1
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
2
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Recent Advances in Nanomaterial-Based Sensing for Food Safety Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The increasing public attention on unceasing food safety incidents prompts the requirements of analytical techniques with high sensitivity, reliability, and reproducibility to timely prevent food safety incidents occurring. Food analysis is critically important for the health of both animals and human beings. Due to their unique physical and chemical properties, nanomaterials provide more opportunities for food quality and safety control. To date, nanomaterials have been widely used in the construction of sensors and biosensors to achieve more accurate, fast, and selective food safety detection. Here, various nanomaterial-based sensors for food analysis are outlined, including optical and electrochemical sensors. The discussion mainly involves the basic sensing principles, current strategies, and novel designs. Additionally, given the trend towards portable devices, various smartphone sensor-based point-of-care (POC) devices for home care testing are discussed.
Collapse
|
4
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
5
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
6
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Guo JB, Cheng JS, Wei TL, Wu FM, Tang GH, He QH. An Immuno-Separated Assay for Ochratoxin Detection Coupled with a Nano-Affinity Cleaning-Up for LC-Confirmation. Foods 2022; 11:1155. [PMID: 35454740 PMCID: PMC9026555 DOI: 10.3390/foods11081155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
An immuno-separated assay for ochratoxin A detection coupled with a nano-affinity cleaning up for LC-confirmation was developed. Firstly, ochratoxin A was modified to quantum dot beads for immuno-fluorescent reporters. Secondly, Fe3O4 magnetic nanoparticles were conjugated with protein G for immuno-magnetic adsorbents. The immuno-separation of fluorescent reporters by magnetic adsorbents could be completed by ochratoxin A, so the fluorescent reporters released from the immune complex indicate a linear correlation with the concentration of ochratoxin A. Furthermore, the immuno-separated ochratoxin A can be eluted from magnetic adsorbent for LC-conformation. The optimized assay showed results as follows: the quantitative range of the immuno-separated assay was 0.03-100 ng mL-1 of ochratoxin A. The recoveries for spiked samples ranged from 78.2% to 91.4%, with the relative standard deviation (RSD) being 11.9%~15.3%. Statistical analysis indicated no significant difference between the HPLC-FLD results based on commercial affinity column and by nano-affinity cleaning up.
Collapse
Affiliation(s)
- Jie-Biao Guo
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Research in Northern Guangdong, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China
| | - Jin-Sheng Cheng
- School of Innovation and Entrepreneurship, Shaoguan University, No. 288 Daxue Road, Shaoguan 512005, China;
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| | - Fan-Min Wu
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Gui-Hong Tang
- Shaoguan Food and Drug Inspection Institute, No.13 Muxi Road, Shaoguan 512026, China; (F.-M.W.); (G.-H.T.)
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Sino-Germany Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China;
| |
Collapse
|
9
|
Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 2022; 414:2953-2969. [PMID: 35296913 DOI: 10.1007/s00216-022-03960-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.
Collapse
|
10
|
Zhang N, Li J, Liu B, Zhang D, Zhang C, Guo Y, Chu X, Wang W, Wang H, Yan X, Li Z. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification. Talanta 2022; 236:122866. [PMID: 34635248 DOI: 10.1016/j.talanta.2021.122866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Small molecular contaminants (such as mycotoxins, antibiotics, pesticide residues, etc.) in food and environment have given rise to many biological and ecological toxicities, which has attracted worldwide attention in recent years. Meanwhile, due to the advantages of aptamers such as high specificity and stability, easy synthesis and modification, as well as low cost and immunogenicity, various aptasensors for the detection of small molecular contaminants have been flourishing. An aptasensor as a whole is composed of an aptamer-based target recognizer and a signal transducer, which are fields of concentrated research. In the practical detection applications, in order to achieve the quantitative detection of small molecular contaminants at low abundance in real samples, a large number of signal enhancing strategies have been utilized in the development of aptasensors. Recent years is a vintage period for efficient signal enhancing strategies of aptasensors by the aid of nanomaterials and nucleic acid amplification that are applied in the elements for target recognition and signal conversion. Therefore, this paper meticulously reviews the signal enhancing strategies based on nanomaterials (including the (quasi-)zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanomaterials) and nucleic acid amplification (including enzyme-assisted nucleic acid amplification and enzyme-free nucleic acid amplification). Furthermore, the challenges and future trends of the abovementioned signal enhancing strategies for application are also discussed in order to inspire the practitioners in the research and development of aptasensors for small molecular contaminants.
Collapse
Affiliation(s)
- Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuheng Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinhong Chu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenting Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Lv L, Hu J, Chen Q, Xu M, Jing C, Wang X. A switchable electrochemical hairpin-aptasensor for ochratoxin A detection based on the double signal amplification effect of gold nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d1nj05729d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An OTA electrochemical sensor based on h-DNA and the double effect of gold nanospheres that can be applied for actual sample detection.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Juanjuan Hu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qingqing Chen
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunyang Jing
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
12
|
Nekrasov N, Jaric S, Kireev D, Emelianov AV, Orlov AV, Gadjanski I, Nikitin PI, Akinwande D, Bobrinetskiy I. Real-time detection of ochratoxin A in wine through insight of aptamer conformation in conjunction with graphene field-effect transistor. Biosens Bioelectron 2021; 200:113890. [PMID: 34953205 DOI: 10.1016/j.bios.2021.113890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022]
Abstract
Mycotoxins comprise a frequent type of toxins present in food and feed. The problem of mycotoxin contamination has been recently aggravated due to the increased complexity of the farm-to-fork chains, resulting in negative effects on human and animal health and, consequently, economics. The easy-to-use, on-site, on-demand, and rapid monitoring of mycotoxins in food/feed is highly desired. In this work, we report on an advanced mycotoxin biosensor based on an array of graphene field-effect transistors integrated on a single silicon chip. A specifically designed aptamer against ochratoxin A (OTA) was used as a recognition element, where it was covalently attached to graphene surface via pyrenebutanoic acid, succinimidyl ester (PBASE) chemistry. Namely, an electric field stimulation was used to promote more efficient π-π stacking of PBASE to graphene. The specific G-rich aptamer strand suggest its π-π stacking on graphene in free-standing regime and reconfiguration in G-quadruplex during binding an OTA molecule. This realistic behavior of the aptamer is sensitive to the ionic strength of the analyte solution, demonstrating a 10-fold increase in sensitivity at low ionic strengths. The graphene-aptamer sensors reported here demonstrate fast assay with the lowest detection limit of 1.4 pM for OTA within a response time as low as 10 s, which is more than 30 times faster compared to any other reported aptamer-based methods for mycotoxin detection. The sensors hold comparable performance when operated in real-time within a complex matrix of wine without additional time-consuming pre-treatment.
Collapse
Affiliation(s)
- Nikita Nekrasov
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia.
| | - Stefan Jaric
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia.
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei V Emelianov
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivana Gadjanski
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ivan Bobrinetskiy
- National Research University of Electronic Technology, Moscow, Zelenograd, 124498, Russia; BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
13
|
Hou Y, Jia B, Sheng P, Liao X, Shi L, Fang L, Zhou L, Kong W. Aptasensors for mycotoxins in foods: Recent advances and future trends. Compr Rev Food Sci Food Saf 2021; 21:2032-2073. [PMID: 34729895 DOI: 10.1111/1541-4337.12858] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/19/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Mycotoxin contamination in foods has posed serious threat to public health and raised worldwide concern. The development of simple, rapid, facile, and cost-effective methods for mycotoxin detection is of urgent need. Aptamer-based sensors, abbreviated as aptasensors, with excellent recognition capacity to a wide variety of mycotoxins have attracted ever-increasing interest of researchers because of their simple fabrication, rapid response, high sensitivity, low cost, and easy adaptability for in situ measurement. The past few decades have witnessed the rapid advances of aptasensors for mycotoxin detection in foods. Therefore, this review first summarizes the reported aptamer sequences specific for mycotoxins. Then, the recent 5-year advancements in various newly developed aptasensors, which, according to the signal output mode, are divided into electrochemical, optical and photoelectrochemical categories, for mycotoxin detection are comprehensively discussed. A special attention is taken on their strengths and limitations in real-world application. Finally, the current challenges and future perspectives for developing novel highly reliable aptasensors for mycotoxin detection are highlighted, which is expected to provide powerful references for their thorough research and extended applications. Owing to their unique advantages, aptasensors display a fascinating prospect in food field for safety inspection and risk assessment.
Collapse
Affiliation(s)
- Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China.,Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sheng
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Fang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
|
15
|
Rhouati A, Marty JL, Vasilescu A. Electrochemical biosensors combining aptamers and enzymatic activity: Challenges and analytical opportunities. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Guo JB, Wei TL, He QH, Cheng JS, Qiu XZ, Liu WP, Lan XQ, Chen LF, Guo M. A magnetic-separation-based homogeneous immunosensor for the detection of deoxynivalenol coupled with a nano-affinity cleaning up for LC-MS/MS confirmation. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1886254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jie-Biao Guo
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Tai-Long Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, People’s Republic of China
| | | | - Xiu-Zhen Qiu
- Shaoguan College, Shaoguan, People’s Republic of China
| | - Wang-Pei Liu
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Xian-Quan Lan
- Shaoguan Food and Drug Inspection Institute, Shaoguan, People’s Republic of China
| | - Lu-Fen Chen
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| | - Min Guo
- Comprehensive Technology Service Center of Shaoguan Customs, Shaoguan, People’s Republic of China
| |
Collapse
|
17
|
Curulli A. Electrochemical Biosensors in Food Safety: Challenges and Perspectives. Molecules 2021; 26:2940. [PMID: 34063344 PMCID: PMC8156954 DOI: 10.3390/molecules26102940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.
Collapse
Affiliation(s)
- Antonella Curulli
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN) CNR, Via del Castro Laurenziano 7, 00161 Roma, Italy
| |
Collapse
|
18
|
He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Zhang J, Wei Y, Qiu S, Xiong Y. A highly selective and simple fluorescent probe for salbutamol detection based on thioglycolic acid-capped CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119107. [PMID: 33166780 DOI: 10.1016/j.saa.2020.119107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a highly fluorescent water-soluble CdTe quantum dots (CdTe QDs) stabilized with thioglycolic acid (TGA) were synthesized for the quantitative and selective determination of salbutamol (SAL). When ten different of 2.09 × 10-6 mol L-1 alpha-2 adrenoceptor agonist were added to 4.38 × 10-4 mol L-1CdTe QDs solution, the fluorescence signal of the CdTe QDs quenched obviously by SAL with 57.32% and 0.815% - 7.00% for other nine kinds of veterinary medicine, such as tulobuterol, fenoterol, phenylethanamine A, simatero, penbutolol, clenbuterol, ractopamine, terbutaline and clorprenaline. The result shows that the CdTe QDs is highly sensitive sensor for SAL. The quenching mechanism has been investigated by absorption spectroscopy and KSV at different temperatures, and shew a static quenching process than dynamic quenching. Under the optimal conditions, respectively the straight line equation (F0/F = 0.1491 × 106 C + 1.3078) was found between the relative fluorescence intensity and the concentration of SAL was in the range of 6.27 × 10-8 to 2.09 × 10-7 mol L-1, and the limit of detection was 4.2 × 10-8 mol L-1. The proposed method has been applied to the determination of SAL in pig urine samples.
Collapse
Affiliation(s)
- Jinyan Zhang
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Laboratory of Quality Institute & Safety Risk Assessment for Livestock and Poultry Products (Nanchang, Ministry of Agriculture and Rural Affairs), Nanchang 330200, PR China
| | - Yihua Wei
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Laboratory of Quality Institute & Safety Risk Assessment for Livestock and Poultry Products (Nanchang, Ministry of Agriculture and Rural Affairs), Nanchang 330200, PR China
| | - Suyan Qiu
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Laboratory of Quality Institute & Safety Risk Assessment for Livestock and Poultry Products (Nanchang, Ministry of Agriculture and Rural Affairs), Nanchang 330200, PR China.
| | - Yan Xiong
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, PR China; Laboratory of Quality Institute & Safety Risk Assessment for Livestock and Poultry Products (Nanchang, Ministry of Agriculture and Rural Affairs), Nanchang 330200, PR China
| |
Collapse
|
20
|
A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 2020; 218:121159. [DOI: 10.1016/j.talanta.2020.121159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
|
21
|
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020; 8:5808-5825. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxins are one of the major threatening factors to human and animal health, as well as economic growth. There is therefore an urgent demand from various communities to develop novel analytical methods for the sensitive detection of toxins in complex matrixes. Among the as-developed toxin detection strategies, nanocomposite-based aptamer sensors (termed as aptasensors) show tremendous potential for combating toxin pollution; in particular electrochemical (EC) aptasensors have received significant attention because of their unique advantages, including simplicity, rapidness, high sensitivity, low cost and suitability for field-testing. This paper reviewed the recently published approaches for the development of nanocomposite-/nanomaterial-based EC aptasensors for the detection of toxins with high assaying performance, and their potential applications in environmental monitoring, clinical diagnostics, and food safety control by summarizing the detection of different types of toxins, including fungal mycotoxins, algal toxins and bacterial enterotoxins. The effects of nanocomposite properties on the detection performance of EC aptasensors have been fully addressed for supplying readers with a comprehensive understanding of their improvement. The current technical challenges and future prospects of this subject have also been discussed.
Collapse
Affiliation(s)
- Hongyan Shan
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | |
Collapse
|
22
|
Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4769-4787. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin that are mainly produced by Aspergillus and Penicillium and widely found in plant origin food. OTA-contaminated foods can cause serious harm to animals and humans, while high stability of OTA makes it difficult to remove in conventional food processing. Thus, sensitive and rapid detection of OTA undoubtedly plays an important role in OTA prevention and control. In this paper, the conventional and novel methods of OTA at home and abroad are summarized and compared. The latest research progress and related applications of novel OTA electrochemical biosensors are mainly described with a new perspective. We innovatively divided the recognition element into single and combined recognition elements. Specifically, signal amplification technologies applied to the OTA electrochemical aptasensor are proposed. Furthermore, summary of the current limitations and future challenges in OTA analysis is included, which provide reference for the further research and applications.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
23
|
Guo X, Wen F, Zheng N, Saive M, Fauconnier ML, Wang J. Aptamer-Based Biosensor for Detection of Mycotoxins. Front Chem 2020; 8:195. [PMID: 32373573 PMCID: PMC7186343 DOI: 10.3389/fchem.2020.00195] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
Mycotoxins are a large type of secondary metabolites produced by fungi that pose a great hazard to and cause toxic reactions in humans and animals. A majority of countries and regulators, such as the European Union, have established a series of requirements for their use, and they have also set maximum tolerance levels. The development of high sensitivity and a specific analytical platform for mycotoxins is much in demand to address new challenges for food safety worldwide. Due to the superiority of simple, rapid, and low-cost characteristics, aptamer-based biosensors have successfully been developed for the detection of various mycotoxins with high sensitivity and selectivity compared with traditional instrumental methods and immunological approaches. In this article, we discuss and analyze the development of aptasensors for mycotoxins determination in food and agricultural products over the last 11 years and cover the literatures from the first report in 2008 until the present time. In addition, challenges and future trends for the selection of aptamers toward various mycotoxins and aptasensors for multi-mycotoxins analyses are summarized. Given the promising development and potential application of aptasensors, future research studies made will witness the great practicality of using aptamer-based biosensors within the field of food safety.
Collapse
Affiliation(s)
- Xiaodong Guo
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Wen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Saive
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Chimie Générale et Organique, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
25
|
Li Z, Li X, Jian M, Geleta GS, Wang Z. Two-Dimensional Layered Nanomaterial-Based Electrochemical Biosensors for Detecting Microbial Toxins. Toxins (Basel) 2019; 12:E20. [PMID: 31906152 PMCID: PMC7020412 DOI: 10.3390/toxins12010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 01/04/2023] Open
Abstract
Toxin detection is an important issue in numerous fields, such as agriculture/food safety, environmental monitoring, and homeland security. During the past two decades, nanotechnology has been extensively used to develop various biosensors for achieving fast, sensitive, selective and on-site analysis of toxins. In particular, the two dimensional layered (2D) nanomaterials (such as graphene and transition metal dichalcogenides (TMDs)) and their nanocomposites have been employed as label and/or biosensing transducers to construct electrochemical biosensors for cost-effective detection of toxins with high sensitivity and specificity. This is because the 2D nanomaterials have good electrical conductivity and a large surface area with plenty of active groups for conjugating 2D nanomaterials with the antibodies and/or aptamers of the targeted toxins. Herein, we summarize recent developments in the application of 2D nanomaterial-based electrochemical biosensors for detecting toxins with a particular focus on microbial toxins including bacterial toxins, fungal toxins and algal toxins. The integration of 2D nanomaterials with some existing antibody/aptamer technologies into electrochemical biosensors has led to an unprecedented impact on improving the assaying performance of microbial toxins, and has shown great promise in public health and environmental protection.
Collapse
Affiliation(s)
- Zhuheng Li
- Jilin Provincial Institute of Education, Changchun 130022, China;
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| | - Girma Selale Geleta
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma 378, Ethiopia
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China; (X.L.); (M.J.)
| |
Collapse
|
26
|
Goud KY, Reddy KK, Satyanarayana M, Kummari S, Gobi KV. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochim Acta 2019; 187:29. [PMID: 31813061 DOI: 10.1007/s00604-019-4034-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
This review (with 163 refs) covers the recent developments of nanomaterial-based optical and electrochemical sensors for mycotoxins. The review starts with a brief discussion on occurrence, distribution, toxicity of mycotoxins and the legislations in monitoring their levels. It further outlines the research methods, various recognition matrices and the strategies involved in the development of highly sensitive and selective sensor systems. It also points out the salient features and importance of aptasensors in the detection of mycotoxins along with the different immobilization methods of aptamers. The review meticulously discusses the performance of different optical and electrochemical sensors fabricated using aptamers coupled with nanomaterials (CNT, graphene, metal nanoparticles and metal oxide nanoparticles). The review addresses the limitations in the current developments as well as the future challenges involved in the successful construction of aptasensors with the functionalized nanomaterials. Graphical abstract Recent developments in nanomaterial based aptasensors for mycotoxins are summarized. Specifically, the efficiency of the nanomaterial coupled aptasensors (such as CNT, graphene, metal nanoparticles and metal oxide nanoparticles) in optical and electrochemical methods are discussed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - M Satyanarayana
- Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
27
|
Lu L, Zhu Z, Hu X. Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
29
|
Kaur N, Bharti A, Batra S, Rana S, Rana S, Bhalla A, Prabhakar N. An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem J 2019. [DOI: 10.1016/j.microc.2018.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal Chim Acta 2018; 1051:1-23. [PMID: 30661605 DOI: 10.1016/j.aca.2018.10.058] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Global food and water safety issues have prompted the development of highly sensitive, specific, and fast analytical techniques for food and water analysis. The electrochemical aptamer-based detection platform (E-aptasensor) is one of the more promising detection techniques because of its unique combination of advantages that renders these sensors ideal for detection of a wide range of target analytes. Recent research results have further demonstrated that this technique has potential for real world analysis of food and water contaminants. This review summaries the recently developed E-aptasensors for detection of analytes related to food and water safety, including bacteria, mycotoxins, algal toxins, viruses, drugs, pesticides, and metal ions. Ten different electroanalytical techniques and one opto-electroanalytical technique commonly employed with these sensors are also described. In addition to highlighting several novel sensor designs, this review also describes the strengths, limitations, and current challenges this technology faces, and future development trend.
Collapse
Affiliation(s)
- Fengqin Li
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Zhigang Yu
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xianda Han
- Post-Doctoral Research Center of Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588-0304, United States.
| |
Collapse
|
31
|
Hoover GC, Ham J, Tang C, Carrera EI, Seferos DS. Synthesis and self-assembly of thiol-modified tellurophenes. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An asymmetric thiol-modified tellurophene was designed and synthesized, and the ability of the compound to form a monolayer on a gold electrode was confirmed. The surface-active tellurophene was synthesized using Cadiot–Chodkiewicz coupling followed by ring closing and thiol modification. The tellurophene compound forms a monolayer on gold surfaces from a concentrated solution within 24 h. The ability of the compound to conjugate to gold is confirmed by X-ray photoelectron spectroscopy (XPS). A surface blocking experiment was used to evaluate the extent of formation of a monolayer on a gold electrode.
Collapse
Affiliation(s)
- Gabrielle C. Hoover
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jennifer Ham
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Connie Tang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisa I. Carrera
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Dwight S. Seferos
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
32
|
Goud KY, Kailasa SK, Kumar V, Tsang YF, Lee SE, Gobi KV, Kim KH. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosens Bioelectron 2018; 121:205-222. [PMID: 30219721 DOI: 10.1016/j.bios.2018.08.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Nanomaterial-embedded sensors have been developed and applied to monitor various targets. Mycotoxins are fungal secondary metabolites that can exert carcinogenic, mutagenic, teratogenic, immunotoxic, and estrogenic effects on humans and animals. Consequently, the need for the proper regulation on foodstuff and feed materials has been recognized from times long past. This review provides an overview of recent developments in electrochemical sensors and biosensors employed for the detection of mycotoxins. Basic aspects of the toxicity of mycotoxins and the implications of their detection are comprehensively discussed. Furthermore, the development of different molecular recognition elements and nanomaterials required for the detection of mycotoxins (such as portable biosensing systems for point-of-care analysis) is described. The current capabilities, limitations, and future challenges in mycotoxin detection and analysis are also addressed.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemistry, National Institute of Technology Warangal, Telangana 506004, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, Gujarat, India.
| | - Vanish Kumar
- Department of Applied Sciences, U.I.E.T., Panjab University, Chandigarh 160014, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - S E Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
33
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Modh H, Scheper T, Walter JG. Aptamer-Modified Magnetic Beads in Biosensing. SENSORS 2018; 18:s18041041. [PMID: 29601533 PMCID: PMC5948603 DOI: 10.3390/s18041041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 01/27/2023]
Abstract
Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article.
Collapse
Affiliation(s)
- Harshvardhan Modh
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Hannover 30167, Germany.
| | | |
Collapse
|
35
|
Zejli H, Goud KY, Marty JL. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta 2018; 185:513-519. [PMID: 29759234 DOI: 10.1016/j.talanta.2018.03.089] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
This work demonstrates the development of electrochemical aptasensor using ochratoxin A (OTA) aptamers. Different aptamer coupling strategies were tested using polythiophene-carboxylic acid (PT3C) and polypyrrole-3-carboxylic acid (PP3C). The best sensitivity was recorded by polythiophene-3-carboxylic acid (PT3C) on screen-printed carbon electrode (SPCE) to attain the direct detection of OTA. The quantification of OTA was achieved by using electrochemical impedance spectroscopy. A good dynamic range 0.125-2.5 ng ml-1 was obtained for OTA with limit of detection (LOD) 0.125 ng ml-1 and Limit of quantification (LOQ) 0.3 ng ml-1 respectively. The good reproducibility was recorded with RSD% of 3.68. The obtained straight line equation was y = 0.4061 × + 1.03, r = 0.99. For real sample applications, the developed aptasensors were demonstrated in coffee samples. The aptasensor displayed good recovery values in the range 88-89%, thus exhibited the effectiveness of proposed aptasensor for such complex matrices.
Collapse
Affiliation(s)
- H Zejli
- Team chemistry applied physic, Faculty of Sciences, 8106 Agadir, Morocco
| | - K Yugender Goud
- Department of Chemistry, National Institute of Technology, Warangal, Telangana 506004, India
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan 66860, France
| |
Collapse
|
36
|
Electrochemical Biosensors for Detecting Microbial Toxins by Graphene-Based Nanocomposites. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0051-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Qian J, Ren C, Wang C, Chen W, Lu X, Li H, Liu Q, Hao N, Li H, Wang K. Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin A and aflatoxin B1. Anal Chim Acta 2018; 1019:119-127. [PMID: 29625677 DOI: 10.1016/j.aca.2018.02.063] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 01/07/2023]
Abstract
Development of an efficient method for the simultaneous detection of two highly concerning mycotoxins, ochratoxin A (OTA) and aflatoxin B1 (AFB1), is of great significance on food safety monitoring. Herein, a magnetically controlled fluorescence aptasensor for simultaneous determination of OTA and AFB1 has been successfully developed. The working principle of the aptasensor is based on the specific aptamer-mycotoxin recognition and further leads to the partial release of two distinguishable fluorescence labels from the magnetic carriers. Through the magnetic separation, the reporter probes in the supernatant solution can be collected and converted into a sensitive fluorescence signal with dual emission peaks. This aptasensor provided a wide detection range of 2 pg mL-1 - 5 ng mL-1 for OTA and 5 pg mL-1 - 10 ng mL-1 for AFB1. The new easy-to-wash and simple-to-use approach offers a simultaneous and high selective detection with high sensitivity (limits of detection of 0.67 and 1.70 pg mL-1 for OTA and AFB1, respectively). Remarkable accuracy (relative standard deviation < 5.6%) during the mycotoxins determination as well as excellent quantitative recoveries (95-108%) during the analysis of the spiked corn samples were also achieved. This simple aptasensing scheme provides a new avenue for high throughput screen of dual mycotoxins due to its simple manipulation, short assay times, high selectivity and sensitivity.
Collapse
Affiliation(s)
- Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
38
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
39
|
Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress. Toxins (Basel) 2017; 9:toxins9110349. [PMID: 29143760 PMCID: PMC5705964 DOI: 10.3390/toxins9110349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023] Open
Abstract
Recent years have witnessed an overwhelming integration of nanomaterials in the fabrication of biosensors. Nanomaterials have been incorporated with the objective to achieve better analytical figures of merit in terms of limit of detection, linear range, assays stability, low production cost, etc. Nanomaterials can act as immobilization support, signal amplifier, mediator and artificial enzyme label in the construction of aptasensors. We aim in this work to review the recent progress in mycotoxin analysis. This review emphasizes on the function of the different nanomaterials in aptasensors architecture. We subsequently relate their features to the analytical performance of the given aptasensor towards mycotoxins monitoring. In the same context, a critically analysis and level of success for each nano-aptasensing design will be discussed. Finally, current challenges in nano-aptasensing design for mycotoxin analysis will be highlighted.
Collapse
|
40
|
Simão EP, Cao-Milán R, Costa-Pedro G, De Melo CP, Cao R, Oliveira MDL, Andrade CAS. Simple and Fast Picomolar Detection of Ochratoxin A Using a Reusable Label Free Aptasensor Built with a Layer-by-layer Procedure. ELECTROANAL 2017. [DOI: 10.1002/elan.201700290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Estéfani P. Simão
- Departamento de Bioquímica; Universidade Federal de Pernambuco; Recife 50670-901 Brazil
| | | | - Graciela Costa-Pedro
- Programa de Pós-Graduação em Ciência de Materiais; Universidade Federal de Pernambuco; Recife 50670-901 Brazil
| | - Celso P. De Melo
- Departamento de Física; Universidade Federal de Pernambuco; Recife 50670-901 Brazil
| | - Roberto Cao
- Facultad de Química; Universidad de la Habana; Habana 10400 Cuba
| | - Maria D. L. Oliveira
- Departamento de Bioquímica; Universidade Federal de Pernambuco; Recife 50670-901 Brazil
| | - Cesar A. S. Andrade
- Departamento de Bioquímica; Universidade Federal de Pernambuco; Recife 50670-901 Brazil
| |
Collapse
|
41
|
Electrogenerated chemiluminescence biosensing method for highly sensitive detection of DNA hydroxymethylation: Combining glycosylation with Ru(phen) 3 2+ -assembled graphene oxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2223-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Wei M, Zhang W. A novel impedimetric aptasensor based on AuNPs–carboxylic porous carbon for the ultrasensitive detection of ochratoxin A. RSC Adv 2017. [DOI: 10.1039/c7ra04209d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel impedimetric aptasensor based on AuNPs–carboxylic porous carbon for the ultrasensitive detection of OTA.
Collapse
Affiliation(s)
- Min Wei
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- PR China
| | - Wenyang Zhang
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- PR China
| |
Collapse
|