1
|
Goux H, Green J, Wilson A, Sozhamannan S, Richard SA, Colombo R, Lindholm DA, Jones MU, Agan BK, Larson D, Saunders DL, Mody R, Cox J, Deans R, Walish J, Fries A, Simons MP, Pollett SD, Smith DR. Performance of rapid antigen tests to detect SARS-CoV-2 variant diversity and correlation with viral culture positivity: implication for diagnostic development and future public health strategies. mBio 2024:e0273724. [PMID: 39480114 DOI: 10.1128/mbio.02737-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Antigen-based rapid diagnostic tests (Ag-RDTs) provide timely results, are simple to use, and are less expensive than molecular assays. Recent studies suggest that antigen-based testing aligns with virus culture-based results (a proxy of contagiousness at the peak viral phase of illness); however, the performance of Ag-RDTs for newer SARS-CoV-2 variants is unclear. In this study, we (i) assessed the performance of Ag-RDTs and diagnostic antibodies to detect a range of SARS-CoV-2 variants and (ii) determined whether Ag-RDT results correlated with culture positivity. We noted only minor differences in the limit of detection by variant for all assays, and we demonstrated consistent antibody affinity to the N protein among the different variants. We observed moderate to high sensitivity (46.8%-83.9%) for Ag-RDTs when compared to PCR positivity (100%), and all variants were assessed on each assay. Ag-RDT sensitivity and PCR Ct showed an inverse correlation with the detection of viable virus. Collectively, our results demonstrate that commercially available Ag-RDTs offer variable sensitivity compared to PCR, show similar diagnostic validity across variants, and may predict the risk of transmissibility. These findings may be used to support more tailored SARS-CoV-2 isolation strategies, particularly if other studies clarify the direct association between Ag-RDT positivity and transmission risk. The apparent trade-off between sensitivity in the detection of any PCR-positive infection and concordance with infectious virus positivity may also inform new RDT diagnostic development strategies for SARS-CoV-2 and other epidemic respiratory pathogens. IMPORTANCE Despite the availability of vaccines, COVID-19 continues to be a major health concern, and antigen-based rapid diagnostic tests (Ag-RDTs) are commonly used as point-of-care or at-home diagnostic tests. In this study, we evaluated the performance of two commercially available Ag-RDTs and a research Ag-RDT to detect multiple SARS-CoV-2 variants using upper respiratory tract swab samples from clinical COVID-19 cases. Furthermore, we determined whether Ag-RDT results correlated with culture positivity, a potential proxy of viral transmissibility. Our results have important implications to inform future testing and response strategies during periods of high COVID-19 transmission with new variants.
Collapse
Affiliation(s)
- Heather Goux
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Jennetta Green
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Andrew Wilson
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Shanmuga Sozhamannan
- Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Lead for CBRND Enabling Biotechnologies, Frederick, Maryland, USA
- Joint Research and Development, Inc., Stafford, Virginia, USA
| | - Stephanie A Richard
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Rhonda Colombo
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Madigan Army Medical Center, Joint Base Lewis McChord, Washington, USA
| | - David A Lindholm
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Milissa U Jones
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Derek Larson
- Naval Medical Center, San Diego, California, USA
| | - David L Saunders
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rupal Mody
- William Beaumont Army Medical Center, El Paso, Texas, USA
| | - Jason Cox
- C2Sense, Inc., Watertown, Massachusetts, USA
| | | | | | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Mark P Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Darci R Smith
- Microbiology and Immunology Department, Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| |
Collapse
|
2
|
Blickenstorfer Y, Jirasko V, Tanno A, Dräger S, Hoven D, Löhle J, Leuch S, Mamedava Y, Müller SL, Leuzinger K, Osthoff M, Vörös J. Iodide based electrochemical gold quantification method for lateral flow assays. Biosens Bioelectron 2024; 262:116524. [PMID: 38971036 DOI: 10.1016/j.bios.2024.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
The lateral flow assay (LFA) is an ideal technology for at-home medical diagnostic tests due to its ease of use, cost-effectiveness, and rapid results. Despite these advantages, only few LFAs, such as the pregnancy and COVID-19 tests, have been translated from the laboratory to the homes of patients. To date, the medical applicability of LFAs is limited by the fact that they only provide yes/no answers unless combined with optical readers that are too expensive for at-home applications. Furthermore, LFAs are unable to compete with the state-of-the-art technologies in centralized laboratories in terms of detection limits. To address those shortcomings, we have developed an electrochemical readout procedure to enable quantitative and sensitive LFAs. This technique is based on a voltage-triggered in-situ dissolution of gold nanoparticles, the conventional label used to visualize target-specific signals on the test line in LFAs. Following the dissolution, the amount of gold is measured by electroplating onto an electrode and subsequent electrochemical quantification of the deposited gold. The measured current has a low noise, which achieves superior detection limits compared to optical techniques where background light scattering is limiting the readout performance. In addition, the hardware for the readout was developed to demonstrate translatability towards low-cost electronics.
Collapse
Affiliation(s)
- Yves Blickenstorfer
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Vlastimil Jirasko
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Alexander Tanno
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Sarah Dräger
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Darius Hoven
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Josephine Löhle
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Hemetron Ag, Thalwil, Switzerland
| | - Stephan Leuch
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Sereina Livia Müller
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute of Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Zhang Y, Wu F, Han Y, Wu Y, Huang L, Huang Y, Yan D, Jiang X, Ma J, Xu W. Unraveling the assembly mechanism of SADS-CoV virus nucleocapsid protein: insights from RNA binding, dimerization, and epitope diversity profiling. J Virol 2024; 98:e0092624. [PMID: 39082816 PMCID: PMC11334509 DOI: 10.1128/jvi.00926-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused significant disruptions in porcine breeding and raised concerns about potential human infection. The nucleocapsid (N) protein of SADS-CoV plays a vital role in viral assembly and replication, but its structure and functions remain poorly understood. This study utilized biochemistry, X-ray crystallography, and immunization techniques to investigate the N protein's structure and function in SADS-CoV. Our findings revealed distinct domains within the N protein, including an RNA-binding domain, two disordered domains, and a dimerization domain. Through biochemical assays, we confirmed that the N-terminal domain functions as an RNA-binding domain, and the C-terminal domain is involved in dimerization, with the crystal structure analysis providing visual evidence of dimer formation. Immunization experiments demonstrated that the disordered domain 2 elicited a significant antibody response. These identified domains and their interactions are crucial for viral assembly. This comprehensive understanding of the N protein in SADS-CoV enhances our knowledge of its assembly and replication mechanisms, enabling the development of targeted interventions and therapeutic strategies. IMPORTANCE SADS-CoV is a porcine coronavirus that originated from a bat HKU2-related coronavirus. It causes devastating swine diseases and poses a high risk of spillover to humans. The coronavirus N protein, as the most abundant viral protein in infected cells, likely plays a key role in viral assembly and replication. However, the structure and function of this protein remain unclear. Therefore, this study employed a combination of biochemistry and X-ray crystallography to uncover distinct structural domains in the N protein, including RNA-binding domains, two disordered domains, and dimerization domains. Additionally, we made the novel discovery that the disordered domain elicited a significant antibody response. These findings provide new insights into the structure and functions of the SADS-CoV N protein, which have important implications for future studies on SADS-CoV diagnosis, as well as the development of vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Wu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuzhe Wu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqiu Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuanwei Huang
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Di Yan
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiwen Jiang
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Joyce JD, Moore GA, Goswami P, Harrell TL, Taylor TM, Hawks SA, Green JC, Jia M, Irwin MD, Leslie E, Duggal NK, Thompson CK, Bertke AS. SARS-CoV-2 Rapidly Infects Peripheral Sensory and Autonomic Neurons, Contributing to Central Nervous System Neuroinvasion before Viremia. Int J Mol Sci 2024; 25:8245. [PMID: 39125815 PMCID: PMC11311394 DOI: 10.3390/ijms25158245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.
Collapse
Affiliation(s)
- Jonathan D. Joyce
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Greyson A. Moore
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Poorna Goswami
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Tina M. Taylor
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Seth A. Hawks
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Jillian C. Green
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Mo Jia
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Matthew D. Irwin
- Biomedical and Veterinary Science, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Emma Leslie
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA; (J.D.J.)
| | - Nisha K. Duggal
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Christopher K. Thompson
- School of Neuroscience, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| | - Andrea S. Bertke
- Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
- Population Health Sciences, Virginia Maryland College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Vidyasagar GVC, Reddy PVJ, Ghouse MM, Venkateswarulu TC, Kishor PBK, Suravajhala P, Polavarapu R. Designing and expression of novel recombinant fusion protein for efficient antigen screening of SARS-CoV-2. AMB Express 2024; 14:80. [PMID: 38990364 PMCID: PMC11239635 DOI: 10.1186/s13568-024-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), claimed millions globally. After the report of the first incidence of the virus, variants emerged with each posing a unique threat than its predecessors. Though many advanced diagnostic assays like real-time PCR are available for screening of SARS-CoV-2, their applications are being hindered because of accessibility and cost. With the advent of rapid assays for antigenic screening of SARS-CoV-2 made diagnostics far easy as the assays are rapid, cost-effective and can be used at point-of-care settings. In the present study, a fusion construct was made utilising highly immunogenic B cell epitopes from the three important structural proteins of SARS-CoV-2. The protein was expressed; purified capture mAbs generated and rapid antigen assay was developed. Eight hundred and forty nasopharyngeal swab samples were screened for the evaluation of the developed assay which showed 37.14% positivity, 96.51% and 100% sensitivity and specificity respectively. The assay developed was supposed to identify SARS-CoV-2 wild-type as well as variants of concern and variants of importance in real-time conditions.
Collapse
Affiliation(s)
- G Vinaya Chandu Vidyasagar
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522 213, India
| | - P V Janardhan Reddy
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
| | - M Md Ghouse
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
| | - T C Venkateswarulu
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522 213, India
| | - P B Kavi Kishor
- Genomix CARL Pvt. Ltd, YSR Kadapa, Pulivendula, 516 390, Andhra Pradesh, India
- Department of Genetics, Osmania University, Hyderabad, 500 007, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Viswa Vidyapeetham, Clappana, 690525, Kerala, India.
| | | |
Collapse
|
6
|
McCracken GR, Patriquin G, Hatchette TF, Davidson RJ, Goodall B, Barrett L, MacDonald J, Heinstein C, Pettipas J, Ross J, LeBlanc JJ. Taqman PACMAN: a simple molecular approach for positive rapid antigen test confirmation during periods of low prevalence. Microbiol Spectr 2024; 12:e0407323. [PMID: 38567975 PMCID: PMC11064490 DOI: 10.1128/spectrum.04073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 05/03/2024] Open
Abstract
Antigen-based rapid diagnostic tests (Ag-RDTs) were widely deployed to enhance SARS-CoV-2 testing capacity during the COVID-19 pandemic. Consistent with national guidance for low prevalence settings, positive Ag-RDTs were confirmed using nucleic acid amplification tests (NAATs) to avoid false positive results. However, increasing demands for positive Ag-RDT confirmation competed with other testing priorities in clinical laboratories. This work hypothesized that real-time RT-PCR without nucleic acid extraction (NAE) would be sufficiently sensitive to support positive Ag-RDT confirmation. Ag-RDT and NAAT results from community-based asymptomatic testing sites prior to the omicron variant wave were compared to calculate the weekly false positive rate (FPR) and false detection rate (FDR). Real-time RT-PCR was compared with and without NAE using 752 specimens previously tested positive for SARS-CoV-2 using commercial NAATs and 344 specimens from Ag-RDT-positive individuals. The impact of SARS-CoV-2 prevalence on laboratory resources required to sustain Ag-RDT confirmation was modeled for the RT-PCR with and without NAE. Overall, FPR was low [0.07% (222/330,763)] in asymptomatic testing sites, but FDR was high [30.7% (222/724)]. When RT-PCR was compared with and without NAE, 100% concordance was obtained with NAAT-positive specimens, including those from Ag-RDT-positive individuals. NAE-free RT-PCR significantly reduced time to results, human resources, and overall costs. A 30.7% FDR reaffirms the need for NAAT-based confirmation of positive Ag-RDT results during low SARS-CoV-2 prevalence. NAE-free RT-PCR was shown to be a simple and cost-sparing NAAT-based solution for positive Ag-RDT confirmation, and its implementation supported data-driven broader Ag-RDT deployment into communities, workplaces, and households. IMPORTANCE Rapid antigen testing for SARS-CoV-2 was widely deployed during the COVID-19 pandemic. In settings of low prevalence, national guidance recommends that positive antigen test results be confirmed with molecular testing. Given the high testing burden on clinical laboratories during the COVID-19 pandemic, the high volume of positive antigen tests submitted for confirmatory testing posed challenges for laboratory workflow. This study demonstrated that a simple PCR method without prior nucleic acid purification is an accurate and cost-effective solution for positive rapid antigen test confirmation. Implementing this method allowed molecular confirmatory testing for positive antigen tests to be sustained as antigen testing was expanded into large populations such as workplaces, schools, and households.
Collapse
Affiliation(s)
- Gregory R. McCracken
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Glenn Patriquin
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Todd F. Hatchette
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ross J. Davidson
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Barbara Goodall
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lisa Barrett
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James MacDonald
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Charles Heinstein
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Janice Pettipas
- Nova Scotia Provincial Public Health Laboratory Network (PPHLN), Halifax, Nova Scotia, Canada
| | - John Ross
- Praxes Medical Group, Halifax, Nova Scotia, Canada
| | - Jason J. LeBlanc
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Okada PA, Nuchnoi P, Buayai K, Phuygun S, Thongpramul N, Plabplueng C, Rojanawiwat A, Uppapong B, Sirilak S. Impact of Omicron variant sublineage BA.2.75 on the OnSite COVID-19 Ag Rapid Test: the applicability of rapid antigen test with universal transport media. Infect Dis (Lond) 2024; 56:138-144. [PMID: 37970722 DOI: 10.1080/23744235.2023.2280025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Rapid antigen testing (RAT) is one of the most powerful tools for SARS-CoV-2 detection. The OnSite COVID-19 Ag Rapid Test is an antigen-based, point-of-care test approved by the WHO for Emergency Use Listing. The Nucleocapsid (N) gene mutations found in the emerging Omicron sublineages lead to the question of RAT performance. OBJECTIVE To ensure the diagnostic performance of the study RAT during rapidly mutated Omicron variants. RESULTS We independently evaluated the performance of this assay in 1098 archived samples collected in Thailand during October 2022-February 2023, which were 798 and 300 COVID-19 real-time RT-PCR positive and negative, respectively. The assay performed with 100% sensitivity and 100% specificity using a cycle threshold (Ct) of <20 for the RT-PCR. The sensitivity decreased to 88% when using Ct <30. Most of the SARS-CoV-2 found were Omicron BA.2 (99%), harboring six known N mutations (P13L, E31del, S33del, R203K, G204R and S413R). Eight samples containing hybrid variants (XBB.1*, XBB.2 and XBJ) were detected by the study RAT. This RAT detects all Omicron sublineages known to be circulating in Thailand. CONCLUSIONS These results confirmed the good performance of the study RAT for detecting Omicron variants and its appropriateness for individual diagnosis and for genomic surveillance.
Collapse
Affiliation(s)
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Center for Research Innovation and Biomedical Informatics, Bangkok, Thailand
| | - Kampaew Buayai
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Siripaporn Phuygun
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nuttida Thongpramul
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chotiros Plabplueng
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | | - Ballang Uppapong
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Supakit Sirilak
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
8
|
Seth A, Liu Y, Gupta R, Wang Z, Mittal E, Kolla S, Rathi P, Gupta P, Parikh BA, Genin GM, Gandra S, Storch GA, Philips JA, George IA, Singamaneni S. Plasmon-Enhanced Digital Fluoroimmunoassay for Subfemtomolar Detection of Protein Biomarkers. NANO LETTERS 2024; 24:229-237. [PMID: 38146928 DOI: 10.1021/acs.nanolett.3c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Rapid and accurate quantification of low-abundance protein biomarkers in biofluids can transform the diagnosis of a range of pathologies, including infectious diseases. Here, we harness ultrabright plasmonic fluors as "digital nanolabels" and demonstrate the detection and quantification of subfemtomolar concentrations of human IL-6 and SARS-CoV-2 alpha and variant proteins in clinical nasopharyngeal swab and saliva samples from COVID-19 patients. The resulting digital plasmonic fluor-linked immunosorbent assay (digital p-FLISA) enables detection of SARS-CoV-2 nucleocapsid protein, both in solution and in live virions. Digital p-FLISA outperforms the "gold standard" enzyme-linked immunosorbent assay (ELISA), having a nearly 7000-fold lower limit-of-detection, and outperforms a commercial antigen test, having over 5000-fold improvement in analytical sensitivity. Detection and quantification of very low concentrations of target proteins holds potential for early detection of pathological conditions, treatment monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Anushree Seth
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ekansh Mittal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Samhitha Kolla
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Priya Rathi
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Guy M Genin
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sumanth Gandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63130, United States
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Ige A George
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
9
|
Li D, Sun C, Zhuang P, Mei X. Revolutionizing SARS-CoV-2 omicron variant detection: Towards faster and more reliable methods. Talanta 2024; 266:124937. [PMID: 37481886 DOI: 10.1016/j.talanta.2023.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The emergence of the highly contagious Omicron variant of SARS-CoV-2 has inflicted significant damage during the ongoing COVID-19 pandemic. This new variant's significant sequence changes and mutations in both proteins and RNA have rendered many existing rapid detection methods ineffective in identifying it accurately. As the world races to control the spread of the virus, researchers are urgently exploring new diagnostic strategies to specifically detect Omicron variants with high accuracy and sensitivity. In response to this challenge, we have compiled a comprehensive overview of the latest reported rapid detection techniques. These techniques include strategies for the simultaneous detection of multiple SARS-CoV-2 variants and methods for selectively distinguishing Omicron variants. By categorizing these diagnostic techniques based on their targets, which encompass protein antigens and nucleic acids, we aim to offer a comprehensive understanding of the utilization of various recognition elements in identifying these targets. We also highlight the advantages and limitations of each approach. Our work is crucial in providing a more nuanced understanding of the challenges and opportunities in detecting Omicron variants and emerging variants.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co., Ltd., Shenyang, China
| | - Pengfei Zhuang
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xifan Mei
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
10
|
Adastra PA, Durand NC, Mitra N, Pulido SG, Mahajan R, Blackburn A, Colaric ZL, Theisen JWM, Weisz D, Dudchenko O, Gnirke A, Rao SSP, Kaur P, Aiden EL, Aiden AP. A rapid, low-cost, and highly sensitive SARS-CoV-2 diagnostic based on whole-genome sequencing. PLoS One 2023; 18:e0294283. [PMID: 38032990 PMCID: PMC10688730 DOI: 10.1371/journal.pone.0294283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Early detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing and de novo genome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control's 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach.
Collapse
Affiliation(s)
- Per A. Adastra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Neva C. Durand
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Namita Mitra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Saul Godinez Pulido
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Ragini Mahajan
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Alyssa Blackburn
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Zane L. Colaric
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Joshua W. M. Theisen
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - David Weisz
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Andreas Gnirke
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Suhas S. P. Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, Texas, United States of America
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
11
|
Kim SW, Park Y, Kim D, Jeong SH. A single-center experience on long-term clinical performance of a rapid SARS-CoV-2 Antigen Detection Test, STANDARD Q COVID-19 Ag Test. Sci Rep 2023; 13:20777. [PMID: 38012319 PMCID: PMC10681986 DOI: 10.1038/s41598-023-48194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023] Open
Abstract
The COVID-19 pandemic in Korea has dynamically changed with the occurrence of more easily transmissible variants. A rapid and reliable diagnostic tool for detection of SARS-CoV-2 is needed. While RT-PCR is currently the gold standard for detecting SARS-CoV-2, the procedure is time-consuming and requires expert technicians. The rapid antigen detection test (RADT) was approved as a confirmatory test on 14 March 2022 due to rapid dissemination of the Omicron variant. The benefits of the RADT are speed, simplicity, and point-of-care feasibility. The aim of our study was to evaluate the clinical performance of RADT compared to RT-PCR in a single center over 15 months, fully covering the SARS-CoV-2 'Variants of Concern (VOC).' A total of 14,194 cases was simultaneously tested by RT-PCR and RADT from January 2021 to March 2022 in Gangnam Severance Hospital and were retrospectively reviewed. PowerChek SARS-CoV-2, Influenza A&B Multiplex Real-time PCR Kit, and STANDARD Q COVID-19 Ag Test were used. Positive rates, sensitivities, specificities, positive predictive values (PPV), and negative predictive values (NPV) were estimated for five periods (3 months/period). Receiver operator characteristic curve (ROC) analysis was performed, and Spearman's rank test assessed the correlation between RT-PCR Ct values and semi-quantitative RADT results. The overall positive rate of RT-PCR was 4.64%. The overall sensitivity and specificity were 0.577 [95% confidence interval (CI) 0.539-0.614] and 0.991 [95% CI 0.989-0.993], respectively. ROC analysis resulted in an area under the curve of 0.786 (P < 0.0001, Yuden's index = 0.568). The PCR positive rates were estimated as 0.11%, 0.71%, 4.51%, 2.02%, and 13.72%, and PPV was estimated as 0.045, 0.421, 0.951, 0.720, and 0.798 in Periods 1, 2, 3, 4, and 5, respectively. A significant and moderate negative correlation between PCR Ct values and semi-quantitative RADT results was observed (Spearman's ρ = - 0.646, P < 0.0001). The RADT exhibited good performance in specimens with low Ct values (Ct ≤ 25.00) by RT-PCR. The PPV was significantly higher in Periods 3 and 5, which corresponds to rapid dissemination of the Delta and Omicron variants. The high PPV implies that individuals with a positive RADT result are very likely infected with SARS-CoV-2 and would require prompt quarantine rather than additional RT-PCR testing. The sensitivity of 0.577 indicates that RADT should not replace RT-PCR. Nonetheless, given the high PPV and the ability to track infected persons through rapid results, our findings suggest that RADT could play a significant role in control strategies for further SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Seo Wan Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Yongjung Park
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
| | - Dokyun Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea.
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea.
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Golden A, Cantera JL, Lillis L, Phan TT, Slater H, Webb EJ, Peck RB, Boyle DS, Domingo GJ. A Reagent and Virus Benchmarking Panel for a Uniform Analytical Performance Assessment of N Antigen-Based Diagnostic Tests for COVID-19. Microbiol Spectr 2023; 11:e0373122. [PMID: 37166329 PMCID: PMC10269465 DOI: 10.1128/spectrum.03731-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.
Collapse
|
13
|
Kami W, Kinjo T, Hashioka H, Arakaki W, Uechi K, Takahashi A, Oki H, Tanaka K, Motooka D, Nakamura S, Nakamatsu M, Maeda S, Yamamoto K, Fujita J. Impact of G29179T mutation on two commercial PCR assays for SARS-CoV-2 detection. J Virol Methods 2023; 314:114692. [PMID: 36796678 PMCID: PMC9930255 DOI: 10.1016/j.jviromet.2023.114692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Nucleic acid amplification test (NAAT) is the gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. However, genetic mutations in the virus can affect the result. Cycle threshold (Ct) values of N genes and their association with mutations using SARS-CoV-2 positive specimens diagnosed by the Xpert Xpress SARS-CoV-2 were examined in this study. In total, 196 nasopharyngeal swab specimens were tested for SARS-CoV-2 infection using the Xpert Xpress SARS-CoV-2, and 34 were positive. WGS was performed for four outlier samples with increased ΔCt identified by Scatterplot analysis as well as seven control samples without increased ΔCt in the Xpert Xpress SARS-CoV-2. The presence of the G29179T mutation was identified as a cause of increased ΔCt. PCR using the Allplex™ SARS-CoV-2 Assay did not show a similar increase in ΔCt. Previous reports focusing on N-gene mutations and their effects on SARS-CoV-2 testing including the Xpert Xpress SARS-CoV-2 were also summarized. While a single mutation that impacts one target of a multiplex NAAT is not a true detection failure, mutation compromising NAAT target region can cause confusion of the results and render the assay susceptible to diagnostic failure.
Collapse
Affiliation(s)
- Wakaki Kami
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Takeshi Kinjo
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan.
| | - Hiroe Hashioka
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Wakako Arakaki
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Kohei Uechi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Ami Takahashi
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Tanaka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Nakamatsu
- Infection Control Center, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Shiro Maeda
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Kazuko Yamamoto
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| | - Jiro Fujita
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, 207 Uehara Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
14
|
Widyasari K, Kim S. Rapid Antigen Tests during the COVID-19 Era in Korea and Their Implementation as a Detection Tool for Other Infectious Diseases. Bioengineering (Basel) 2023; 10:322. [PMID: 36978713 PMCID: PMC10045740 DOI: 10.3390/bioengineering10030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid antigen tests (RATs) are diagnostic tools developed to specifically detect a certain protein of infectious agents (viruses, bacteria, or parasites). RATs are easily accessible due to their rapidity and simplicity. During the COVID-19 pandemic, RATs have been widely used in detecting the presence of the specific SARS-CoV-2 antigen in respiratory samples from suspected individuals. Here, the authors review the application of RATs as detection tools for COVID-19, particularly in Korea, as well as for several other infectious diseases. To address these issues, we present general knowledge on the design of RATs that adopt the lateral flow immunoassay for the detection of the analyte (antigen). The authors then discuss the clinical utilization of the authorized RATs amidst the battle against the COVID-19 pandemic in Korea and their role in comparison with other detection methods. We also discuss the implementation of RATs for other, non-COVID-19 infectious diseases, the challenges that may arise during the application, the limitations of RATs as clinical detection tools, as well as the possible problem solving for those challenges to maximize the performance of RATs and avoiding any misinterpretation of the test result.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sunjoo Kim
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
15
|
Tugaeva KV, Sysoev AA, Kapitonova AA, Smith JLR, Zhu P, Cooley RB, Antson AA, Sluchanko NN. Human 14-3-3 Proteins Site-selectively Bind the Mutational Hotspot Region of SARS-CoV-2 Nucleoprotein Modulating its Phosphoregulation. J Mol Biol 2023; 435:167891. [PMID: 36427566 PMCID: PMC9683861 DOI: 10.1016/j.jmb.2022.167891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of SARS-CoV-2 nucleoprotein recruits human cytosolic 14-3-3 proteins playing a well-recognized role in replication of many viruses. Here we use genetic code expansion to demonstrate that 14-3-3 binding is triggered by phosphorylation of SARS-CoV-2 nucleoprotein at either of two pseudo-repeats centered at Ser197 and Thr205. According to fluorescence anisotropy measurements, the pT205-motif,presentin SARS-CoV-2 but not in SARS-CoV, is preferred over the pS197-motif by all seven human 14-3-3 isoforms, which collectively display an unforeseen pT205/pS197 peptide binding selectivity hierarchy. Crystal structures demonstrate that pS197 and pT205 are mutually exclusive 14-3-3-binding sites, whereas SAXS and biochemical data obtained on the full protein-protein complex indicate that 14-3-3 binding occludes the Ser/Arg-rich region of the nucleoprotein, inhibiting its dephosphorylation. This Ser/Arg-rich region is highly prone to mutations, as exemplified by the Omicron and Delta variants, with our data suggesting that the strength of 14-3-3/nucleoprotein interaction can be linked with the replicative fitness of the virus.
Collapse
Affiliation(s)
- Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey A Sysoev
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Jake L R Smith
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Phillip Zhu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
16
|
Kim J, Kim D, Baek K, Kim M, Kang BM, Maharjan S, Park S, Choi JK, Kim S, Kim YK, Park MS, Lee Y, Kwon HJ. Production of a Monoclonal Antibody to the Nucleocapsid Protein of SARS-CoV-2 and Its Application to ELISA-Based Detection Methods with Broad Specificity by Combined Use of Detector Antibodies. Viruses 2022; 15:28. [PMID: 36680068 PMCID: PMC9866944 DOI: 10.3390/v15010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 pandemic, elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is ongoing. Currently accessible antigen-detecting rapid diagnostic tests are limited by their low sensitivity and detection efficacy due to evolution of SARS-CoV-2 variants. Here, we produced and characterized an anti-SARS-CoV-2 nucleocapsid (N) protein-specific monoclonal antibody (mAb), 2A7H9. Monoclonal antibody 2A7H9 and a previously developed mAb, 1G10C4, have different specificities. The 2A7H9 mAb detected the N protein of S clade, delta, iota, and mu but not omicron, whereas the 1G10C4 antibody recognized the N protein of all variants under study. In a sandwich enzyme-linked immunosorbent assay, recombinant N protein bound to the 1G10C4 mAb could be detected by both 1G10C4 and 2A7H9 mAbs. Similarly, N protein bound to the 2A7H9 mAb was detected by both mAbs, confirming the existence of dimeric N protein. While the 1G10C4 mAb detected omicron and mu with higher efficiency than S clade, delta, and iota, the 2A7H9 mAb efficiently detected all the strains except omicron, with higher affinity to S clade and mu than others. Combined use of 1G10C4 and 2A7H9 mAb resulted in the detection of all the strains with considerable sensitivity, suggesting that antibody combinations can improve the simultaneous detection of virus variants. Therefore, our findings provide insights into the development and improvement of diagnostic tools with broader specificity and higher sensitivity to detect rapidly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jun-Kyu Choi
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang 14068, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul 02841, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
17
|
Del Vecchio C, Cracknell Daniels B, Brancaccio G, Brazzale AR, Lavezzo E, Ciavarella C, Onelia F, Franchin E, Manuto L, Bianca F, Cianci V, Cattelan AM, Dorigatti I, Toppo S, Crisanti A. Impact of antigen test target failure and testing strategies on the transmission of SARS-CoV-2 variants. Nat Commun 2022; 13:5870. [PMID: 36198689 PMCID: PMC9533294 DOI: 10.1038/s41467-022-33460-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Population testing remains central to COVID-19 control and surveillance, with countries increasingly using antigen tests rather than molecular tests. Here we describe a SARS-CoV-2 variant that escapes N antigen tests due to multiple disruptive amino-acid substitutions in the N protein. By fitting a multistrain compartmental model to genomic and epidemiological data, we show that widespread antigen testing in the Italian region of Veneto favored the undetected spread of the antigen-escape variant compared to the rest of Italy. We highlight novel limitations of widespread antigen testing in the absence of molecular testing for diagnostic or confirmatory purposes. Notably, we find that genomic surveillance systems which rely on antigen population testing to identify samples for sequencing will bias detection of escape antigen test variants. Together, these findings highlight the importance of retaining molecular testing for surveillance purposes, including in contexts where the use of antigen tests is widespread.
Collapse
Affiliation(s)
- Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy
| | - Bethan Cracknell Daniels
- MRC Centre for Global Infectious Disease Analysis and Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Giuseppina Brancaccio
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy
| | - Constanze Ciavarella
- MRC Centre for Global Infectious Disease Analysis and Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Francesco Onelia
- Microbiology and Virology Diagnostic Unit, Padua University Hospital, Via Giustiniani 2, Padua, 35128, Italy
| | - Elisa Franchin
- Microbiology and Virology Diagnostic Unit, Padua University Hospital, Via Giustiniani 2, Padua, 35128, Italy
| | - Laura Manuto
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy
| | - Federico Bianca
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy
| | - Vito Cianci
- ER Unit, Emergency-Urgency Department, Padua University Hospital, Via Giustiniani 2, Padua, 35128, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, Via Giustiniani 2, Padua, 35128, Italy
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis and Jameel Institute, School of Public Health, Imperial College London, London, UK.
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy.
- CRIBI Biotech Center, University of Padua, V.le G. Colombo, 3, Padua, 35131, Italy.
| | - Andrea Crisanti
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, Padua, 35121, Italy.
- Microbiology and Virology Diagnostic Unit, Padua University Hospital, Via Giustiniani 2, Padua, 35128, Italy.
- Department of Life Science, Imperial College London, South Kensington Campus, Imperial College Road, SW7 AZ, London, UK.
| |
Collapse
|
18
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, Patel AB, Cato ML, Sullivan JA, Greenleaf M, Piantadosi A, Lam WA, Hudson WH, Ortlund EA. Deep mutational scanning identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen tests. Cell 2022; 185:3603-3616.e13. [PMID: 36084631 PMCID: PMC9420710 DOI: 10.1016/j.cell.2022.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023]
Abstract
The effects of mutations in continuously emerging variants of SARS-CoV-2 are a major concern for the performance of rapid antigen tests. To evaluate the impact of mutations on 17 antibodies used in 11 commercially available antigen tests with emergency use authorization, we measured antibody binding for all possible Nucleocapsid point mutations using a mammalian surface-display platform and deep mutational scanning. The results provide a complete map of the antibodies' epitopes and their susceptibility to mutational escape. Our data predict no vulnerabilities for detection of mutations found in variants of concern. We confirm this using the commercial tests and sequence-confirmed COVID-19 patient samples. The antibody escape mutational profiles generated here serve as a valuable resource for predicting the performance of rapid antigen tests against past, current, as well as any possible future variants of SARS-CoV-2, establishing the direct clinical and public health utility of our system.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| | - Meredith M Keen
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA
| | - Anuradha Rao
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Leda Bassit
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Heather B Bowers
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA
| | - Anamika B Patel
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael L Cato
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Julie A Sullivan
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Morgan Greenleaf
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wilbur A Lam
- The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA; Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - William H Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Beck S, Nakajima R, Jasinskas A, Abram TJ, Kim SJ, Bigdeli N, Tifrea DF, Hernandez-Davies J, Huw Davies D, Hedde PN, Felgner PL, Zhao W. A Protein Microarray-Based Respiratory Viral Antigen Testing Platform for COVID-19 Surveillance. Biomedicines 2022; 10:2238. [PMID: 36140339 PMCID: PMC9496200 DOI: 10.3390/biomedicines10092238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
High-throughput and rapid screening testing is highly desirable to effectively combat the rapidly evolving COVID-19 pandemic co-presents with influenza and seasonal common cold epidemics. Here, we present a general workflow for iterative development and validation of an antibody-based microarray assay for the detection of a respiratory viral panel: (a) antibody screening to quickly identify optimal reagents and assay conditions, (b) immunofluorescence assay design including signal amplification for low viral titers, (c) assay characterization with recombinant proteins, inactivated viral samples and clinical samples, and (d) multiplexing to detect a panel of common respiratory viruses. Using RT-PCR-confirmed SARS-CoV-2 positive and negative pharyngeal swab samples, we demonstrated that the antibody microarray assay exhibited a clinical sensitivity and specificity of 77.2% and 100%, respectively, which are comparable to existing FDA-authorized antigen tests. Moreover, the microarray assay is correlated with RT-PCR cycle threshold (Ct) values and is particularly effective in identifying high viral titers. The multiplexed assay can selectively detect SARS-CoV-2 and influenza virus, which can be used to discriminate these viral infections that share similar symptoms. Such protein microarray technology is amenable for scale-up and automation and can be broadly applied as a both diagnostic and research tool.
Collapse
Affiliation(s)
- Sungjun Beck
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Algis Jasinskas
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | | | - Sun Jin Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Nader Bigdeli
- Student Health Center, University of California, Irvine, CA 92697, USA
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Jenny Hernandez-Davies
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - D. Huw Davies
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Per Niklas Hedde
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697, USA
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92697, USA
| | - Philip L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Weian Zhao
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Dong L, Li WF, Jiang Y. Performance evaluation of antigen detection rapid diagnostic test (Ag-RDT) for COVID-19 diagnosis in a primary healthcare center during the Shanghai COVID-19 quarantine period. Virol J 2022; 19:140. [PMID: 36050725 PMCID: PMC9434095 DOI: 10.1186/s12985-022-01871-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Rapid and accurate detection of SARS-CoV-2 infection is the cornerstone of prompt patient care. However, the reliability of the antigen rapid diagnostic test (Ag-RDT) in the diagnosis of SARS-CoV-2 infection remains inconclusive. METHODS We conducted a field evaluation of Ag-RDT performance during the Shanghai Coronavirus disease 2019 (COVID-19) quarantine and screened 7225 individuals visiting our Emergency Department. 83 asymptomatic SARS-CoV-2 (+) individuals were enrolled in the current study. Simultaneously, Ag-RDT was performed to evaluate its testing performance. RESULTS For the Ag-RDT(-) cases, the average cycle threshold (Ct) values of the N gene were 27.26 ± 4.59, which were significantly higher than the Ct value (21.9 ± 4.73) of the Ag-RDT(+) individuals (p < 0.0001). The overall sensitivity of Ag-RDT versus that of RT-PCR was 43.37%. The Ag-RDT(+) individuals regarding the N gene's Ct value were 16 cases in the < 20 range, 12 in 20-25, 5 in 25-30, and 3 in 30-35. The corresponding sensitivity was 84.21%, 52.17%, 21.74% and 16.67%, respectively. Meanwhile, sampling had a straight specificity of 100% regardless of the Ct value. CONCLUSIONS The Ag-RDT were extremely sensitive in asymptomatic COVID-19 individuals with a Ct value < 20.
Collapse
Affiliation(s)
- Lan Dong
- Department of Emergency Department, Shanghai Chang Zheng Hospital, Shanghai, People's Republic of China
| | - Wen-Fang Li
- Department of Emergency Department, Shanghai Chang Zheng Hospital, Shanghai, People's Republic of China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Chang Zheng Hospital, Shanghai, People's Republic of China.
- Cerebrovascular Diseases Center, Department of Neurosurgery, Renji Hospital, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Gourgeon A, Soulier A, Audureau É, Khouider S, Galbin A, Langlois C, Bouvier-Alias M, Rodriguez C, Chevaliez S, Pawlotsky JM, Fourati S. Performance of 22 Rapid Lateral Flow Tests for SARS-CoV-2 Antigen Detection and Influence of "Variants of Concern": Implications for Clinical Use. Microbiol Spectr 2022; 10:e0115722. [PMID: 35862982 PMCID: PMC9430704 DOI: 10.1128/spectrum.01157-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/07/2022] [Indexed: 01/06/2023] Open
Abstract
Large-scale head-to-head assessment of the performance of lateral-flow tests (LFTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen is required in the context of the continuous emergence of new viral variants. The aim of this study was to evaluate the performance of 22 rapid LFTs for the detection of SARS-CoV-2 antigens. The clinical performance of 22 LFTs was evaluated in 1,157 samples collected in the Greater Paris area. The 8 best-performing LFTs were further assessed for their ability to detect 4 variants of concern (VOC), including the alpha, beta, delta, and omicron (BA.1) variants. The specificity of SARS-CoV-2 LFTs was generally high (100% for 15 of them) but was insufficient (<75%) for 3 tests. Sensitivity of the LFTs varied from 30.0% to 79.7% compared to nucleic acid amplification testing (NAAT). Using a cycle threshold (CT) cutoff of ≤25, sensitivity of the assays ranged from 59.7% to 100%. The 8 best-performing assays had a sensitivity of ≥80% for the detection of the 4 VOC when the CT was ≤25. Falsely negative SARS-CoV-2 antigen LFT results were observed with omicron, due to the occurrence of low viral loads (CT > 30 in 32% of samples) during the two first days following symptom onset. Several LFTs exhibited satisfactory sensitivity and specificity, whereas a few others yielded an unacceptable proportion of false-positive results and/or lacked sensitivity. The sensitivity of the best-performing assays was not influenced by VOC, including alpha, beta, delta, and omicron variants. The ability of LFTs to detect the omicron variant could be reduced during the first days following symptom onset due to lower viral loads than with other variants. IMPORTANCE The use of lateral-flow tests (LFTs) to detect SARS-CoV-2 has expanded worldwide. LFTs detect SARS-CoV-2 viral antigen and are less sensitive than nucleic acid amplification testing (NAAT). Their performance must be evaluated independently of the manufacturers. Our study assessed the performance of 22 SARS-CoV-2 antigen LFTs in large panels of well-characterized samples. The majority of LFTs tested exhibited satisfactory sensitivity and specificity, while some assays yielded unacceptable proportions of false-positive results, and others lacked sensitivity for samples containing large amounts of virus. The sensitivity of the best-performing assays did not vary according to the VOC, including the alpha, beta, delta, and omicron variants.
Collapse
Affiliation(s)
- Aurélie Gourgeon
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
| | - Alexandre Soulier
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Étienne Audureau
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
- Department of Public Health and CEpiA Team, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Creteil, France
| | - Souraya Khouider
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
| | - Arnaud Galbin
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
| | - Camille Langlois
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
| | - Magali Bouvier-Alias
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Christophe Rodriguez
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Stéphane Chevaliez
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Jean-Michel Pawlotsky
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Slim Fourati
- Department of Virology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
23
|
Methods to evaluate the impact of SARS-CoV-2 nucleocapsid mutations on antigen detection by rapid diagnostic tests. Biotechniques 2022; 73:136-141. [PMID: 36004516 PMCID: PMC9407365 DOI: 10.2144/btn-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mutations in the nucleocapsid of SARS-CoV-2 may interfere with antigen detection by diagnostic tests. We used several methods to evaluate the effect of various SARS-CoV-2 nucleocapsid mutations on the performance of the Panbio™ and BinaxNOW™ lateral flow rapid antigen tests and a prototype high-throughput immunoassay that utilizes Panbio antibodies. Variant detection was also evaluated by immunoblot and BIAcore™ assay. A panel of 23 recombinant nucleocapsid antigens (rAgs) were produced that included mutations found in circulating SARS-CoV-2 variants, including variants of concern. All mutant rAgs were detected by all assays, at a sensitivity equivalent to wild-type control (Wuhan strain). Thus, using a rAg approach, we found that the SARS-CoV-2 nucleocapsid mutations examined do not directly impact antigen detection or antigen assay performance. Expression, purification and testing of wild-type and mutant recombinant SARS-CoV-2 nucleocapsid antigens by the lateral flow SARS-CoV-2 antigen tests BinaxNOW™ and Panbio™, an ARCHITECT® SARS-CoV-2 antigen prototype automated immunoassay, immunoblot and BIAcore™ (surface plasmon resonance) activity assays.
Collapse
|
24
|
Xu J, Kerr L, Jiang Y, Suo W, Zhang L, Lao T, Chen Y, Zhang Y. Rapid Antigen Diagnostics as Frontline Testing in the COVID-19 Pandemic. SMALL SCIENCE 2022; 2:2200009. [PMID: 35942171 PMCID: PMC9349911 DOI: 10.1002/smsc.202200009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
The ongoing global COVID-19 pandemic, caused by the SARS-CoV-2 virus, has resulted in significant loss of life since December 2019. Timely and precise virus detection has been proven as an effective solution to reduce the spread of the virus and to track the epidemic. Rapid antigen diagnostics has played a significant role in the frontline of COVID-19 testing because of its convenience, low cost, and high accuracy. Herein, different types of recently innovated in-lab and commercial antigen diagnostic technologies with emphasis on the strengths and limitations of these technologies including the limit of detection, sensitivity, specificity, affordability, and usability are systematically reviewed. The perspectives of assay development are looked into.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Systems BiologyBlavatnik InstituteHarvard Medical SchoolBostonMA02115USA
- Department of Molecular VirologyVirogin Biotech Ltd.3800 Wesbrook MallVancouverBCV6S 2L9Canada
| | - Liam Kerr
- Department of Mechanical EngineeringCenter for Intelligent MachinesMcGill UniversityMontrealQCH3A0C3Canada
| | - Yue Jiang
- China-Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxing314001China
| | - Wenhao Suo
- Dana-Farber Cancer InstituteHarvard Medical SchoolBostonMA02215USA
- Department of PathologyThe First Affiliated Hospital of Xiamen University55 Zhenhai RoadXiamen361003China
| | - Lei Zhang
- Department of Chemical EngineeringWaterloo Institute for NanotechnologyUniversity of Waterloo200 University Avenue WestWaterlooONN2L3G1Canada
| | - Taotao Lao
- Department of Molecular DiagnosticsBoston Molecules Inc.564 Main StreetWalthamMA02452USA
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Yuxin Chen
- Department of Laboratory MedicineNanjing Drum Tower HospitalNanjing University Medical SchoolNanjingJiangsu210008China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-EfficiencyCollaborative Innovation Center of Chemical Science and EngineeringSchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072China
- Frontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjin300072China
| |
Collapse
|
25
|
Corrêa IA, Faffe DS, Galliez RM, Gonçalves CCA, Maia RA, da Silva GP, Moreira FRR, Mariani D, Campos MF, Leitão IDC, de Souza MR, Cunha MS, Nascimento ÉRDS, Ribeiro LDJ, da Cruz TFC, Policarpo C, Gonzales L, Rodgers MA, Berg M, Vijesurier R, Cloherty GA, Hackett J, Ferreira ODC, Castiñeiras TMPP, Tanuri A, da Costa LJ. A SARS-CoV-2 Negative Antigen Rapid Diagnostic in RT-qPCR Positive Samples Correlates With a Low Likelihood of Infectious Viruses in the Nasopharynx. Front Microbiol 2022; 13:912138. [PMID: 35966714 PMCID: PMC9364907 DOI: 10.3389/fmicb.2022.912138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) transmission occurs even among fully vaccinated individuals; thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDTs) are highly specific, but sensitivity is variable. Discordant RT-qPCR vs. Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross-sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that RT-qPCR positive while SARS-CoV-2 Ag-RDT negative discordant results correlate with the absence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was also verified in these samples. The data clearly demonstrate that a negative Ag-RDT sample is less likely to harbor infectious SARS-CoV-2 and, consequently, has a lower transmissible potential.
Collapse
Affiliation(s)
- Isadora Alonso Corrêa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Souza Faffe
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mello Galliez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Richard Araújo Maia
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana Mariani
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Freire Campos
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela de Carvalho Leitão
- Departamento de Doenças Infecciosas e Parasitárias, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Romário de Souza
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela Sabino Cunha
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Liane de Jesus Ribeiro
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Felix Cordeiro da Cruz
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Policarpo
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Gonzales
- Abbott Laboratories Inc., Chicago, IL, United States
| | | | - Michael Berg
- Abbott Laboratories Inc., Chicago, IL, United States
| | | | | | - John Hackett
- Abbott Laboratories Inc., Chicago, IL, United States
| | - Orlando da Costa Ferreira
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Abstract
A fast and highly specific detection of COVID-19 infections is essential in managing the virus dissemination networks. The most relevant technologies developed for SARS-CoV-2 detection, along with their advantages and limitations, will be presented and fully explored. Additionally, some of the newest and emerging COVID-19 diagnosis tools, such as biosensing platforms, will also be introduced. Considering the extreme relevance that all these technologies assume in pandemic control, it is of the utmost relevance to have an intrinsic knowledge of the parameters that need to be taken into consideration before choosing the most adequate test for a particular situation. Moreover, the new variants of the virus and their potential impact on the detection method’s effectiveness will be discussed. In order to better manage the pandemic, it is essential to maintain continuous research into the SARS-CoV-2 genome and updated genomic surveillance at the global level. This will allow for timely detection of new mutations and viral variants, which may affect the performance of COVID-19 detection tests.
Collapse
|
27
|
Mak GCK, Lau SSY, Wong KKY, Lau CS, Ng KHL, Lam ETK, Chan RCW. Analytical sensitivity of the Rapid Antigen Test kits for detection of SARS-CoV-2 Omicron variant BA.2 sub-lineage. J Med Virol 2022; 94:5033-5037. [PMID: 35656593 PMCID: PMC9347738 DOI: 10.1002/jmv.27908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS‐CoV‐2) Omicron was classified as a variant of concern in November 2021. The sublineage BA.2 spreads rapidly worldwide. Currently, there is a lack of data for the parallel comparison of Rapid Antigen Test (RAT) Kits to detect SARS‐CoV‐2 Omicron BA.2. We evaluated the analytical sensitivity of 12 RAT kits to detect Omicron BA.2 in the present study. Analytical sensitivity was determined by means of the limit of detection (LOD). We prepared a dilution set using a respiratory specimen collected from a COVID‐19 patient infected by Omicron BA.2. The reverse transcription‐polymerase chain reaction was used as a reference method. The LOD results showed that all 12 RAT kits had comparable analytical sensitivity to detect Omicron BA.2. The RAT kits selected in the current study may be used for the first‐line screening of the rapid spreading Omicron BA.2.
Collapse
Affiliation(s)
- Gannon C K Mak
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Stephen S Y Lau
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Kitty K Y Wong
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - C S Lau
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Ken H L Ng
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Edman T K Lam
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| | - Rickjason C W Chan
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region
| |
Collapse
|
28
|
Abstract
Though rapid antigen tests have historically problematic performance characteristics for the diagnosis of respiratory viral infections such as influenza, they have attained an unprecedented level of use in the context of the COVID-19 pandemic. Ease of use and scalability of rapid antigen tests has facilitated a democratization and scale of testing beyond anything reasonably achievable by traditional laboratory-based testing. In this chapter, we discuss the performance characteristics of rapid antigen testing for SARS-CoV-2 detection and their application to non-traditional uses beyond clinical diagnostic testing.
Collapse
|
29
|
Burgold-Voigt S, Müller E, Zopf D, Monecke S, Braun SD, Frankenfeld K, Kiehntopf M, Weis S, Schumacher T, Pletz MW, Ehricht R. Development of a new antigen-based microarray platform for screening and detection of human IgG antibodies against SARS-CoV-2. Sci Rep 2022; 12:8067. [PMID: 35577791 PMCID: PMC9109672 DOI: 10.1038/s41598-022-10823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Strategies to contain the current SARS-CoV-2 pandemic rely, beside vaccinations, also on molecular and serological testing. For any kind of assay development, screening for the optimal antigen is essential. Here we describe the verification of a new protein microarray with different commercially available preparations significant antigens of SARS-CoV-2 that can be used for the evaluation of the performance of these antigens in serological assays and for antibody screening in serum samples. Antigens of other pathogens that are addressed by widely used vaccinations were also included. To evaluate the accuracy of 21 different antigens or antigen preparations on the microarray, receiver operating characteristics (ROC) curve analysis using ELISA results as reference were performed. Except for a single concentration, a diagnostic sensitivity of 1 was determined for all antigen preparations. A diagnostic specificity, as well as an area under the curve (AUC) of 1 was obtained for 16 of 21 antigen preparations. For the remaining five, the diagnostic specificity ranged from 0.942 to 0.981 and AUC from 0.974 to 0.999. The optimized assay was subsequently also applied to determine the immune status of previously tested individuals and/or to detect the immunization status after COVID-19 vaccination. Microarray evaluation of the antibody profiles of COVID-19 convalescent and post vaccination sera showed that the IgG response differed between these groups, and that the choice of the test antigen is crucial for the assay performance. Furthermore, the results showed that the immune response is highly individualized, depended on several factors (e.g., age or sex), and was not directly related to the severity of disease. The new protein microarray provides an ideal method for the parallel screening of many different antigens of vaccine-preventable diseases in a single sample and for reliable and meaningful diagnostic tests, as well as for the development of safe and specific vaccines.
Collapse
Affiliation(s)
- Sindy Burgold-Voigt
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany.
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany.
| | - Elke Müller
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - David Zopf
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Monecke
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Sascha D Braun
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
| | - Katrin Frankenfeld
- INTER-ARRAY, Research Center for Medical Technology and Biotechnology (fzmb GmbH), Bad Langensalza, Germany
| | - Michael Kiehntopf
- Institute for Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Sebastian Weis
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute for Infection Biology and Natural Product Research-Hans Knöll Institute - HKI, Jena, Germany
| | | | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ralf Ehricht
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Jena, Germany
- InfectoGnostics Research Campus, Centre for Applied Research, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
30
|
Keskin AU, Ciragil P, Topkaya AE. Clinical Accuracy of Instrument-Read SARS-CoV-2 Antigen Rapid Diagnostic Tests (Ag-IRRDTs). Int J Microbiol 2022; 2022:9489067. [PMID: 35586835 PMCID: PMC9110244 DOI: 10.1155/2022/9489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review (PROSPERO registration number: CRD42021282476) aims to collect and analyse current evidence on real-world performance based on clinical accuracy of instrument-read rapid antigen diagnostic tests (Ag-IRRDTs) for SARS-CoV-2 identification. We used PRISMA Checklist and searched databases (PubMed, Web of Science Core Collection and FIND) for publications evaluating the accuracy of SARS-CoV-2 Ag-IRRDTs as of 30 September 2021, and included 40 independent clinical studies resulting in 48 Ag-IRRDT datasets with 137,770 samples. Across all datasets, pooled Ag-IRRDT sensitivity was 67.1% (95% CI: 65.9%-68.3%) and specificity was 99.4% with a tight CI. Pooled sensitivity and specificity of SARS-CoV-2 Ag-IRRDTs did not demonstrate a significant superiority over SARS-CoV-2 rapid antigen tests which do not require a reader instrument, even in the case where surveillance and screening datasets were excluded from the analysis. Nevertheless, they provide connectivity advantages and remove operator interface (in results-reading) issues. The lower sensitivity of certain brands of Ag-IRRDTs can be overcome in high prevalence areas with high frequency of testing. New SARS-CoV-2 variants are major concern for current and future diagnostic performance of these tests.
Collapse
Affiliation(s)
- Ali Umit Keskin
- Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey
| | - Pinar Ciragil
- Department of Microbiology, Yeditepe University Kozyatagi Hospital, Istanbul, Turkey
| | - Aynur Eren Topkaya
- Department of Microbiology, Yeditepe University Kosuyolu Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Bayart JL, Degosserie J, Favresse J, Gillot C, Didembourg M, Djokoto HP, Verbelen V, Roussel G, Maschietto C, Mullier F, Dogné JM, Douxfils J. Analytical Sensitivity of Six SARS-CoV-2 Rapid Antigen Tests for Omicron versus Delta Variant. Viruses 2022; 14:654. [PMID: 35458384 PMCID: PMC9031584 DOI: 10.3390/v14040654] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid antigen detection (RAD) tests are commonly used for the diagnosis of SARS-CoV-2 infections. However, with the continuous emergence of new variants of concern (VOC), presenting various mutations potentially affecting the nucleocapsid protein, the analytical performances of these assays should be frequently reevaluated. One hundred and twenty samples were selected and tested with both RT-qPCR and six commercial RAD tests that are commonly sold in Belgian pharmacies. Of these, direct whole-genome sequencing identified the strains present in 116 samples, of which 70 were Delta and 46 were Omicron (BA.1 and BA.1.1 sub-lineages, respectively). The sensitivity across a wide range of Ct values (13.5 to 35.7; median = 21.3) ranged from 70.0% to 92.9% for Delta strains and from 69.6% to 78.3% for Omicron strains. When taking swabs with a low viral load (Ct > 25, corresponding to <4.9 log10 copies/mL), only the Roche RAD test showed acceptable performances for the Delta strains (80.0%), while poor performances were observed for the other RAD tests (20.0% to 40.0%). All the tested devices had poor performances for the Omicron samples with a low viral load (0.0% to 23.1%). The poor performances observed with low viral loads, particularly for the Omicron strain, is an important limitation of RAD tests, which is not sufficiently highlighted in the instructions for use of these devices.
Collapse
Affiliation(s)
- Jean-Louis Bayart
- Department of Laboratory Medicine, Clinique Saint-Pierre, 1340 Ottignies, Belgium; (V.V.); (G.R.)
| | - Jonathan Degosserie
- COVID-19 Federal Testing Platform and NGS Surveillance Consortium, CHU UCL Namur, 5530 Yvoir, Belgium; (J.D.); (C.M.)
- Department of Laboratory Medicine, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Julien Favresse
- Department of Laboratory Medicine, Clinique Saint-Luc, 5004 Namur, Belgium;
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
| | - Constant Gillot
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
| | - Marie Didembourg
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
| | - Happy Phanio Djokoto
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
| | - Valérie Verbelen
- Department of Laboratory Medicine, Clinique Saint-Pierre, 1340 Ottignies, Belgium; (V.V.); (G.R.)
| | - Gatien Roussel
- Department of Laboratory Medicine, Clinique Saint-Pierre, 1340 Ottignies, Belgium; (V.V.); (G.R.)
| | - Céline Maschietto
- COVID-19 Federal Testing Platform and NGS Surveillance Consortium, CHU UCL Namur, 5530 Yvoir, Belgium; (J.D.); (C.M.)
- Department of Laboratory Medicine, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - François Mullier
- Department of Laboratory Medicine, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium; (C.G.); (M.D.); (H.P.D.); (J.-M.D.); (J.D.)
- Qualiblood S.A., 5000 Namur, Belgium
| |
Collapse
|
32
|
Abstract
Microbiological diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a challenge. Although real-time reverse transcription PCR (RT-PCR) represents the gold standard method, strategies that allow rapid and simple diagnosis are necessary for the early identification of cases. In this study, we evaluated the diagnostic performance of six different commercial rapid antigen tests (Coronavirus antigen [Ag] rapid test cassette [Healgen Scientific, Houston, TX, USA], COVID-19 Ag FIA [Vircell, SD Biosensor Inc., Gyeonggi-do, Republic of Korea], Clinitest rapid COVID-19 antigen test [Siemens, Healthineers, Erlangen, Germany], SARS-CoV-2 rapid antigen test [SD Biosensor; Roche Diagnostics, Basel, Switzerland], Panbio COVID-19 Ag rapid test device [Abbott, Chicago, IL, USA], and SARS-CoV-2 test [MonLab, Barcelona, Spain]) in 130 nasopharyngeal swab samples tested previously by RT-PCR. The overall sensitivity of the rapid tests ranged from 65% to 79%, and the specificity was 100% for all of them. The sensitivity was higher for those samples with RT-PCR cycle threshold (CT) values below 25 and those from patients presenting within the first week of symptoms. The Siemens test showed the highest sensitivity for patients with high viral loads while the Vircell test performed better than the rest for CT values of ≥25. IMPORTANCE The rapid detection of people infected with SARS-CoV-2 is essential for a correct and effective control of the disease it causes. This process must be sensitive, fast, and simple, and it must be possible to carry out in any type of health center. Rapid antigen tests are the answer to this need. Knowing its ability to detect the virus in different stages of the disease is essential for a correct diagnosis, which is why this study has been carried out to evaluate the sensitivity and specificity of 6 different antigens tests in nasopharyngeal smear samples.
Collapse
|
33
|
Mak GCK, Lau SSY, Wong KKY, Chow NLS, Lau CS, Lam ETK, Ng KHL, Chan RCW. Evaluation of rapid antigen detection kits for detection of SARS-CoV-2 B.1.617.2 virus. Future Virol 2022; 17:10.2217/fvl-2021-0229. [PMID: 35432576 PMCID: PMC9006337 DOI: 10.2217/fvl-2021-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
Aim: Currently, there is lack of data regarding rapid antigen detection (RAD) kits to detect SARS-CoV-2 B.1.617.2 virus. Objective: The purpose of this evaluation is to assess analytical sensitivity of 12 RAD kits against SARS-CoV-2 B.1.617.2. Study design: Analytical sensitivity was determined by limit of detection (LOD). A serial tenfold dilution set from a respiratory specimen collected from a COVID-19 patient infected by SARS-CoV-2 B.1.617.2 was used. RT-PCR was used as a reference method. Results: The LOD results showed that 11 and one RAD kits were 100- and 1000-fold less sensitive than RT-PCR respectively. Conclusion: The results showed that the RAD kits evaluated in this study may be used for first-line screening of the SARS-CoV-2 B.1.617.2 variant.
Collapse
Affiliation(s)
- Gannon CK Mak
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Stephen SY Lau
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Kitty KY Wong
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Nancy LS Chow
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Chi-Shan Lau
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Edman TK Lam
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Ken HL Ng
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Rickjason CW Chan
- Microbiology Division, Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| |
Collapse
|
34
|
García-Fernández S, Pablo-Marcos D, de la Fuente SV, Rodríguez MJR, Gozalo M, Rodríguez-Lozano J, Méndez-Legaza JM, Calvo J. Evaluation of the rapid antigen detection test STANDARD F COVID-19 Ag FIA for diagnosing SARS-CoV-2: Experience from an Emergency Department. Diagn Microbiol Infect Dis 2022; 103:115683. [PMID: 35421760 PMCID: PMC8931994 DOI: 10.1016/j.diagmicrobio.2022.115683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/28/2022] [Accepted: 03/13/2022] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to assess the clinical performance of STANDARD F COVID-19 Ag FIA (SD Biosensor Inc., Gyeonggi-do, Republic of Korea), a rapid antigen detection test (RADT) for diagnosing SARS-CoV-2, in patients attended at the Emergency Department with signs or symptoms compatible with COVID-19 that had started in the last 5 days. The clinical performance of the antigen test was compared with RT-PCR, the reference standard. We included 663 specimens from non-repetitive patients. Clinical sensitivity and specificity were 84.0% (95% CI 76.1−89.7) and 99.6% (95% CI 98.5−99.9), respectively. The positive and negative predictive values were 98.1% (95% CI 92.7−99.7) and 96.4% (95% CI 94.4−97.7), respectively. The kappa index agreement between RT-PCR and the RADT was 0.89 (95% CI 0.84−0.93). We concluded that STANDARD F COVID-19 Ag FIA is an excellent first-line RADT method to diagnose symptomatic patients in the emergency department.
Collapse
Affiliation(s)
- Sergio García-Fernández
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain.
| | - Daniel Pablo-Marcos
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | | | - Mónica Gozalo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
35
|
Bornemann L, Dähne T, Fomenko A, Kaup O, Kleideiter J, Kulis-Horn R, Ruprecht B, Wehmeier M, Panning M. Performance of the Sofia SARS-CoV-2 rapid antigen test as frontline test in a university hospital, Germany. Diagn Microbiol Infect Dis 2022; 103:115663. [PMID: 35331603 PMCID: PMC8881221 DOI: 10.1016/j.diagmicrobio.2022.115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 11/03/2022]
|
36
|
Comparison of Rapid and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. Diagnostics (Basel) 2022; 12:diagnostics12010104. [PMID: 35054271 PMCID: PMC8775255 DOI: 10.3390/diagnostics12010104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 viral antigen detection may be an interesting alternative to RT-PCR for the diagnosis of SARS-CoV-2 infection as a less laborious or expensive method but requires validation. This study aimed to compare the performance of the DiaSorin™ LiaisonXL automated quantitative antigen test (QAT) and the AAZ™ rapid antigen test (RAT) to the DiaSorin™ MDX RT-PCR assay. A total of 242 nasopharyngeal samples were tested at La Pitié-Salpêtrière University Hospital (Paris, France). Performances for the detection of variants of SARS-CoV-2 were further investigated. RATs were visually read for qualitative results and band intensity was determined. Overall sensitivity was 63.2% for QAT and 58.6% for RAT. For RT-PCR Ct value 25, sensitivity was 89.8% for both tests. Both tests showed comparable sensitivity for detection of variants. There was a strong relationship between antigen concentration and band positivity. On the same set of samples these tests share similar performances.
Collapse
|
37
|
Rapid Antigen Test Combine with Nucleic Acid Detection: A Better Strategy for COVID-19 Screening at Points of Entry. J Epidemiol Glob Health 2022; 12:13-15. [PMID: 34978707 PMCID: PMC8721636 DOI: 10.1007/s44197-021-00030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has imposed an enormous disease burden worldwide, and the Delta variant now has become dominant in 53 countries. Recently published studies have shown that during periods of high viral load, rapid antigen tests (RAT) yield similar results to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, and when used in serial screening (e.g., every three days), it has a high sensitivity. In this perspective, we recommend RT-PCR combined with RAT at points of entry: (i) RAT can be added to the detection phase at ports of entry to detect asymptomatic infections as early as possible; (ii) RAT can be added to post-entry quarantine every three days or less to reduce the rate of missed detection in later quarantine; (iii) Adding regular RAT to regular PCR testing for key airport personnel to prevent cross-infection and conduct closed-off management. In the face of sporadic Delta variant outbreaks, the combination of the two could help rapid triage and management of suspected populations at an early stage and thus contain the outbreak more quickly and effectively. We also discuss the issue whether the current antigen detection reagents can cope with various SARS-CoV-2 variants.
Collapse
|
38
|
Ahmad L. Implication of SARS-CoV-2 Immune Escape Spike Variants on Secondary and Vaccine Breakthrough Infections. Front Immunol 2021; 12:742167. [PMID: 34804022 PMCID: PMC8596465 DOI: 10.3389/fimmu.2021.742167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
COVID-19 pandemic remains an on-going global health and economic threat that has amassed millions of deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of this disease and is constantly under evolutionary pressures that drive the modification of its genome which may represent a threat to the efficacy of current COVID-19 vaccines available. This article highlights the pressures that facilitate the rise of new SARS-CoV-2 variants and the key mutations of the viral spike protein - L452R, E484K, N501Y and D614G- that promote immune escape mechanism and warrant a cautionary point for clinical and public health responses in terms of re-infection, vaccine breakthrough infection and therapeutic values.
Collapse
Affiliation(s)
- Liyana Ahmad
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| |
Collapse
|
39
|
Jungnick S, Hobmaier B, Mautner L, Hoyos M, Haase M, Baiker A, Lahne H, Eberle U, Wimmer C, Hepner S, Sprenger A, Berger C, Dangel A, Ippisch S, Hahner S, Wildner M, Liebl B, Ackermann N, Sing A, Fingerle V. In Vitro Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Microorganisms 2021; 9:microorganisms9091967. [PMID: 34576862 PMCID: PMC8465346 DOI: 10.3390/microorganisms9091967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023] Open
Abstract
Rapid antigen tests (RATs) are an integral part of SARS-CoV-2 containment strategies. As emerging variants of concern (VOCs) displace the initially circulating strains, it is crucial that RATs do not fail to detect these new variants. In this study, four RATs for nasal swab testing were investigated using cultured strains of B.1.1 (non-VOC), B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta). Based on dilution series in cell culture medium and pooled saliva, the limit of detection of these RATs was determined in a laboratory setting. Further investigations on cross-reactivity were conducted using recombinant N-protein from seasonal human coronaviruses (hCoVs). RATs evaluated showed an overall comparable performance with cultured strains of the non-VOC B.1.1 and the VOCs Alpha, Beta, Gamma, and Delta. No cross-reactivity was detected with recombinant N-protein of the hCoV strains HKU1, OC43, NL63, and 229E. A continuous evaluation of SARS-CoV-2 RAT performance is required, especially with regard to evolving mutations. Moreover, cross-reactivity and interference with pathogens and other substances on the test performance of RATs should be consistently investigated to ensure suitability in the context of SARS-CoV-2 containment.
Collapse
Affiliation(s)
- Sabrina Jungnick
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Bernhard Hobmaier
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Lena Mautner
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (L.M.); (M.H.); (M.H.); (A.B.)
| | - Mona Hoyos
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (L.M.); (M.H.); (M.H.); (A.B.)
| | - Maren Haase
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (L.M.); (M.H.); (M.H.); (A.B.)
| | - Armin Baiker
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (L.M.); (M.H.); (M.H.); (A.B.)
| | - Heidi Lahne
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Ute Eberle
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Clara Wimmer
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Sabrina Hepner
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Annika Sprenger
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Carola Berger
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Alexandra Dangel
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Siegfried Ippisch
- Bavarian Pandemic Warehouse, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany;
| | - Sonja Hahner
- Protein Biochemistry, Mikrogen GmbH, 82061 Neuried, Germany;
| | - Manfred Wildner
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians-Universität, 80539 Munich, Germany; (M.W.); (B.L.)
- Bavarian State Institute of Health, 85764 Oberschleißheim, Germany
| | - Bernhard Liebl
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians-Universität, 80539 Munich, Germany; (M.W.); (B.L.)
- Bavarian State Institute of Health, 85764 Oberschleißheim, Germany
| | - Nikolaus Ackermann
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
| | - Andreas Sing
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians-Universität, 80539 Munich, Germany; (M.W.); (B.L.)
| | - Volker Fingerle
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany; (S.J.); (B.H.); (H.L.); (U.E.); (C.W.); (S.H.); (A.S.); (C.B.); (A.D.); (N.A.); (A.S.)
- Correspondence: ; Tel.:+49-9131-6808-5870
| |
Collapse
|
40
|
Sookaromdee P, Wiwanitkit V. Rapid antigen tests for the detection of SARS-CoV-2: A comment. Aten Primaria 2021; 54:102174. [PMID: 34798401 PMCID: PMC8313505 DOI: 10.1016/j.aprim.2021.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022] Open
|