1
|
Miranda ER, Mey JT, Blackburn BK, Chaves AB, Fuller KNZ, Perkins RK, Ludlow AT, Haus JM. Soluble RAGE and skeletal muscle tissue RAGE expression profiles in lean and obese young adults across differential aerobic exercise intensities. J Appl Physiol (1985) 2023; 135:849-862. [PMID: 37675469 PMCID: PMC10642519 DOI: 10.1152/japplphysiol.00748.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Nearly 40% of Americans have obesity and are at increased risk for developing type 2 diabetes. Skeletal muscle is responsible for >80% of insulin-stimulated glucose uptake that is attenuated by the inflammatory milieu of obesity and augmented by aerobic exercise. The receptor for advanced glycation endproducts (RAGE) is an inflammatory receptor directly linking metabolic dysfunction with inflammation. Circulating soluble isoforms of RAGE (sRAGE) formed either by proteolytic cleavage (cRAGE) or alternative splicing (esRAGE) act as decoys for RAGE ligands, thereby counteracting RAGE-mediated inflammation. We aimed to determine if RAGE expression or alternative splicing of RAGE is altered by obesity in muscle, and whether acute aerobic exercise (AE) modifies RAGE and sRAGE. Young (20-34 yr) participants without [n = 17; body mass index (BMI): 22.6 ± 2.6 kg/m2] and with obesity (n = 7; BMI: 32.8 ± 2.9 kg/m2) performed acute aerobic exercise (AE) at 40%, 65%, or 80% of maximal aerobic capacity (V̇o2max; mL/kg/min) on separate visits. Blood was taken before and 30 min after each AE bout. Muscle biopsy samples were taken before, 30 min, and 3 h after the 80% V̇o2max AE bout. Individuals with obesity had higher total RAGE and esRAGE mRNA and RAGE protein (P < 0.0001). In addition, RAGE and esRAGE transcripts correlated to transcripts of the NF-κB subunit P65 (P < 0.05). There was no effect of AE on total RAGE or esRAGE transcripts, or RAGE protein (P > 0.05), and AE tended to decrease circulating sRAGE in particular at lower intensities of exercise. RAGE expression is exacerbated in skeletal muscle with obesity, which may contribute to muscle inflammation via NF-κB. Future work should investigate the consequences of increased skeletal muscle RAGE on the development of obesity-related metabolic dysfunction and potential mitigating strategies.NEW & NOTEWORTHY This study is the first to investigate the effects of aerobic exercise intensity on circulating sRAGE isoforms, muscle RAGE protein, and muscle RAGE splicing. sRAGE isoforms tended to diminish with exercise, although this effect was attenuated with increasing exercise intensity. Muscle RAGE protein and gene expression were unaffected by exercise. However, individuals with obesity displayed nearly twofold higher muscle RAGE protein and gene expression, which positively correlated with expression of the P65 subunit of NF-κB.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jacob T Mey
- Integrated Physiology and Molecular Metabolism, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Brian K Blackburn
- Applied Health Sciences and Kinesiology, Humboldt State University, Arcata, California, United States
| | - Alec B Chaves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States
| | - Kelly N Z Fuller
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Ryan K Perkins
- Department of Kinesiology, California State University Chico, Chico, California, United States
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
- Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Tavares JF, Ribeiro PVM, Coelho OGL, Silva LED, Alfenas RCG. Can advanced glycation end-products and their receptors be affected by weight loss? A systematic review. Obes Rev 2020; 21:e13000. [PMID: 31950676 DOI: 10.1111/obr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
Abstract
Advanced glycation end products (AGEs) have been implicated in the pathogenesis of most chronic diseases. Therefore, identification of treatments that can attenuate the effects of these compounds and prevent cardiometabolic complications is of extreme public health interest. Recently, body weight management interventions showed positive results on reducing serum AGE concentrations. Moreover, the soluble receptor for advanced glycation end products (sRAGE) is considered to be a novel biomarker to identify patients with obesity most likely to benefit from weight management interventions. This systematic review aimed to critically analyze papers evaluating the effects of weight loss on serum AGEs and its receptors in adults with excess body weight. MEDLINE, Cochrane, Scopus, and Lilacs databases were searched. Three studies evaluating the response of AGEs to energy-restricted diets and six assessing sRAGE as the primary outcome were included. Energy-restricted diets and bariatric surgery reduced serum AGE concentrations, but effects on endogenous secretory RAGE (esRAGE) and sRAGE concentrations are conflicting. These results may be associated with mechanisms related to changes in dietary intake and limiting endogenous AGE formation. Therefore, the role of energy-restricted diets and bariatric surgery on lowering serum AGE concentrations, as well as its effects on AGEs receptors, deserves further investigation.
Collapse
Affiliation(s)
- Juliana F Tavares
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Priscila V M Ribeiro
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Olívia G L Coelho
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís E da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Ruiz HH, Ramasamy R, Schmidt AM. Advanced Glycation End Products: Building on the Concept of the "Common Soil" in Metabolic Disease. Endocrinology 2020; 161:bqz006. [PMID: 31638645 PMCID: PMC7188081 DOI: 10.1210/endocr/bqz006] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/01/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
The role of advanced glycation end products (AGEs) in promoting and/or exacerbating metabolic dysregulation is being increasingly recognized. AGEs are formed when reducing sugars nonenzymatically bind to proteins or lipids, a process that is enhanced by hyperglycemic and hyperlipidemic environments characteristic of numerous metabolic disorders including obesity, diabetes, and its complications. In this mini-review, we put forth the notion that AGEs span the spectrum from cause to consequence of insulin resistance and diabetes, and represent a "common soil" underlying the pathophysiology of these metabolic disorders. Collectively, the surveyed literature suggests that AGEs, both those that form endogenously as well as exogenous AGEs derived from environmental factors such as pollution, smoking, and "Western"-style diets, contribute to the pathogenesis of obesity and diabetes. Specifically, AGE accumulation in key metabolically relevant organs induces insulin resistance, inflammation, and oxidative stress, which in turn provide substrates for excess AGE formation, thus creating a feed-forward-fueled pathological loop mediating metabolic dysfunction.
Collapse
Affiliation(s)
- Henry H Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Abdulle A, Inman CK, Saleh A, Noshi M, Galani D, Abdelwareth L, Alsafar H, Elfatih A, Al Shamsi H, Ali R, Li H, Ramasamy R, Schmidt AM, Benbarka MM, Hassan MH. Metabolic dysfunction in Emirati subjects in Abu Dhabi: Relationship to levels of soluble RAGEs. J Clin Transl Endocrinol 2019; 16:100192. [PMID: 31080742 PMCID: PMC6503160 DOI: 10.1016/j.jcte.2019.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The United Arab Emirates is experiencing increasing rates of type 2 diabetes (T2D) and its complications. As soluble levels of the receptor for advanced glycation end products, (sRAGE), and endogenous secretory RAGE (esRAGE), the latter an alternatively spliced form of AGER (the gene encoding RAGE), have been reported to be associated with T2D and its complications, we tested for potential relationships between these factors and T2D status in Emirati subjects. METHODS In a case-control study, we recruited Emirati subjects with T2D and controls from the Sheikh Khalifa Medical City in Abu Dhabi. Anthropomorphic characteristics, levels of plasma sRAGE and esRAGE, and routine chemistry variables were measured. RESULTS Two hundred and sixteen T2D subjects and 215 control subjects (mean age, 57.4 ± 12.1 vs. 50.7 ± 15.4 years; P < 0.0001, respectively) were enrolled. Univariate analyses showed that levels of sRAGE were significantly lower in the T2D vs. control subjects (1033.9 ± 545.3 vs. 1169.2 ± 664.1 pg/ml, respectively; P = 0.02). Multivariate analyses adjusting for age, sex, systolic blood pressure, pulse, body mass index, Waist/Hip circumference ratio, fasting blood glucose, HDL, LDL, insulin, triglycerides, Vitamin D and urea levels revealed that the difference in sRAGE levels between T2D and control subjects remained statistically-significant, P = 0.03, but not after including estimated glomerular filtration rate in the model, P = 0.14. There were no significant differences in levels of esRAGE. Levels of plasma insulin were significantly higher in the control vs. the T2D subjects (133.6 ± 149.9 vs. 107.6 ± 93.3 pg/L. respectively; P = 0.01, after adjustment for age and sex). CONCLUSION/DISCUSSION Levels of sRAGE, but not esRAGE, were associated with T2D status in Abu Dhabi, but not after correction for eGFR. Elevated levels of plasma insulin in both control and T2D subjects suggests the presence of metabolic dysfunction, even in subjects without diabetes.
Collapse
Key Words
- ADAM10, a disintegrin and metalloproteinase domain-containing protein 10
- AGEs, advanced glycation endproducts
- ARIC, Atherosclerosis Risk in Communities
- BMI, body mass index
- CARDS, Collaborative Atorvastatin Diabetes Study
- CV, coefficient of variation
- DBP, diastolic blood pressure
- ELISA, enzyme-linked immunosorbent assay
- ESRD, end stage renal disease
- FBG, fasting blood glucose
- HDL, high density lipoprotein
- HbA1c, glycosylated hemoglobin
- Insulin resistance
- Kidney function
- LADA, latent autoimmune diabetes of the adult
- LDL, low density lipoprotein
- MMP, matrix metalloproteinase
- RAGE, receptor for advanced glycation endproducts
- Receptor for advanced glycation endproducts (RAGE)
- SBP, systolic blood pressure
- SKMC, Sheikh Khalifa Medical City
- Soluble RAGE (sRAGE)
- T2D, type 2 diabetes
- TG, triglycerides
- Type 2 diabetes
- UAE, United Arab Emirates
- UAEHFS, United Arab Emirates Healthy Futures Study
- W/H ratio, Waist/Hip circumference ratio
- eGFR, estimated glomerular filtration rate
- esRAGE (endogenous secretory RAGE)
- esRAGE, endogenous secretory RAGE
- hsCRP, high sensitivity C-reactive protein
- sRAGE, soluble RAGE
Collapse
Affiliation(s)
- Abdishakur Abdulle
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Claire K. Inman
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Abdelkarim Saleh
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Mohamed Noshi
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Divya Galani
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Laila Abdelwareth
- Department of Pathology, Cleveland Clinic Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Abubaker Elfatih
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Hefsa Al Shamsi
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| | - Raghib Ali
- Public Health Research Center, New York University Abu Dhabi, United Arab Emirates
| | - Huilin Li
- Department of Population Health, New York University School of Medicine, NY, USA
| | | | - Ann Marie Schmidt
- Department of Medicine, New York University School of Medicine, NY, USA
| | | | - Mohamed H. Hassan
- Department of Medicine, Sheikh Khalifa Medical City, United Arab Emirates
| |
Collapse
|
5
|
Miranda ER, Fuller KNZ, Perkins RK, Kroeger CM, Trepanowski JF, Varady KA, Haus JM. Endogenous secretory RAGE increases with improvements in body composition and is associated with markers of adipocyte health. Nutr Metab Cardiovasc Dis 2018; 28:1155-1165. [PMID: 30297199 PMCID: PMC6231965 DOI: 10.1016/j.numecd.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The receptor for advanced glycation end products (RAGE) is implicated in obesogenesis. Conversely, soluble RAGE (sRAGE) competitively inhibits RAGE. Our aim was to determine the effects of weight-loss via alternate day fasting (ADF) on sRAGE isoforms and evaluate potential relationships with body composition. METHODS AND RESULTS 42 obese participants were randomized to control (CON) or ADF. For 24 weeks, the ADF group consumed 25% or 125% of their caloric requirements on alternating days while the CON group did not change their diet. Body fat was measured via DXA, visceral fat (VAT) via MRI and subcutaneous fat (SAT) was derived by subtracting VAT from total fat. sRAGE isoforms were measured via ELISAs. After 24 weeks, ADF -6.8 (-9.5, -3.5)kg (Median, IQR) lost more weight than CON -0.3 (-1.9, 1.0)kg (p < 0.05). The change in endogenous secretory RAGE (esRAGE) was different between ADF 15 (-30, 78)pg/mL and CON -21 (-72, 16)pg/mL after 24 weeks (p < 0.05). To examine the effect of changes in body composition, the cohort was stratified by median weight-, fat-, SAT-, and VAT-loss. The changes in all sRAGE isoforms were different between those above and below median weight-loss (p < 0.05) with sRAGE isoforms tending to decrease in individuals below the median. Changes in total sRAGE and esRAGE were different between individuals above compared to below median fat- and SAT-loss (p < 0.05). Those above median fat-loss increased esRAGE by 29 (-5, 66)pg/mL (p < 0.05). CONCLUSION Improvements in body composition are related to increased sRAGE isoforms, implicating sRAGE as a potential target for the treatment of obesity. CLINICAL TRIAL REGISTRATION NCT00960505.
Collapse
Affiliation(s)
- E R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - K N Z Fuller
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - R K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - C M Kroeger
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - J F Trepanowski
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - K A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - J M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|