1
|
Ramírez-Coronel AA, Mohammadi MJ, Majdi HS, Zabibah RS, Taherian M, Prasetio DB, Gabr GA, Asban P, Kiani A, Sarkohaki S. Hospital wastewater treatment methods and its impact on human health and environments. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:423-434. [PMID: 36805668 DOI: 10.1515/reveh-2022-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The scientific development and economic advances have led to the identification of many pathogenic agents in hospital effluents. Hospital wastewaters are qualitatively similar to municipal wastewaters, with the difference that these wastewaters contain toxic and infectious substances and compounds that can be dangerous for the health of the environment, employees of these centers, and the entire community. Therefore, in the last few years, it has been emphasized that all hospitals and medical and health centers should have a treatment facility for their produced wastewater so that the health of the society and people is not threatened. An issue that is not paid attention to has become one of the environmental problems and concerns of the world today. The present study focused on the investigate hospital wastewater treatment methods and its impact on human health and the environment. In this narrative study, the first literature search was performed with four hundred and twenty-three articles were retrieved based on PubMed, Elsevier, Web of science, Spring, and Google Scholar databases. The results of this study showed that wastewater from hospitals and medical centers can play a significant impress in polluting soil and aquatic environments and spreading infectious diseases. According to the mentioned contents, collection and treatment of hospital wastewater is essential. In addition, if hospital wastewater enters the wastewater collection network without knowing its characteristics or with incomplete treatment and finally enters the municipal wastewater treatment plant. It causes many problems, including disturbing the balance of the biological system of the treatment plant. Purification and disposal of hospital wastewater is considered a vital action based on environmental standards. The results of this study also showed that the treatment methods of this type of hospital wastewater can play a significant role in reducing the spread of diseases caused by hospital wastewater treatment, including infectious diseases. The results of this study can be very useful for politicians, the managers of the Ministry of Energy and Health and the Environmental Organization in choosing the appropriate methods and process to reduce hospital wastewater and increase the efficiency of hospital wastewater treatment plants.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Masoume Taherian
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Diki Bima Prasetio
- Occupational Safety and Health Department, Faculty of Public Health, Universitas Muhammadiyah Semarang, Semarang, Indonesia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Parisa Asban
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amin Kiani
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sahar Sarkohaki
- Student of Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
3
|
Bej S, Swain S, Bishoyi AK, Mandhata CP, Sahoo CR, Padhy RN. Recent advancements on antibiotic bioremediation in wastewaters with a focus on algae: an overview. ENVIRONMENTAL TECHNOLOGY 2024; 45:4214-4229. [PMID: 37545329 DOI: 10.1080/09593330.2023.2245166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Antibiotic contamination from hospitals, animal husbandry, and municipal wastewater is graver than imagined, and it possess serious risks to the health of humans and animals, with the emergence of multidrug resistant bacteria; those affect the growth of higher plants too. Conventional wastewater treatment methods adopted today are inadequate for removing antibiotics from wastewater. Intuitively, the remediation process using mixed algae should be effective enough, for which algae-based remediation technologies have emerged as sustainable remedial methods. This review summarized the detection of antibiotics in field water in most countries; a comprehensive overview of algae-based technologies, algal adsorption, accumulation, biodegradation, photodegradation, hydrolysis, and the use of algae-bacteria consortia for the remediation of antibiotics in wastewaters in done. Green algae namely, Chlamydomonas sp., Chlorella sp., C. vulgaris, Spyrogira sp. Scenedesmus quadricauda, S. obliquus, S. dimorphus, Haematoccus pluvialis, and Nannochlopsis sp., had been reporting have 90-100% antibiotic removal efficiency. The integration of bioelectrochemical systems and genetically engineered prokaryotic algal species offer promising avenues for improving antibiotic removal in the future. Overall, this review highlights the need for tenacious research and development of algae-based technologies to reduce antibiotic contamination in aquatic environments, for holistic good.
Collapse
Affiliation(s)
- Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha O Anusandhan Deemed to be University, Odisha, India
| |
Collapse
|
4
|
Emadikhiav A, Mafigholami R, Davood A, Mahvi A, Salimi L. A review on hazards and treatment methods of released antibiotics in hospitals wastewater during the COVID-19 pandemic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:820. [PMID: 39154115 DOI: 10.1007/s10661-024-12938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Drugs and related goods are widely used in order to promote public health and the quality of life. One of the most serious environmental challenges affecting public health is the ongoing presence of antibiotics in the effluents generated by pharmaceutical industries and hospitals. Antibiotics cannot be entirely removed from wastewater using the traditional wastewater treatment methods. Unmetabolized antibiotics generated by humans can be found in urban and livestock effluent. The antibiotic present in effluent contributes to issues with resistance to antibiotics and the creation of superbugs. Over the recent 2 years, the coronavirus disease 2019 pandemic has substantially boosted hospital waste volume. In this situation, a detailed literature review was conducted to highlight the harmful effects of untreated hospital waste and outline the best approaches to manage it. Approximately 50 to 70% of the emerging contaminants prevalent in the hospital wastewater can be removed using traditional treatment strategies. This paper emphasizes the numerous treatment approaches for effectively eliminating emerging contaminants and antibiotics from hospital wastewater and provides an overview of global hospital wastewater legislation and guidelines on hospital wastewater administration. Around 90% of ECs might be eliminated by biological or physical treatment techniques when used in conjunction with modern oxidation techniques. According to this research, hybrid methods are the best approach for removing antibiotics and ECs from hospital wastewater. The document outlines the many features of effective hospital waste management and might be helpful during and after the coronavirus disease 2019 outbreak, when waste creation on all hospitals throughout the globe has considerably increased.
Collapse
Affiliation(s)
- Amirali Emadikhiav
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Roya Mafigholami
- Department of Environmental Science and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Asghar Davood
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Salimi
- Faculty of Marine Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Hadi M, Kheiri R, Baghban M, Sayahi A, Nasseri S, Alimohammadi M, Khastoo H, Aminabad MS, Vaghefi KA, Vakili B, Tashauoei H, Borji SH, Iravani E. The occurrence of SARS-CoV-2 in Tehran's municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:281-293. [PMID: 38887767 PMCID: PMC11180145 DOI: 10.1007/s40201-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/20/2024]
Abstract
Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants' (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks. Graphical abstract
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Roohollah Kheiri
- Water Quality Control Office, Alborz Province Water and Wastewater Company, Karaj, Iran
| | - Mahtab Baghban
- Reference Laboratory of Water and Wastewater, Tehran Province Water and Wastewater Company, Tehran, Iran
| | - Ahmad Sayahi
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Simin Nasseri
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Khastoo
- Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Kooshiar Azam Vaghefi
- Manager of Water Quality Control Bureau, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Behnam Vakili
- Office of Improvement on Wastewater Operation Procedures, National Water and Wastewater Engineering Company, Tehran, Iran
| | - Hamidreza Tashauoei
- Department of Environmental Health Engineering, School of Health, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Iravani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
7
|
Zarei Mahmoudabadi T, Pasdar P, Eslami H. Exposure risks to SARS-CoV-2 (COVID-19) in wastewater treatment plants: a review. SUSTAINABLE WATER RESOURCES MANAGEMENT 2024; 10:85. [DOI: 10.1007/s40899-024-01065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025]
|
8
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Torabi F, Li G, Mole C, Nicholson G, Rowlingson B, Smith CR, Jersakova R, Diggle PJ, Blangiardo M. Wastewater-based surveillance models for COVID-19: A focused review on spatio-temporal models. Heliyon 2023; 9:e21734. [PMID: 38053867 PMCID: PMC10694161 DOI: 10.1016/j.heliyon.2023.e21734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
The evident shedding of the SARS-CoV-2 RNA particles from infected individuals into the wastewater opened up a tantalizing array of possibilities for prediction of COVID-19 prevalence prior to symptomatic case identification through community testing. Many countries have therefore explored the use of wastewater metrics as a surveillance tool, replacing traditional direct measurement of prevalence with cost-effective approaches based on SARS-CoV-2 RNA concentrations in wastewater samples. Two important aspects in building prediction models are: time over which the prediction occurs and space for which the predicted case numbers is shown. In this review, our main focus was on finding mathematical models which take into the account both the time-varying and spatial nature of wastewater-based metrics into account. We used six main characteristics as our assessment criteria: i) modelling approach; ii) temporal coverage; iii) spatial coverage; iv) sample size; v) wastewater sampling method; and vi) covariates included in the modelling. The majority of studies in the early phases of the pandemic recognized the temporal association of SARS-CoV-2 RNA concentration level in wastewater with the number of COVID-19 cases, ignoring their spatial context. We examined 15 studies up to April 2023, focusing on models considering both temporal and spatial aspects of wastewater metrics. Most early studies correlated temporal SARS-CoV-2 RNA levels with COVID-19 cases but overlooked spatial factors. Linear regression and SEIR models were commonly used (n = 10, 66.6 % of studies), along with machine learning (n = 1, 6.6 %) and Bayesian approaches (n = 1, 6.6 %) in some cases. Three studies employed spatio-temporal modelling approach (n = 3, 20.0 %). We conclude that the development, validation and calibration of further spatio-temporally explicit models should be done in parallel with the advancement of wastewater metrics before the potential of wastewater as a surveillance tool can be fully realised.
Collapse
Affiliation(s)
- Fatemeh Torabi
- Turing-RSS Health Data Lab, London, UK
- Population Data Science HDRUK-Wales, Medical School, Swansea University, Wales, UK
| | - Guangquan Li
- Turing-RSS Health Data Lab, London, UK
- Applied Statistics Research Group, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Callum Mole
- Turing-RSS Health Data Lab, London, UK
- The Alan Turing Institute, London, UK
| | - George Nicholson
- Turing-RSS Health Data Lab, London, UK
- University of Oxford, Oxford, UK
| | - Barry Rowlingson
- Turing-RSS Health Data Lab, London, UK
- CHICAS, Lancaster Medical School, Lancaster University, England, UK
| | | | - Radka Jersakova
- Turing-RSS Health Data Lab, London, UK
- The Alan Turing Institute, London, UK
| | - Peter J. Diggle
- Turing-RSS Health Data Lab, London, UK
- CHICAS, Lancaster Medical School, Lancaster University, England, UK
| | - Marta Blangiardo
- Turing-RSS Health Data Lab, London, UK
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College, London, UK
| |
Collapse
|
10
|
Reeves A, Shaikh WA, Chakraborty S, Chaudhuri P, Biswas JK, Maity JP. Potential transmission of SARS-CoV-2 through microplastics in sewage: A wastewater-based epidemiological review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122171. [PMID: 37437759 DOI: 10.1016/j.envpol.2023.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
In light of the current COVID-19 pandemic caused by the virus SARS-CoV-2, there is an urgent need to identify and investigate the various pathways of transmission. In addition to contact and aerosol transmission of the virus, this review investigated the possibility of its transmission via microplastics found in sewage. Wastewater-based epidemiological studies on the virus have confirmed its presence and persistence in both influent sewage as well as treated ones. The hypothesis behind the study is that the huge amount of microplastics, especially Polyvinyl Chloride and Polyethylene particles released into the open waters from sewage can become a good substrate and vector for microbes, especially Polyvinyl Chloride and Polyethylene particles, imparting stability to microbes and aiding the "plastisphere" formation. A bibliometric analysis highlights the negligence of research toward plastispheres and their presence in sewage. The ubiquity of microplastics and their release along with the virus into the open waters increases the risk of viral plastispheres. These plastispheres may be ingested by aquatic organisms facilitating reverse zoonosis and the commercial organisms already reported with accumulating microplastics through the food chain poses a risk to human populations as well. Reliance of high population density areas on open waters served by untreated sewage in economically less developed countries might bring back viral transmission.
Collapse
Affiliation(s)
- Arijit Reeves
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Sarisha, South 24 Parganas, West Bengal, 743368, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Jharkhand, 835215, India.
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Kazenelson J, Jefferson T, Rhodes RG, Cahoon LB, Frampton AR. Detection of SARS-CoV-2 RNA in wastewater from an enclosed college campus serves as an early warning surveillance system. PLoS One 2023; 18:e0288808. [PMID: 37471346 PMCID: PMC10358889 DOI: 10.1371/journal.pone.0288808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
SARS-CoV-2, the causative agent of Covid-19, is shed from infected persons in respiratory droplets, feces, and urine. Using quantitative PCR (qPCR), our group hypothesized that we could detect SARS-CoV-2 in wastewater samples collected on a university campus prior to the detection of the virus in individuals on campus. Wastewater samples were collected 3 times a week from 5 locations on the main campus of the University of North Carolina Wilmington (UNCW) from July 24, 2020 to December 21, 2020. Post-collection, total RNA was extracted and SARS-CoV-2 RNA in the samples was detected by qPCR. SARS-CoV-2 signal was detected on campus beginning on August 19 as classes began and the signal increased in both intensity and breadth as the Fall semester progressed. A comparison of two RNA extraction methods from wastewater showed that SARS-CoV-2 was detected more frequently on filter samples versus the direct extracts. Aligning our wastewater data with the reported SARS-CoV-2 cases on the campus Covid-19 dashboard showed the virus signal was routinely detected in the wastewater prior to clusters of individual cases being reported. These data support the testing of wastewater for the presence of SARS-CoV-2 and may be used as part of a surveillance program for detecting the virus in a community prior to an outbreak occurring and could ultimately be incorporated with other SARS-CoV-2 metrics to better inform public health enabling a quick response to contain or mitigating spread of the virus.
Collapse
Affiliation(s)
- Jacob Kazenelson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Tori Jefferson
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Ryan G. Rhodes
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Lawrence B. Cahoon
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Arthur R. Frampton
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
12
|
Parida VK, Saidulu D, Bhatnagar A, Gupta AK, Afzal MS. A critical assessment of SARS-CoV-2 in aqueous environment: Existence, detection, survival, wastewater-based surveillance, inactivation methods, and effective management of COVID-19. CHEMOSPHERE 2023; 327:138503. [PMID: 36965534 PMCID: PMC10035368 DOI: 10.1016/j.chemosphere.2023.138503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 06/01/2023]
Abstract
In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland.
| | - Ashok Kumar Gupta
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Mohammad Saud Afzal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
13
|
Dihan MR, Abu Nayeem SM, Roy H, Islam MS, Islam A, Alsukaibi AKD, Awual MR. Healthcare waste in Bangladesh: Current status, the impact of Covid-19 and sustainable management with life cycle and circular economy framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162083. [PMID: 36764546 PMCID: PMC9908568 DOI: 10.1016/j.scitotenv.2023.162083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 05/09/2023]
Abstract
COVID-19 has accelerated the generation of healthcare (medical) waste throughout the world. Developing countries are the most affected by this hazardous and toxic medical waste due to poor management systems. In recent years, Bangladesh has experienced increasing medical waste generation with estimated growth of 3 % per year. The existing healthcare waste management in Bangladesh is far behind the sustainable waste management concept. To achieve an effective waste management structure, Bangladesh has to implement life cycle assessment (LCA) and circular economy (CE) concepts in this area. However, inadequate data and insufficient research in this field are the primary barriers to the establishment of an efficient medical waste management systen in Bangladesh. This study is introduced as a guidebook containing a comprehensive overview of the medical waste generation scenario, management techniques, Covid-19 impact from treatment to testing and vaccination, and the circular economy concept for sustainable waste management in Bangladesh. The estimated generation of medical waste in Bangladesh without considering the surge due to Covid-19 and other unusual medical emergencies would be approximately 50,000 tons (1.25 kg/bed/day) in 2025, out of which 12,435 tons were predicted to be hazardous waste. However, our calculation estimated that a total of 82,553, 168.4, and 2300 tons of medical waste was generated only from handling of Covid patients, test kits, and vaccination from March 2021 to May 2022. Applicability of existing guidelines, and legislation to handle the current situation and feasibility of LCA on medical waste management system to minimize environmental impact were scrutinized. Incineration with energy recovery and microwave sterilization were found to be the best treatment techniques with minimal environmental impact. A circular economy model with the concept of waste minimizaton, and value recovery was proposed for sustainable medical waste management. This study suggests proper training on healthcare waste management, proposing strict regulations, structured research allocation, and implementation of public-private partnerships to reduce, and control medical waste generation for creating a sustainable medical waste management system in Bangladesh.
Collapse
Affiliation(s)
- Musfekur Rahman Dihan
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - S M Abu Nayeem
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh; Department of Textile Engineering, Daffodil International University, Dhaka 1341, Bangladesh.
| | - Aminul Islam
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | | | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, GPO Box U 1987, Perth, WA 6845, Australia; Materials Science and Research Center, Japan AtomicEnergy Agency (JAEA), Hyogo 679-5148, Japan.
| |
Collapse
|
14
|
Qamsari EM, Mohammadi P. Evaluation of SARS-CoV-2 RNA Presence in Treated and Untreated Hospital Sewage. WATER, AIR, AND SOIL POLLUTION 2023; 234:273. [PMID: 37073306 PMCID: PMC10090750 DOI: 10.1007/s11270-023-06273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is a potential approach for determining the viral prevalence in a community. In the wake of the COVID-19 pandemic, researchers have begun to pay close attention to the presence of SARS-COV-2 RNA in various wastewaters. The potential for detecting SARS-CoV-2 RNA in hospital sewage could make it an invaluable resource for epidemiological studies. In this regard, two specialized hospitals dedicated to COVID-19 patients were chosen for this investigation. Both hospitals utilize the same wastewater treatment systems. The influent and effluents of the two hospitals were sampled in May and June of 2021, and the samples were evaluated for their chemical properties. According to the findings of this study, the wastewater qualities of the two studied hospitals were within the standard ranges. The sewage samples were concentrated using ultrafiltration and PEG precipitation techniques. The E and S genes were studied with RT-qPCR commercial kits. We found E gene of SARS-CoV-2 in 83.3% (5/6) and 66.6% (4/6) of wastewater samples from hospital 1 and hospital 2, respectively, using ultrafiltration concentration method. Wastewater samples taken after chlorine treatment accounted for 16.6% of all positive results. In addition, due to the small sample size, there was no significant correlation (p > 0.05) between the presence of SARS-CoV-2 in wastewater and the number of COVID-19 cases. Hospitals may be a source of SARS-CoV-2 pollution, thus it is important to monitor and enhance wastewater treatment systems to prevent the spread of the virus and safeguard the surrounding environment.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
15
|
Davis A, Keely SP, Brinkman NE, Bohrer Z, Ai Y, Mou X, Chattopadhyay S, Hershey O, Senko J, Hull N, Lytmer E, Quintero A, Lee J. Evaluation of intra- and inter-lab variability in quantifying SARS-CoV-2 in a state-wide wastewater monitoring network. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1053-1068. [PMID: 37701755 PMCID: PMC10494892 DOI: 10.1039/d2ew00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.
Collapse
Affiliation(s)
- Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Office of Research and Development, USA
| | | | - Yuehan Ai
- Department of Food Science & Technology, The Ohio State University, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, Department of Biology and Department of Geosciences, University of Toledo, USA
| | - Olivia Hershey
- Department of Geosciences and Biology, University of Akron, USA
| | - John Senko
- Department of Geosciences and Biology, University of Akron, USA
| | - Natalie Hull
- Department of Civil, Environmental and Geodetic Engineering and Sustainability Institute, The Ohio State University, USA
| | - Eva Lytmer
- Department of Biological Sciences, Bowling Green State University, USA
| | | | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
- Department of Food Science & Technology, The Ohio State University, USA
- Infectious Diseases Institute, The Ohio State University, USA
| |
Collapse
|
16
|
Sridhar A, Balakrishnan A, Jacob MM, Sillanpää M, Dayanandan N. Global impact of COVID-19 on agriculture: role of sustainable agriculture and digital farming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42509-42525. [PMID: 35258730 PMCID: PMC8902491 DOI: 10.1007/s11356-022-19358-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 04/13/2023]
Abstract
The rise and spread of the coronavirus pandemic (COVID-19) has created an imbalance in all sectors worldwide, massively disrupting the global economy. Social distancing, quarantine regulations, and strict travel restrictions have led to a major reduction in the workforce and loss of jobs across all industrial sectors. One of the sectors completely exposed was the agriculture and food sector. The initiation of a nationwide lockdown by the government resulted in the shutdown of industries globally impacting the overall supply chain from farmer to consumer. The need of the hour is to propose effective solutions which can serve the dual purpose of market growth as well as customer satisfaction. This paper reviews the impact of COVID-19 on the agro-food system and its economy stressing critical factors like food production, demand, price hikes, security, and supply chain resilience. To conserve natural resources and meet the sustainable development goals (SDG), importance has been given to adopting sustainable agricultural practices with a prime focus on techniques like urban agriculture, crop rotation, hydroponics, and family farming. Possible advancements like the use of digital tools, mainly artificial intelligence, machine learning, deep learning, and block-chain technology, in the agro-food sector have been discussed as they could be a promising tool to develop a self-reliant society. This work would be a perfect platform to understand the growing impact of the pandemic as well as supporting cost-effective solutions for a green ecosystem.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India
| | - Akash Balakrishnan
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Meenu Mariam Jacob
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy, and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nanditha Dayanandan
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science & Technology, Kattankulathur 603 203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
17
|
Alahdal HM, Ameen F, AlYahya S, Sonbol H, Khan A, Alsofayan Y, Alahmari A. Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25050-25057. [PMID: 34138435 PMCID: PMC8210523 DOI: 10.1007/s11356-021-14809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.
Collapse
Affiliation(s)
- Hadil M Alahdal
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Anas Khan
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Yousef Alsofayan
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Ahmed Alahmari
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Schoeler GP, Afonso TF, Demarco CF, Dos Santos Barboza V, Sant'anna Cadaval TR, Igansi AV, Gelesky MA, Giongo JL, de Almeida Vaucher R, de Avila Delucis R, Andreazza R. SARS-CoV-2 removal with a polyurethane foam composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22024-22032. [PMID: 36282387 PMCID: PMC9593988 DOI: 10.1007/s11356-022-23758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The pandemic of COVID-19 (SARS-CoV-2 disease) has been causing unprecedented health and economic impacts, alerting the world to the importance of basic sanitation and existing social inequalities. The risk of the spread and appearance of new diseases highlights the need for the removal of these pathogens through efficient techniques and materials. This study aimed to develop a polyurethane (PU) biofoam filled with dregs waste (leftover from the pulp and paper industry) for removal SARS-CoV-2 from the water. The biofoam was prepared by the free expansion method with the incorporation of 5wt% of dregs as a filler. For the removal assays, the all materials and its isolated phases were incubated for 24 h with an inactivated SARS-CoV-2 viral suspension. Then, the RNA was extracted and the viral load was quantified using the quantitative reverse transcription (RT-qPCR) technique. The biofoam (polyurethane/dregs) reached a great removal percentage of 91.55%, whereas the isolated dregs waste was 99.03%, commercial activated carbon was 99.64%, commercial activated carbon/polyurethane was 99.30%, and neat PU foam reached was 99.96% for this same property and without statistical difference. Those new materials endowed with low cost and high removal efficiency of SARS-CoV-2 as alternatives to conventional adsorbents.
Collapse
Affiliation(s)
- Guilherme Pereira Schoeler
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil
| | - Thays França Afonso
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Carolina Faccio Demarco
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Victor Dos Santos Barboza
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Tito Roberto Sant'anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Andrei Valerão Igansi
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Marcos Alexandre Gelesky
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Janice Luehring Giongo
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Rodrigo de Almeida Vaucher
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Rafael de Avila Delucis
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Robson Andreazza
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil.
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil.
| |
Collapse
|
19
|
Parra-Arroyo L, Martinez-Ruiz M, Lucero S, Oyervides-Muñoz MA, Wilkinson M, Melchor-Martínez EM, Araújo RG, Coronado-Apodaca KG, Velasco Bedran H, Buitrón G, Noyola A, Barceló D, Iqbal HM, Sosa-Hernández JE, Parra-Saldívar R. Degradation of viral RNA in wastewater complex matrix models and other standards for wastewater-based epidemiology: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Guérin-Rechdaoui S, Bize A, Levesque-Ninio C, Janvier A, Lacroix C, Le Brizoual F, Barbier J, Amsaleg CR, Azimi S, Rocher V. Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion. ENVIRONMENTAL RESEARCH 2022; 214:114057. [PMID: 35995225 PMCID: PMC9391084 DOI: 10.1016/j.envres.2022.114057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Since the COVID-19 outbreak has started in late 2019, SARS-CoV-2 has been widely detected in human stools and in urban wastewater. No infectious SARS-CoV-2 particles have been detected in raw wastewater until now, but it has been reported occasionally in human stools. This has raised questions on the fate of SARS-CoV-2 during wastewater treatment and notably in its end-product, wastewater treatment sludge, which is classically valorized by land spreading for agricultural amendment. In the present work, we focused on SARS-CoV-2 stability in wastewater treatment sludge, either during storage (4 °C, room temperature) or thermophilic anaerobic digestion (50 °C). Anaerobic digestion is one of the possible processes for sludge valorization. Experiments were conducted in laboratory pilots; SARS-CoV-2 detection was based on RT-quantitative PCR or RT-digital droplet PCR. In addition to SARS-CoV-2, Bovine Coronavirus (BCoV) particles were used as surrogate virus. The RNA from SARS-CoV-2 particles, inactivated or not, was close to the detection limit but stable in wastewater treatment sludge, over the whole duration of the assays at 4 °C (55 days) and at ambient temperature (∼20 °C, 25 days). By contrast, the RNA levels of BCoV and inactivated SARS-CoV-2 particles decreased rapidly during the thermophilic anaerobic digestion of wastewater treatment sludge lasting for 5 days, with final levels that were close to the detection limit. Although the particles' infectivity was not assessed, these results suggest that thermophilic anaerobic digestion is a suitable process for sludge sanitation, consistent with previous knowledge on other coronaviruses.
Collapse
Affiliation(s)
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, Antony, 92160, France
| | - Camille Levesque-Ninio
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Alice Janvier
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Carlyne Lacroix
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Florence Le Brizoual
- LABOCEA, Fougères. BioAgroPolis, 10 Rue Claude Bourgelat CS 30616 - Javené, Fougères Cedex, 35306, France
| | - Jérôme Barbier
- ID Solutions, Development Department, Grabels, 34790, France
| | | | - Sam Azimi
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| | - Vincent Rocher
- SIAAP, Innovation Department, 82 Avenue Kléber, Colombes, 92700, France
| |
Collapse
|
21
|
Dargahi A, Vosoughi M, Normohammadi A, Sedigh A, Gholizadeh H, Sadeghi H, Karami C, Jeddi F. Investigating SARS-CoV-2 RNA in five municipal wastewater treatment plants, hospital wastewater and wastewater collection networks during the COVID-19 pandemic in Ardabil Province, Iran. APPLIED WATER SCIENCE 2022; 12:256. [PMID: 36277855 PMCID: PMC9579531 DOI: 10.1007/s13201-022-01773-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Since 2019, the outbreak of coronavirus with acute respiratory symptoms has caused an epidemic worldwide. Transmission of the disease through respiratory droplets was announced as the main mode of transmission in 2020. But in this study, we discussed the method of indirect transmission of the virus through sewage. In this study, effluents related to urban and hospital wastewater treatment plants in 5 regions of Ardabil Province (northwest of Iran) were investigated. In this research, 120 samples were kept in pre-test conditions (temperature -20 degrees Celsius). To identify the viral genome, special primer and chain reaction probe targeting ORF1ab and N (nucleoprotein gene) genes were used. Out of a total of 120 samples, a total of 3 samples were positive. Wastewater epidemiology (WBE) can be considered as a cost-effective method in the diagnosis and prediction of pathogenic agents. And be considered an effective method for decision-making in order to protect the health of citizens.
Collapse
Affiliation(s)
- Abdollah Dargahi
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Vosoughi
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Normohammadi
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Anoshirvan Sedigh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Helia Gholizadeh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hadi Sadeghi
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Chiman Karami
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
22
|
Reno U, Regaldo L, Ojeda G, Schmuck J, Romero N, Polla W, Kergaravat SV, Gagneten AM. Wastewater-Based Epidemiology: Detection of SARS-CoV-2 RNA in Different Stages of Domestic Wastewater Treatment in Santa Fe, Argentina. WATER, AIR, AND SOIL POLLUTION 2022; 233:372. [PMID: 36090741 PMCID: PMC9440651 DOI: 10.1007/s11270-022-05772-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic affected human life at every level. In this study, we analyzed genetic markers (N and ORF1ab, RNA genes) of SARS-CoV-2 in domestic wastewaters (DWW) in San Justo City (Santa Fe, Argentina), using reverse transcription-quantitative real-time PCR. Out of the 30 analyzed samples, 30% were positive for SARS-CoV-2 RNA. Of the total positive samples, 77% correspond to untreated DWW, 23% to pre-chlorination, and no SARS-CoV-2 RNA was registered at the post-chlorination sampling site. The viral loads of N and OFR1ab genes decreased significantly along the treatment process, and the increase in the number of viral copies of the N gene could anticipate, by 6 days, the number of clinical cases in the population. The concentration of chlorine recommended by the WHO (≥ 0.5 mg L-1 after at least 30 min of contact time at pH 8.0) successfully removed SARS-CoV-2 RNA from DWW. The efficiency of wastewater-based epidemiology (WBE) confirms the need to control and increase DWW treatment systems on a regional and global scale. This work could contribute to building a network for WBE to monitor SARS-CoV-2 in wastewaters during the pandemic waves and the epidemic remission phase. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11270-022-05772-w.
Collapse
Affiliation(s)
- Ulises Reno
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Luciana Regaldo
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Guillermo Ojeda
- Central Laboratory, Ministry of Health, 3000 Santa Fe, Argentina
| | - Josefina Schmuck
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Natalí Romero
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Wanda Polla
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| | - Silvina V. Kergaravat
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
- National Council for Scientific and Technological Research (CONICET), 3000 Santa Fe, Argentina
| | - Ana María Gagneten
- Ecotoxicology Laboratory, Department of Natural Sciences, Faculty of Humanities and Sciences, National University of Littoral (UNL), 3000 Santa Fe, Argentina
| |
Collapse
|
23
|
Hyllestad S, Myrmel M, Lomba JAB, Jordhøy F, Schipper SK, Amato E. Effectiveness of environmental surveillance of SARS-CoV-2 as an early warning system during the first year of the COVID-19 pandemic: a systematic review. JOURNAL OF WATER AND HEALTH 2022; 20:1223-1242. [PMID: 36044191 DOI: 10.2166/wh.2022.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since infected persons shed SARS-CoV-2 in faeces before symptoms appear, environmental surveillance (ES) may serve as an early warning system (EWS) for COVID-19 and new variants of concern. The ES of SARS-CoV-2 has been widely reviewed; however, its effectiveness as an EWS for SARS-CoV-2 in terms of timeliness, sensitivity and specificity has not been systematically assessed. We conducted a systematic review to identify and synthesise evidence on the ES of SARS-CoV-2 as an EWS to evaluate the added value for public health. Of 1,014 studies identified, we considered 29 for a qualitative synthesis of the timeliness of ES as an EWS for COVID-19, while six studies were assessed for the ability to detect new variants and two for both aims. The synthesis indicates ES may serve as an EWS of 1-2 weeks. ES could complement clinical surveillance for SARS-CoV-2; however, its cost-benefit value for public health decisions needs to be assessed based on the stage of the pandemic and resources available. Studies focusing methodological knowledge gaps as well as how to use and interpret ES signals for public health actions are needed, as is the sharing of knowledge within countries/areas with long experience of such surveillance.
Collapse
Affiliation(s)
- Susanne Hyllestad
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jose Antonio Baz Lomba
- Department of Environmental Chemistry and Technology, Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Fredrik Jordhøy
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Svanhild Kjørsvik Schipper
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Ettore Amato
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| |
Collapse
|
24
|
Nourbakhsh S, Fazil A, Li M, Mangat CS, Peterson SW, Daigle J, Langner S, Shurgold J, D'Aoust P, Delatolla R, Mercier E, Pang X, Lee BE, Stuart R, Wijayasri S, Champredon D. A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities. Epidemics 2022; 39:100560. [PMID: 35462206 PMCID: PMC8993419 DOI: 10.1016/j.epidem.2022.100560] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/07/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023] Open
Abstract
The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public health to track the epidemic by monitoring the concentration of the genetic fingerprints of SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance for COVID-19 is still in its infancy. In particular, the quantitative link between clinical cases observed through traditional surveillance and the signals from viral concentrations in wastewater is still developing and hampers interpretation of the data and actionable public-health decisions. We present a modelling framework that includes both SARS-CoV-2 transmission at the population level and the fate of SARS-CoV-2 RNA particles in the sewage system after faecal shedding by infected persons in the population. Using our mechanistic representation of the combined clinical/wastewater system, we perform exploratory simulations to quantify the effect of surveillance effectiveness, public-health interventions and vaccination on the discordance between clinical and wastewater signals. We also apply our model to surveillance data from three Canadian cities to provide wastewater-informed estimates for the actual prevalence, the effective reproduction number and incidence forecasts. We find that wastewater-based surveillance, paired with this model, can complement clinical surveillance by supporting the estimation of key epidemiological metrics and hence better triangulate the state of an epidemic using this alternative data source.
Collapse
Affiliation(s)
- Shokoofeh Nourbakhsh
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Aamir Fazil
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Michael Li
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Chand S Mangat
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shelley W Peterson
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jade Daigle
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stacie Langner
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jayson Shurgold
- Antimicrobial Resistance Division, Infectious Diseases Prevention and Control Branch, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Patrick D'Aoust
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Robert Delatolla
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Elizabeth Mercier
- University of Ottawa, Department of Civil Engineering, Ottawa, ON, Canada
| | - Xiaoli Pang
- Public Health Laboratory, Alberta Precision Laboratory, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Bonita E Lee
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Shinthuja Wijayasri
- Toronto Public Health, Toronto, ON, Canada; Canadian Field Epidemiology Program, Emergency Management, Public Health Agency of Canada, Canada
| | - David Champredon
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
| |
Collapse
|
25
|
Foladori P, Cutrupi F, Cadonna M, Manara S. Coronaviruses and SARS-CoV-2 in sewerage and their removal: Step by step in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2022; 207:112204. [PMID: 34656637 PMCID: PMC8516124 DOI: 10.1016/j.envres.2021.112204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
The fate of Coronaviruses (CoVs) and in particular SARS-CoV-2 in wastewater treatment plants (WWTPs) has not been completely understood yet, but an adequate knowledge on the removal performances in WWTPs could help to prevent waterborne transmission of the virus that is still under debate. CoVs and SARS-CoV-2 are discharged from faeces into the sewer network and reach WWTPs within a few hours. This review presents the fate of SARS-CoV-2 and other CoVs in the primary, secondary and tertiary treatments of WWTPs as well as in sludge treatments. The viral loads decrease progressively along with the treatments from 20 to 3.0E+06 GU/L (Genomic Units/L) in the influent wastewater to concentrations below 2.50E+05 GU/L after secondary biological treatments and finally to negative concentrations (below detection limit) in disinfected effluents. Reduction of CoVs is due to (i) natural decay under unfavourable conditions (solids, microorganisms, temperature) for relatively long hydraulic retention times and (ii) processes of sedimentation, filtration, predation, adsorption, disinfection. In primary and secondary settling, due to the hydrophobic properties, a partial accumulation of CoVs may occur in the separated sludge. In secondary treatment (i.e. activated sludge) CoVs and SARS-CoV-2 loads can be reduced only by about one logarithm (∼90%). To enhance this removal, tertiary treatment with ultrafiltration (Membrane Bioreactors) and chemical disinfection or UV light is needed. CoVs and SARS-CoV-2 in the sludge (1.2E+04-4.6E+08 GU/L) can be inactivated significantly in the thermophilic digestion (55 °C), while mesophilic temperatures (33-37 °C) are not efficient. Additional studies are required to investigate the infectivity of SARS-CoV-2 in WWTPs, especially in view of increasing interest in wastewater reclamation and reuse.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy.
| | - Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering (DICAM) - University of Trento, via Mesiano, n. 77, 38123, Trento, Italy
| | - Maria Cadonna
- ADEP - Agenzia per la Depurazione, Autonomous Province of Trento, via Gilli, n. 3, 38121, Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology (CIBIO) - University of Trento, via Sommarive, n. 9, 38123, Trento, Italy
| |
Collapse
|
26
|
Nason SL, Lin E, Godri Pollitt KJ, Peccia J. Changes in Sewage Sludge Chemical Signatures During a COVID-19 Community Lockdown, Part 2: Nontargeted Analysis of Sludge and Evaluation with COVID-19 Metrics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1193-1201. [PMID: 34729807 PMCID: PMC8652773 DOI: 10.1002/etc.5226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Sewage sludge and wastewater include urine and feces from an entire community, and it is highly likely that this mixture contains chemicals whose presence is dependent on levels of SARS-CoV-2 in the community. We analyzed primary sewage sludge samples collected in New Haven, Connecticut, USA, during the initial wave of the COVID-19 pandemic using liquid chromatography coupled with high-resolution mass spectrometry and performed an exploratory investigation of correlations between chemical features and COVID-19 metrics including concentrations of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) RNA in the sludge and local COVID-19 case numbers and hospital admissions. Inclusion of all chemical features in this analysis is key for discovering potential indicator compounds for COVID-19, whose structures may not be known. We found correlations with COVID-19 metrics for several identified chemicals as well as many unidentified features in the data, including three potential indicator molecules that are recommended for prioritization in future studies on COVID-19 in wastewater and sludge. These features have molecular weights of 108.0935, 318.1214, and 331.1374. While it is not possible to achieve prediction of COVID-19 epidemiological metrics from the one data set used in the present study, advances in this research area are important to share as scientists worldwide work on discovering efficient methods for tracking SARS-CoV-2 in wastewater and the environment. Environ Toxicol Chem 2022;41:1193-1201. © 2021 SETAC.
Collapse
Affiliation(s)
- Sara L Nason
- Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Elizabeth Lin
- Department of Environmental Health, Yale School of Public Health, New Haven, Connecticut, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jordan Peccia
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Anneser E, Riseberg E, Brooks YM, Corlin L, Stringer C. Modeling the relationship between SARS-CoV-2 RNA in wastewater or sludge and COVID-19 cases in three New England regions. JOURNAL OF WATER AND HEALTH 2022; 20:816-828. [PMID: 35635775 DOI: 10.2166/wh.2022.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND We aimed to compare statistical techniques estimating the association between SARS-CoV-2 RNA in untreated wastewater and sludge and reported coronavirus disease 2019 (COVID-19) cases. METHODS SARS-CoV-2 RNA concentrations (copies/mL) were measured from 24-h composite samples of wastewater in Massachusetts (MA) (daily; 8/19/2020-1/19/2021) and Maine (ME) (weekly; 9/1/2020-3/2/2021) and sludge samples in Connecticut (CT) (daily; 3/1/2020-6/1/2020). We fit linear, generalized additive with a cubic regression spline (GAM), Poisson, and negative binomial models to estimate the association between SARS-CoV-2 RNA concentration and reported COVID-19 cases. RESULTS The models that fit the data best were linear [adjusted R2=0.85 (MA), 0.16 (CT), 0.63 (ME); root-mean-square error (RMSE)=0.41 (MA), 1.14 (CT), 0.99 (ME)), GAM (adjusted R2=0.86 (MA), 0.16 (CT) 0.65 (ME); RMSE=0.39 (MA), 1.14 (CT), 0.97 (ME)], and Poisson [pseudo R2=0.84 (MA), 0.21 (CT), 0.52 (ME); RMSE=0.39 (MA), 0.67 (CT), 0.79 (ME)]. CONCLUSIONS Linear, GAM, and Poisson models outperformed negative binomial models when relating SARS-CoV-2 RNA in wastewater or sludge to reported COVID-19 cases.
Collapse
Affiliation(s)
- Elyssa Anneser
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA E-mail: ; These authors contributed equally to the work
| | - Emily Riseberg
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA E-mail: ; These authors contributed equally to the work
| | - Yolanda M Brooks
- Department of Sciences, St Joseph's College of Maine, Standish, ME, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA E-mail: ; Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, USA
| | - Christina Stringer
- New England Interstate Water Pollution Control Commission, Lowell, MA, USA
| |
Collapse
|
28
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
29
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
30
|
Anand U, Li X, Sunita K, Lokhandwala S, Gautam P, Suresh S, Sarma H, Vellingiri B, Dey A, Bontempi E, Jiang G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: A review about virus surveillance, infectivity, and inactivation. ENVIRONMENTAL RESEARCH 2022; 203:111839. [PMID: 34358502 PMCID: PMC8332740 DOI: 10.1016/j.envres.2021.111839] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 05/18/2023]
Abstract
This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Snehal Lokhandwala
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - Pratibha Gautam
- Department of Environmental Science & Technology, Shroff S.R. Rotary Institute of Chemical Technology, UPL University of Sustainable Technology, Ankleshwar, Gujarat, 393135, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Dhodar Ali, Titabar, 785630, Assam, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641-046, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
31
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
32
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
33
|
Yazdian H, Jamshidi S. Performance evaluation of wastewater treatment plants under the sewage variations imposed by COVID-19 spread prevention actions. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1613-1621. [PMID: 34540236 PMCID: PMC8436196 DOI: 10.1007/s40201-021-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/28/2021] [Indexed: 05/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) and its spread prevention actions (SPAs) have affected a large number of human activities globally in 2020-2021. Temporary lockdowns, stay-at-home policies, movement restrictions, and personal health care actions have relatively changed the daily life routine in urban areas which can eventually affect the characteristics of municipal wastewater (MW). This study evaluates the performance of wastewater treatment plants (WWTPs) during COVID-19 pandemic and related SPAs. This evaluation also considers MW variations in quality and quantity and compares the performance of WWTPs (2020) with earlier data (2015-2019). For this purpose, 23 WWTPs located in Isfahan province, Iran, were chosen as the study area and classified based on their locations, biological treatment unit, and capacities. Results indicate that the inflow of WWTPs increased 20 % on average during SPAs, while the concentrations of COD and BOD in MW decreased 23 and 16 %, respectively. Nevertheless, the performance of WWTPs remained rather constant. It is concluded that increasing the dilute domestic proportion of MW, particularly in smaller communities, as a matter of COVID-19 SPAs could not impose adverse impacts on wastewater treatment operations and pollution removal. Different types of secondary treatment units, such as activated sludge, stabilization pond, and aerated lagoon showed stable performances. However, disinfection was enhanced in WWTPs in order to reduce the probability of viral transmission via wastewater for reuse. This study also recommends that the characteristics of MW, and not treated wastewater, can be used as an indicator for coordinating SPAs in similar epidemics. This notification can be helpful for the management of WWTPs and risk control in urban areas.
Collapse
Affiliation(s)
- Hamed Yazdian
- Department of Civil Engineering, University of Isfahan, Isfahan, Iran
| | - Shervin Jamshidi
- Department of Civil Engineering, University of Isfahan, Isfahan, Iran
| |
Collapse
|
34
|
Sangkham S. A review on detection of SARS-CoV-2 RNA in wastewater in light of the current knowledge of treatment process for removal of viral fragments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113563. [PMID: 34488114 PMCID: PMC8373619 DOI: 10.1016/j.jenvman.2021.113563] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The entire globe is affected by the novel disease of coronavirus 2019 (COVID-19 or 2019-nCoV), which is formally recognised as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The World Health Organisation (WHO) announced this disease as a global pandemic. The presence of SARS-CoV-2 RNA in unprocessed wastewater has become a cause of worry due to these emerging pathogens in the process of wastewater treatment, as reported in the present study. This analysis intends to interpret the fate, environmental factors and route of transmission of SARS-CoV-2, along with its eradication by treating the wastewater for controlling and preventing its further spread. Different recovery estimations of the virus have been depicted by the detection of SARS-CoV-2 RNA in wastewater through the viral concentration techniques. Most frequently used viral concentration techniques include polyethylene glycol (PEG) precipitation, ultrafiltration, electronegative membrane, and ultracentrifugation, after which the detection and quantification of SARS-CoV-2 RNA are done in wastewater samples through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The wastewater treatment plant (WWTP) holds the key responsibility of eliminating pathogens prior to the discharge of wastewater into surface water bodies. The removal of SARS-CoV-2 RNA at the treatment stage is dependent on the operations of wastewater treatment systems during the outbreak of the virus; particularly, in the urban and extensively populated regions. Efficient primary, secondary and tertiary methods of wastewater treatment and disinfection can reduce or inactivate SARS-CoV-2 RNA before being drained out. Nonetheless, further studies regarding COVID-19-related disinfectants, environment conditions and viral concentrations in each treatment procedure, implications on the environment and regular monitoring of transmission need to be done urgently. Hence, monitoring the SARS-CoV-2 RNA in samples of wastewater under the procedure of wastewater-based epidemiology (WBE) supplement the real-time data pertaining to the investigation of the COVID-19 pandemic in the community, regional and national levels.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao, 56000, Thailand.
| |
Collapse
|
35
|
Dantas da Silva Júnior JR, Pedruzzi R, de Souza FM, Ferraz PS, Silva DG, Vieira CS, de Moraes MR, Nascimento EGS, Moreira DM. Feasibility analysis on the construction of a web solution for hydrometeorological forecasting considering water body management and indicators for the SARS-COV-2 pandemic. AI PERSPECTIVES 2021. [PMCID: PMC8485115 DOI: 10.1186/s42467-021-00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The current scenario of a global pandemic caused by the virus SARS-CoV-2 (COVID19), highlights the importance of water studies in sewage systems. In Brazil, about 35 million Brazilians still do not have treated water and more than 100 million do not have basic sanitation. These people, already exposed to a range of diseases, are among the most vulnerable to COVID-19. According to studies, places that have poor sanitation allow the proliferation of the coronavirus, been observed a greater number of infected people being found in these regions. This social problem is strongly related to the lack of effective management of water resources, since they are the sources for the population's water supply and the recipients of effluents stemming from sanitation services (household effluents, urban drainage and solid waste). In this context, studies are needed to develop technologies and methodologies to improve the management of water resources. The application of tools such as artificial intelligence and hydrometeorological models are emerging as a promising alternative to meet the world's needs in water resources planning, assessment of environmental impacts on a region's hydrology, risk prediction and mitigation. The main model of this type, WRF-Hydro Weather Research and Forecasting Model), represents the state of the art regarding water resources, as well as being the object of study of small and medium-sized river basins that tend to have less water availability. hydrometeorological data and analysis. Thus, this article aims to analyze the feasibility of a web tool for greater software usability and computational cost use, making it possible to use the WRF-Hydro model integrated with Artificial Intelligence tools for short and medium term, optimizing the time of simulations with reduced computational cost, so that it is able to monitor and generate a predictive analysis of water bodies in the MATOPIBA region (Maranhão-Tocantins-Piauí-Bahia), constituting an instrument for water resources management. The results obtained show that the WRF-Hydro model proves to be an efficient computational tool in hydrometeorological simulation, with great potential for operational, research and technological development purposes, being considered viable to implement the web tool for analysis and management of water resources and consequently, assist in monitoring and mitigating the number of cases related to the current COVID-19 pandemic. This research are in development and represents a preliminary results with future perspectives.
Collapse
|
36
|
Islam A, Kalam MA, Sayeed MA, Shano S, Rahman MK, Islam S, Ferdous J, Choudhury SD, Hassan MM. Escalating SARS-CoV-2 circulation in environment and tracking waste management in South Asia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61951-61968. [PMID: 34558044 PMCID: PMC8459815 DOI: 10.1007/s11356-021-16396-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 04/15/2023]
Abstract
The novel coronavirus disease of 2019 (COVID-19) pandemic has caused an exceptional drift of production, utilization, and disposal of personal protective equipment (PPE) and different microplastic objects for safety against the virus. Hence, we reviewed related literature on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detected from household, biomedical waste, and sewage to identify possible health risks and status of existing laws, regulations, and policies regarding waste disposal in South Asian (SA) countries. The SARS-CoV-2 RNA was detected in sewage and wastewater samples of Nepal, India, Pakistan, and Bangladesh. Besides, this review reiterates the enormous amounts of PPE and other single-use plastic wastes generated from healthcare facilities and households in the SA region with inappropriate disposal, landfilling, and/or incineration techniques wind-up polluting the environment. Consequently, the Delta variant (B.1.617.2) of SARS-CoV-2 has been detected in sewer treatment plant in India. Moreover, the overuse of non-biodegradable plastics during the pandemic is deteriorating plastic pollution condition and causes a substantial health risk to the terrestrial and aquatic ecosystems. We recommend making necessary adjustments, adopting measures and strategies, and enforcement of the existing biomedical waste management and sanitation-related policy in SA countries. We propose to adopt the knowledge gaps to improve COVID-19-associated waste management and legislation to prevent further environmental pollution. Besides, the citizens should follow proper disposal procedures of COVID-19 waste to control the environmental pollution.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, 10001-2320, USA.
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria, 3216, Australia.
| | | | - Md Abu Sayeed
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shahanaj Shano
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Md Kaisar Rahman
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance, New York, NY, 10001-2320, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| |
Collapse
|
37
|
Meng X, Wang X, Meng S, Wang Y, Liu H, Liang D, Fan W, Min H, Huang W, Chen A, Zhu H, Peng G, Liu J, Qiu Z, Wang T, Yang L, Wei Y, Huo P, Zhang D, Liu Y. A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T WATER 2021; 1:2174-2185. [PMID: 37566346 PMCID: PMC8457323 DOI: 10.1021/acsestwater.1c00146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/06/2023]
Abstract
A novel coronavirus (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has attracted global attention due to its highly infectious and pathogenic properties. Most of current studies focus on aerosols released from infected individuals, but the presence of SARS-CoV-2 in wastewater also should be examined. In this review, we used bibliometrics to statistically evaluate the importance of water-related issues in the context of COVID-19. The results show that the levels and transmission possibilities of SARS-CoV-2 in wastewater are the main concerns, followed by potential secondary pollution by the intensive use of disinfectants, sludge disposal, and the personal safety of workers. The presence of SARS-CoV-2 in wastewater requires more attention during the COVID-19 pandemic. Thus, the most effective techniques, i.e., wastewater-based epidemiology and quantitative microbial risk assessment, for virus surveillance in wastewater are systematically analyzed. We further explicitly review and analyze the successful operation of a sewage treatment plant in Huoshenshan Hospital in China as an example and reference for other sewage treatment systems to properly ensure discharge safety and tackle the COVID-19 pandemic. This review offers deeper insight into the prevention and control of SARS-CoV-2 and similar viruses in the post-COVID-19 era from a wastewater perspective.
Collapse
Affiliation(s)
- Xianghao Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Xuye Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Shujuan Meng
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Ying Wang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongju Liu
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Dawei Liang
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Wenhong Fan
- School of Space and Environment, Beihang
University, Beijing 100191, P. R. China
| | - Hongping Min
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Wenhai Huang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Anming Chen
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Haijun Zhu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Guanping Peng
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Jun Liu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Zhenhuan Qiu
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Tao Wang
- China Construction Third Bureau Green
Industry Investment Company, Ltd., Wuhan 430035, P. R.
China
| | - Linyan Yang
- School of Resources and Environmental Engineering,
East China University of Science and Technology, Shanghai
200237, P. R. China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and
Risk Assessment, Chinese Research Academy of Environmental
Science, Beijing 100012, P. R. China
| | - Peishu Huo
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Dayi Zhang
- School of Environment, Tsinghua
University, Beijing 100084, P. R. China
| | - Yu Liu
- School of Civil and Environmental Engineering,
Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798
| |
Collapse
|
38
|
Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52651-52674. [PMID: 34453253 PMCID: PMC8397333 DOI: 10.1007/s11356-021-16024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/14/2021] [Indexed: 06/02/2023]
Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2, which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover, viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater. Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic in different communities as well as possible infection dynamics to prevent future outbreaks.
Collapse
Affiliation(s)
- Rocío Girón-Navarro
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Km 14.5 carretera Toluca-Atlacomulco, C.P, 50200, Toluca, Estado de México, Mexico.
- Consejo Mexiquense de Ciencia y Tecnología - COMECYT, Diagonal Alfredo del Mazo 198 y 103, Guadalupe y Club Jardín, C.P. 50010, Toluca de Lerdo, Estado de México, México.
| |
Collapse
|
39
|
Kabdaşlı I, Tünay O. Concentration techniques tailored for the detection of SARS-CoV-2 genetic material in domestic wastewater and treatment plant sludge: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:106296. [PMID: 34485054 PMCID: PMC8405238 DOI: 10.1016/j.jece.2021.106296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 05/06/2023]
Abstract
Upon the outbreak of COVID-19 pandemic, detection and quantification of SARS-CoV-2 genetic material in domestic wastewater have led to an increase in the efforts to define and implement the wastewater-based epidemiology (WBE). This application provides valuable information to define local contamination monitoring, emergence of COVID-19 and its variants and many other aspects to cope with and control the pandemic. WBE surveillance, however, requires several consecutive steps such as sampling, pretreatment and concentration of samples, and detection and quantification of SARS-CoV-2 genetic material in wastewater. In this review paper, the literature regarding to all these applications reviewed considering their advantages, disadvantages as well as their applicability. A specific emphasis was placed on the last step, detection and quantification since it covers the most critical procedure for concentrating the virus before measurement. Evaluation of the existing data indicating ultrafiltration, polyethylene glycol (PEG) precipitation and electronegative membrane filtration (ENMF) were the most promising techniques for concentration. The ongoing studies are proposed to be continued within the context of standard methods. Future research needs are delineated and suggestions are made for details.
Collapse
Affiliation(s)
- Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, Sarıyer, İstanbul 34469, Republic of Turkey
| | - Olcay Tünay
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, Sarıyer, İstanbul 34469, Republic of Turkey
| |
Collapse
|
40
|
Evaluating the sensitivity of SARS-CoV-2 infection rates on college campuses to wastewater surveillance. Infect Dis Model 2021; 6:1144-1158. [PMID: 34568643 PMCID: PMC8452452 DOI: 10.1016/j.idm.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
As college campuses reopened in fall 2020, we saw a large-scale experiment unfold on the efficacy of various strategies to contain the SARS-CoV-2 virus. Traditional individual surveillance testing via nasal swabs and/or saliva is among the measures that colleges are pursuing to reduce the spread of the virus on campus. Additionally, some colleges are testing wastewater on their campuses for signs of infection, which can provide an early warning signal for campuses to locate COVID-positive individuals. However, a representation of wastewater surveillance has not yet been incorporated into epidemiological models for college campuses, nor has the efficacy of wastewater screening been evaluated relative to traditional individual surveillance testing, within the structure of these models. Here, we implement a new model component for wastewater surveillance within an established epidemiological model for college campuses. We use a hypothetical residential university to evaluate the efficacy of wastewater surveillance for maintaining low infection rates. We find that wastewater sampling with a 1-day lag to initiate individual screening tests, plus completing the subsequent tests within a 4-day period can keep overall infections within 5% of the infection rates seen with traditional individual surveillance testing. Our results also indicate that wastewater surveillance can effectively reduce the number of false positive cases by identifying subpopulations for surveillance testing where infectious individuals are more likely to be found. Through a Monte Carlo risk analysis, we find that surveillance testing that relies solely on wastewater sampling can be fragile against scenarios with high viral reproductive numbers and high rates of infection of campus community members by outside sources. These results point to the practical importance of additional surveillance measures to limit the spread of the virus on campus and the necessity of a proactive response to the initial signs of outbreak.
Collapse
|
41
|
Mackuľak T, Cverenkárová K, Vojs Staňová A, Fehér M, Tamáš M, Škulcová AB, Gál M, Naumowicz M, Špalková V, Bírošová L. Hospital Wastewater-Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination. Antibiotics (Basel) 2021; 10:1070. [PMID: 34572652 PMCID: PMC8471966 DOI: 10.3390/antibiotics10091070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.
Collapse
Affiliation(s)
- Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Klára Cverenkárová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrea Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - Miroslav Fehér
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Andrea Bútor Škulcová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.M.); (M.F.); (M.T.); (A.B.Š.)
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (M.G.); (V.Š.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Viera Špalková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (M.G.); (V.Š.)
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Praha, Czech Republic
| | - Lucia Bírošová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology STU, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| |
Collapse
|
42
|
Saba B, Hasan SW, Kjellerup BV, Christy AD. Capacity of existing wastewater treatment plants to treat SARS-CoV-2. A review. BIORESOURCE TECHNOLOGY REPORTS 2021; 15:100737. [PMID: 34179735 PMCID: PMC8216935 DOI: 10.1016/j.biteb.2021.100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/16/2022]
Abstract
Water is one of many viral transmission routes, and the presence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) in wastewater has brought attention to its treatment. SARS CoV-2 primarily transmits in the air but the persistence of the virus in the water possibly can serve as a secondary source even though current studies do not show this. In this paper, an evaluation of the current literature with regards to the treatment of SARS-CoV-2 in wastewater treatment plant (WWTP) effluents and biosolids is presented. Treatment efficiencies of WWTPs are compared for viral load reduction on the basis of publicly available data. The results of this evaluation indicate that existing WWTPs are effectively removing 1-6 log10 viable SARS-CoV-2. However, sludge and biosolids provide an umbrella of protection from treatment and inactivation to the virus. Hence, sludge treatment factors like high temperature, pH changes, and predatory microorganisms can effectively inactivate SARS-CoV-2.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
- Department of Environmental Sciences, PMAS Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD, USA
| | - Ann D Christy
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Buonerba A, Corpuz MVA, Ballesteros F, Choo KH, Hasan SW, Korshin GV, Belgiorno V, Barceló D, Naddeo V. Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125580. [PMID: 33735767 PMCID: PMC7932854 DOI: 10.1016/j.jhazmat.2021.125580] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 05/03/2023]
Abstract
Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.
Collapse
Affiliation(s)
- Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Damià Barceló
- Catalan Institute for Water Research (ICR-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy.
| |
Collapse
|
44
|
Ji B, Zhao Y, Wei T, Kang P. Water science under the global epidemic of COVID-19: Bibliometric tracking on COVID-19 publication and further research needs. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105357. [PMID: 33747765 PMCID: PMC7959687 DOI: 10.1016/j.jece.2021.105357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 05/05/2023]
Abstract
There are overwhelming increases of studies and over 200,000 publications related to all the aspects of COVID-19. Among them, 262 papers were published by authors from 67 countries regarding COVID-19 with water science and technology. Although the transmission routes of SARS-CoV-2 in water cycle have not been proved, the water and wastewater play an important role in the control of COVID-19 pandemic. Accordingly, it is scholarly relevant and interesting to look into publications of COVID-19 in water science and technology to track the investigations for moving forward in the years to come. It is believed that, through the literature survey, the question on what we know and what we do not know about COVID-19 so far can be clear, thus providing useful information for helping curbing the epidemic from water sector. This forms the basis of the current study. As such, a bibliometric analysis was conducted. It reveals that wastewater-based epidemiology (WBE) has recently gained global attention with the source and survival characteristics of coronavirus in the aquatic environment; the methodology of virus detection; the water hygiene; and the impact of the COVID-19 pandemic on the water ecosystem being the main topics in 2020. Various studies have shown that drinking water is safety whereas wastewater may be a potential risk during this pandemic. From the perspective of the water cycle, the scopes for further research needs are discussed and proposed, which could enhance the important role and value of water science in warning, monitoring, and predicting COVID-19 during epidemic outbreaks.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| |
Collapse
|
45
|
Hube S, Wu B. Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146545. [PMID: 33752021 DOI: 10.1016/j.scitotenv.2021.146545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Emerging pollutants (such as micropollutants, microplastics) and pathogens present in wastewater are of rising concern because their release can affect the natural environment and drinking water resources. In this decade, with increasing numbers of small-scale decentralized wastewater systems globally, the status of emerging pollutant and pathogen mitigation in the decentralized wastewater treatment processes has received more attention. This state-of-the-art review aims to discuss the mitigation efficiencies and mechanisms of micropollutants, microplastics, and pathogens in single-stage and hybrid decentralized wastewater treatment processes. The reviewed results revealed that hybrid wastewater treatment facilities could display better performance compared to stand-alone facilities. This is because the multiple treatment steps could offer various microenvironments, allowing incorporating several mitigation mechanisms (such as sorption, degradation, filtration, etc.) to remove complicated emerging pollutants and pathogens. The factors (such as system operation conditions, environmental conditions, wastewater matrix) influencing the removals of emerging pollutants from wastewater in these systems have been further identified. Nevertheless, it was found that very limited research work focused on synergised or conflicted effects of operation conditions on various emerging pollutants naturally present in the wastewater. Meanwhile, effective, reliable, and rapid analysis of the emerging pollutants and pathogens in the complicated wastewater matrix is still a major challenge.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
46
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. CHEMOSPHERE 2021; 274:129957. [PMID: 33979920 PMCID: PMC8121763 DOI: 10.1016/j.chemosphere.2021.129957] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
47
|
Zhu Y, Oishi W, Maruo C, Saito M, Chen R, Kitajima M, Sano D. Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145124. [PMID: 33548842 PMCID: PMC7825884 DOI: 10.1016/j.scitotenv.2021.145124] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 05/18/2023]
Abstract
An effective early warning tool is of great administrative and social significance to the containment and control of an epidemic. Facing the unprecedented global public health crisis caused by COVID-19, wastewater-based epidemiology (WBE) has been given high expectations as a promising surveillance complement to clinical testing which had been plagued by limited capacity and turnaround time. In particular, recent studies have highlighted the role WBE may play in being a part of the early warning system. In this study, we briefly discussed the basics of the concept, the benefits and critical points of such an application, the challenges faced by the scientific community, the progress made so far, and what awaits to be addressed by future studies to make the concept work. We identified that the shedding dynamics of infected individuals, especially in the form of a mathematical shedding model, and the back-calculation of the number of active shedders from observed viral load are the major bottlenecks of WBE application in the COVID-19 pandemic that deserve more attention, and the sampling strategy (location, timing, and interval) needs to be optimized to fit the purpose and scope of the WBE project.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Chikako Maruo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mayuko Saito
- Department of Virology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'a University of Architecture and Technology, Xi'an 710055, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
48
|
Majumder A, Gupta AK, Ghosal PS, Varma M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104812. [PMID: 33251108 PMCID: PMC7680650 DOI: 10.1016/j.jece.2020.104812] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 05/05/2023]
Abstract
The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|