1
|
Handzlik G, Owczarek AJ, Więcek A, Mossakowska M, Zdrojewski T, Chudek A, Olszanecka-Glinianowicz M, Chudek J. Fibroblast growth factor 21 inversely correlates with survival in elderly population - the results of the Polsenior2 study. Aging (Albany NY) 2024; 16:12673-12684. [PMID: 39302236 PMCID: PMC11501387 DOI: 10.18632/aging.206114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-secreted hormone involved in the regulation of lipid, glucose, and energy metabolism. Its serum concentration increases with age but also is higher in numerous diseases. FGF21 is being investigated for biomarker properties and as a potential therapeutic target. The present study aimed to assess the prognostic value of FGF21 in an older population-based cohort, the PolSenior2 study participants. In the sub-analysis of 3512 individuals, aged 60 and older, stratified according to FGF21 into tertiles, the survival estimate was worse in participants with middle and high levels compared to the lowest tertile. These results were consistent with univariable Cox regression analysis, in which participants in the middle and the high FGF21 tertiles after adjustment for age had 1.43-fold (HR, 1.31; 95% CI, 1.05 - 1.62) and 2.56-fold (HR, 1.94; 95% CI, 1.59 - 2.37) higher risk for mortality, respectively, compared with those in the lowest tertile. In multivariable Cox regression analysis, the highest levels of FGF21 were associated with increased mortality (HR 1.53; 95% CI, 1.22 - 1.92) independently of co-morbidities and blood parameters. These results indicate that higher serum FGF21 concentration is an independent predictor of all-cause mortality in the general population of older adults.
Collapse
Affiliation(s)
- Gabriela Handzlik
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J. Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Mossakowska
- Study on Aging and Longevity, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Tomasz Zdrojewski
- Division of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
2
|
Sharma AR, Chatterjee S, Lee YH, Lee SS. Targeting Crosstalk of Signaling Pathways among Muscles-Bone-Adipose Tissue: A Promising Therapeutic Approach for Sarcopenia. Aging Dis 2024; 15:1619-1645. [PMID: 37815907 PMCID: PMC11272187 DOI: 10.14336/ad.2023.00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/03/2023] [Indexed: 10/12/2023] Open
Abstract
The aging process is associated with the development of a wide range of degenerative disorders in mammals. These diseases are characterized by a progressive decline in function at multiple levels, including the molecular, cellular, tissue, and organismal. Furthermore, it is responsible for various healthcare costs in developing and developed countries. Sarcopenia is the deterioration in the quality and functionality of muscles, which is extremely concerning as it manages many functions in the human body. This article reviews the molecular crosstalk involved in sarcopenia and the specific roles of many mediator molecules in establishing cross-talk between muscles, bone, and fatty tissues, eventually leading to sarcopenia. Besides, the involvement of various etiological factors, such as neurology, endocrinology, lifestyle, etc., makes it exceedingly difficult for clinicians to develop a coherent hypothesis that may lead to the well-organized management system required to battle this debilitating disease. The several hallmarks contributing to the progression of the disease is a vital question that needs to be addressed to ensure an efficient treatment for sarcopenia patients. Also, the intricate molecular mechanism involved in developing this disease requires more studies. The direct relationship of cellular senescence with aging is one of the pivotal issues contributing to disease pathophysiology. Some patented treatment strategies have been discussed, including drugs undergoing clinical trials and emerging options like miRNA and protein-enclosed extracellular vesicles. A clear understanding of the secretome, including the signaling pathways involved between muscles, bone, and fatty tissues, is extremely beneficial for developing novel therapeutics for curing sarcopenia.
Collapse
Affiliation(s)
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| |
Collapse
|
3
|
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family. Mil Med Res 2024; 11:40. [PMID: 38902808 PMCID: PMC11191355 DOI: 10.1186/s40779-024-00544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Fibroblast growth factor (FGF) signaling encompasses a multitude of functions, including regulation of cell proliferation, differentiation, morphogenesis, and patterning. FGFs and their receptors (FGFR) are crucial for adult tissue repair processes. Aberrant FGF signal transduction is associated with various pathological conditions such as cartilage damage, bone loss, muscle reduction, and other core pathological changes observed in orthopedic degenerative diseases like osteoarthritis (OA), intervertebral disc degeneration (IVDD), osteoporosis (OP), and sarcopenia. In OA and IVDD pathologies specifically, FGF1, FGF2, FGF8, FGF9, FGF18, FGF21, and FGF23 regulate the synthesis, catabolism, and ossification of cartilage tissue. Additionally, the dysregulation of FGFR expression (FGFR1 and FGFR3) promotes the pathological process of cartilage degradation. In OP and sarcopenia, endocrine-derived FGFs (FGF19, FGF21, and FGF23) modulate bone mineral synthesis and decomposition as well as muscle tissues. FGF2 and other FGFs also exert regulatory roles. A growing body of research has focused on understanding the implications of FGF signaling in orthopedic degeneration. Moreover, an increasing number of potential targets within the FGF signaling have been identified, such as FGF9, FGF18, and FGF23. However, it should be noted that most of these discoveries are still in the experimental stage, and further studies are needed before clinical application can be considered. Presently, this review aims to document the association between the FGF signaling pathway and the development and progression of orthopedic diseases. Besides, current therapeutic strategies targeting the FGF signaling pathway to prevent and treat orthopedic degeneration will be evaluated.
Collapse
Affiliation(s)
- Heng-Zhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jing-Lve Zhang
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Dong-Liang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Medicine Central, South University, Changsha, 410083, China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | | | - Ali Mobasheri
- Faculty of Medicine, Research Unit of Health Sciences and Technology, University of Oulu, 90014, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania.
- Department of Rheumatology and Clinical Immunology, Universitair Medisch Centrum Utrecht, Utrecht, 3508, GA, the Netherlands.
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000, Liège, Belgium.
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Shen W, Yang M, Chen H, He C, Li H, Yang X, Zhuo J, Lin Z, Hu Z, Lu D, Xu X. FGF21-mediated autophagy: Remodeling the homeostasis in response to stress in liver diseases. Genes Dis 2024; 11:101027. [PMID: 38292187 PMCID: PMC10825283 DOI: 10.1016/j.gendis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 02/01/2024] Open
Abstract
Liver diseases are worldwide problems closely associated with various stresses, such as endoplasmic reticulum stress. The exact interplay between stress and liver diseases remains unclear. Autophagy plays an essential role in maintaining homeostasis, and recent studies indicate tight crosstalk between stress and autophagy in liver diseases. Once the balance between damage and autophagy is broken, autophagy can no longer resist injury or maintain homeostasis. In recent years, FGF21 (fibroblast growth factor 21)-induced autophagy has attracted much attention. FGF21 is regarded as a stress hormone and can be up-regulated by an abundance of signaling pathways in response to stress. Also, increased FGF21 activates autophagy by a complicated signaling network in which mTOR plays a pivotal role. This review summarizes the mechanism of FGF21-mediated autophagy and its derived application in the defense of stress in liver diseases and offers a glimpse into its promising prospect in future clinical practice.
Collapse
Affiliation(s)
- Wei Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Modan Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xinyu Yang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianyong Zhuo
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zuyuan Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Di Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- The Institute for Organ Repair and Regenerative Medicine of Hangzhou, Hangzhou, Zhejiang 310006, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou, Zhejiang 310003, China
- National Center for Healthcare Quality Management in Liver Transplant, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
5
|
Cai LQ, Li XC, Wang YY, Chen YX, Zhu XY, Zuo ZY, Si-Ma YQ, Lin YN, Li XK, Huang XY. Investigation of Metabolic and Inflammatory Disorder in the Aging FGF21 Knockout Mouse. Inflammation 2024:10.1007/s10753-024-02032-3. [PMID: 38653921 DOI: 10.1007/s10753-024-02032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Aging is a physiological condition accomplished with persistent low-grade inflammation and metabolic disorders. FGF21 has been reported to act as a potent longevity determinant, involving inflammatory response and energy metabolism. In this study, we engineered aging FGF21 knockout mice of 36-40 weeks and observed that FGF21 deficiency manifests a spontaneous inflammatory response of lung and abnormal accumulation of lipids in liver. On one hand, inflamed state in lungs and increased circulating inflammatory cytokines were found in FGF21 knockout mice of 36-40 weeks. To evaluate the ability of FGF21 to suppress inflammation, a subsequent study found that FGF21 knockout aggravated LPS-induced pulmonary exudation and inflammatory infiltration in mice, while exogenous administration of FGF21 reversed these malignant phenotypes by enhancing microvascular endothelial junction. On the other hand, FGF21 knockout induces fatty liver in aging mice, characterized by excessive accumulation of triglycerides within hepatocytes. Further quantitative metabolomics and lipidomics analysis revealed perturbed metabolic profile in liver lacking FGF21, including disrupted glucose and lipids metabolism, glycerophospholipid metabolism, and amino acid metabolism. Taken together, this investigation reveals the protective role of FGF21 during aging by weakening the inflammatory response and balancing energy metabolism.
Collapse
Affiliation(s)
- Lu-Qiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yu-Xin Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Zi-Yi Zuo
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Qun Si-Ma
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Nuo Lin
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiao-Kun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
6
|
Minami S, Sakai S, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Yonishi H, Nakamura J, Maeda S, Matsui S, Matsui I, Isaka Y. FGF21 and autophagy coordinately counteract kidney disease progression during aging and obesity. Autophagy 2024; 20:489-504. [PMID: 37722816 PMCID: PMC10936614 DOI: 10.1080/15548627.2023.2259282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Chronic kidney disease (CKD) has reached epidemic proportions worldwide, partly due to the increasing population of elderly and obesity. Macroautophagy/autophagy counteracts CKD progression, whereas autophagy is stagnated owing to lysosomal overburden during aging and obesity, which promotes CKD progression. Therefore, for preventing CKD progression during aging and obesity, it is important to elucidate the compensation mechanisms of autophagy stagnation. We recently showed that FGF21 (fibroblast growth factor 21), which is a prolongevity and metabolic hormone, is induced by autophagy deficiency in kidney proximal tubular epithelial cells (PTECs); however, its pathophysiological role remains uncertain. Here, we investigated the interplay between FGF21 and autophagy and the direct contribution of endogenous FGF21 in the kidney during aging and obesity using PTEC-specific fgf21- and/or atg5-deficient mice at 24 months (aged) or under high-fat diet (obese) conditions. PTEC-specific FGF21 deficiency in young mice increased autophagic flux due to increased demand of autophagy, whereas fgf21-deficient aged or obese mice exacerbated autophagy stagnation due to severer lysosomal overburden caused by aberrant autophagy. FGF21 was robustly induced by autophagy deficiency, and aged or obese PTEC-specific fgf21- and atg5-double deficient mice deteriorated renal histology compared with atg5-deficient mice. Mitochondrial function was severely disturbed concomitant with exacerbated oxidative stress and downregulated TFAM (transcription factor A, mitochondrial) in double-deficient mice. These results indicate that FGF21 is robustly induced by autophagy disturbance and protects against CKD progression during aging and obesity by alleviating autophagy stagnation and maintaining mitochondrial homeostasis, which will pave the way to a novel treatment for CKD.
Collapse
Affiliation(s)
- Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Anderson JM, Arnold WD, Huang W, Ray A, Owendoff G, Cao L. Long-term effects of a fat-directed FGF21 gene therapy in aged female mice. Gene Ther 2024; 31:95-104. [PMID: 37699965 DOI: 10.1038/s41434-023-00422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.
Collapse
Affiliation(s)
- Jacqueline M Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - W David Arnold
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alissa Ray
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Gregory Owendoff
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Delgado-Anglés A, Blasco-Roset A, Godoy-Nieto FJ, Cairó M, Villarroya F, Giralt M, Villarroya J. Parkin depletion prevents the age-related alterations in the FGF21 system and the decline in white adipose tissue thermogenic function in mice. J Physiol Biochem 2024; 80:41-51. [PMID: 37914970 PMCID: PMC10808413 DOI: 10.1007/s13105-023-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023]
Abstract
Parkin is an ubiquitin-E3 ligase that is involved in cellular mitophagy and was recently shown to contribute to controlling adipose tissue thermogenic plasticity. We found that Parkin expression is induced in brown (BAT) and white (WAT) adipose tissues of aged mice. We determined the potential role of Parkin in the aging-associated decline in the thermogenic capacity of adipose tissues by analyzing subcutaneous WAT, interscapular BAT, and systemic metabolic and physiological parameters in young (5 month-old) and aged (16 month-old) mice with targeted invalidation of the Parkin (Park2) gene, and their wild-type littermates. Our data indicate that suppression of Parkin prevented adipose accretion, increased energy expenditure and improved the systemic metabolic derangements, such as insulin resistance, seen in aged mice. This was associated with maintenance of browning and reduction of the age-associated induction of inflammation in subcutaneous WAT. BAT in aged mice was much less affected by Parkin gene invalidation. Such protection was associated with a dramatic prevention of the age-associated induction of fibroblast growth factor-21 (FGF21) levels in aged Parkin-invalidated mice. This was associated with a parallel reduction in FGF21 gene expression in adipose tissues and liver in aged Parkin-invalidated mice. Additionally, Parkin invalidation prevented the protein down-regulation of β-Klotho (a key co-receptor mediating FGF21 responsiveness in tissues) in aged adipose tissues. We conclude that Parkin down-regulation leads to improved systemic metabolism in aged mice, in association with maintenance of adipose tissue browning and FGF21 system functionality.
Collapse
Affiliation(s)
- Alejandro Delgado-Anglés
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Francisco J Godoy-Nieto
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
9
|
Li M, Jiang LQ, Zhang MY, Liu SS, Sawh RRR, Zheng J, Yan Y, Hou SM, Lu KQ, Thorne O, Liu BC, Qian Q, Wu YF, Yang M, Wang B. Elevated serum FGF21 is an independent predictor for adverse events in hemodialysis patients from two large centers: a prospective cohort study. Ren Fail 2023; 45:2256414. [PMID: 37724523 PMCID: PMC10512844 DOI: 10.1080/0886022x.2023.2256414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction: We explored the relationship and the predictive value of serum fibroblast growth factor 21 (FGF21) with all-cause mortality, major adverse cardiovascular events (MACEs) and pneumonia in hemodialysis (HD) patients.Methods: A total of 388 Chinese HD patients from two HD centers were finally enrolled in this prospective cohort study (registration number: ChiCTR 1900028249) between January 2018 and December 2018. Serum FGF21 was detected. Patients were followed up with a median period of 47 months to record the MACEs and pneumonia until death or 31 December 2022.Results: The incidence of all-cause mortality, MACEs and pneumonia in HD patients were 20.6%, 29.6%, and 34.8%, respectively. The optimal cutoffs for FGF21 to predict all-cause mortality, MACEs and pneumonia were 437.57 pg/mL, 216.99 pg/mL and 112.79 pg/mL. Multivariate Cox regression analyses showed that FGF21, as a categorical variable, was an independent predictor for all-cause mortality, MACEs and pneumonia (HR, 3.357, 95% CI, 2.128-5.295, p < 0.001; HR, 1.575, 95% CI, 1.046-2.371, p = 0.029; HR, 1.784; 95% CI, 1.124-2.830; p = 0.014, respectively). The survival nomogram, MACEs-free survival nomogram and pneumonia-free survival nomogram based on FGF21 constructed for individualized assessment of HD patients had a high C-index with 0.841, 0.706 and 0.734.Conclusion: Higher serum FGF21 is an independent predictor of all-cause mortality, MACEs and pneumonia in HD patients.
Collapse
Affiliation(s)
- Min Li
- Department of Nephrology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li-qiong Jiang
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
- Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Meng-yu Zhang
- Department of Nephrology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shu-su Liu
- Department of Nephrology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | | | - Jing Zheng
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| | - Yu Yan
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| | - Shi-mei Hou
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| | - Ke-qi Lu
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| | - Obadele Thorne
- Department of Nephrology, Georgetown Public Hospital Corporation, Georgetown, Guyana
| | - Bi-cheng Liu
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| | - Qing Qian
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan-feng Wu
- Department of Neurology, Nanjing Medical University Second Affiliated Hospital, Nanjing, China
| | - Min Yang
- Department of Nephrology, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Institute of Nephrology, Southeast University Zhongda Hospital, Nanjing, China
| |
Collapse
|
10
|
Kumbar L, Kiran BH, Dharmalingam M, Kalra P. Study of FGF21 Levels in Transgender People and its Association with Metabolic Parameters. Indian J Endocrinol Metab 2023; 27:330-334. [PMID: 37867987 PMCID: PMC10586550 DOI: 10.4103/ijem.ijem_307_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 01/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Fibroblast growth factor (FGF21) is a metabolic regulator whose role in humans is unidentified. FGF21 has generated a lot of potential of becoming a therapeutic agent for the management of type 2 diabetes mellitus and dyslipidaemia. The role of FGF21 in gender dysphoria individuals has not been studied. Objective Primary objective was to assess FGF21 levels in transgender individuals and compare with controls and secondary objective was to compare FGF21 levels with lipid and glucose parameters in transgender people. Results Twenty-three transfemales and 21 transmales were included in the study and compared with 44 controls. Height and fasting blood glucose of transfemales was statistically greater than transmales, with no other differences in baseline characteristics. Although FGF21 levels were numerically greater in transfemales (183.50 ± 97.39), it was not statistically significant. FGF21 levels did not vary statistically when compared to controls although it was numerically higher. Univariate analysis was done in transgender patients and FGF21 levels were positively correlated with serum total cholesterol and serum LDL cholesterol in transfemales but not in transmales. Multivariate analysis was also done taking 50th centile and 75th centile of FGF21 levels of controls and was found that only serum total cholesterol and serum LDL positively correlated with FGF21 levels in transfemales with 75th centile as cutoff. Conclusion FGF21 levels correlated positively with serum triglycerides and serum LDL cholesterol in transfemales but not in transmales. Hence, FGF21 levels can be used as a marker for the development of metabolic syndrome in transfemales.
Collapse
Affiliation(s)
- Lohit Kumbar
- Department of Endocrinology, M. S. Ramaiah Medical College, Bengaluru, Karnataka, India
| | - Baratam Hari Kiran
- Department of Endocrinology, M. S. Ramaiah Medical College, Bengaluru, Karnataka, India
| | - Mala Dharmalingam
- Department of Endocrinology, M. S. Ramaiah Medical College, Bengaluru, Karnataka, India
| | - Pramila Kalra
- Department of Endocrinology, M. S. Ramaiah Medical College, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Liu H, He X, Deng XY, Yan JL. Exploring the correlation between serum fibroblast growth factor-21 levels and Sarcopenia: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:533. [PMID: 37386374 DOI: 10.1186/s12891-023-06641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF-21) plays an important role in the growth and metabolism of skeletal muscle cells. This study aims to systemically review the evidence regarding the relationship between FGF-21 levels and Sarcopenia, as well as the related influential factors. METHODS This review was conducted according to the PRISMA guidelines. We comprehensively searched PubMed, EMBASE, the Web of Science, Scopus, and Chinese Databases (CNKI, Wan Fang, VIP, and CBM) up to 1 May 2023. 3 investigators performed independent literature screening and data extraction of the included literature, and two investigators performed an independent quality assessment of case-control studies using the Joanna Briggs Institute (JBI) tool. Data analysis was performed using Review Manager 5.4 software. For continuous various outcomes, mean difference (MD) or standard mean difference (SMD) with 95% confidence intervals (CIs) was applied for assessment by fixed-effect or random-effect model analysis. The heterogeneity test was performed by the Q-statistic and quantified using I2, and publication bias was evaluated using a funnel plot. RESULTS Five studies with a total of 625 cases were included in the review. Meta-analysis showed lower BMI in the sarcopenia group [MD= -2.88 (95% CI, -3. 49, -2.27); P < 0.00001; I2 = 0%], significantly reduced grip strength in the sarcopenia group compared to the non-sarcopenia group [MD = -7.32(95% CI, -10.42,-4.23); P < 0.00001; I2 = 93%]. No statistically significant differences in serum FGF21 levels were found when comparing the two groups of subjects [SMD = 0.31(95% CI, -0.42, 1.04); P = 0.41; I2 = 94%], and no strong correlation was found between the onset of sarcopenia and serum FGF21 levels. CONCLUSION The diagnosis of sarcopenia is followed by a more significant decrease in muscle mass and strength, but there is a lack of strong evidence to support a direct relationship between elevated organismal FGF21 and sarcopenia, and it is not convincing to use FGF21 as a biological or diagnostic marker for sarcopenia. The currently used diagnostic criteria for sarcopenia and setting of cut-off values for each evaluation parameter no longer seem to match clinical practice.
Collapse
Affiliation(s)
- Hao Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xia He
- Affiliated Sichuan Provincial Rehabilitation Hospital of the Chengdu University of Traditional Chinese Medicine, Chengdu, 611135, China.
| | - Xiao-Yan Deng
- Tianhui Town Community Health Center, Chengdu, 610081, China
| | - Jing-Lu Yan
- Tianhui Town Community Health Center, Chengdu, 610081, China
| |
Collapse
|
12
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in energy homeostasis that protects against the development of obesity and diabetes in animal models. Its level is elevated in atherosclerotic cardiovascular diseases (CVD) in humans. However, little is known about the role of FGF21 in heart failure (HF). HF is a major global health problem with a prevalence that is predicted to rise, especially in ageing populations. Despite improved therapies, mortality due to HF remains high, and given its insidious onset, prediction of its development is challenging for physicians. The emergence of cardiac biomarkers to improve prediction, diagnosis, and prognosis of HF has received much attention over the past decade. Recent studies have suggested FGF21 is a promising biomarker candidate for HF. Preclinical research has shown that FGF21 is involved in the pathophysiology of HF through the prevention of oxidative stress, cardiac hypertrophy, and inflammation in cardiomyocytes. However, in the available clinical literature, FGF21 levels appear to be paradoxically raised in HF, potentially implying a FGF21 resistant state as occurs in obesity. Several potential confounding variables complicate the verdict on whether FGF21 is of clinical value as a biomarker. Further research is thus needed to evaluate whether FGF21 has a causal role in HF, and whether circulating FGF21 can be used as a biomarker to improve the prediction, diagnosis, and prognosis of HF. This review draws from preclinical and clinical studies to explore the role of FGF21 in HF.
Collapse
Affiliation(s)
- William Tucker
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Alves JM, Yunker AG, Luo S, Jann K, Angelo B, DeFendis A, Pickering TA, Smith A, Monterosso JR, Page KA. FGF21 response to sucrose is associated with BMI and dorsal striatal signaling in humans. Obesity (Silver Spring) 2022; 30:1239-1247. [PMID: 35491674 DOI: 10.1002/oby.23432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study examined associations between BMI and dietary sugar intake with sucrose-induced fibroblast growth factor 21 (FGF21) and whether circulating FGF21 is associated with brain signaling following sucrose ingestion in humans. METHODS A total of 68 adults (29 male; mean [SD), age 23.2 [3.8] years; BMI 27.1 [4.9] kg/m2 ) attended visits after a 12-hour fast. Plasma FGF21 was measured at baseline and at 15, 30, and 120 minutes after sucrose ingestion (75 g in 300 mL of water). Brain cerebral blood flow responses to sucrose were measured using arterial spin labeling magnetic resonance imaging. RESULTS Higher circulating FGF21 levels were associated with reduced blood flow in the striatum in response to sucrose (β = -7.63, p = 0.03). This association was greatest among persons with healthy weight (β = -15.70, p = 0.007) and was attenuated in people with overweight (β = -4.00, p = 0.63) and obesity (β = -12.45, p = 0.13). BMI was positively associated with FGF21 levels in response to sucrose (β = 0.53, p = 0.02). High versus low dietary sugar intake was associated with greater FGF21 responses to acute sucrose ingestion in individuals with healthy weight (β = 8.51, p = 0.04) but not in individuals with overweight or obesity (p > 0.05). CONCLUSIONS These correlative findings support evidence in animals showing that FGF21 acts on the brain to regulate sugar consumption through a negative feedback loop.
Collapse
Affiliation(s)
- Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexandra G Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Kay Jann
- Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trevor A Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexandro Smith
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Srivastava H, Pozzoli M, Lau E. Defining the Roles of Cardiokines in Human Aging and Age-Associated Diseases. FRONTIERS IN AGING 2022; 3:884321. [PMID: 35821831 PMCID: PMC9261440 DOI: 10.3389/fragi.2022.884321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022]
Abstract
In recent years an expanding collection of heart-secreted signaling proteins have been discovered that play cellular communication roles in diverse pathophysiological processes. This minireview briefly discusses current evidence for the roles of cardiokines in systemic regulation of aging and age-associated diseases. An analysis of human transcriptome and secretome data suggests the possibility that many other cardiokines remain to be discovered that may function in long-range physiological regulations. We discuss the ongoing challenges and emerging technologies for elucidating the identity and function of cardiokines in endocrine regulations.
Collapse
Affiliation(s)
- Himangi Srivastava
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Marina Pozzoli
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Edward Lau
- Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Consortium for Fibrosis Research and Translation, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
15
|
The relationship between sarcopenia detected in newly diagnosed colorectal cancer patients and FGF21, irisin and CRP levels. Eur Geriatr Med 2022; 13:795-803. [DOI: 10.1007/s41999-022-00635-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
16
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
17
|
Gavaldà-Navarro A, Villarroya J, Cereijo R, Giralt M, Villarroya F. The endocrine role of brown adipose tissue: An update on actors and actions. Rev Endocr Metab Disord 2022; 23:31-41. [PMID: 33712997 DOI: 10.1007/s11154-021-09640-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
In recent years, brown adipose tissue (BAT) has been recognized not only as a main site of non-shivering thermogenesis in mammals, but also as an endocrine organ. BAT secretes a myriad of regulatory factors. These so-called batokines exert local autocrine and paracrine effects, as well as endocrine actions targeting tissues and organs at a distance. The endocrine batokines include peptide factors, such as fibroblast growth factor-21 (FGF21), neuregulin-4 (NRG4), phospholipid transfer protein (PLTP), interleukin-6, adiponectin and myostatin, and also lipids (lipokines; e.g., 12,13-dihydroxy-9Z-octadecenoic acid [12,13-diHOME]) and miRNAs (e.g., miR-99b). The liver, heart, and skeletal muscle are the most commonly reported targets of batokines. In response to BAT thermogenic activation, batokines such as NRG4 and PLTP are released and act to reduce hepatic steatosis and improve insulin sensitivity. Stress-induced interleukin-6-mediated signaling from BAT to liver favors hepatic glucose production through enhanced gluconeogenesis. Batokines may act on liver to induce the secretion of regulatory hepatokines (e.g. FGF21 and bile acids in response to miR-99b and PLTP, respectively), thereby resulting in a systemic expansion of BAT-originating signals. Batokines also target extrahepatic tissues: FGF21 and 12,13-diHOME are cardioprotective, whereas BAT-secreted myostatin and 12,13-diHOME influence skeletal muscle development and performance. Further research is needed to ascertain in humans the role of batokines, which have been identified mostly in experimental models. The endocrine role of BAT may explain the association between active BAT and a healthy metabolism in the human system, which is characterized by small amounts of BAT and a likely moderate BAT-mediated energy expenditure.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
- Institut de Recerca Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquimica I Biomedicina Molecular, and Institut de Biomedicina de La Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues, Catalonia, Spain.
- CIBER Fisiopatología de La Obesidad Y Nutrición, Madrid, Spain.
| |
Collapse
|
18
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
19
|
Arking A, Sarver DC, Magge SN, Wong GW, Wolf RM. Novel Adipokines CTRP1, CTRP9, and FGF21 in Pediatric Type 1 and Type 2 Diabetes: A Cross-Sectional Analysis. Horm Res Paediatr 2022; 95:43-50. [PMID: 35172300 PMCID: PMC9677326 DOI: 10.1159/000522665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/12/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pediatric obesity and diabetes has increased over the last several decades. While the role of common adipokines on metabolic parameters has been well studied in adults, the relationship of novel adipokines and hepatokines in pediatric type 1 (T1D) and type 2 diabetes (T2D) is not well understood. This study assessed novel adipokines C1q/TNF-related proteins (CTRP1 and CTRP9), and hepatokine fibroblast growth factor 21 (FGF21) in youth with T1D and T2D diabetes. METHODS Participants (n = 80) with T1D (n = 40) enrolled in the Pediatric Diabetes Consortium (PDC) T1D NeOn registry, and T2D (n = 40) from the PDC T2D registry. Cross-sectional analysis compared adipokines (CTRP1, CTRP9, FGF21) between T1D and T2D, and regression models assessed adipokine relationship with clinical characteristics. RESULTS The mean age of the participants was 14.9 ± 2 years, and 50% were female. T2D participants had a shorter diabetes duration (p = 0.0009), higher weight (p < 0.0001), and BMI (p < 0.0001) than T1D participants. CTRP9 levels were higher in T1D (13,903.6 vs. 3,608.5 pg/mL, p = 0.04) than T2D, and FGF21 levels were higher in T2D (113.1 vs. 70.6 pg/mL, p = 0.03) than T1D, with no differences in CTRP1. In regression analysis of T1D, CTRP9 was positively associated with C-peptide (p = 0.006), and FGF21 was positively associated with hemoglobin A1c (p = 0.04). In T2D, CTRP1 was positively associated with HbA1c (p < 0.001) and glucose (p = 0.004), even after controlling for age, sex, and BMI. CONCLUSIONS CTRP9 levels are higher in youth with T1D compared to T2D, and FGF21 levels are higher in youth with T2D than T1D. Novel adipokines are related to metabolic homeostasis in the inflammatory milieu of pediatric diabetes.
Collapse
Affiliation(s)
- Alexander Arking
- Department of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheela N. Magge
- Department of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Risa M. Wolf
- Department of Pediatric Endocrinology and Diabetes, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA;,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Drongitis P, Kotanidou EP, Serbis A, Tsinopoulou VR, Gerou S, Galli-Tsinopoulou A. Serum Fibroblast Growth Factor 21 Levels in Children and Adolescents with Hashimoto’s Thyroiditis before and after l-Thyroxin Medication: A Prospective Study. Medicina (B Aires) 2021; 57:medicina57121374. [PMID: 34946319 PMCID: PMC8709108 DOI: 10.3390/medicina57121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Backgrounds and Objectives: Fibroblast growth factor 21 (FGF-21) is a complex hormone, sharing common sites of action with thyroid hormones. We investigated the association among FGF-21 levels, resting metabolic rate (RMR), and l-thyroxin (LT4) treatment in children and adolescents with Hashimoto’s thyroiditis. Materials and Methods: A total of 60 youngsters with chronic autoimmune thyroiditis (AIT) (30 with subclinical hypothyroidism, 30 with euthyroidism) and 30 age and sex-matched healthy participants (5–18 years old) were enrolled in the study. Anthropometric, biochemical parameters, and RMR levels were assessed in all participants; serum FGF-21 levels were measured in the control group and the group with subclinical hypothyroidism before and six months after medication with LT4. Results: FGF-21 levels were lower in the treatment group compared with the healthy ones, but this difference was not statistically significant (p > 0.05); despite the increase in FGF-21 levels after six months of LT4 treatment, this difference was not statistically significant (p > 0.05). Free thyroxin (FT4) levels correlated well with FGF-21 levels (r = 0.399, p < 0.01), but further analysis revealed no interaction between these two variables. Both patient groups presented elevated triglyceride (TG) levels compared to controls (p < 0.05). LT4 treatment had no impact on RMR and lipid or liver or glycaemic parameters. An increase in fat mass and fat-free mass were reported, independently of FGF-21 levels. Conclusions: In youngsters with subclinical hypothyroidism due to Hashimoto’s thyroiditis, the serum FGF-21 levels are not significantly lower than in healthy individuals and increase after treatment with LT4 without a statistical significance. Further studies with a large number of young patients and severe hypothyroidism are recommended to confirm our results.
Collapse
Affiliation(s)
- Pavlos Drongitis
- 2nd Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (P.D.); (E.P.K.); (A.S.); (V.R.T.)
| | - Eleni P Kotanidou
- 2nd Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (P.D.); (E.P.K.); (A.S.); (V.R.T.)
| | - Anastasios Serbis
- 2nd Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (P.D.); (E.P.K.); (A.S.); (V.R.T.)
| | - Vasiliki Rengina Tsinopoulou
- 2nd Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (P.D.); (E.P.K.); (A.S.); (V.R.T.)
| | - Spyridon Gerou
- Analysi Iatriki S.A., Biopathological Diagnostic Research Laboratories, 54623 Thessaloniki, Greece;
| | - Assimina Galli-Tsinopoulou
- 2nd Department of Paediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece; (P.D.); (E.P.K.); (A.S.); (V.R.T.)
- Correspondence: ; Tel.: +30-2310994802
| |
Collapse
|
21
|
Bag Soytas R, Suzan V, Arman P, Emiroglu Gedik T, Unal D, Cengiz M, Bolayirli IM, Suna Erdincler D, Doventas A, Yavuzer H. Association of FGF-19 and FGF-21 levels with primary sarcopenia. Geriatr Gerontol Int 2021; 21:959-962. [PMID: 34405516 DOI: 10.1111/ggi.14263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/31/2021] [Indexed: 01/26/2023]
Abstract
AIM Serum fibroblast growth factor (FGF)-19 and FGF-21 levels have been reported to be associated with muscle hemostasis. This study aims to explore the relationship between the levels of these markers and sarcopenia. METHODS In our single-center, cross-sectional study, patients over 65 years old presenting to the geriatric outpatient clinic were included. Patients with secondary sarcopenia were excluded. The Strength-Assistance with walking-Rising from a chair-Climbing stairs and Falls (SARC-F) questionnaire was applied to all patients. Sarcopenia was determined by handgrip strength (HGS), bioelectrical impedance analysis and 6-m walk test. Serum samples were stored at -80°C until measurement. The ELISA method was used to assess FGF-19 and FGF-21 levels. RESULTS In total, 88 patients (54 women) were included. There were 43 patients in the sarcopenia group and 45 patients without sarcopenia in the control group. In those with sarcopenia, FGF-19 was lower (P = 0.04) and FGF-21 was higher (P = 0.021). There was a direct correlation between FGF-19 with SARC-F and HGS (P = 0.04, B = 0.178, P = 0.006, B = 0.447) while FGF-21 was inversely correlated with HGS and positively correlated with 6-m walking time (P = 0.016, B = -0.428, P = 0.004, B = 0.506). CONCLUSIONS Our results reveal that low FGF-19 and high FGF-21 may be associated with sarcopenia and this finding could be explained by the impacted muscle strength. Geriatr Gerontol Int 2021; 21: 959-962.
Collapse
Affiliation(s)
- Rabia Bag Soytas
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Veysel Suzan
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Arman
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tugce Emiroglu Gedik
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Damla Unal
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mahir Cengiz
- Department of Internal Medicine, Biruni University Medical Faculty, Istanbul, Turkey
| | - Ibrahim Murat Bolayirli
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Suna Erdincler
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alper Doventas
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hakan Yavuzer
- Division of Geriatrics, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
22
|
Improvement in appetite among stunted children receiving nutritional intervention in Bangladesh: results from a community-based study. Eur J Clin Nutr 2021; 75:1359-1367. [PMID: 34045689 PMCID: PMC8416653 DOI: 10.1038/s41430-020-00843-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Background/objectives Stunted children often have poor appetite, which may limit their response to nutritional interventions. We investigated the effect of a nutritional intervention on the appetite status of stunted children. Methods A longitudinal prospective intervention study was conducted with 50 stunted (length for age; LAZ < −2) (age and sex matched) aged 12–18 months and their mothers in Bauniabadh slum of Dhaka city. The stunted children received the following intervention package: one boiled egg and 150 ml milk daily 6 days a week for 3 months; psychosocial stimulation including structured play activities and parental counseling for 6 months; routine clinical care. Appetite status was measured using an interview-based tool “Early Childhood Appetite and Satiety Tool.” Results Over the period of nutritional intervention, the mean appetite score increased from 49 to 60 in the stunted children and was associated with increased food consumption. Over the intervention period, both egg and milk consumption increased (40.3–49.6 g and 83.8–138.5 ml, respectively). Conclusions Assessment of appetite status using EACST appears to be a useful tool for monitoring a nutritional intervention in stunted children. This tool may be useful for programs in managing child stunting in low-income countries and an important way to assess the efficacy of a nutritional intervention in these children.
Collapse
|
23
|
Karampatsou SI, Genitsaridi SM, Michos A, Kourkouni E, Kourlaba G, Kassari P, Manios Y, Charmandari E. The Effect of a Life-Style Intervention Program of Diet and Exercise on Irisin and FGF-21 Concentrations in Children and Adolescents with Overweight and Obesity. Nutrients 2021; 13:1274. [PMID: 33924457 PMCID: PMC8070027 DOI: 10.3390/nu13041274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
Overweight and obesity in childhood and adolescence represent major public health problems of our century, and account for increased morbidity and mortality in adult life. Irisin and Fibroblast Growth Factor 21 (FGF-21) have been proposed as prognostic and/or diagnostic biomarkers in subjects with obesity and metabolic syndrome, because they increase earlier than other traditional biomarkers. We determined the concentrations of Irisin and FGF-21 in children and adolescents with overweight and obesity before and after one year of a life-style intervention program of diet and physical exercise and explored the impact of body mass index (BMI) reduction on the concentrations of Irisin, FGF-21 and other cardiometabolic risk factors. Three hundred and ten (n = 310) children and adolescents (mean age ± SD: 10.5 ± 2.9 years) were studied prospectively. Following one year of the life-style intervention program, there was a significant decrease in BMI (p = 0.001), waist-to-hip ratio (p = 0.024), waist-to-height ratio (p = 0.024), and Irisin concentrations (p = 0.001), and an improvement in cardiometabolic risk factors. There was no alteration in FGF-21 concentrations. These findings indicate that Irisin concentrations decreased significantly as a result of BMI reduction in children and adolescents with overweight and obesity. Further studies are required to investigate the potential role of Irisin as a biomarker for monitoring the response to lifestyle interventions and for predicting the development of cardiometabolic risk factors.
Collapse
Affiliation(s)
- Sofia I. Karampatsou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (S.M.G.); (P.K.)
| | - Sofia M. Genitsaridi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (S.M.G.); (P.K.)
| | - Athanasios Michos
- Division of Infectious Diseases, First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece;
| | - Eleni Kourkouni
- Center for Clinical Epidemiology and Outcomes Research (CLEO), 11528 Athens, Greece; (E.K.); (G.K.)
| | - Georgia Kourlaba
- Center for Clinical Epidemiology and Outcomes Research (CLEO), 11528 Athens, Greece; (E.K.); (G.K.)
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (S.M.G.); (P.K.)
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, Kallithea, 17671 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (S.I.K.); (S.M.G.); (P.K.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
24
|
Beneficial effects of whole-body cryotherapy on glucose homeostasis and amino acid profile are associated with a reduced myostatin serum concentration. Sci Rep 2021; 11:7097. [PMID: 33782504 PMCID: PMC8007810 DOI: 10.1038/s41598-021-86430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
The study investigated the effect of single and chronic (10 sessions) whole-body cryotherapy (WBC; 3-min, − 110 °C) on amino acid (AA) profile, myostatin, fibroblast growth factor 21 (FGF21), and concentrations of brain-derived neurotrophic factor (BDNF), irisin and adiponectin in relation to glucose homeostasis. Thirty-five, healthy men were randomly split into experimental (young: 28 ± 7 years and middle-aged: 51 ± 3 years) and control groups. Blood samples were taken before and 1 h after the first and last (10th) WBC session. Baseline myostatin correlated significantly with visceral fat area, glucose, insulin, HOMA-IR and irisin (all p < 0.05). The single session of WBC induced temporary changes in AA profile, whereas chronic exposure lowered valine and asparagine concentrations (p < 0.01 and p = 0.01, respectively) compared to the baseline. The chronic WBC reduced fasting glucose (p = 0.04), FGF21 (− 35.8%, p = 0.06) and myostatin (-18.2%, p = 0.06). Still, the effects were age-dependent. The decrease of myostatin was more pronounced in middle-aged participants (p < 0.01). Concentrations of irisin and adiponectin increased in response to chronic WBC, while BDNF level remained unchanged. By improving the adipo-myokine profile, chronic WBC may reduce effectively the risk of the metabolic syndrome associated with hyperinsulinemia, increased levels of valine and asparagine, and muscle atrophy.
Collapse
|
25
|
Gómez-Sámano MÁ, Vargas-Abonce VP, Martínez-Sánchez FD, Palacios-Báez L, Vera-Zertuche JM, Navarro-Flores MF, Morales-García MG, Fonseca-Correa JI, Zuarth-Vázquez JM, Vega-Vega O, Correa-Rotter R, Rincón-Pedrero R, Morales-Buenrostro LE, Alberú-Gómez J, Ramírez-González JB, Pacheco-Domínguez RL, López-Cervantes M, Mendoza-de-la-Garza MDLÁ, Baeza-Arias YV, Espinosa-Cuevas Á, López-Carrasco G, López-Estrada A, Guillén-Pineda LE, Gómez-Pérez FJ, Cuevas-Ramos D. Fibroblast growth factor 21 is associated with increased serum total antioxidant capacity and oxidized lipoproteins in humans with different stages of chronic kidney disease. Ther Adv Endocrinol Metab 2021; 12:20420188211001160. [PMID: 33854753 PMCID: PMC8010821 DOI: 10.1177/20420188211001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aims Oxidative stress (OS) induces the production of fibroblast growth factor 21 (FGF21). Previous data have revealed that FGF21 protects cells from OS injury and death, making it a potential therapeutic option for many diseases with increased OS. However, the association of this growth factor with OS markers in humans with chronic kidney disease (CKD) remains unknown. This study aims to evaluate the association of serum FGF21 with serum total antioxidant capacity (TAC) and oxidized low-density lipoproteins (OxLDL) in subjects in different stages of kidney disease. Methods This is a cross-sectional study that included 382 subjects with different stages of CKD, irrespective of type 2 diabetes (T2D) diagnosis. Associations of serum FGF21 with OxLDL, TAC, sex, age, body mass index (BMI), fasting plasma glucose, estimated glomerular filtration rate (eGFR), T2D, and smoking, were evaluated through bivariate and partial correlation analyses. Independent associations of these variables with serum FGF21 were evaluated using multiple linear regression analysis. Results Serum FGF21 was significantly and positively correlated with age (r = 0.236), TAC (lnTAC) (r = 0.217), and negatively correlated with eGFR (r = -0.429) and male sex (r = -0.102). After controlling by age, sex, BMI, T2D, smoking, and eGFR; both TAC and OxLDL were positively correlated with FGF21 (r = 0.117 and 0.158 respectively, p < 0.05). Using multiple linear regression analysis, eGFR, male sex, T2D, OxLDL, and TAC were independently associated with serum FGF21 (STDβ = -0.475, 0.162, -0.153, 0.142 and 0.136 respectively; p < 0.05 for all) adjusted for age, BMI, smoking, and fasting plasma glucose. Conclusion A positive association between serum FGF21 and OS has been found independently of renal function in humans. Results from the present study provide novel information for deeper understanding of the role of FGF21 in OS in humans with CKD and T2D; mechanistic studies to explain the association of serum FGF21 with oxidative stress in CKD are needed.
Collapse
Affiliation(s)
| | | | | | - Lucía Palacios-Báez
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | | | | | | | | | - Olynka Vega-Vega
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Ricardo Correa-Rotter
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Rodolfo Rincón-Pedrero
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | - Josefina Alberú-Gómez
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | | | - Malaquías López-Cervantes
- Department of Preventive Medicine and Public
Health, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | - Angelina López-Estrada
- Instituto Nacional de Ciencias Medicas y
Nutricion Salvador Zubiran, Mexico City, Mexico
| | | | | | - Daniel Cuevas-Ramos
- Department of Endocrinology and Metabolism,
Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco
de Quiroga # 15, Sección XVI Tlalpan 14000, Mexico City, Mexico
| |
Collapse
|
26
|
Sun H, Sherrier M, Li H. Skeletal Muscle and Bone - Emerging Targets of Fibroblast Growth Factor-21. Front Physiol 2021; 12:625287. [PMID: 33762965 PMCID: PMC7982600 DOI: 10.3389/fphys.2021.625287] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family, which functions as a powerful endocrine and paracrine regulator of glucose and lipid metabolism. In addition to liver and adipose tissue, recent studies have shown that FGF21 can also be produced in skeletal muscle. As the most abundant tissue in the human body, skeletal muscle has become increasingly recognized as a major site of metabolic activity and an important modulator of systemic metabolic homeostasis. The function and mechanism of action of muscle-derived FGF21 have recently gained attention due to the findings of considerably increased expression and secretion of FGF21 from skeletal muscle under certain pathological conditions. Recent reports regarding the ectopic expression of FGF21 from skeletal muscle and its potential effects on the musculoskeletal system unfolds a new chapter in the story of FGF21. In this review, we summarize the current knowledge base of muscle-derived FGF21 and the possible functions of FGF21 on homeostasis of the musculoskeletal system with a focus on skeletal muscle and bone.
Collapse
Affiliation(s)
- Hui Sun
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Matthew Sherrier
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hongshuai Li
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Płatek T, Polus A, Góralska J, Raźny U, Dziewońska A, Micek A, Dembińska-Kieć A, Solnica B, Malczewska-Malec M. Epigenetic Regulation of Processes Related to High Level of Fibroblast Growth Factor 21 in Obese Subjects. Genes (Basel) 2021; 12:307. [PMID: 33670024 PMCID: PMC7926457 DOI: 10.3390/genes12020307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
We hypothesised that epigenetics may play an important role in mediating fibroblast growth factor 21 (FGF21) resistance in obesity. We aimed to evaluate DNA methylation changes and miRNA pattern in obese subjects associated with high serum FGF21 levels. The study included 136 participants with BMI 27-45 kg/m2. Fasting FGF21, glucose, insulin, GIP, lipids, adipokines, miokines and cytokines were measured and compared in high serum FGF21 (n = 68) group to low FGF21 (n = 68) group. Human DNA Methylation Microarrays were analysed in leukocytes from each group (n = 16). Expression of miRNAs was evaluated using quantitative PCR-TLDA. The study identified differentially methylated genes in pathways related to glucose transport, insulin secretion and signalling, lipid transport and cellular metabolism, response to nutrient levels, thermogenesis, browning of adipose tissue and bone mineralisation. Additionally, it detected transcription factor genes regulating FGF21 and fibroblast growth factor receptor and vascular endothelial growth factor receptor pathways regulation. Increased expression of hsa-miR-875-5p and decreased expression of hsa-miR-133a-3p, hsa-miR-185-5p and hsa-miR-200c-3p were found in the group with high serum FGF21. These changes were associated with high FGF21, VEGF and low adiponectin serum levels. Our results point to a significant role of the epigenetic regulation of genes involved in metabolic pathways related to FGF21 action.
Collapse
Affiliation(s)
- Teresa Płatek
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Urszula Raźny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Dziewońska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, 25 Kopernika Street, 31-501 Krakow, Poland;
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| | - Małgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, 15a Kopernika Street, 31-501 Krakow, Poland; (A.P.); (J.G.); (U.R.); (A.D.); (A.D.-K.); (B.S.); (M.M.-M.)
| |
Collapse
|
28
|
Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031261. [PMID: 33572495 PMCID: PMC7908590 DOI: 10.3390/ijerph18031261] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Different forms of physical activity—endurance, resistance or dynamic power—stimulate cytokine release from various tissues to the bloodstream. Receptors for exercise-induced cytokines are present in muscle tissue, adipose tissue, liver, brain, bones, cardiovascular system, immune system, pancreas, and skin. They have autocrine, paracrine and endocrine activities. Many of them regulate the myocyte growth and differentiation necessary for muscle hypertrophy and myogenesis. They also modify energy homeostasis, lipid, carbohydrate, and protein metabolism, regulate inflammation and exchange information (crosstalk) between remote organs. So far, interleukin 6 and irisin have been the best studied exercise-induced cytokines. However, many more can be grouped into myokines, hepatokines and adipomyokines. This review focuses on the less known exercise-induced cytokines such as myostatin, follistatin, decorin, brain-derived neurotrophic factor, fibroblast growth factor 21 and interleukin 15, and their relation to various forms of exercise, i.e., acute vs. chronic, regular training in healthy people.
Collapse
|
29
|
The Interplay between Mitochondrial Morphology and Myomitokines in Aging Sarcopenia. Int J Mol Sci 2020; 22:ijms22010091. [PMID: 33374852 PMCID: PMC7796142 DOI: 10.3390/ijms22010091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.
Collapse
|
30
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
31
|
Still Living Better through Chemistry: An Update on Caloric Restriction and Caloric Restriction Mimetics as Tools to Promote Health and Lifespan. Int J Mol Sci 2020; 21:ijms21239220. [PMID: 33287232 PMCID: PMC7729921 DOI: 10.3390/ijms21239220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR), the reduction of caloric intake without inducing malnutrition, is the most reproducible method of extending health and lifespan across numerous organisms, including humans. However, with nearly one-third of the world’s population overweight, it is obvious that caloric restriction approaches are difficult for individuals to achieve. Therefore, identifying compounds that mimic CR is desirable to promote longer, healthier lifespans without the rigors of restricting diet. Many compounds, such as rapamycin (and its derivatives), metformin, or other naturally occurring products in our diets (nutraceuticals), induce CR-like states in laboratory models. An alternative to CR is the removal of specific elements (such as individual amino acids) from the diet. Despite our increasing knowledge of the multitude of CR approaches and CR mimetics, the extent to which these strategies overlap mechanistically remains unclear. Here we provide an update of CR and CR mimetic research, summarizing mechanisms by which these strategies influence genome function required to treat age-related pathologies and identify the molecular fountain of youth.
Collapse
|
32
|
Stone SI, Wegner DJ, Wambach JA, Cole FS, Urano F, Ornitz DM. Digenic Variants in the FGF21 Signaling Pathway Associated with Severe Insulin Resistance and Pseudoacromegaly. J Endocr Soc 2020; 4:bvaa138. [PMID: 33210059 PMCID: PMC7653638 DOI: 10.1210/jendso/bvaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin-mediated pseudoacromegaly (IMPA) is a rare disease of unknown etiology. Here we report a 12-year-old female with acanthosis nigricans, hirsutism, and acromegalic features characteristic of IMPA. The subject was noted to have normal growth hormone secretion, with extremely elevated insulin levels. Studies were undertaken to determine a potential genetic etiology for IMPA. The proband and her family members underwent whole exome sequencing. Functional studies were undertaken to validate the pathogenicity of candidate variant alleles. Whole exome sequencing identified monoallelic, predicted deleterious variants in genes that mediate fibroblast growth factor 21 (FGF21) signaling, FGFR1 and KLB, which were inherited in trans from each parent. FGF21 has multiple metabolic functions but no known role in human insulin resistance syndromes. Analysis of the function of the FGFR1 and KLB variants in vitro showed greatly attenuated ERK phosphorylation in response to FGF21, but not FGF2, suggesting that these variants act synergistically to inhibit endocrine FGF21 signaling but not canonical FGF2 signaling. Therefore, digenic variants in FGFR1 and KLB provide a potential explanation for the subject's severe insulin resistance and may represent a novel category of insulin resistance syndromes related to FGF21.
Collapse
Affiliation(s)
- Stephen I Stone
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, Washington University School of Medicine, St. Louis, Missouri, US
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, US
| | - Daniel J Wegner
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, Missouri, US
| | - Jennifer A Wambach
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, Missouri, US
| | - F Sessions Cole
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, Missouri, US
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, US
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, US
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, US
| |
Collapse
|
33
|
Pignatti C, D’Adamo S, Stefanelli C, Flamigni F, Cetrullo S. Nutrients and Pathways that Regulate Health Span and Life Span. Geriatrics (Basel) 2020; 5:geriatrics5040095. [PMID: 33228041 PMCID: PMC7709628 DOI: 10.3390/geriatrics5040095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20–25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
Collapse
Affiliation(s)
- Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Stefania D’Adamo
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy;
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy;
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (C.P.); (F.F.)
- Correspondence: ; Tel.: +39-051-209-1241
| |
Collapse
|
34
|
Matsui M, Kosaki K, Tanahashi K, Akazawa N, Osuka Y, Tanaka K, Kuro-O M, Maeda S. Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. Exp Gerontol 2020; 141:111081. [PMID: 32911033 DOI: 10.1016/j.exger.2020.111081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Circulating levels of fibroblast growth factor 21 (FGF21) increase with advancing age and may lead to the development of cardiometabolic diseases via impaired lipid and glucose metabolism. While physical activity can reduce these risks of cardiometabolic dysfunction, it remains obscure whether circulation FGF21 levels are influenced by physical activity. The purpose of this study was to investigate the relations between daily physical activities and circulating FGF21 levels in middle-aged and older adults. METHODS In this cross-sectional study with 110 middle-aged and 102 older adults, circulating (serum) FGF21 levels were evaluated by enzyme-linked immunosorbent assay, and the time spent in light-intensity physical activity (LPA) and moderate-to-vigorous-intensity physical activity (MVPA) was assessed using a uniaxial accelerometer. RESULTS Serum FGF21 levels in the older group (158 pg/mL) were significantly higher than those in the middle-aged group (117 pg/mL). When we examined the joint association of age (middle-aged or older) and MVPA (lower or higher than the median) groups, serum FGF21 levels in the older and higher MVPA group (116 pg/mL) were significantly lower than those in the older and lower MVPA group (176 pg/mL). However, there was no difference in serum FGF21 levels between the lower and higher MVPA groups in the middle-aged group. In multivariable liner regression analysis, serum FGF21 levels were independently determined by MVPA time after adjusting for potential covariates in older adults (β = -0.209). CONCLUSIONS These cross-sectional study findings indicate that the time spent in MVPA is an independent determinant of circulating FGF21 levels, and that an age-related increase in serum FGF21 levels may be attenuated by habitually performing MVPA. (250/250 words).
Collapse
Affiliation(s)
- Masahiro Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Keisei Kosaki
- Japan Society for the Promotion of Science, Tokyo, Japan; Faculty of Sport Sciences, Waseda University, Saitama, Japan; Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Koichiro Tanahashi
- Division of Liberal Arts Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Nobuhiko Akazawa
- Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Yosuke Osuka
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kiyoji Tanaka
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
35
|
Guo C, Zhao L, Li Y, Deng X, Yuan G. Relationship between FGF21 and drug or nondrug therapy of type 2 diabetes mellitus. J Cell Physiol 2020; 236:55-67. [PMID: 32583417 DOI: 10.1002/jcp.29879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Sedentary and high-calorie diets are associated with increased risk of obesity and type 2 diabetes mellitus, while exercise and diet control are also important nondrug treatments for diabetes. Fibroblast growth factor 21 (FGF21) is an important cytokine, which is mainly expressed in liver, fat and muscle tissue responding to nutrition and exercise, and plays an important role in the improvement of glucose and lipid metabolism. Due to the increasing serum FGF21 level in obesity and diabetes, FGF21 can be used as a predictor or biomarker of diabetes. A variety of clinical antidiabetic drugs can reduce the content of FGF21, possibly for the improvement of FGF21 sensitivity. In this paper, we reviewed the interactions between FGF21 and nondrug therapy (diet and exercise) for diabetes and explored the potential value of the combined application of clinical antidiabetic drugs and FGF21.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Pulse Wave Velocity Is Associated with Increased Plasma oxLDL in Ageing but Not with FGF21 and Habitual Exercise. Antioxidants (Basel) 2020; 9:antiox9030221. [PMID: 32156043 PMCID: PMC7139299 DOI: 10.3390/antiox9030221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) and adiponectin increase the expression of genes involved in antioxidant pathways, but their roles in mediating oxidative stress and arterial stiffness with ageing and habitual exercise remain unknown. We explored the role of the FGF21-adiponectin axis in mediating oxidative stress and arterial stiffness with ageing and habitual exercise. Eighty age- and sex-matched healthy individuals were assigned to younger sedentary or active (18-36 years old, n = 20 each) and older sedentary or active (45-80 years old, n = 20 each) groups. Arterial stiffness was measured indirectly using pulse wave velocity (PWV). Fasted plasma concentrations of FGF21, adiponectin and oxidized low-density lipoprotein (oxLDL) were measured. PWV was 0.2-fold higher and oxLDL concentration was 25.6% higher (both p < 0.001) in older than younger adults, despite no difference in FGF21 concentration (p = 0.097) between age groups. PWV (p = 0.09) and oxLDL concentration (p = 0.275) did not differ between activity groups but FGF21 concentration was 9% lower in active than sedentary individuals (p = 0.011). Adiponectin concentration did not differ by age (p = 0.642) or exercise habits (p = 0.821). In conclusion, age, but not habitual exercise, was associated with higher oxidative stress and arterial stiffness. FGF21 and adiponectin did not differ between younger and older adults, meaning that it is unlikely that they mediate oxidative stress and arterial stiffness in healthy adults.
Collapse
|
37
|
Lee SY, Fam KD, Chia KL, Yap MMC, Goh J, Yeo KP, Yap EPH, Chotirmall SH, Lim CL. Age-related bone loss is associated with FGF21 but not IGFBP1 in healthy adults. Exp Physiol 2020; 105:622-631. [PMID: 31977105 DOI: 10.1113/ep088351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/23/2022]
Abstract
What is the central question of this study? Fibroblast growth factor 21 (FGF21) plays important therapeutic roles in metabolic diseases but is associated with bone loss, through insulin-like growth factor binding protein 1 (IGFBP1), in animals. However, the effect of the FGF21-IGFBP1 axis on age-related bone loss has not been explored in humans. What is the main finding and its importance? Using 'genetically linked' parent and child family pairs, we show that the FGF21 concentration, but not the IGFBP1 concentration, is higher in older than in younger adults. Our results suggest that age-associated decline in bone mineral density is associated with FGF21 and increased bone turnover but not likely to involve IGFBP1 in healthy humans. ABSTRACT: Bone fragility increases with age. The fibroblast growth factor 21 (FGF21)-insulin-like growth factor binding protein 1 (IGFBP1) axis regulates bone loss in animals. However, the role of FGF21 in mediating age-associated bone fragility in humans remains unknown. The purpose of this study was to explore the FGF21-regulatory axis in bone turnover and the age-related decline in bone mineral density (BMD). Twenty 'genetically linked' family (parent and child) pairs were recruited. Younger adults were 22-39 years old and older adults 60-71 years old. The BMD and serum concentrations of FGF21, IGFBP1, receptor activator of nuclear factor-κB ligand (RANKL), tartrate-resistant acid phosphatase 5b (TRAP5b) and bone-specific alkaline phosphatase (BAP) were measured. Older adults had 10-18% lower BMD at the hip and spine (P < 0.008) and a twofold higher FGF21 concentration (P < 0.001). The IGFBP1 concentration was similar in younger and older adults (P = 0.961). The RANKL concentration was 44% lower (P = 0.006), whereas TRAP5b and BAP concentrations were 36 and 31% higher (P = 0.01 and P = 0.004), respectively, in older adults than in younger adults. Adjusting for sex did not affect these results. The FGF21 concentration was negatively correlated with BMD at the spine (r = -0.460, P = 0.003), but not with the IGFBP1 concentration (r = -0.144, P = 0.374). The IGFBP1 concentration was not correlated with BMD at the hip or spine (all P > 0.05). In humans, FGF21 might be involved in the age-associated decline in BMD, especially at the spine, through increased bone turnover. IGFBP1 is unlikely to be the downstream effector of FGF21 in driving the age-associated decline in BMD and in RANKL-associated osteoclast differentiation.
Collapse
Affiliation(s)
- Shuen Yee Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kai Deng Fam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kar Ling Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Margaret M C Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jorming Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Ageing, National University Health System (NUHS), Singapore
| | - Kwee Poo Yeo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Eric P H Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
38
|
Wu Y, Zhu B, Chen Z, Duan J, Yang L. Comment on: "Fibroblast growth factor 21 controls mitophagy and muscle mass" by Oost et al. J Cachexia Sarcopenia Muscle 2020; 11:336-337. [PMID: 31307122 PMCID: PMC7015229 DOI: 10.1002/jcsm.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yeshun Wu
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Bin Zhu
- Department of Critical Care MedicineThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Zijun Chen
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Jiahao Duan
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Ling Yang
- Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
| |
Collapse
|
39
|
Rodgers M, Heineman B, Dushay J. Increased fructose consumption has sex-specific effects on fibroblast growth factor 21 levels in humans. Obes Sci Pract 2019; 5:503-510. [PMID: 31687174 PMCID: PMC6819978 DOI: 10.1002/osp4.360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21), a primarily hepatic hormone with pleotropic metabolic effects, is regulated by fructose in humans. Recent work has established that 75 g of oral fructose robustly stimulates FGF21 levels in humans with peak levels occurring 2 h following ingestion; this has been termed an oral fructose tolerance test (OFTT). It is unknown whether prolonged high-fructose consumption influences the FGF21 response to acute fructose or whether biological sex influences FGF21-fructose dynamics. METHODS Thirty-nine healthy adults underwent baseline OFTT following an overnight fast. For the high-fructose exposure protocol, 20 subjects ingested 75 g of fructose daily for 14 ± 3 d, followed by repeat OFTT. For the control group, an OFTT was repeated following 14 ± 3 d of ad lib diet. For all subjects, FGF21 levels, glucose, insulin, non-esterified fatty acids and triglyceride levels were measured at baseline and 2 h following OFTT. All subjects maintained 3-d food logs prior to OFTT testing. RESULTS Women demonstrated significantly higher baseline and peak stimulated total and intact FGF21 levels compared with men both before and after high-fructose exposure. Baseline total and intact FGF21 levels decreased following ongoing fructose exposure, maintaining a stable ratio. This decrease was sex specific, with only women demonstrating decreased baseline FGF21 levels. There were no changes in metabolic or anthropometric parameters following the high-fructose exposure. CONCLUSIONS Daily ingestion of 75 g of fructose for 2 weeks results in a sex-specific decrease in baseline FGF21 levels without change in body weight or biochemical evidence of metabolic injury. There were also sex-specific differences in peak fructose-stimulated FGF21 levels, which do not change with high-fructose consumption. The role of FGF21 in the development of metabolic disease caused by fructose consumption may differ based on biological sex. Future long-term studies should consider sex differences in FGF21-fructose dynamics.
Collapse
Affiliation(s)
- M. Rodgers
- Division of Endocrinology and MetabolismBeth Israel Deaconess Medical CenterBostonMAUSA
| | - B. Heineman
- Division of Endocrinology and MetabolismBeth Israel Deaconess Medical CenterBostonMAUSA
| | - J. Dushay
- Division of Endocrinology and MetabolismBeth Israel Deaconess Medical CenterBostonMAUSA
| |
Collapse
|
40
|
Matsui M, Kosaki K, Akazawa N, Tanahashi K, Kuro-o M, Maeda S. Association between circulating fibroblast growth factor 21, aerobic fitness, and aortic blood pressure in middle-aged and older women. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2019. [DOI: 10.7600/jpfsm.8.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Masahiro Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba
- Japan Society for the Promotion of Science
| | | | | | - Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba
| |
Collapse
|
41
|
Effects of Moderate Chronic Food Restriction on the Development of Postprandial Dyslipidemia with Ageing. Nutrients 2019; 11:nu11081865. [PMID: 31405194 PMCID: PMC6723802 DOI: 10.3390/nu11081865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023] Open
Abstract
Ageing is a major risk factor for the development of metabolic disorders linked to dyslipidemia, usually accompanied by increased adiposity. The goal of this work was to investigate whether avoiding an excessive increase in adiposity with ageing, via moderate chronic food restriction (FR), ameliorates postprandial dyslipidemia in a rat model of metabolic syndrome associated with ageing. Accordingly, we performed an oral lipid loading test (OLLT) in mature middle-aged (7 months) and middle-old-aged (24 months) Wistar rats fed ad libitum (AL) or under moderate FR for 3 months. Briefly, overnight fasted rats were orally administered a bolus of extra-virgin olive oil (1 mL/Kg of body weight) and blood samples were taken from the tail vein before fat load (t = 0) and 30, 60, 90, 120, 180, and 240 min after fat administration. Changes in serum lipids, glucose, insulin, and glucagon levels were measured at different time-points. Expression of liver and adipose tissue metabolic genes were also determined before (t = 0) and after the fat load (t = 240 min). Postprandial dyslipidemia progressively increased with ageing and this could be associated with hepatic ChREBP activity. Interestingly, moderate chronic FR reduced adiposity and avoided excessive postprandial hypertriglyceridemia in 7- and 24-month-old Wistar rats, strengthening the association between postprandial triglyceride levels and adiposity. The 24-month-old rats needed more insulin to maintain postprandial normoglycemia; nevertheless, hyperglycemia occurred at 240 min after fat administration. FR did not alter the fasted serum glucose levels but it markedly decreased glucagon excursion during the OLLT and the postprandial rise of glycemia in the 24-month-old rats, and FGF21 in the 7-month-old Wistar rats. Hence, our results pointed to an important role of FR in postprandial energy metabolism and insulin resistance in ageing. Lastly, our data support the idea that the vWAT might function as an ectopic site for fat deposition in 7-month-old and in 24-month-old Wistar rats that could increase their browning capacity in response to an acute fat load.
Collapse
|
42
|
Corrales P, Vivas Y, Izquierdo‐Lahuerta A, Horrillo D, Seoane‐Collazo P, Velasco I, Torres L, Lopez Y, Martínez C, López M, Ros M, Obregon MJ, Medina‐Gomez G. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell 2019; 18:e12948. [PMID: 30920127 PMCID: PMC6516146 DOI: 10.1111/acel.12948] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Age-related increased adiposity is an important contributory factor in the development of insulin resistance (IR) and is associated with metabolic defects. Caloric restriction (CR) is known to induce weight loss and to decrease adiposity while preventing metabolic risk factors. Here, we show that moderate 20% CR delays early deleterious effects of aging on white and brown adipose tissue (WAT and BAT, respectively) function and improves peripheral IR. To elucidate the role of CR in delaying early signs of aging, young (3 months), middle-aged (12 months), and old (20 months) mice fed al libitum and middle-aged and old mice subjected to early-onset CR were used. We show that impaired plasticity of subcutaneous WAT (scWAT) contributes to IR, which is already evident in middle-aged mice. Moreover, alteration of thyroid axis status with age is an important factor contributing to BAT dysfunction in middle-aged animals. Both defects in WAT and BAT/beige cells are ameliorated by CR. Accordingly, CR attenuated the age-related decline in scWAT function and decreased the extent of fibro-inflammation. Furthermore, CR promoted scWAT browning. In brief, our study identifies the contribution of scWAT impairment to age-associated metabolic dysfunction and identifies browning in response to food restriction, as a potential therapeutic strategy to prevent the adverse metabolic effects in middle-aged animals.
Collapse
Affiliation(s)
- Patricia Corrales
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Yurena Vivas
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Adriana Izquierdo‐Lahuerta
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Daniel Horrillo
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Patricia Seoane‐Collazo
- NeurObesity Group, Department of Physiology CIMUS, University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid Spain
| | - Ismael Velasco
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Lucia Torres
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Yamila Lopez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Carmen Martínez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology CIMUS, University of Santiago de Compostela‐Instituto de Investigación Sanitaria Santiago de Compostela Spain
| | - Manuel Ros
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
- MEMORISM Research Unit Institute of Biomedical Research "Alberto Sols" (CSIC), University Rey Juan Carlos Madrid Spain
| | - Maria Jesus Obregon
- MEMORISM Research Unit Institute of Biomedical Research "Alberto Sols" (CSIC), University Rey Juan Carlos Madrid Spain
- Endocrine and Nervous System Pathophysiology Instituto de Investigaciones Biomédicas (IIB), Centro Mixto CSIC‐UAM (Consejo Superior Investigaciones Científicas and Universidad Autonoma de Madrid) Madrid Spain
| | - Gema Medina‐Gomez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology Universidad Rey Juan Carlos Alcorcon‐Madrid Spain
- MEMORISM Research Unit Institute of Biomedical Research "Alberto Sols" (CSIC), University Rey Juan Carlos Madrid Spain
| |
Collapse
|
43
|
Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle 2019; 10:630-642. [PMID: 30895728 PMCID: PMC6596457 DOI: 10.1002/jcsm.12409] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/12/2018] [Accepted: 01/17/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Skeletal muscle is a plastic tissue that adapts to changes in exercise, nutrition, and stress by secreting myokines and myometabolites. These muscle-secreted factors have autocrine, paracrine, and endocrine effects, contributing to whole body homeostasis. Muscle dysfunction in aging sarcopenia, cancer cachexia, and diabetes is tightly correlated with the disruption of the physiological homeostasis at the whole body level. The expression levels of the myokine fibroblast growth factor 21 (FGF21) are very low in normal healthy muscles. However, fasting, ER stress, mitochondrial myopathies, and metabolic disorders induce its release from muscles. Although our understanding of the systemic effects of muscle-derived FGF21 is exponentially increasing, the direct contribution of FGF21 to muscle function has not been investigated yet. METHODS Muscle-specific FGF21 knockout mice were generated to investigate the consequences of FGF21 deletion concerning skeletal muscle mass and force. To identify the mechanisms underlying FGF21-dependent adaptations in skeletal muscle during starvation, the study was performed on muscles collected from both fed and fasted adult mice. In vivo overexpression of FGF21 was performed in skeletal muscle to assess whether FGF21 is sufficient per se to induce muscle atrophy. RESULTS We show that FGF21 does not contribute to muscle homeostasis in basal conditions in terms of fibre type distribution, fibre size, and muscle force. In contrast, FGF21 is required for fasting-induced muscle atrophy and weakness. The mass of isolated muscles from control-fasted mice was reduced by 15-25% (P < 0.05) compared with fed control mice. FGF21-null muscles, however, were significantly protected from muscle loss and weakness during fasting. Such important protection is due to the maintenance of protein synthesis rate in knockout muscles during fasting compared with a 70% reduction in control-fasted muscles (P < 0.01), together with a significant reduction of the mitophagy flux via the regulation of the mitochondrial protein Bnip3. The contribution of FGF21 to the atrophy programme was supported by in vivo FGF21 overexpression in muscles, which was sufficient to induce autophagy and muscle loss by 15% (P < 0.05). Bnip3 inhibition protected against FGF21-dependent muscle wasting in adult animals (P < 0.05). CONCLUSIONS FGF21 is a novel player in the regulation of muscle mass that requires the mitophagy protein Bnip3.
Collapse
Affiliation(s)
- Lynette J Oost
- Venetian Institute of Molecular Medicine, Padova, Italy.,Minderbroedersberg, Maastricht, LK, The Netherlands
| | - Monika Kustermann
- Venetian Institute of Molecular Medicine, Padova, Italy.,Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Andrea Armani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Myology Center, Department of Biomedical Science, University of Padova, Padova, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Myology Center, Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Villarroya J, Gallego-Escuredo JM, Delgado-Anglés A, Cairó M, Moure R, Gracia Mateo M, Domingo JC, Domingo P, Giralt M, Villarroya F. Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell 2018; 17:e12822. [PMID: 30043445 PMCID: PMC6156525 DOI: 10.1111/acel.12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) has been proposed to be an antiaging hormone on the basis of experimental studies in rodent models. However, circulating FGF21 levels are increased with aging in rodents and humans. Moreover, despite the metabolic health‐promoting effects of FGF21, the levels of this hormone are increased under conditions such as obesity and diabetes, an apparent incongruity that has been attributed to altered tissue responsiveness to FGF21. Here, we investigated serum FGF21 levels and expression of genes encoding components of the FGF21‐response molecular machinery in adipose tissue from healthy elderly individuals (≥70 years old) and young controls. Serum FGF21 levels were increased in elderly individuals and were positively correlated with insulinemia and HOMA‐IR, indices of mildly deteriorated glucose homeostasis. Levels of β‐Klotho, the coreceptor required for cellular responsiveness to FGF21, were increased in subcutaneous adipose tissue from elderly individuals relative to those from young controls, whereas FGF receptor‐1 levels were unaltered. Moreover, total ERK1/2 protein levels were decreased in elderly individuals in association with an increase in the ERK1/2 phosphorylation ratio relative to young controls. Adipose explants from aged and young mice respond similarly to FGF21 “ex vivo”. Thus, in contrast to what is observed in obesity and diabetes, high levels of FGF21 in healthy aging are not associated with repressed FGF21‐responsiveness machinery in adipose tissue. The lack of evidence for impaired FGF21 responsiveness in adipose tissue establishes a distinction between alterations in the FGF21 endocrine system in aging and chronic metabolic pathologies.
Collapse
Affiliation(s)
- Joan Villarroya
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau; Barcelona Catalonia Spain
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
| | - José M. Gallego-Escuredo
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
- Institut de Recerca Biomèdica (IRB) de Lleida; Lleida Spain
| | - Alejando Delgado-Anglés
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
| | - Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Barcelona Spain
| | - Ricardo Moure
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Barcelona Spain
| | - Ma Gracia Mateo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau; Barcelona Catalonia Spain
| | - Joan C. Domingo
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
| | - Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau; Barcelona Catalonia Spain
- Institut de Recerca Biomèdica (IRB) de Lleida; Lleida Spain
- Department of Infectious Diseases; Hospital Universitari Arnau de Vilanova; Lleida Spain
- Department of Infectious Diseases; Hospital Universitari de Santa María; Lleida Spain
- Universitat de Lleida; Lleida Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Barcelona Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina (IBUB); Universitat de Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición; Barcelona Spain
| |
Collapse
|
45
|
Choi HS, Lee HA, Kim SW, Cho EH. Association between Serum Fibroblast Growth Factor 21 Levels and Bone Mineral Density in Postmenopausal Women. Endocrinol Metab (Seoul) 2018; 33:273-277. [PMID: 29947182 PMCID: PMC6021318 DOI: 10.3803/enm.2018.33.2.273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the beneficial effect of fibroblast growth factor 21 (FGF21) on metabolic disease, there are concerns about adverse effects on bone metabolism, supported by animal studies. However, a recent human study showed the positive association between serum FGF21 level and bone mineral density (BMD) in healthy premenopausal women. We undertook this study to examine the association between FGF21 level and BMD in healthy postmenopausal Korean women who are susceptible to osteoporosis. METHODS We used data of 115 participants from a cohort of healthy postmenopausal women (>50 years old) to examine the association between serum FGF21 level and BMD. The clinical characteristics were obtained from the participants, and blood testing and serum FGF21 testing were undertaken. BMD of the lumbar spine, femoral neck and total hip area, and bone markers were used in the analyses. RESULTS The mean age of the participants was 60.2±7.2 years. Serum FGF21 levels showed negative correlation with BMD and T-scores in all three areas, but there were no statistically significant differences. Multivariate analyses with adjustment for age and body mass index also did not show significant association between serum FGF21 level and BMD. In addition, serum FGF21 level also showed no correlation with osteocalcin and C-telopeptide levels. CONCLUSION In our study, serum FGF21 level showed no significant correlation with BMD and T-scores.
Collapse
Affiliation(s)
- Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyang Ah Lee
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
46
|
Factors associated with cognitive impairment in elderly versus nonelderly patients with metabolic syndrome: the different roles of FGF21. Sci Rep 2018; 8:5174. [PMID: 29581470 PMCID: PMC5980096 DOI: 10.1038/s41598-018-23550-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022] Open
Abstract
Increased fibroblast growth factor 21 (FGF21) levels have been found in patients with metabolic syndrome (MetS). MetS is also associated with cognitive decline. However, the correlation between FGF21 and cognitive decline in elderly and nonelderly MetS patients has not been investigated. 116 non-elderly patients (age <65 years old) and 96 elderly patients (≥65 years old) with MetS were enrolled. Blood samples for FGF21 were collected from all participants after 12-hour fasting. Cognitive function was assessed using the Montreal cognitive assessment (MoCA) test. The MoCA score was negatively associated with age and was different among different levels of education in these MetS patients. In the non-elderly group, body mass index (BMI) showed positively correlated with MoCA score while, FGF21 level and HbA1C were negatively associated with the MoCA score in non-elderly MetS patients. BMI was the only factor which showed a negative correlation with the MoCA score in elderly MetS patients. This study demonstrated that FGF21 level was independently associated with cognitive impairment in non-elderly patients but not in elderly patients. The possible role of FGF21 level in cognitive impairment in non-elderly should be confirmed in a prospective study.
Collapse
|
47
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|
48
|
Yan J, Wang J, Huang H, Huang Y, Mi T, Zhang C, Zhang L. Fibroblast growth factor 21 delayed endothelial replicative senescence and protected cells from H 2O 2-induced premature senescence through SIRT1. Am J Transl Res 2017; 9:4492-4501. [PMID: 29118911 PMCID: PMC5666058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Vascular aging is an independent risk factor for age-related diseases, including atherosclerosis. Fibroblast growth factor 21 (FGF21) has been widely recognized as a metabolic regulator that is elevated in response to caloric and nutritional restrictions. Recent studies have demonstrated its emerging role as a pro-longevity hormone, but its effects on the senescence of human umbilical vascular endothelial cells (HUVECs) remain unclear. In the present study, we explored the anti-senescence effects and underlying mechanism of FGF21 on HUVECs. Co-cultivation of HUVECs with 5 ng/mL FGF21 significantly attenuated the phenotype changes of cells during in vitro subculture, including increased senescent population, decreased proliferation rate, decreased SIRT1 and elevated P53 and P21 protein levels. FGF21 also protected HUVECs from H2O2-induced cell damage, including premature cell senescence, intracellular accumulation of reactive oxygen species, increased DNA damage, decreased SIRT1 protein level and elevated protein levels of VCAM-1, ICAM-1, P53 and P21. Transient knockdown of SIRT1 in HUVECs significantly suppressed the protective effects of FGF21 for the rescue of H2O2-induced premature senescence and DNA damage, which suggests that the anti-senescence effect of FGF21 on HUVECs is SIRT1-dependent. These results support the potential of FGF21 as a therapeutic target for postponing vascular aging and preventing age-related vascular diseases.
Collapse
Affiliation(s)
- Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Jinli Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Huijin Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Tao Mi
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
49
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
50
|
Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, Ciciliot S, Soriano ME, Morbidoni V, Cerqua C, Loefler S, Kern H, Franceschi C, Salvioli S, Conte M, Blaauw B, Zampieri S, Salviati L, Scorrano L, Sandri M. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metab 2017; 25:1374-1389.e6. [PMID: 28552492 PMCID: PMC5462533 DOI: 10.1016/j.cmet.2017.04.021] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/22/2016] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
Collapse
Affiliation(s)
- Caterina Tezze
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Gian Paolo Fadini
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Mattia Albiero
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Giulia Favaro
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
| | - Stefano Ciciliot
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Maria Eugenia Soriano
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Valeria Morbidoni
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Stefan Loefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Wilhelminenspital, Montleartstrasse 37, A-1171 Wien, Austria
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Wilhelminenspital, Montleartstrasse 37, A-1171 Wien, Austria
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Bert Blaauw
- Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
| | - Sandra Zampieri
- Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; Istituto di Ricerca Pediatria, IRP, Città della Speranza, Corso Stati Uniti 4, 35129 Padova, Italy
| | - Luca Scorrano
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy; Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|