S. Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sereen O. Emran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Areej S. Khafajah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Muna A. Abu-Dalo
- Department of Chemistry, Faculty of Science and Art, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
21
|
Valiulin SV, Onischuk AA, Baklanov AM, An’kov SV, Dubtsov SN, Alekseev AA, Shkil NN, Nefedova EV, Plokhotnichenko ME, Tolstikova TG, Dolgov AM, Dultseva GG. Aerosol Inhalation Delivery of Ceftriaxone in Mice: Generation Procedure, Pharmacokinetics, and Therapeutic Outcome. Antibiotics (Basel) 2022; 11:antibiotics11101305. [PMID: 36289963 PMCID: PMC9598611 DOI: 10.3390/antibiotics11101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Aerosol inhalation delivery of ceftriaxone in mice was investigated. An ultrasonic nebulizer within the ranges of mean particle diameter 0.5–1.5 μm and mass concentration 0.01–0.6 μg/cm3 was used in inhalation experiments. Pharmacokinetic measurements were carried out using a nose-only chamber. Ceftriaxone concentration in blood serum and its mass in the lungs of mice were measured as a function of time using high-performance liquid chromatography. The body-delivered dose was within the range 3–5 mg/kg. The antibacterial effect of aerosolized ceftriaxone was investigated for mice infected with Klebsiella pneumoniae 82 and Staphylococcus aureus ATCC 25 953. The survival rate for infected mice after the treatment with ceftriaxone aerosol revealed the high antibacterial efficiency of this kind of treatment.
Collapse
Affiliation(s)
- Sergey V. Valiulin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
- Correspondence:
| | - Andrei A. Onischuk
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Anatoly M. Baklanov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Sergey V. An’kov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
- Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Sergey N. Dubtsov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Alexander A. Alekseev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Nikolay N. Shkil
- Siberian Federal Scientific Center of Agro-BioTechnologies RAS, 630501 Krasnoobsk, Russia
| | - Ekaterina V. Nefedova
- Siberian Federal Scientific Center of Agro-BioTechnologies RAS, 630501 Krasnoobsk, Russia
| | - Maria E. Plokhotnichenko
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Tatyana G. Tolstikova
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
- Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Arseniy M. Dolgov
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Galina G. Dultseva
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Pulmonary Delivery of Emerging Antibacterials for Bacterial Lung Infections Treatment. Pharm Res 2022; 40:1057-1072. [PMID: 36123511 PMCID: PMC9484715 DOI: 10.1007/s11095-022-03379-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/20/2022] [Indexed: 11/08/2022]
Abstract
Bacterial infections in the respiratory tract are considered as one of the major challenges to the public health worldwide. Pulmonary delivery is an attractive approach in the management of bacterial respiratory infections with a few inhaled antibiotics approved. However, with the rapid emergence of antibiotic-resistant bacteria, it is necessary to develop new/alternative inhaled antibacterial agents in the post-antibiotic era. A pipeline of novel biological antibacterial agents, including antimicrobial peptides, RNAi therapeutics, and bacteriophages, has emerged to combat bacterial infections with excellent performance. In this review, the causal effects of bacterial infections on the related pulmonary infectious diseases will be firstly introduced. This is followed by an overview on the development of emerging antibacterial therapeutics for managing lung bacterial infections through nebulization/inhalation of dried powders. The obstacles and underlying proposals regarding their clinical transformation are also discussed to seek insights for further development. Research on inhaled therapy of these emerging antibacterials are still in the infancy, but the promising progress warrants further attention.
Collapse
|
23
|
Lazo REL, Mengarda M, Almeida SL, Caldonazo A, Espinoza JT, Murakami FS. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J Control Release 2022; 350:308-323. [PMID: 35995298 DOI: 10.1016/j.jconrel.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Oral sildenafil (SDF) is used to treat pulmonary arterial hypertension (PAH), and its bioavailability is approximately 40%. Several formulations of nano and microparticles (for pulmonary delivery) are being developed because it is possible to improve characteristics such as release time, bioavailability, dose, frequency, and even directly target the drug to the lungs. This review summarizes the latest SDF drug delivery systems for PAH and explains challenges related to the development, the preclinical, and the clinical studies. A scoping review was conducted by searching electronic databases including PubMed, Scopus, and Web of Science to identify studies published between 2001 and 2021. From 300 articles found, 31 met the inclusion criteria. This review identified colloidal formulations such as polymeric, lipid, and metal-organic framework nanoparticles. Strategies were determined to reach the deep airways such as polymeric microparticles, large porous microparticles, nanocomposites, and nano in microparticles. Finally, aspects related to toxicological, pharmacokinetics, and gaps in information for potential use in humans were discussed. SDF formulations are significant candidates for the treatment of PAH by inhalation. In summation, future preclinical studies are still required in large animals, as there is no particular formulation yet submitted to clinical studies.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Susana Leão Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Joel Toribio Espinoza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Ponta Grossa, Ponta Grossa, 84030-900 Paraná, Brazil
| | - Fábio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil.
| |
Collapse
|
24
|
Shahabadi N, Moshiri M, Roohbakhsh A, Imen Shahidi M, Hashemi M, Amin F, Yazdian-Robati R, Salmasi Z, Etemad L. A dose-related positive effect of inhaled simvastatin loaded PLGA nanoparticles on paraquat-induced pulmonary fibrosis in rats. Basic Clin Pharmacol Toxicol 2022; 131:251-261. [PMID: 35802512 DOI: 10.1111/bcpt.13771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Pulmonary fibrosis is an important complication of subacute Paraquat (PQ) poisoning. Here, we reported a novel nanotherapeutic platform for paraquat (PQ)-induced pulmonary fibrosis in animal inhalation models using simvastatin (SV) loaded into Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). METHODS & MATERIALS Eight inhalations of normal saline, PQ (24mg/kg), PQ plus SV (20 mg/kg), PQ plus SV- loaded PLGA NPs at doses of 5, 10 or 20 mg/kg or PQ plus PLGA NPs were given to rats. After the end of the treatment period, inflammatory factors and creatine phosphokinase as well as lung pathological changes and tracheal responsiveness were evaluated. RESULTS Inhalation of simvastatin loaded PLGA NPs could significantly prevent the progression of PQ-induced pulmonary fibrosis especially at a dose of 10 mg through decreasing the serum level of inflammatory factors as well as contractile responses (P<0.001) compared to PQ group. Pathological findings also confirmed the results. However, inhalation of non-formulated SV could not prevent tissue damage and fibrosis. CONCLUSION Taken together, the present work provides us an idea about the pulmonary delivery of PLGA-SV NPs using nebulizer for the treatment of PQ poisoning. However, the efficacy of this formulation in humans and clinical use needs to be more investigated.
Collapse
Affiliation(s)
- Nasrin Shahabadi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imen Shahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Physiology and Pharmacology, School of Medicine, Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Peng J, Cai Z, Wang Q, Zhou J, Xu J, Pan D, Chen T, Zhang G, Tao L, Chen Y, Shen X. Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration. Molecules 2022; 27:molecules27113610. [PMID: 35684546 PMCID: PMC9182538 DOI: 10.3390/molecules27113610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary emphysema is a fatal lung disease caused by the progressive thinning, enlargement and destruction of alveoli that is closely related to inflammation and oxidative stress. Oxymatrine (OMT), as a bioactive constituent of traditional Chinese herbal Sophora flavescens, has great potential to alleviate pulmonary emphysema via its anti-inflammatory and antioxidative activities. Pulmonary administration is the most preferable way for the treatment of lung diseases. To improve the in vivo stability and pulmonary retention of OMT, OMT-loaded liposome with carboxymethyl chitosan (CMCS) modification was developed. The CMCS was modified on the surface of OMT liposomes via electrostatic attraction and covalent conjugation to obtain Lipo/OMT@CMCS and CMCS-Lipo/OMT, respectively. A porcine pancreatic elastase (PPE)-induced emphysema mice model was established to evaluate the alleviation effects of OMT on alveolar expansion and destruction. CMCS-modified liposomal OMT exhibited superior ameliorative effects on emphysema regardless of the preparation methods, and higher sedimentation and longer retention in the lung were observed in the CMCS-Lipo group. The mechanisms of OMT on emphysema were related to the downregulation of inflammatory cytokines and the rebalancing of antioxidant/oxidation via the Nrf2/HO-1 and NF-κB/IκB-α signaling pathways, leading to reduced cell apoptosis. Moreover, the OMT liposomal preparations further enhanced its anti-inflammatory and antioxidative effects. In conclusion, pulmonary administration of OMT is a potential strategy for the treatment of emphysema and the therapeutic effects can be further improved by CMCS-modified liposomes.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Zimin Cai
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jia Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Jinzhuan Xu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Di Pan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Tingting Chen
- Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China;
| | - Guangqiong Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China; (J.P.); (Z.C.); (Q.W.); (J.Z.); (J.X.); (D.P.); (G.Z.); (L.T.)
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang 550025, China
- Correspondence: (Y.C.); (X.S.); Tel.: +86-0851-8841-6153 (Y.C.); +86-0851-8817-4180 (X.S.)
| |
Collapse
|
26
|
Romano G, Insero G, Marrugat SN, Fusi F. Innovative light sources for phototherapy. Biomol Concepts 2022; 13:256-271. [DOI: 10.1515/bmc-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The use of light for therapeutic purposes dates back to ancient Egypt, where the sun itself was an innovative source, probably used for the first time to heal skin diseases. Since then, technical innovation and advancement in medical sciences have produced newer and more sophisticated solutions for light-emitting sources and their applications in medicine. Starting from a brief historical introduction, the concept of innovation in light sources is discussed and analysed, first from a technical point of view and then in the light of their fitness to improve existing therapeutic protocols or propose new ones. If it is true that a “pure” technical advancement is a good reason for innovation, only a sub-system of those advancements is innovative for phototherapy. To illustrate this concept, the most representative examples of innovative light sources are presented and discussed, both from a technical point of view and from the perspective of their diffusion and applications in the clinical field.
Collapse
Affiliation(s)
- Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| | - Giacomo Insero
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
- National Research Council, National Institute of Optics (CNR-INO) , Via Carrara 1 , 50019 Sesto Fiorentino , FI , Italy
| | - Santi Nonell Marrugat
- Institut Quimic de Sarria, Universidad Ramon Llull , Via Augusta 390 , 08017 Barcelona , Spain
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence , Viale G. Pieraccini 6 , 50139 Florence , Italy
| |
Collapse
|
27
|
Sun Q, Chang W, Liu X, Xie J, Qiu H, Yang Y, Liu L. Aerosol therapy during mechanical ventilation in intensive care units: A questionnaire-based survey of 2203 ICU medical staff in China. JOURNAL OF INTENSIVE MEDICINE 2022; 2:189-194. [PMID: 36789017 PMCID: PMC9923942 DOI: 10.1016/j.jointm.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022]
Abstract
Background To describe the current status of aerosol therapy during mechanical ventilation (MV) and the practice, knowledge, and beliefs about aerosol therapy in physicians working in the intensive care unit (ICU) in China. Methods A physician self-administered questionnaire-based cross-sectional survey was carried out from January 2019 to July 2019. An electronic questionnaire was designed, and physicians who worked regularly in ICUs across several hospitals were contacted through WeChat. Answers to all questions and the general characteristics of physicians who answered the questionnaire were collected and analyzed. Results A total of 2203 medical staff who regularly worked in the ICUs completed this questionnaire (9.0% missing data); 87.7% of the participants were doctors. Most respondents claimed that they often administered aerosolization therapy. Ultrasonic atomizer (50.7%) and jet nebulizer (48.6%) were the most commonly used atomization devices. Bronchodilators (65.8%) and steroids (66.3%) were the most frequently aerosolized drugs during MV. During nebulization, ventilator settings were never changed by 32.7% of respondents. Only 49.1% of respondents knew the appropriate place for a nebulizer. Further, 62.7% of respondents using heated humidifiers reported turning them off during nebulization. Specific knowledge about droplet size and nebulization yield was poor. Respondents from tertiary hospitals and those with higher technical title or work experience tended to have better accuracy than those from primary hospitals or with lower technical titles (P < 0.050). Conclusions Aerosol therapy was commonly used during MV, and the most frequent drugs were bronchodilators and steroids. Scientific knowledge about the optimal implementation of aerosol therapy during MV seemed deficient.
Collapse
Affiliation(s)
- Qin Sun
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Xu Liu
- School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China,Corresponding author: Ling Liu, Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Gulou District, Nanjing, Jiangsu 210009, China
| |
Collapse
|
28
|
Cai Z, Wang Q, Xu J, Zhou J, Jiang Z, Pan D, Zhang Y, Tao L, Peng J, Chen Y, Shen X. Enhanced protective activity of 1,8-Cineole on emphysema using hyaluronic acid-coated liposomes via quantitative pulmonary administration in mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
30
|
Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals (Basel) 2022; 15:ph15040389. [PMID: 35455386 PMCID: PMC9031202 DOI: 10.3390/ph15040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide-based drugs have attracted extensive attention from the medical and pharmaceutical industry because of their relatively high safety and efficacy. However, most of the peptide drugs approved are administrated by injection, which can easily cause poor patient compliance. In this circumstance, pulmonary administration as an alternative to injection administration can not only avoid the above issue but also accelerate the absorption rate of peptide drugs and improve bioavailability. Among the pulmonary delivery systems available on the market, metered-dose inhalers (MDIs) have emerged as appealing candidates for pulmonary delivery systems with clinical translational value, owing to their many merits, including portable, easy-to-operate, and cost-effective properties. Nevertheless, the industrialization of peptide drugs-containing MDIs encounters a bottleneck of low drug loading, owing to the incompatibility between the propellant and the peptide drugs, which cannot be effectively overcome by the current carrier particle encapsulation strategy. Herein, we put forward the following strategies: (1) To screen amphiphilic materials with high surface activity and strong interaction with peptide drugs; (2) To construct a chemical connection between peptide drugs and amphiphilic substances; (3) To optimize the cosolvent for dispersing peptide drugs. We suppose these strategies have the potential to defeat the bottleneck problem and provide a new idea for the industrialization of peptide drugs-containing MDIs.
Collapse
|
31
|
Tavares JL, Cavalcanti IDL, Santos Magalhães NS, Lira Nogueira MCDB. Nanotechnology and COVID-19: quo vadis?. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:62. [PMID: 35283662 PMCID: PMC8901091 DOI: 10.1007/s11051-022-05452-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
The pandemic COVID-19 has worried everyone due to the high mortality rate and the high number of people hospitalized with severe acute respiratory syndrome caused by SARS-CoV-2. Given the seriousness of this disease, several companies and research institutions have sought alternative treatment and/or prevention methods for COVID-19. Due to its versatility, nanotechnology has allowed the development of protective equipment and vaccines to prevent the disease and reduce the number of severe COVID-19 cases. Thus, this article combined the main works and products developed in a nanotechnological field for COVID-19. We performed a literature search using the keywords "COVID-19," "SARS-CoV-2," "nanoparticles," "nanotechnology," and "liposomes" in the SciELO, Scifinder, PubMed, Sciencedirect, ClinicalTrials, and Nanotechnology Products databases Database. The data survey indicated 48 articles, 62 products, and 32 patents. The use of nanotechnology against COVID-19 has brought benefits in several parameters of this disease, helping develop rapid diagnostic tests that release the result in 10 min, as well as developing vaccines containing genetic material from SARS-CoV-2 (DNA, mRNA, and protein subunits). Nanotechnology is an exceptional ally against COVID-19, contributing to the most diverse areas, helping both prevent, diagnose, and treat COVID-19.
Collapse
Affiliation(s)
- João Lima Tavares
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| | - Iago Dillion Lima Cavalcanti
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| | - Nereide Stela Santos Magalhães
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, Cidade Universitária, Recife, PE 123550670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Recife, Brazil
| |
Collapse
|
32
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
33
|
Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm 2022; 616:121507. [PMID: 35085729 DOI: 10.1016/j.ijpharm.2022.121507] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Respiratory infections are one of the major global health problems. Among them, chronic respiratory infections caused by biofilm formation are difficult to treat because of both drug tolerance and poor drug penetration into the complex biofilm structure. A major part of the current research on combating respiratory biofilm infections have been focused on destroying the matrix of extracellular polymeric substance and eDNA of the biofilm or promoting the penetration of antibiotics through the extracellular polymeric substance via delivery technologies in order to kill the bacteria inside. There are also experimental data showing that certain inhaled antibiotics with simple formulations can effectively penetrate EPS to kill surficially located bacteria and centrally located dormant bacteria or persisters. This article aims to review recent advances in the pharmaceutical strategies for combating respiratory biofilm infections with a focus on nanotechnology-based drug delivery approaches. The formation and characteristics of bacterial biofilm infections in the airway mucus are presented, which is followed by a brief review on the current clinical approaches to treat respiratory biofilm infections by surgical removal and antimicrobial therapy, and also the emerging clinical treatment approaches. The current combination of antibiotics and non-antibiotic adjuvants to combat respiratory biofilm infections are also discussed.
Collapse
|
34
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
35
|
Rahman Sabuj MZ, Islam N. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections. NANOSCALE ADVANCES 2021; 3:4005-4018. [PMID: 36132845 PMCID: PMC9419283 DOI: 10.1039/d1na00205h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/16/2021] [Indexed: 05/09/2023]
Abstract
Lower respiratory tract infections (LRTIs) are one of the leading causes of deaths in the world. Currently available treatment for this disease is with high doses of antibiotics which need to be administered frequently. Instead, pulmonary delivery of drugs has been considered as one of the most efficient routes of drug delivery to the targeted areas as it provides rapid onset of action, direct deposition of drugs into the lungs, and better therapeutic effects at low doses and is self-administrable by the patients. Thus, there is a need for scientists to design more convenient pulmonary drug delivery systems towards the innovation of a novel treatment system for LRTIs. Drug-encapsulating polymer nanoparticles have been investigated for lung delivery which could significantly reduce the limitations of the currently available treatment system for LRTIs. However, the selection of an appropriate polymer carrier for the drugs is a critical issue for the successful formulations of inhalable nanoparticles. In this review, the current understanding of LRTIs, management systems for this disease and their limitations, pulmonary drug delivery systems and the challenges of drug delivery through the pulmonary route are discussed. Drug-encapsulating polymer nanoparticles for lung delivery, antibiotics used in pulmonary delivery and drug encapsulation techniques have also been reviewed. A strong emphasis is placed on the impact of drug delivery into the infected lungs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT) Brisbane QLD Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT) Brisbane QLD Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT) Brisbane QLD Australia
| |
Collapse
|
36
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
37
|
Loading of Beclomethasone in Liposomes and Hyalurosomes Improved with Mucin as Effective Approach to Counteract the Oxidative Stress Generated by Cigarette Smoke Extract. NANOMATERIALS 2021; 11:nano11040850. [PMID: 33810420 PMCID: PMC8065961 DOI: 10.3390/nano11040850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.22) and negatively charged (~−11 mV), were obtained. Moreover, these vesicle dispersions were stable for five months at room temperature (~25 °C). In vitro studies performed using the Next Generation Impactor confirmed the suitability of the formulations to be nebulized as they were capable of reaching the last stages of the impactor that mimic the deeper airways, thus improving the deposition of beclomethasone in the target site. Further, biocompatibility studies performed by using 16HBE bronchial epithelial cells confirmed the high biocompatibility and safety of all the vesicles. Among the tested formulations, only mucin-hyalurosomes were capable of effectively counteracting the production of reactive oxygen species (ROS) induced by cigarette smoke extract, suggesting that this formulation may represent a promising tool to reduce the damaging effects of cigarette smoke in the lung tissues, thus reducing the pathogenesis of cigarette smoke-associated diseases such as chronic obstructive pulmonary disease, emphysema, and cancer.
Collapse
|
38
|
Douafer H, Andrieu V, Wafo E, Sergent M, Brunel JM. Feasibility of an inhaled antibiotic/adjuvant dry powder combination using an experimental design approach. Int J Pharm 2021; 599:120414. [PMID: 33647405 DOI: 10.1016/j.ijpharm.2021.120414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022]
Abstract
The global increase of multidrug resistant bacteria and the lack of new classes of antibiotic especially those targeting Gram-negative pathogens are leaving the clinicians disarmed to treat numerous bacterial infections. Recently, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising investigated solutions to circumvent this problem. In this context, we have recently identified a new polyamino-isoprenyl derivative NV716 able to potentiate, at a very low concentration the activity of doxycycline against resistant P. aeruginosa bacterial strains by increasing its intracellular concentration. In this study we will report an experimental protocol to optimize a dry powder for inhalation ensuring the simultaneous delivery of an antibiotic (doxycycline) and an adjuvant (the polyaminoisoprenyl derivative NV716 since aerosol therapy could allow a rapid drug administration and target the respiratory system by avoiding the first pass effect and minimizing undesirable systemic effects. Thus, an experimental design was carried out permitting to identify the influence of several factors on the aerosolization efficiency of our combination and allowing us to find the right composition and manufacture leading to the best optimization of the simultaneous delivery of the two compounds in the form of an inhalable powder. More precisely, the powders of the two active ingredients were prepared by freeze drying and their aerosolization was improved by the addition of carrier particles of lactose inhalation grade. Under these conditions, the best formulation was defined by combining the optimal factors leading to the best aerodynamic properties' values (the lowest MMAD (Mass Median Aerodynamic Diameter) and the highest FPF (Fraction of Fine Particles)) without even using sophisticated engineering techniques. Finally, our results suggest that these molecules could be successfully delivered at the requested concentration in the lungs and then able to decrease drug consumption as well as increase treatment efficacy.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | - Emmanuel Wafo
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Michelle Sergent
- Aix Marseille Univ, IMBE, UMR CNRS IRD Avignon Université, Site de l'Etoile, Marseille, France
| | | |
Collapse
|
39
|
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK. Potential and Applications of Nanocarriers for Efficient Delivery of Biopharmaceuticals. Pharmaceutics 2020; 12:E1184. [PMID: 33291312 PMCID: PMC7762162 DOI: 10.3390/pharmaceutics12121184] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, the clinical use of biopharmaceutical products has markedly increased because of their obvious advantages over conventional small-molecule drug products. These advantages include better specificity, potency, targeting abilities, and reduced side effects. Despite the substantial clinical and commercial success, the macromolecular structure and intrinsic instability of biopharmaceuticals make their formulation and administration challenging and render parenteral delivery as the only viable option in most cases. The use of nanocarriers for efficient delivery of biopharmaceuticals is essential due to their practical benefits such as protecting from degradation in a hostile physiological environment, enhancing plasma half-life and retention time, facilitating absorption through the epithelium, providing site-specific delivery, and improving access to intracellular targets. In the current review, we highlight the clinical and commercial success of biopharmaceuticals and the overall applications and potential of nanocarriers in biopharmaceuticals delivery. Effective applications of nanocarriers for biopharmaceuticals delivery via invasive and noninvasive routes (oral, pulmonary, nasal, and skin) are presented here. The presented data undoubtedly demonstrate the great potential of combining nanocarriers with biopharmaceuticals to improve healthcare products in the future clinical landscape. In conclusion, nanocarriers are promising delivery tool for the hormones, cytokines, nucleic acids, vaccines, antibodies, enzymes, and gene- and cell-based therapeutics for the treatment of multiple pathological conditions.
Collapse
Affiliation(s)
- Alam Zeb
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Isra Rana
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Ho-Ik Choi
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Cheol-Ho Lee
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Seong-Woong Baek
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Chang-Wan Lim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Najam us Sahar
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Science, Riphah International University, Islamabad 44000, Pakistan; (I.R.); (N.K.); (S.T.A.); (N.u.S.); (A.M.A.); (F.A.S.)
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ok-Nam Bae
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| | - Jeong-Sook Park
- Institute of Drug Research and Development, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jin-Ki Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Korea; (A.Z.); (H.-I.C.); (C.-H.L.); (S.-W.B.); (C.-W.L.); (O.-N.B.)
| |
Collapse
|