1
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Effect of Convalescent Plasma Therapy on Clinical Improvement of COVID-19 Patients: A Randomized Clinical Trial. TANAFFOS 2022; 21:24-30. [PMID: 36258918 PMCID: PMC9571240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/29/2021] [Indexed: 11/11/2022]
Abstract
Background Due to the critical condition of COVID-19, it is necessary to evaluate the efficacy of administrating convalescent plasma to COVID-19 patients. Therefore, we decided to design a clinical trial to investigate the effect of convalescent plasma of patients recovered from COVID-19 on the treatment outcome of COVID-19-infected patients. Materials and Methods In this parallel randomized controlled clinical trial, patients in the intervention group received standard treatment plus convalescent plasma of patients recovered from COVID-19. We allocated 60 patients to each treatment group through balanced block randomization. Then, COVID-19 outcomes, vital signs, and biochemical parameters were compared between the two treatment groups by the independent t test and ANCOVA. Results The mean age (SD) of the patients in the intervention and standard treatment groups was 52.84 (15.77) and 55.15 (14.34) years, respectively. Although patients in the intervention group reported more hospitalization days (11.45±5.86 vs. 10.42±6.79), death rates (26.67% vs. 18.13%), ICU admission (45 vs. 41.67%), and ARDS (11.67% vs. 3.33%), these differences were not statistically significant (P>0.05). Moreover, the two groups were homogenous in vital signs and biochemical parameters before and after treatment (P>0.05). Conclusion The present study indicated that convalescent plasma therapy has no significant effect on the survival, hospitalization, and ICU admission of COVID-19 patients.
Collapse
|
3
|
Lo Muzio L, Ambosino M, Lo Muzio E, Quadri MFA. SARS-CoV-2 Reinfection Is a New Challenge for the Effectiveness of Global Vaccination Campaign: A Systematic Review of Cases Reported in Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11001. [PMID: 34682746 PMCID: PMC8535385 DOI: 10.3390/ijerph182011001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Reinfection with SARS-CoV-2 seems to be a rare phenomenon. The objective of this study is to carry out a systematic search of literature on the SARS-CoV-2 reinfection in order to understand the success of the global vaccine campaigns. A systematic search was performed. Inclusion criteria included a positive RT-PCR test of more than 90 days after the initial test and the confirmed recovery or a positive RT-PCR test of more than 45 days after the initial test that is accompanied by compatible symptoms or epidemiological exposure, naturally after the confirmed recovery. Only 117 articles were included in the final review with 260 confirmed cases. The severity of the reinfection episode was more severe in 92/260 (35.3%) with death only in 14 cases. The observation that many reinfection cases were less severe than initial cases is interesting because it may suggest partial protection from disease. Another interesting line of data is the detection of different clades or lineages by genome sequencing between initial infection and reinfection in 52/260 cases (20%). The findings are useful and contribute towards the role of vaccination in response to the COVID-19 infections. Due to the reinfection cases with SARS-CoV-2, it is evident that the level of immunity is not 100% for all individuals. These data highlight how it is necessary to continue to observe all the prescriptions recently indicated in the literature in order to avoid new contagion for all people after healing from COVID-19 or becoming asymptomatic positive.
Collapse
Affiliation(s)
- Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
- Consorzio Interuniversitario Nazionale per la Bio-Oncologia (C.I.N.B.O.), 66100 Chieti, Italy
| | - Mariateresa Ambosino
- Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy;
| | - Eleonora Lo Muzio
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Mir Faeq Ali Quadri
- Department of Preventive Dental Sciences, Jazan University, Jazan 82511, Saudi Arabia;
| |
Collapse
|
4
|
Cao H, Ming L, Chen L, Zhu X, Shi Y. The Effectiveness of Convalescent Plasma for the Treatment of Novel Corona Virus Disease 2019: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:641429. [PMID: 34646833 PMCID: PMC8502818 DOI: 10.3389/fmed.2021.641429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19), sweeping across the world, has created a worldwide pandemic. Effective treatments of COVID-19 are extremely urgent. Objective: To analyze the efficacy and safety of convalescent plasma (CCP) on patients with COVID-19. Methods: All the relevant studies were searched from PubMed, EMBASE,Cochrane library, Scopus, Web of Science, CBM, CNKI, Wan fang, VIP, Medrxiv, Biorxiv, and SSRN on July 19, 2021. PICOS criteria were as follows: (P) the study interests were human subjects with the infection of COVID-19; (I) the intervention of interest was CCP; (C) comparator treatments contained placebo, sham therapy, and standard treatment; (O) the primary outcome was mortality rates by the novel coronavirus. The secondary outcomes included the incidence of serious adverse events, the rate of ICU admission and mechanical ventilation (MV); the length of hospital stay; the duration of MV and ICU stay; the antibody levels, inflammatory factor levels, and viral loads. (S) Only randomized controlled trials (RCTs) of CCP were included. Subanalysis, quality assessment, sensitive analysis, and publication bias were conducted by two reviewers independently. Results: Sixteen RCTs were included and enrolled a total of 16,296 participants in this meta-analysis. The pooled data showed that no significant difference was observed in reducing the rate of overall mortality between CCP treatment group and placebo group (OR 0.96; 95% CI 0.90 to 1.03; p = 0.30; I 2 = 6%). According to the results of subgroup analysis, severe or critical patients with CCP showed significant difference in reducing the 28-day mortality of compared with placebo (OR 0.58, 95% CI 0.36 to 0.93, p = 0.02, I 2 = 0%). CCP groups have a significantly shorter duration of MV compared with the control group (weighted MD -1.00, 95% CI -1.86 to -0.14 d p = 0.02, I 2 = 0%). No significant difference was observed in the length of hospital stay, the duration of ICU, and the rate of ICU and MV. There is no conclusive evidence about the safety of CCP. Conclusion: Convalescent plasma can significantly reduce the 28-day mortality of severe or critical COVID-19 patients and the duration of MV. However, more evidence was needed to prove the safety of convalescent plasma.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Ming
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Cardiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Long Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xingwang Zhu
- Department of Pediatrics, Jiulongpo People's Hospital, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int Immunopharmacol 2021; 100:108162. [PMID: 34562844 PMCID: PMC8445802 DOI: 10.1016/j.intimp.2021.108162] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
>20 months has been passed since the detection of the first cases of SARS-CoV-2 infection named COVID-19 from Wuhan city of China. This novel coronavirus spread rapidly around the world and became a pandemic. Although different therapeutic options have been considered and approved for the management of COVID-19 infection in different stages of the disease, challenges in pharmacotherapy especially in patients with moderate to severe COVID-19 and with underlying diseases have still remained. Prevention of infection through public vaccination would be the only efficient strategy to control the morbidity and mortality caused by COVID-19. To date, several COVID-19 vaccines using different platforms including nucleic acid-based vaccines, adenovirus-based vaccines, protein-based vaccines, and inactivated vaccines have been introduced among which many have received approval for prevention against COVID-19. In this comprehensive review, available COVID-19 vaccines have been discussed. The mechanisms, safety, efficacy, dosage, dosing intervals, possible adverse reactions, storage, and coverage of these four different vaccine platforms against SARS-CoV-2 variants have been discussed in detail and summarized in tabular format for ease of comparison and conclusion. Although each COVID-19 vaccine has various advantages and disadvantages over the others, accessibility and affordability of approved vaccines by the official health organizations, especially in developing countries, would be essential to terminate this pandemic. The main limitation of this study was the lack of access to the clinical data on available COVID-19 vaccines developed in Eastern countries since the data on their efficacy, safety, and adverse reactions were limited.
Collapse
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Dhanasekaran S, Vajravelu LK, Venkatesalu V. Risk-benefit analysis on the clinical significance of convalescent plasma therapy in the management of COVID-19. Postgrad Med J 2021; 97:467-468. [PMID: 32817576 PMCID: PMC10016903 DOI: 10.1136/postgradmedj-2020-138056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Pharmacology and Toxicology, Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
- School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Leela Kagithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital and Research Centre, Kancheepuram, Tamil Nadu, India
| | - Venugopal Venkatesalu
- Department of Internal Medicine, Sundaram Health Centre, Sholinghur, Tamil Nadu, India
| |
Collapse
|
7
|
Bayat M, Asemani Y, Mohammadi MR, Sanaei M, Namvarpour M, Eftekhari R. An overview of some potential immunotherapeutic options against COVID-19. Int Immunopharmacol 2021; 95:107516. [PMID: 33765610 PMCID: PMC7908848 DOI: 10.1016/j.intimp.2021.107516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
After the advent of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) in the late 2019, the resulting severe and pernicious syndrome (COVID-19) immediately was deployed all around the world. To date, despite relentless efforts to control the disease by drug repurposing, there is no approved specific therapy for COVID-19. Given the role of innate and acquired immune components in the control and elimination of viral infections and inflammatory mutilations during SARS-CoV2 pathogenesis, immunotherapeutic strategies appear to be beneficent. Passive immunotherapies such as convalescent plasma, which has received much attention especially in severe cases, as well as suppressing inflammatory cytokines, interferon administration, inhibition of kinases and complement cascade, virus neutralization with key engineered products, cell-based therapies, immunomodulators and anti-inflammatory drugs are among the key immunotherapeutic approaches to deal with COVID-19, which is discussed in this review. Also, details of leading COVID-19 vaccine candidates as the most potent immunotherapy have been provided. However, despite salient improvements, there is still a lack of completely assured vaccines for universal application. Therefore, adopting proper immunotherapies according to the cytokine pattern and involved immune responses, alongside engineered biologics specially ACE2-Fc to curb SARS-CoV2 infection until achieving a tailored vaccine is probably the best strategy to better manage this pandemic. Therefore, gaining knowledge about the mechanism of action, potential targets, as well as the effectiveness of immune-based approaches to confront COVID-19 in the form of a well-ordered review study is highly momentous.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sanaei
- Department of Environmental, Polymer and Organic Chemistry, School of Chemistry, Damghan University, Damghan, Iran
| | - Mozhdeh Namvarpour
- Department of Immunology, Shahid Sadoughi University of Medical Science and services, Yazd, Iran
| | - Reyhaneh Eftekhari
- Department of Microbiology, Faculty of Biology, Semnan University, Semnan, Iran
| |
Collapse
|
8
|
Chvatal-Medina M, Mendez-Cortina Y, Patiño PJ, Velilla PA, Rugeles MT. Antibody Responses in COVID-19: A Review. Front Immunol 2021; 12:633184. [PMID: 33936045 PMCID: PMC8081880 DOI: 10.3389/fimmu.2021.633184] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic. Although its seroprevalence is highly variable among territories, it has been reported at around 10%, but higher in health workers. Evidence regarding cross-neutralizing response between SARS-CoV and SARS-CoV-2 is still controversial. However, other previous coronaviruses may interfere with SARS-CoV-2 infection, since they are phylogenetically related and share the same target receptor. Further, the seroconversion of IgM and IgG occurs at around 12 days post onset of symptoms and most patients have neutralizing titers on days 14-20, with great titer variability. Neutralizing antibodies correlate positively with age, male sex, and severity of the disease. Moreover, the use of convalescent plasma has shown controversial results in terms of safety and efficacy, and due to the variable immune response among individuals, measuring antibody titers before transfusion is mostly required. Similarly, cellular immunity seems to be crucial in the resolution of the infection, as SARS-CoV-2-specific CD4+ and CD8+ T cells circulate to some extent in recovered patients. Of note, the duration of the antibody response has not been well established yet.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Pablo J. Patiño
- Grupo Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
9
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
10
|
Madariaga MLL, Guthmiller JJ, Schrantz S, Jansen MO, Christensen C, Kumar M, Prochaska M, Wool G, Durkin‐Celauro A, Oh WH, Trockman L, Vigneswaran J, Keskey R, Shaw DG, Dugan H, Zheng N, Cobb M, Utset H, Wang J, Stovicek O, Bethel C, Matushek S, Giurcanu M, Beavis KG, di Sabato D, Meltzer D, Ferguson MK, Kress JP, Shanmugarajah K, Matthews JB, Fung JF, Wilson PC, Alverdy JC, Donington JS. Clinical predictors of donor antibody titre and correlation with recipient antibody response in a COVID-19 convalescent plasma clinical trial. J Intern Med 2021; 289:559-573. [PMID: 33034095 PMCID: PMC7675325 DOI: 10.1111/joim.13185] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Convalescent plasma therapy for COVID-19 relies on transfer of anti-viral antibody from donors to recipients via plasma transfusion. The relationship between clinical characteristics and antibody response to COVID-19 is not well defined. We investigated predictors of convalescent antibody production and quantified recipient antibody response in a convalescent plasma therapy clinical trial. METHODS Multivariable analysis of clinical and serological parameters in 103 confirmed COVID-19 convalescent plasma donors 28 days or more following symptom resolution was performed. Mixed-effects regression models with piecewise linear trends were used to characterize serial antibody responses in 10 convalescent plasma recipients with severe COVID-19. RESULTS Donor antibody titres ranged from 0 to 1 : 3892 (anti-receptor binding domain (RBD)) and 0 to 1 : 3289 (anti-spike). Higher anti-RBD and anti-spike titres were associated with increased age, hospitalization for COVID-19, fever and absence of myalgia (all P < 0.05). Fatigue was significantly associated with anti-RBD (P = 0.03). In pairwise comparison amongst ABO blood types, AB donors had higher anti-RBD and anti-spike than O donors (P < 0.05). No toxicity was associated with plasma transfusion. Non-ECMO recipient anti-RBD antibody titre increased on average 31% per day during the first three days post-transfusion (P = 0.01) and anti-spike antibody titre by 40.3% (P = 0.02). CONCLUSION Advanced age, fever, absence of myalgia, fatigue, blood type and hospitalization were associated with higher convalescent antibody titre to COVID-19. Despite variability in donor titre, 80% of convalescent plasma recipients showed significant increase in antibody levels post-transfusion. A more complete understanding of the dose-response effect of plasma transfusion amongst COVID-19-infected patients is needed.
Collapse
Affiliation(s)
| | | | - S. Schrantz
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. O. Jansen
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | - M. Kumar
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. Prochaska
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - G. Wool
- Department ofPathologyUniversity of ChicagoChicagoILUSA
| | | | - W. H. Oh
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - L. Trockman
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | | | - R. Keskey
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - D. G. Shaw
- Committee on ImmunologyUniversity of ChicagoChicagoILUSA
| | - H. Dugan
- Committee on ImmunologyUniversity of ChicagoChicagoILUSA
| | - N.‐Y. Zheng
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - M. Cobb
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - H. Utset
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - J. Wang
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - O. Stovicek
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - C. Bethel
- Clinical Microbiology and Immunology LaboratoryUniversity of ChicagoChicagoILUSA
| | - S. Matushek
- Clinical Microbiology and Immunology LaboratoryUniversity of ChicagoChicagoILUSA
| | - M. Giurcanu
- Department of Public Health SciencesUniversity of ChicagoChicagoILUSA
| | - K. G. Beavis
- Biological Sciences DivisionDepartment of PathologyUniversity of ChicagoChicagoILUSA
| | - D. di Sabato
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - D. Meltzer
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | - J. P. Kress
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | | | | | - J. F. Fung
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | - P. C. Wilson
- Department ofMedicineUniversity of ChicagoChicagoILUSA
| | - J. C. Alverdy
- Department ofSurgeryUniversity of ChicagoChicagoILUSA
| | | |
Collapse
|
11
|
Yoon HA, Bartash R, Gendlina I, Rivera J, Nakouzi A, Bortz RH, Wirchnianski AS, Paroder M, Fehn K, Serrano-Rahman L, Babb R, Sarwar UN, Haslwanter D, Laudermilch E, Florez C, Dieterle ME, Jangra RK, Fels JM, Tong K, Mariano MC, Vergnolle O, Georgiev GI, Herrera NG, Malonis RJ, Quiroz JA, Morano NC, Krause GJ, Sweeney JM, Cowman K, Allen S, Annam J, Applebaum A, Barboto D, Khokhar A, Lally BJ, Lee A, Lee M, Malaviya A, Sample R, Yang XA, Li Y, Ruiz R, Thota R, Barnhill J, Goldstein DY, Uehlinger J, Garforth SJ, Almo SC, Lai JR, Gil MR, Fox AS, Chandran K, Wang T, Daily JP, Pirofski LA. Treatment of severe COVID-19 with convalescent plasma in Bronx, NYC. JCI Insight 2021; 6:142270. [PMID: 33476300 PMCID: PMC7934933 DOI: 10.1172/jci.insight.142270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.
Collapse
Affiliation(s)
- Hyun ah Yoon
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Rachel Bartash
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Inessa Gendlina
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Johanna Rivera
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Antonio Nakouzi
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | | | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology and
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Karen Fehn
- Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | - Rachelle Babb
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Uzma N. Sarwar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | | | - Catalina Florez
- Department of Microbiology and Immunology and
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, USA
| | | | | | | | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margarette C. Mariano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - George I. Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jose A. Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gregory J. Krause
- Department of Developmental & Molecular Biology
- Institute for Aging Research, and
| | - Joseph M. Sweeney
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelsie Cowman
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | | | | | | | - Daniel Barboto
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ahmed Khokhar
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Audrey Lee
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Max Lee
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Reise Sample
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiuyi A. Yang
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yang Li
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rafael Ruiz
- Network Performance Group, Montefiore Medical Center, Bronx, New York, USA
- Division of Hospital Medicine, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raja Thota
- Network Performance Group, Montefiore Medical Center, Bronx, New York, USA
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, USA
| | | | | | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Johanna P. Daily
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
- Department of Microbiology and Immunology and
| |
Collapse
|
12
|
Upadhyay SK, Dan S, Girdhar M, Rastogi K. Recent Advancement in SARS-CoV-2 Diagnosis, Treatment, and Vaccine Formulation: a New Paradigm of Nanotechnology in Strategic Combating of COVID-19 Pandemic. CURRENT PHARMACOLOGY REPORTS 2021; 7:1-14. [PMID: 33552875 PMCID: PMC7854874 DOI: 10.1007/s40495-021-00250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review The coronavirus disease-2019 (COVID-19) is a global pandemic which has not been seen in recent history, leaving behind deep socioeconomic damages and huge human losses with the disturbance in the healthcare sector. Despite the tremendous international effort and the launch of various clinical trials for the containment of this pandemic, no effective therapy has been proven yet. Recent Findings This review has highlighted the different traditional therapeutic techniques, along with the potential contribution of nanomedicine against the severe acute respiratory syndrome corovirus-2 (SARS-CoV-2). Repositioning of the drugs, such as remdesivir and chloroquine, is a rapid process for the reach of safe therapeutics, and the related clinical trials have determined effects against COVID-19. Various protein-based SARS-CoV-2 vaccine candidates have successfully entered clinical phases, determining positive results. The self-assembled and metallic nanovaccines mostly based on the antigenic properties of spike (S) protein are also approachable, feasible, and promising techniques for lowering the viral burden. Summary There are number of NP-based diagnostic systems have been reported for coronaviruses (CoVs) and specifically for SARS-CoV-2. However, extensive studies are still necessary and required for the nanoparticle (NP)-based therapy.
Collapse
Affiliation(s)
- Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, HR 133207 India
| | - Siddhartha Dan
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Jalandhar, Punjab India
| | - Mansi Girdhar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, HR 133207 India
| | - Kartikey Rastogi
- Department of Pharmacology, KIET Group of Institutions, Ghaziabad, Delhi-NCR 201206 India
| |
Collapse
|
13
|
Fraga-Silva TFDC, Maruyama SR, Sorgi CA, Russo EMDS, Fernandes APM, de Barros Cardoso CR, Faccioli LH, Dias-Baruffi M, Bonato VLD. COVID-19: Integrating the Complexity of Systemic and Pulmonary Immunopathology to Identify Biomarkers for Different Outcomes. Front Immunol 2021; 11:599736. [PMID: 33584667 PMCID: PMC7878380 DOI: 10.3389/fimmu.2020.599736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few months, the coronavirus disease 2019 (COVID-19) pandemic has affected millions of people worldwide and has provoked an exceptional effort from the scientific community to understand the disease. Clinical evidence suggests that severe COVID-19 is associated with both dysregulation of damage tolerance caused by pulmonary immunopathology and high viral load. In this review article, we describe and discuss clinical studies that show advances in the understanding of mild and severe illness and we highlight major points that are critical for improving the comprehension of different clinical outcomes. The understanding of pulmonary immunopathology will contribute to the identification of biomarkers in an attempt to classify mild, moderate, severe and critical COVID-19 illness. The interface of pulmonary immunopathology and the identification of biomarkers are critical for the development of new therapeutic strategies aimed to reduce the systemic and pulmonary hyperinflammation in severe COVID-19.
Collapse
Affiliation(s)
- Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Carlos Arterio Sorgi
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elisa Maria de Sousa Russo
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ana Paula Morais Fernandes
- Department of General and Specialized Nursing, School of Nursing of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Lucia Helena Faccioli
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
14
|
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9:121. [PMID: 33430200 PMCID: PMC7825648 DOI: 10.3390/microorganisms9010121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intravenous immunoglobulins (IVIG) are blood preparations pooled from the plasma of donors that have been first employed as replacement therapy in immunodeficiency. IVIG interact at multiple levels with the different components of the immune system and exert their activity against infections. Passive immunotherapy includes convalescent plasma from subjects who have recovered from infection, hyperimmune globulin formulations with a high titer of neutralizing antibodies, and monoclonal antibodies (mAbs). IVIG are used for the prevention and treatment of several infections, especially in immunocompromised patients, or in case of a poorly responsive immune system. The evolution of IVIG from a source of passive immunity to a powerful immunomodulatory/anti-inflammatory agent results in extensive applications in autoimmune diseases. IVIG composition depends on the antibodies of the donor population and the alterations of protein structure due to the processing of plasma. The anti-viral and anti-inflammatory activity of IVIG has led us to think that they may represent a useful therapeutic tool even in COVID-19. The human origin of IVIG carries specific criticalities including risks of blood products, supply, and elevated costs. IVIG can be useful in critically ill patients, as well as early empirical treatment. To date, the need for further well-designed studies stating protocols and the efficacy/tolerability profile of IVIG and convalescent plasma in selected situations are awaited.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| |
Collapse
|
15
|
Shetty VU, Brotherton BJ, Achilleos A, Akrami KM, Barros LM, Checkley W, Cobb N, Maximous S, Misango D, Park C, Taran S, Lee BW. Pragmatic Recommendations for Therapeutics of Hospitalized COVID-19 Patients in Low- and Middle-Income Countries. Am J Trop Med Hyg 2020; 104:48-59. [PMID: 33377451 PMCID: PMC7957231 DOI: 10.4269/ajtmh.20-1106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The therapeutic options for COVID-19 patients are currently limited, but numerous randomized controlled trials are being completed, and many are on the way. For COVID-19 patients in low- and middle-income countries (LMICs), we recommend against using remdesivir outside of a clinical trial. We recommend against using hydroxychloroquine ± azithromycin or lopinavir-ritonavir. We suggest empiric antimicrobial treatment for likely coinfecting pathogens if an alternative infectious cause is likely. We suggest close monitoring without additional empiric antimicrobials if there are no clinical or laboratory signs of other infections. We recommend using oral or intravenous low-dose dexamethasone in adults with COVID-19 disease who require oxygen or mechanical ventilation. We recommend against using dexamethasone in patients with COVID-19 who do not require supplemental oxygen. We recommend using alternate equivalent doses of steroids in the event that dexamethasone is unavailable. We also recommend using low-dose corticosteroids in patients with refractory shock requiring vasopressor support. We recommend against the use of convalescent plasma and interleukin-6 inhibitors, such as tocilizumab, for the treatment of COVID-19 in LMICs outside of clinical trials.
Collapse
Affiliation(s)
- Varun U. Shetty
- Critical Care Medicine Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Brian Jason Brotherton
- Critical Care Medicine Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Internal Medicine, Kijabe Medical Center, Kijabe, Kenya
| | - Andrew Achilleos
- Department of Critical Care, Sunnybrook Health Sciences Center, Toronto, Canada
| | - Kevan M. Akrami
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Divisions of Infectious Disease, University of California San Diego, San Diego, California
- Critical Care Medicine, University of California San Diego, San Diego, California
| | - Lia M. Barros
- Department of Cardiology, University of Washington Medical Center, Seattle, Washington
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Natalie Cobb
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center, Seattle, Washington
| | - Stephanie Maximous
- Division of Pulmonary Allergy Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David Misango
- Department of Anaesthesiology and Critical Care Medicine, Aga Khan University Hospital, Nairobi, Kenya
| | - Casey Park
- Department of Medicine, Interdepartmental Division of Critical Care Medicine, Toronto, Canada
| | - Shaurya Taran
- Department of Medicine, Interdepartmental Division of Critical Care Medicine, Toronto, Canada
| | - Burton W. Lee
- Division of Pulmonary Allergy Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| | - for the COVID-LMIC Task Force and the Mahidol-Oxford Research Unit (MORU)
- Critical Care Medicine Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Internal Medicine, Kijabe Medical Center, Kijabe, Kenya
- Department of Critical Care, Sunnybrook Health Sciences Center, Toronto, Canada
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Divisions of Infectious Disease, University of California San Diego, San Diego, California
- Critical Care Medicine, University of California San Diego, San Diego, California
- Department of Cardiology, University of Washington Medical Center, Seattle, Washington
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center, Seattle, Washington
- Division of Pulmonary Allergy Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Anaesthesiology and Critical Care Medicine, Aga Khan University Hospital, Nairobi, Kenya
- Department of Medicine, Interdepartmental Division of Critical Care Medicine, Toronto, Canada
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
The role of serum specific- SARS-CoV-2 antibody in COVID-19 patients. Int Immunopharmacol 2020; 91:107325. [PMID: 33401205 PMCID: PMC7759121 DOI: 10.1016/j.intimp.2020.107325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has rapidly spread, resulting in considerable casualties and serious economic loss worldwide. Disease severity and related symptoms markedly vary among individuals. A large number of patients present atypical symptoms, which represent a big challenge for early diagnosis and prompt infection source isolation. Currently, COVID-19 diagnosis predominantly depends on nucleic acid tests (NAT) for SARS-CoV-2 in respiratory specimens, but this method presents a high rate of false negative results. Therefore, serum antibody measurement has been rapidly developed as a supplementary method with the aim of improving diagnostic accuracy. Further, serum antibody levels might help to identify the infection stage, asymptomatic carriers, and patients with diverging severities and to monitor convalescent plasma therapy. In the current review, we aim to present comprehensive evidence to clarify the utility of SARS-CoV-2 antibodies in COVID-19 patients as a reference for use in the clinic.
Collapse
|
17
|
Yoon HA, Bartash R, Gendlina I, Rivera J, Nakouzi A, Bortz RH, Wirchnianski AS, Paroder M, Fehn K, Serrano-Rahman L, Babb R, Sarwar UN, Haslwanter D, Laudermilch E, Florez C, Dieterle ME, Jangra RK, Fels JM, Tong K, Mariano MC, Vergnolle O, Georgiev GI, Herrera NG, Malonis RJ, Quiroz JA, Morano NC, Krause GJ, Sweeney JM, Cowman K, Allen S, Annam J, Applebaum A, Barboto D, Khokhar A, Lally BJ, Lee A, Lee M, Malaviya A, Sample R, Yang XA, Li Y, Ruiz R, Thota R, Barnhill J, Goldstein DY, Uehlinger J, Garforth SJ, Almo SC, Lai JR, Gil MR, Fox AS, Chandran K, Wang T, Daily JP, Pirofski LA. Treatment of Severe COVID-19 with Convalescent Plasma in the Bronx, NYC. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.02.20242909. [PMID: 33300012 PMCID: PMC7724683 DOI: 10.1101/2020.12.02.20242909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.
Collapse
Affiliation(s)
- Hyun ah Yoon
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Rachel Bartash
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Inessa Gendlina
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Johanna Rivera
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Antonio Nakouzi
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Robert H. Bortz
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Monika Paroder
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Karen Fehn
- Department of Oncology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Leana Serrano-Rahman
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Rachelle Babb
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Uzma N. Sarwar
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Denise Haslwanter
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Ethan Laudermilch
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Catalina Florez
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
- Department of Chemistry and Life Science, United States Military Academy at West Point, NY
| | - M. Eugenia Dieterle
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Rohit K. Jangra
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - J. Maximilian Fels
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Karen Tong
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | | | - Olivia Vergnolle
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - George I. Georgiev
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Natalia G. Herrera
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Ryan J. Malonis
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Jose A. Quiroz
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Nicholas C. Morano
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, NY
- Institute of Aging Studies. Albert Einstein College of Medicine, Bronx, NY
| | - Joseph M. Sweeney
- Department Physiology and Biophysics. Albert Einstein College of Medicine, Bronx, NY
| | - Kelsie Cowman
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | | | | | | | | | | | | | - Audrey Lee
- Albert Einstein College of Medicine, Bronx, NY
| | - Max Lee
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Yang Li
- Department of Epidemiology and Population Health. Albert Einstein College of Medicine, Bronx, NY
| | - Rafael Ruiz
- Network Performance Group. Montefiore Medical Center, Bronx, NY
- Division of Hospital Medicine, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Raja Thota
- Network Performance Group. Montefiore Medical Center, Bronx, NY
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, NY
| | - Doctor Y. Goldstein
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Joan Uehlinger
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Scott J. Garforth
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Steven C. Almo
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
- Department Physiology and Biophysics. Albert Einstein College of Medicine, Bronx, NY
| | - Jonathan R. Lai
- Department of Biochemistry. Albert Einstein College of Medicine, Bronx, NY
| | - Morayma Reyes Gil
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Amy S. Fox
- Department of Pathology. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Kartik Chandran
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Tao Wang
- Department of Epidemiology and Population Health. Albert Einstein College of Medicine, Bronx, NY
| | - Johanna P. Daily
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine. Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
- Department of Microbiology and Immunology. Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
19
|
Einollahi B, Cegolon L, Abolghasemi H, Imanizadeh S, Bahramifar A, Zhao S, Jafari R, Javanbakht M. A patient affected by critical COVID-19 pneumonia, successfully treated with convalescent plasma. Transfus Apher Sci 2020; 59:102995. [PMID: 33183986 PMCID: PMC7644253 DOI: 10.1016/j.transci.2020.102995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a critically ill patient affected by COVID-19, whose chest computed tomography (CT) scan featured lung consolidations and severe patchy ground-glass opacitie. On day 3 since hospital admission the patient was placed on convalescent plasma treatment. A combined treatment with supportive care, hemoperfusion and convalescent plasma successfully managed to save the patient's life. Convalescent plasma probably contributed to heal this patient and should always be considered in the management of critically ill COVID-19 cases.
Collapse
Affiliation(s)
- Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Local Health Unit N. 2 "Marca Trevigiana", Public Health Department, Treviso, Italy
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sina Imanizadeh
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Bahramifar
- Trauma Research Center, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Chan SW. Current and Future Direct-Acting Antivirals Against COVID-19. Front Microbiol 2020; 11:587944. [PMID: 33262747 PMCID: PMC7688518 DOI: 10.3389/fmicb.2020.587944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023] Open
Abstract
The coronavirus disease of 2019 (COVID-19) has caused an unprecedented global crisis. The etiological agent is a new virus called the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As of October, 2020 there have been 45.4 million confirmed cases with a mortality rate of 2.6% globally. With the lack of a vaccine and effective treatments, the race is on to find a cure for the virus infection using specific antivirals. The viral RNA-dependent RNA polymerase, proteases, spike protein-host angiotensin-converting enzyme 2 binding and fusion have presented as attractive targets for pan-coronavirus and broad spectrum direct-acting antivirals (DAAs). This review presents a perspective on current re-purposing treatments and future DAAs.
Collapse
|
21
|
Rauf A, Abu-Izneid T, Olatunde A, Ahmed Khalil A, Alhumaydhi FA, Tufail T, Shariati MA, Rebezov M, Almarhoon ZM, Mabkhot YN, Alsayari A, Rengasamy KRR. COVID-19 Pandemic: Epidemiology, Etiology, Conventional and Non-Conventional Therapies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8155. [PMID: 33158234 PMCID: PMC7662254 DOI: 10.3390/ijerph17218155] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which reported in an outbreak in 2019 in Wuhan, Hubei province, China, is caused by the SARS-CoV-2 virus. The virus belongs to the beta-coronavirus class, along with the Middle East Respiratory Syndrome coronavirus and Severe Acute Respiratory Syndrome coronavirus. Interestingly, the virus binds with angiotensin-converting enzyme-2 found in host cells, through the spike (S) protein that exists on its surface. This binding causes the entry of the virus into cells of the host organism. The actual mechanism used by the COVID-19 virus to induce disease is still speculative. A total of 44,322,504 cases, a 1,173,189 death toll and 32,486,703 recovery cases have been reported in 217 countries globally as of 28 October 2020. Symptoms from the infection of the virus include chest pain, fever, fatigue, nausea, and others. Acute respiratory stress syndrome, arrhythmia, and shock are some of the chronic manifestations recorded in severe COVID-19. Transmission is majorly by individual-to-individual through coughing, sneezing, etc. The lack of knowledge regarding the mechanism of and immune response to the virus has posed a challenge in the development of a novel drug and vaccine. Currently, treatment of the disease involves the use of anti-viral medications such as lopinavir, remdesivir, and other drugs. These drugs show some efficacy in the management of COVID-19. Studies are still on-going for the development of an ideal and novel drug for treatment. In terms of natural product intervention, Traditional Chinese Medicines (TCM) have been employed to alleviate the clinical manifestation and severity of the disease and have shown some efficacy. This review presents an updated detailed overview of COVID-19 and the virus, concerning its structure, epidemiology, symptoms and transmission, immune responses, and current interventions, and highlights the potential of TCM. It is anticipated that this review will further add to the understanding of COVID-19 and the virus, hence opening new research perspectives.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar 23430, Khyber Pakhtunkhwa, Pakistan;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus 64141, UAE;
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauch 740272, Nigeria;
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (T.T.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan; (A.A.K.); (T.T.)
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, 109004 Moscow, Russian;
| | - Maksim Rebezov
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russian;
- Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russian
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Yahia N. Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| |
Collapse
|
22
|
Abolghasemi H, Eshghi P, Cheraghali AM, Imani Fooladi AA, Bolouki Moghaddam F, Imanizadeh S, Moeini Maleki M, Ranjkesh M, Rezapour M, Bahramifar A, Einollahi B, Hosseini MJ, Jafari NJ, Nikpouraghdam M, Sadri N, Tazik M, Sali S, Okati S, Askari E, Tabarsi P, Aslani J, Sharifipour E, Jarahzadeh MH, Khodakarim N, Salesi M, Jafari R, Shahverdi S. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci 2020; 59:102875. [PMID: 32694043 PMCID: PMC7362821 DOI: 10.1016/j.transci.2020.102875] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Since Dec. 2019 the new coronavirus (SARS-CoV-2) has infected millions and claimed life of several hundred thousand worldwide. However, so far no approved vaccine or drug therapy is available for treatment of virus infection. Convalescent plasma has been considered a potential modality for COVID-19 infection. One hundred eighty-nine COVID-19 positive patients including 115 patients in plasma therapy group and 74 patients in control group, registered in the hospitals with confirmed COVID-19 infection, entered this multi-center clinical study. Comparison of outcomes including all-cause mortality, total hospitalization days and patients' need for intubation between the two patient groups shows that total of 98 (98.2 %) of patients who received convalescent plasma were discharged from hospital which is substantially higher compared to 56 (78.7 %) patients in control group. Length of hospitalization days was significantly lower (9.54 days) in convalescent plasma group compared with that of control group (12.88 days). Only 8 patients (7%) in convalescent plasma group required intubation while that was 20 % in control group. This clinical study provides strong evidence to support the efficacy of convalescent plasma therapy in COVID-19 patients and recommends this treatment for management of these patients. Clinical efficacy, immediate availability and potential cost effectiveness could be considered as main advantages of convalescent plasma therapy.
Collapse
Affiliation(s)
- Hassan Abolghasemi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences and Iran Blood Transfusion Organization, Tehran, Iran
| | - Abdol Majid Cheraghali
- School of Pharmacy and Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Sina Imanizadeh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Matin Moeini Maleki
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ranjkesh
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezapour
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Bahramifar
- Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseini
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nematollah Joneidi Jafari
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohamad Nikpouraghdam
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Shanaz Sali
- Infectious Disease and Tropical Medicine Research Center, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Shamsi Okati
- High Institute for Research and Education in Transfuion Medicine, Tehran, Iran
| | - Elham Askari
- National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Aslani
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Sharifipour
- Neuroscience Research Center of Qom University of Medical Science, Qom, Iran
| | | | - Nastaran Khodakarim
- Department of Medical Oncology and Hematology, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Shahverdi
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the virus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely throughout the world. Despite the strict global outbreak management and quarantine measures that have been implemented, the incidence of COVID-19 continues to rise, resulting in more than 290,000 deaths and representing an extremely serious threat to human life and health. The clinical symptoms of the affected patients are heterogeneous, ranging from mild upper respiratory symptoms to severe pneumonitis and even acute respiratory distress syndrome (ARDS) or death. Systemic immune over activation due to SARS-CoV-2 infection causes the cytokine storm, which is especially noteworthy in severely ill patients with COVID-19. Pieces of evidence from current studies have shown that the cytokine storm may be an important factor in disease progression, even leading to multiple organ failure and death. This review provides an overview of the knowledge on the COVID-19 epidemiological profile, the molecular mechanisms of the SARS-CoV-2-induced cytokine storm and immune responses, the pathophysiological changes that occur during infection, the main antiviral compounds used in treatment strategies and the potential drugs for targeting cytokines, this information is presented to provide valuable guidance for further studies and for a therapeutic reduction of this excessive immune response.
Collapse
|
24
|
Wen J, Cheng Y, Ling R, Dai Y, Huang B, Huang W, Zhang S, Jiang Y. Antibody-dependent enhancement of coronavirus. Int J Infect Dis 2020; 100:483-489. [PMID: 32920233 PMCID: PMC7483033 DOI: 10.1016/j.ijid.2020.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antibody-dependent enhancement (ADE) exists in several kinds of virus. It has a negative influence on antibody therapy for viral infection. This effect was first identified in dengue virus and has since also been described for coronavirus. To date, the rapid spread of the newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has affected over 3.8 million people across the globe. The novel coronavirus poses a great challenge and has caused a wave of panic. In this review, antibody-dependent enhancements in dengue virus and two kinds of coronavirus are summarized. Possible solutions for the effects are reported. We also speculate that ADE may exist in SARS-CoV-2.
Collapse
Affiliation(s)
- Jieqi Wen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yifan Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Rongsong Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yarong Dai
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Boxuan Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Wenjie Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Siyan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518067, China.
| |
Collapse
|
25
|
A potentially effective treatment for COVID-19: A systematic review and meta-analysis of convalescent plasma therapy in treating severe infectious disease. Int J Infect Dis 2020; 98:334-346. [PMID: 32634589 PMCID: PMC7334933 DOI: 10.1016/j.ijid.2020.06.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Convalescent plasma (CP) has been used successfully to treat many types of infectious disease, and has shown initial effects in the treatment of the emerging 2019 coronavirus disease (COVID-19). However, its curative effects and feasibility have yet to be confirmed by formal evaluation and well-designed clinical trials. To explore the effectiveness of treatment and predict the potential effects of CP with COVID-19, studies of different types of infectious disease treated with CP were included in this systematic review and meta-analysis. METHODS Related studies were obtained from databases and screened according to the inclusion criteria. The data quality was assessed, and the data were extracted and pooled for analysis. RESULTS 40 studies on CP treatment for infectious diseases were included. Our study found that CP treatment could reduce the risk of mortality, with a low incidence of adverse events, promote the production of antibodies, lead to a decline in viral load, and shorten the disease course. A meta-analysis of 15 controlled studies showed that there was a significantly lower mortality rate in the group treated with CP (pooled OR=0.32; 95% CI=0.19-0.52; p<0.001, I2=54%) compared with the control groups. Studies were mostly of low or very low quality, with a moderate or high risk of bias. The sources of clinical and methodological heterogeneity were identified. The exclusion of heterogeneity indicated that the results were stable. CONCLUSIONS CP therapy has some curative effect and is well tolerated in treating infectious diseases. It is a potentially effective treatment for COVID-19.
Collapse
|
26
|
Blackall D, Wulff S, Roettger T, Jacobs L, Lacasse A, Patri M, Zinser P, Pherez F, Jamkhana Z, Frey SE, Smith L, Goel R, Katz L. Rapid establishment of a COVID-19 convalescent plasma program in a regional health care delivery network. Transfusion 2020; 60:2203-2209. [PMID: 32748963 PMCID: PMC7436587 DOI: 10.1111/trf.16026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND COVID-19 convalescent plasma (CCP) represents an appealing approach to the treatment of patients with infections due to SARS-CoV-2. We endeavored to quickly establish a sustainable CCP transfusion program for a regional network of health care facilities. STUDY DESIGN AND METHODS A regional collaborative group was activated to address the issues necessary to implementing a CCP transfusion program and making the program sustainable. A wide range of health care providers including physicians (critical care, infectious disease, transfusion medicine), nurses, pharmacists, laboratorians, and information technology (IT) specialists were required to make the program a success. RESULTS The CCP implementation team initially consisted of four members but quickly grew to a group of nearly 20 participants based on different issues related to program implementation. Overall, six major implementation "themes" were addressed: (a) registration of individual hospitals and principal investigators with a national investigational new drug research protocol; (b) collaboration with a regional blood donor center; (c) targeted recruitment of convalesced donors; (d) IT issues related to all aspects of CCP ordering, distribution, and transfusion; (e) prioritization of patients to receive CCP; and (f) evaluation of CCP products including antibody characteristics and patient response to therapy. CONCLUSION Within 4 weeks of initiation, CCP was successfully transfused at multiple hospitals in our regional health care delivery system. A program infrastructure was established that will make this program sustainable into the future. This approach has broader implications for the success of multi-institutional programs requiring rapid implementation.
Collapse
Affiliation(s)
- Douglas Blackall
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Shephali Wulff
- SSM Health Saint Joseph Hospital, Saint Charles, Missouri, USA
| | | | | | | | | | | | | | - Zafar Jamkhana
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Sharon E Frey
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Linda Smith
- SSM-STL Laboratory, Saint Louis, Missouri, USA
| | - Ruchika Goel
- Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Louis Katz
- Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| |
Collapse
|
27
|
Garraud O. Passive immunotherapy with convalescent plasma against COVID-19? What about the evidence base and clinical trials? Transfus Apher Sci 2020; 59:102858. [PMID: 32631501 PMCID: PMC7320683 DOI: 10.1016/j.transci.2020.102858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Olivier Garraud
- Faculty of Medicine, EA3064, University of Lyon, Saint-Etienne, France; The National Institute for Blood Transfusion (INTS), Paris, France; Palliative Care Unit, the Ruffec general hospital, Ruffec, France.
| |
Collapse
|
28
|
Piechotta V, Chai KL, Valk SJ, Doree C, Monsef I, Wood EM, Lamikanra A, Kimber C, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2020; 7:CD013600. [PMID: 32648959 PMCID: PMC7389743 DOI: 10.1002/14651858.cd013600.pub2] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 4 June 2020. SELECTION CRITERIA We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. MAIN RESULTS: This is the first living update of our review. We included 20 studies (1 RCT, 3 controlled NRSIs, 16 non-controlled NRSIs) with 5443 participants, of whom 5211 received convalescent plasma, and identified a further 98 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 50 are randomised. We did not identify any completed studies evaluating hyperimmune immunoglobulin. Overall risk of bias of included studies was high, due to study design, type of participants, and other previous or concurrent treatments. Effectiveness of convalescent plasma for people with COVID-19 We included results from four controlled studies (1 RCT (stopped early) with 103 participants, of whom 52 received convalescent plasma; and 3 controlled NRSIs with 236 participants, of whom 55 received convalescent plasma) to assess effectiveness of convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. All-cause mortality at hospital discharge (1 controlled NRSI, 21 participants) We are very uncertain whether convalescent plasma has any effect on all-cause mortality at hospital discharge (risk ratio (RR) 0.89, 95% confidence interval (CI) 0.61 to 1.31; very low-certainty evidence). Time to death (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma prolongs time to death (RCT: hazard ratio (HR) 0.74, 95% CI 0.30 to 1.82; controlled NRSI: HR 0.46, 95% CI 0.22 to 0.96; very low-certainty evidence). Improvement of clinical symptoms, assessed by need for respiratory support (1 RCT, 103 participants; 1 controlled NRSI, 195 participants) We are very uncertain whether convalescent plasma has any effect on improvement of clinical symptoms at seven days (RCT: RR 0.98, 95% CI 0.30 to 3.19), 14 days (RCT: RR 1.85, 95% CI 0.91 to 3.77; controlled NRSI: RR 1.08, 95% CI 0.91 to 1.29), and 28 days (RCT: RR 1.20, 95% CI 0.80 to 1.81; very low-certainty evidence). Quality of life No studies reported this outcome. Safety of convalescent plasma for people with COVID-19 We included results from 1 RCT, 3 controlled NRSIs and 10 non-controlled NRSIs assessing safety of convalescent plasma. Reporting of adverse events and serious adverse events was variable. The controlled studies reported on adverse events and serious adverse events only in participants receiving convalescent plasma. The duration of follow-up varied. Some, but not all, studies included death as a serious adverse event. Grade 3 or 4 adverse events (13 studies, 201 participants) The studies did not report the grade of adverse events. Thirteen studies (201 participants) reported on adverse events of possible grade 3 or 4 severity. The majority of these adverse events were allergic or respiratory events. We are very uncertain whether or not convalescent plasma therapy affects the risk of moderate to severe adverse events (very low-certainty evidence). Serious adverse events (14 studies, 5201 participants) Fourteen studies (5201 participants) reported on serious adverse events. The majority of participants were from one non-controlled NRSI (5000 participants), which reported only on serious adverse events limited to the first four hours after convalescent plasma transfusion. This study included death as a serious adverse event; they reported 15 deaths, four of which they classified as potentially, probably or definitely related to transfusion. Other serious adverse events reported in all studies were predominantly allergic or respiratory in nature, including anaphylaxis, transfusion-associated dyspnoea, and transfusion-related acute lung injury (TRALI). We are very uncertain whether or not convalescent plasma affects the number of serious adverse events. AUTHORS' CONCLUSIONS We are very uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. For safety outcomes we also included non-controlled NRSIs. There was limited information regarding adverse events. Of the controlled studies, none reported on this outcome in the control group. There is only very low-certainty evidence for safety of convalescent plasma for COVID-19. While major efforts to conduct research on COVID-19 are being made, problems with recruiting the anticipated number of participants into these studies are conceivable. The early termination of the first RCT investigating convalescent plasma, and the multitude of studies registered in the past months illustrate this. It is therefore necessary to critically assess the design of these registered studies, and well-designed studies should be prioritised. Other considerations for these studies are the need to report outcomes for all study arms in the same way, and the importance of maintaining comparability in terms of co-interventions administered in all study arms. There are 98 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 50 are RCTs. This is the first living update of the review, and we will continue to update this review periodically. These updates may show different results to those reported here.
Collapse
Affiliation(s)
- Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Abigail Lamikanra
- Clinical, Research and Development, NHS Blood and Transplant, Oxford, UK
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
29
|
Annamaria P, Eugenia Q, Paolo S. Anti-SARS-CoV-2 hyperimmune plasma workflow. Transfus Apher Sci 2020; 59:102850. [PMID: 32540345 PMCID: PMC7283061 DOI: 10.1016/j.transci.2020.102850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by the novel coronavirus has become a Public Health Emergency of International Concern. Among the various treatment proposals for COVID-19 infection, passive immunotherapy using plasma from recovering patients - "convalescent plasma" (CP)- could be a promising option in the treatment of SARS-CoV-2 infections. Immune (i.e. "convalescent") plasma refers to plasma that is collected from individuals, following resolution of infection and development of antibodies. Passive antibody administration through transfusion of convalescent plasma may offer the only short-term strategy to confer immediate immunity to susceptible individuals. According to the World Health Organization (WHO), the use of plasma therapy is permitted when faced with «serious diseases for which there are no effective pharmacological treatments». Several clinical trials are underway to test the effectiveness of hyperimmune plasma at various stages of SARS-CoV2.The Food and Drug Administration (FDA), the U.S. regulatory authority, has approved the use of CP for compassionate use in the treatment of patients with a critical COVID-19 infection. Below are the general indications for drawing up clinical protocols for the integral management of "COVID-19-convalescent plasma" for which the validation and approval of the Ethics Committees is still necessary.
Collapse
Affiliation(s)
- Petrungaro Annamaria
- Unit of Transfusion Medicine, Department of Services, University Hospital "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy.
| | - Quartarone Eugenia
- Unit of Transfusion Medicine, Department of Services, University Hospital "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy.
| | - Sciarrone Paolo
- Unit of Transfusion Medicine, Department of Services, University Hospital "G. Martino" Via Consolare Valeria 1, 98100, Messina, Italy.
| |
Collapse
|
30
|
Yılmaz S, Ertuğrul Örüç N, Özcebe Oİ, Azap A, Çetin AT, Yenicesu İ, Öztürk A, Gündüz M, Tekin A. Regulatory consideration on preparation and clinical use of COVID-19 convalescent plasma. Transfus Apher Sci 2020; 59:102846. [PMID: 32593519 PMCID: PMC7271837 DOI: 10.1016/j.transci.2020.102846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/31/2020] [Indexed: 12/28/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease (COVID-19), spreading from Wuhan to worldwide has been emerged since December 2019. Although scientists and researchers have been racing to develop specific therapeutic agents or vaccines against SARS-CoV-2 since the identification of the agent, either a drug or a vaccine has not been approved to treat or to prevent COVID-19 up to date. On the base of historical experiences, Convalescent Plasma (CP), a passive antibody therapy, has been evaluated as a hopeful and potential therapeutic option since the beginning of the COVID-19 outbreak. Immune plasma had been used previously for the treatment of H1N1 influenza virus, SARS-CoV-1 and MERS-CoV epidemics successfully. In this scope competent authorities are responsible to set up certain principles and criteria for the collection and clinical use of COVID-19 Convalescent Plasma (CCP). This document has been prepared to aid both for the convalescent plasma suppliers and the clinicians. The first part encompasses the supply of CCP and the second part lead the clinical use of CCP for the treatment of patients with severe COVID-19 infection. Turkish Ministry of Health developed a guide on collection and clinical use of CCP and created a web-based monitoring system to follow-up the patients treated with convalescent plasma in universal. This follow-up process is thought to be crucial for the creation and development of current and future treatment modalities. This guide would be a pathfinder for clinicians and/or institutions those eager to conduct CCP treatment more effectively.
Collapse
Affiliation(s)
- Soner Yılmaz
- Regional Blood Center, University of Health Sciences Gülhane Training and Research Hospital, Ankara, Turkey.
| | - Nigar Ertuğrul Örüç
- Department of Transfusion Services, Health Sciences University Dıskapı Yıldırım Beyazıt, Training and Research Hospital, Ankara, Turkey.
| | - Osman İlhami Özcebe
- Department of Haematology, Hacettepe University School of Medicine, Ankara, Turkey.
| | - Alpay Azap
- Department of Infectious Diseases and Clinical Microbiology, Ankara University School of Medicine, Ankara, Turkey.
| | | | | | - Abdullah Öztürk
- General Directorate of Health Services, Ministry of Health, Ankara, Turkey.
| | - Mehmet Gündüz
- General Directorate of Health Services, Ministry of Health, Ankara, Turkey.
| | - Ahmet Tekin
- General Directorate of Health Services, Ministry of Health, Ankara, Turkey.
| |
Collapse
|
31
|
Verma HK, Farran B, Bhaskar LVKS. Convalescent plasma transfusion a promising therapy for coronavirus diseases 2019 (COVID-19): current updates. Antib Ther 2020; 3:115-125. [PMID: 33912791 PMCID: PMC7314270 DOI: 10.1093/abt/tbaa010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
While there is no proven treatment available for coronavirus disease 2019 (COVID-19), convalescent plasma (CP) may provide therapeutic relief as the number of cases escalate steeply world-wide. At the time of writing this review, vaccines, monoclonal antibodies or drugs are still lacking for the recent large COVID-19 outbreak, which restores the interest in CP as an empirical life-saving treatment. However, formal proof of efficacy is needed. The purpose of this review is to summarize all historical clinical trials on COVID-19 infected patients treated with CP to provide precise evidence for the efficacy and effectiveness of CP therapy in severe COVID-19 patients. Although there are many clinical trials in progress, high-quality clinical evidence is still lacking to analyze the existing problems. Meanwhile, based on the previous successful outcomes, we recommend healthcare systems to use CP therapy cautiously in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Henu Kumar Verma
- Stem Cell Lab Institute of Endocrinology and Oncology, Naples, 80131, Italy
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|