1
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
2
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Gholami A, Mazaheri Y, Riazi M, Kurniawan D, Arjmand M, Madkhali O, Aljabri MD, Rahman MM, Chiang WH. Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. CHEM REC 2024; 24:e202200266. [PMID: 36995072 DOI: 10.1002/tcr.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/15/2023] [Indexed: 03/31/2023]
Abstract
The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Yousef Mazaheri
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, 71946-84334, Iran
| | - Mohsen Riazi
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, 71468-64685, Iran
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - O Madkhali
- Department of Physics, College of Science, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Mahmood D Aljabri
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry & Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, 106335, Taiwan
| |
Collapse
|
3
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
4
|
Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, Ghahramani Y, Lai CW, Chiang WH, Gholami A. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4685. [PMID: 37444999 DOI: 10.3390/ma16134685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Milad Dehdashtijahromi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Yasamin Ghahramani
- Associate Professor of Endodontics Department of Endodontics, School of Dentistry Oral and Dental Disease Research Center Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
5
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
6
|
Luo Y, Zhou M, Fan C, Song Y, Wang L, Xu T, Zhang X. Active Enrichment of Nanoparticles for Ultra-Trace Point-of-Care COVID-19 Detection. Anal Chem 2023; 95:5316-5322. [PMID: 36917097 PMCID: PMC10022751 DOI: 10.1021/acs.analchem.2c05381] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 03/15/2023]
Abstract
Active enrichment can detect nucleic acid at ultra-low concentrations without relatively time-consuming polymerase chain reaction (PCR), which is an important development direction for future rapid nucleic acid detection. Here, we reported an integrated active enrichment platform for direct hand-held detection of nucleic acid of COVID-19 in nanoliter samples without PCR. The platform consists of a capillary-assisted liquid-carrying system for sampling, integrated circuit system for ultrasound output, and cell-phone-based surface-enhanced Raman scattering (SERS) system. Considering the acoustic responsiveness and SERS-enhanced performance, gold nanorods were selected for biomedical applications. Functionalized gold nanorods can effectively capture and enrich biomarkers under ultrasonic aggregation. Such approaches can actively assemble gold nanorods in 1-2 s and achieved highly sensitive (6.15 × 10-13 M) SERS detection of COVID-19 biomarkers in nanoliter (10-7 L) samples within 5 min. We further demonstrated the high stability, repeatability, and selectivity of the platform, and validated its potential for the detection of throat swab samples. This simple, portable, and ultra-trace integrated active enrichment detection platform is a promising diagnostic tool for the direct and rapid detection of COVID-19.
Collapse
Affiliation(s)
- Yong Luo
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Mengyun Zhou
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| | - Chuan Fan
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology,
College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles,
Qingdao University, Qingdao 266071, P.R.
China
| | - Lirong Wang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Tailin Xu
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing
Technology, University of Science and Technology Beijing,
Beijing 100083, P.R. China
| | - Xueji Zhang
- School of Biomedical Engineering,
Shenzhen University Health Science Center, Shenzhen,
Guangdong 518060, P.R. China
| |
Collapse
|
7
|
Chandrasekar N, Balaji R, Perala RS, Nik Humaidi NZ, Shanmugam K, Liao YC, Hwang MT, Govindaraju S. A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers. BIOSENSORS 2023; 13:307. [PMID: 36979519 PMCID: PMC10046683 DOI: 10.3390/bios13030307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/24/2023]
Abstract
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community to identify a robust mechanism to target, bind and confirm the presence of a viral load before it spreads. Synthetic DNA constructs are a novel strategy to design complementary DNA sequences specific for antigens of interest as in this review's case SARS-CoV-2 antigens. Small molecules, complementary DNA and protein-DNA complexes have been known to target analytes in minimal concentrations. This phenomenon can be exploited by nanomaterials which have unique electronic properties such as ballistic conduction. Graphene is one such candidate for designing a device with a very low LOD in the order of zeptomolar and attomolar concentrations. Surface modification will be the significant aspect of the device which needs to have a high degree of sensitivity at the same time as providing a rapid signaling mechanism.
Collapse
Affiliation(s)
- Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Ramachandran Balaji
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramaswamy Sandeep Perala
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Nik Zulkarnine Nik Humaidi
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Kirubanandan Shanmugam
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Saravanan Govindaraju
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
- Department of Bio Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| |
Collapse
|
8
|
Marin A, Hren R, Milanič M. Pulsed Photothermal Radiometric Depth Profiling of Bruises by 532 nm and 1064 nm Lasers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2196. [PMID: 36850795 PMCID: PMC9965129 DOI: 10.3390/s23042196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Optical techniques are often inadequate in estimating bruise age since they are not sensitive to the depth of chromophores at the location of the bruise. To address this shortcoming, we used pulsed photothermal radiometry (PPTR) for depth profiling of bruises with two wavelengths, 532 nm (KTP laser) and 1064 nm (Nd:YAG laser). Six volunteers with eight bruises of exactly known and documented times of injury were enrolled in the study. A homogeneous part of the bruise was irradiated first with a 5 ms pulse at 532 nm and then with a 5 ms pulse at 1064 nm. The resulting transient surface temperature change was collected with a fast IR camera. The initial temperature-depth profiles were reconstructed by solving the ill-posed inverse problem using a custom reconstruction algorithm. The PPTR signals and reconstructed initial temperature profiles showed that the 532 nm wavelength probed the shallow skin layers revealing moderate changes during bruise development, while the 1064 nm wavelength provided additional information for severe bruises, in which swelling was present. Our two-wavelength approach has the potential for an improved estimation of the bruise age, especially if combined with modeling of bruise dynamics.
Collapse
Affiliation(s)
- Ana Marin
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Hren
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Mathematics, Physics, and Mechanics, 1000 Ljubljana, Slovenia
| | - Matija Milanič
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a new class of porous crystalline materials composed of metal and organic material. MOFs have fascinating properties, such as fine tunability, large specific surface area, and high porosity. MOFs are widely used for environmental protection, biosensors, regenerative medicine, medical engineering, cell therapy, catalysts, and drug delivery. Recent studies have reported various significant properties of MOFs for biomedical applications, such as drug detection and delivery. In contrast, MOFs have limitations such as low stability and low specificity in binding to the target. MOF-based membranes improve the stability and specificity of conventional MOFs by increasing the surface area and developing the possibility of MOF-ligand binding, while conjugated membranes dramatically increase the area of active functional groups. This special property makes them attractive for drug and biosensor fabrication, as both the spreading and solubility components of the porosity can be changed. Asymmetric membranes are a structure with high potential in the biomedical field, due to the different characteristics on its two surfaces, the possibility of adjusting various properties such as the size of porosity, transfer rate and selectivity, and surface properties such as hydrophilicity and hydrophobicity. MOF assisted asymmetric membranes can provide a platform with different properties and characteristics in the biomedical field. The latest version of MOF materials/membranes has several potential applications, especially in medical engineering, cell therapy, drug delivery, and regenerative medicine, which will be discussed in this review, along with their advantages, disadvantages, and challenges.
Collapse
|
10
|
Azam T, Bukhari SH, Liaqat U, Miran W. Emerging Methods in Biosensing of Immunoglobin G-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:676. [PMID: 36679468 PMCID: PMC9862834 DOI: 10.3390/s23020676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Human antibodies are produced due to the activation of immune system components upon exposure to an external agent or antigen. Human antibody G, or immunoglobin G (IgG), accounts for 75% of total serum antibody content. IgG controls several infections by eradicating disease-causing pathogens from the body through complementary interactions with toxins. Additionally, IgG is an important diagnostic tool for certain pathological conditions, such as autoimmune hepatitis, hepatitis B virus (HBV), chickenpox and MMR (measles, mumps, and rubella), and coronavirus-induced disease 19 (COVID-19). As an important biomarker, IgG has sparked interest in conducting research to produce robust, sensitive, selective, and economical biosensors for its detection. To date, researchers have used different strategies and explored various materials from macro- to nanoscale to be used in IgG biosensing. In this review, emerging biosensors for IgG detection have been reviewed along with their detection limits, especially electrochemical biosensors that, when coupled with nanomaterials, can help to achieve the characteristics of a reliable IgG biosensor. Furthermore, this review can assist scientists in developing strategies for future research not only for IgG biosensors but also for the development of other biosensing systems for diverse targets.
Collapse
Affiliation(s)
- Tehmina Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Syed Hassan Bukhari
- College of Computational Sciences and Natural Sciences, Minerva University, San Francisco, CA 94103, USA
| | - Usman Liaqat
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Waheed Miran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
11
|
Shoute LCT, Abdelrasoul GN, Ma Y, Duarte PA, Edwards C, Zhuo R, Zeng J, Feng Y, Charlton CL, Kanji JN, Babiuk S, Chen J. Label-free impedimetric immunosensor for point-of-care detection of COVID-19 antibodies. MICROSYSTEMS & NANOENGINEERING 2023; 9:3. [PMID: 36597510 PMCID: PMC9805445 DOI: 10.1038/s41378-022-00460-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 05/28/2023]
Abstract
The COVID-19 pandemic has posed enormous challenges for existing diagnostic tools to detect and monitor pathogens. Therefore, there is a need to develop point-of-care (POC) devices to perform fast, accurate, and accessible diagnostic methods to detect infections and monitor immune responses. Devices most amenable to miniaturization and suitable for POC applications are biosensors based on electrochemical detection. We have developed an impedimetric immunosensor based on an interdigitated microelectrode array (IMA) to detect and monitor SARS-CoV-2 antibodies in human serum. Conjugation chemistry was applied to functionalize and covalently immobilize the spike protein (S-protein) of SARS-CoV-2 on the surface of the IMA to serve as the recognition layer and specifically bind anti-spike antibodies. Antibodies bound to the S-proteins in the recognition layer result in an increase in capacitance and a consequent change in the impedance of the system. The impedimetric immunosensor is label-free and uses non-Faradaic impedance with low nonperturbing AC voltage for detection. The sensitivity of a capacitive immunosensor can be enhanced by simply tuning the ionic strength of the sample solution. The device exhibits an LOD of 0.4 BAU/ml, as determined from the standard curve using WHO IS for anti-SARS-CoV-2 immunoglobulins; this LOD is similar to the corresponding LODs reported for all validated and established commercial assays, which range from 0.41 to 4.81 BAU/ml. The proof-of-concept biosensor has been demonstrated to detect anti-spike antibodies in sera from patients infected with COVID-19 within 1 h. Photolithographically microfabricated interdigitated microelectrode array sensor chips & label-free impedimetric detection of COVID-19 antibody.
Collapse
Affiliation(s)
- Lian C. T. Shoute
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Gaser N. Abdelrasoul
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yuhao Ma
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Pedro A. Duarte
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Cole Edwards
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Ran Zhuo
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
| | - Jie Zeng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Yiwei Feng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Carmen L. Charlton
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, AB Canada
| | - Jamil N. Kanji
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7 Canada
- Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3 Canada
| |
Collapse
|
12
|
Ghahramani Y, Mokhberi M, Mousavi SM, Hashemi SA, Fallahi Nezhad F, Chiang WH, Gholami A, Lai CW. Synergistically Enhancing the Therapeutic Effect on Cancer, via Asymmetric Bioinspired Materials. Molecules 2022; 27:8543. [PMID: 36500636 PMCID: PMC9740908 DOI: 10.3390/molecules27238543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.
Collapse
Affiliation(s)
- Yasamin Ghahramani
- Department of Endodontics, Dental School, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Marzieh Mokhberi
- Dentist, Dental School, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615787, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
13
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
14
|
A gold nanoparticle-protein G electrochemical affinity biosensor for the detection of SARS-CoV-2 antibodies: a surface modification approach. Sci Rep 2022; 12:12850. [PMID: 35896795 PMCID: PMC9328775 DOI: 10.1038/s41598-022-17219-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
As COVID-19 waves continue to spread worldwide, demand for a portable, inexpensive and convenient biosensor to determine community immune/infection status is increasing. Here we describe an impedance-based affinity biosensor using Interdigitated Electrode (IDE) arrays to detect antibodies to SARS-CoV-2 in serum. We created the biosensor by functionalizing the IDEs' surface with abaculaovirus-expressed and purified Spike (S) protein to bind anti-SARS CoV-2antibodies. Gold nanoparticles (GNP) fused to protein G were used to probe for bound antibodies. An ELISA assay using horseradish peroxidase-protein G to probe for bound IgG confirmed that the purified S protein bound a commercial source of anti-SARS-CoV-2 antibodies specifically and bound anti-SARS-CoV-2 antibodies in COVID-19 positive serum. Then we demonstrated that our biosensor could detect anti-SARS-CoV-2 antibodies with 72% sensitivity in 2 h. Using GNP-protein G, the affinity biosensor had increased impedance changes with COVID-19positive serum and minimal or decreased impedance changes with negative serum. This demonstrated that our biosensor could discriminate between COVID-19 positive and negative sera, which were further improved using poly(vinyl alcohol)as a blocking agent.
Collapse
|
15
|
Abstract
Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global human health, economy, education, and other activities. The advancement of understanding of the chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus, including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection. This review comprehensively summarizes the state-of-the-art research progress of electrochemical biosensors for COVID-19 diagnosis. They include the detection of spike protein, nucleocapsid protein, whole virus, nucleic acid, and antibodies. The review also outlines the structure of the SARS-CoV-2 virus, different detection methods, and design strategies of electrochemical SARS-CoV-2 biosensors by highlighting the current challenges and future perspectives.
Collapse
|
16
|
Dahie HA, Mohamoud JH, Adam MH, Garba B, Dirie NI, Sh. Nur MA, Mohamed FY. COVID-19 Vaccine Coverage and Potential Drivers of Vaccine Uptake among Healthcare Workers in SOMALIA: A Cross-Sectional Study. Vaccines (Basel) 2022; 10:1116. [PMID: 35891280 PMCID: PMC9318518 DOI: 10.3390/vaccines10071116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 12/26/2022] Open
Abstract
Healthcare workers (HCWs) are one of the most vulnerable groups for contracting COVID-19 and dying as a result of it. Over 10,000 HCWs in Africa have been infected with COVID-19, according to the World Health Organization, making it a substantial occupational health threat for HCWs. To that end, Somalia’s Ministry of Health has ordered that all healthcare personnel obtain the COVID-19 vaccination to safeguard themselves and the community they serve. In this investigation, we aimed to assess the COVID-19 vaccination coverage and its associated factors among healthcare workers in Somalia. A cross-sectional study was employed to examine COVID-19 vaccination coverage among healthcare personnel in Somalia. The data were obtained via an online questionnaire supplied by Google forms between December 2021 and February 2022, where a total of 1281 healthcare workers from the various federal states of Somalia were recruited. A multinomial regression analysis was used to analyse the factors associated with COVID-19 vaccine uptake. Overall, 1281 HCWs participated (630 females, 651 males) with a mean age and standard deviation of 27.7 years ± 7.1. The overall vaccine coverage was 37.4%. Sex, age, the state of residency, education level, specialization, hospital COVID-19 policy, vaccine availability at the centre, COVID-19 treatment centre, and health facility level were the factors that influenced the COVID-19 vaccine uptake among health professionals in Somalia. Male healthcare employees were 2.2 times (odds ratio-OR = 2.2; confidence interval-CI: 1.70, 2.75, p < 0.001) more likely than female healthcare workers to be fully vaccinated. The survey discovered that the COVID-19 vaccine coverage among health professionals was quite low, with the major contributing factors being accessibility, security challenges and literary prowess. Additional efforts to enhance vaccination uptake are needed to improve the COVID-19 vaccination coverage.
Collapse
Affiliation(s)
- Hassan Abdullahi Dahie
- Nursing and Midwifery Departments, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| | - Jamal Hassan Mohamoud
- Department of Public Health, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| | - Mohamed Hussein Adam
- Department of Public Health, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| | - Bashiru Garba
- Institute for Medical Research, SIMAD University, Mogadishu 2526, Somalia;
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto 2346, Nigeria
| | - Najib Isse Dirie
- Department of Urology, Dr. Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| | - Maryan Abdullahi Sh. Nur
- Department of Obstetrics and Gynecology, Dr. Sumait Hospital, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| | - Fartun Yasin Mohamed
- Departments Microbiology and Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 2526, Somalia;
| |
Collapse
|
17
|
A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070269] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast and accurate point-of-care testing (POCT) of infectious diseases is crucial for diminishing the pandemic miseries. To fight the pandemic coronavirus disease 2019 (COVID-19), numerous interesting electrochemical point-of-care (POC) tests have been evolved to rapidly identify the causal organism SARS-CoV-2 virus, its nucleic acid and antigens, and antibodies of the patients. Many of those electrochemical biosensors are impressive in terms of miniaturization, mass production, ease of use, and speed of test, and they could be recommended for future applications in pandemic-like circumstances. On the other hand, self-diagnosis, sensitivity, specificity, surface chemistry, electrochemical components, device configuration, portability, small analyzers, and other features of the tests can yet be improved. Therefore, this report reviews the developmental trend of electrochemical POC tests (i.e., test platforms and features) reported for the rapid diagnosis of COVID-19 and correlates any significant advancements with relevant references. POCTs incorporating microfluidic/plastic chips, paper devices, nanomaterial-aided platforms, smartphone integration, self-diagnosis, and epidemiological reporting attributes are also surfed to help with future pandemic preparedness. This review especially screens the low-cost and easily affordable setups so that management of pandemic disease becomes faster and easier. Overall, the review is a wide-ranging package for finding appropriate strategies of electrochemical POCT targeting pandemic infectious disease detection.
Collapse
|
18
|
All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens Bioelectron 2022; 202:113974. [PMID: 35032920 PMCID: PMC8741628 DOI: 10.1016/j.bios.2022.113974] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.
Collapse
|
19
|
Mattioli IA, Castro KR, Macedo LJA, Sedenho GC, Oliveira MN, Todeschini I, Vitale PM, Ferreira SC, Manuli ER, Pereira GM, Sabino EC, Crespilho FN. Graphene-based hybrid electrical-electrochemical point-of-care device for serologic COVID-19 diagnosis. Biosens Bioelectron 2022; 199:113866. [PMID: 34915214 PMCID: PMC8648586 DOI: 10.1016/j.bios.2021.113866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
The outbreak of COVID-19 pandemics highlighted the need of sensitive, selective, and easy-to-handle biosensing devices. In the contemporary scenario, point-of-care devices for mass testing and infection mapping within a population have proven themselves as of primordial importance. Here, we introduce a graphene-based Electrical-Electrochemical Vertical Device (EEVD) point-of-care biosensor, strategically engineered for serologic COVID-19 diagnosis. EEVD uses serologic IgG quantifications on SARS-CoV-2 Receptor Binding Domain (RBD) bioconjugate immobilized onto device surface. EEVD combines graphene basal plane with high charge carrier mobility, high conductivity, low intrinsic resistance, and interfacial sensitivity to capacitance alterations. EEVD application was carried out in real human serum samples. Since EEVD is a miniaturized device, it requires just 40 μL of sample for a point-of-care COVID-19 infections detection. When compared to serologic assays such ELISA and other immunochromatographic methods, EEVD presents some advantages such as time of analyses (15 min), sample preparation, and a LOD of 1.0 pg mL-1. We glimpse that EEVD meets the principles of robustness and accuracy, desirable analytic parameters for assays destined to pandemics control strategies.
Collapse
Affiliation(s)
- Isabela A Mattioli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Karla R Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Graziela C Sedenho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Mona N Oliveira
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Iris Todeschini
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Phelipe M Vitale
- Biolinker Synthetic Biology EIRELI, São Paulo, 05508-000, Brazil
| | - Suzete Cleusa Ferreira
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Clinical Hospital HCFMUSP, Faculty of Medicine, University of São Paulo, São Paulo, 01246903, Brazil; Division of Research and Transfusion Medicine, São Paulo Hemocentre Pro-Blood Foundation, São Paulo, 05403000, Brazil
| | - Erika R Manuli
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Geovana M Pereira
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil
| | - Ester C Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, 05403-000, Brazil; LIM-46 HC-FMUSP - Laboratory of Medical Investigation, Clinical Hospital, Faculty of Medicine, University of São Paulo, 01246903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
20
|
Kumar N, Shetti NP, Jagannath S, Aminabhavi TM. Electrochemical sensors for the detection of SARS-CoV-2 virus. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 430:132966. [PMID: 34690533 PMCID: PMC8525496 DOI: 10.1016/j.cej.2021.132966] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Coronavirus (COVID-19), a deadly pandemic has spread worldwide and created many global health issues. Though methods of its detection are being continuously developed for the early detection and monitoring of COVID-19, still there is need for more novel methods. The presently used methods include rapid antigen tests, serological surveys, reverse transcription-polymerase chain reaction (RT-PCR), artificial intelligence-based techniques, and assays based on sensors/biosensors. Of all these, RT-PCR test has high sensitivity and specificity though it requires more time for testing and need for skilled technicians. Recently, electrochemical sensors have been developed for rapid monitoring and detection of SARS-CoV-2 from the patient's biological fluid samples. This review covers the recently developed electrochemical sensors that are focused on the detection of viral nucleic acid, immunoglobulin, antigen, and the entire viral particles. In addition, we also compare and assess their detection limits, sensitivities and specificities for the identification and monitoring of COVID-19. Furthermore, this review will address the best practices for the development of electrochemical sensors such as electrode fouling, limit of detection/limit of quantification determination and verification.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| |
Collapse
|
21
|
A surface protein-imprinted biosensor based on boronate affinity for the detection of anti-human immunoglobulin G. Mikrochim Acta 2022; 189:106. [PMID: 35166940 PMCID: PMC8853174 DOI: 10.1007/s00604-022-05204-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
Abstract
A surface protein-imprinted biosensor was constructed on a screen-printed carbon electrode (SPCE) for the detection of anti-human immunoglobulin G (anti-IgG). The SPCE was successively decorated with aminated graphene (NH2-G) and gold nanobipyramids (AuNBs) for signal amplification. Then 4-mercaptophenylboric acid (4-MPBA) was covalently anchored to the surface of AuNBs for capturing anti-IgG template through boronate affinity binding. The decorated SPCE was then deposited with an imprinting layer generated by the electropolymerization of pyrrole. After removal of the anti-IgG template by the dissociation of the boronate ester in an acidic solution, three-dimensional (3D) cavities complementary to the anti-IgG template were formed in the imprinting layer of polypyrrole (PPy). The molecularly imprinted polymers (MIP)-based biosensor was used for the detection of anti-IgG, exhibiting a wide linear range from 0.05 to 100 ng mL−1 and a low limit of detection of 0.017 ng mL−1 (S/N = 3). In addition, the MIP-based anti-IgG biosensor also shows high selectivity, reproducibility and stability. Finally, the practicability of the fabricated anti-IgG biosensor was demonstrated by accurate determination of anti-IgG in serum sample.
Collapse
|
22
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Arjmand M, Lankarani KB, Shokripour M, Ramakrishna S. Differentiable detection of ethanol/methanol in biological fluids using prompt graphene-based electrochemical nanosensor coupled with catalytic complex of nickel oxide/8-hydroxyquinoline. Anal Chim Acta 2022; 1194:339407. [PMID: 35063153 DOI: 10.1016/j.aca.2021.339407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sonia Bahrani
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan
| | - Navid Omidifar
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Education Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoureh Shokripour
- Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore.
| |
Collapse
|
23
|
Lorenzen AL, dos Santos AM, dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022; 404:139757. [PMID: 34955549 PMCID: PMC8684030 DOI: 10.1016/j.electacta.2021.139757] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors are useful techniques for fast, inexpensive, sensitive, and easy detection of innumerous specimen. In face of COVID-19 pandemic, it became evident the necessity of a rapid and accurate diagnostic test, so the impedimetric immunosensor approach can be a good alternative to replace the conventional tests due to the specific antibody-antigen binding interaction and the fast response in comparison to traditional methods. In this work, a modified electrode with electrosynthesized PEDOT and gold nanoparticles followed by the immobilization of truncated nucleoprotein (N aa160-406aa) was used for a fast and reliable detection of antibodies against COVID-19 in human serum sample. The method consists in analyzing the charge-transfer resistance (RCT) variation before and after the modified electrode comes into contact with the positive and negative serum sample for COVID-19, using [Fe(CN)6]3-/4- as a probe. The results show a linear and selective response for serum samples diluted in a range of 2.5 × 103 to 20 × 103. Also, the electrode material was fully characterized by Raman spectroscopy, transmission electron microscopy and scanning electron microscopy coupled with EDS, indicating that the gold nanoparticles were well distributed around the polymer matrix and the presence of the biological sample was confirmed by EDS analysis. EIS measurements allowed to differentiate the negative and positive samples by the difference in the RCT magnitude, proving that the material developed here has potential properties to be applied in impedimetric immunosensors for the detection of SARS-CoV-2 antibodies in about 30 min.
Collapse
Affiliation(s)
- Ana Luiza Lorenzen
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Ariane Moraes dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luâni Poll dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luciano da Silva Pinto
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Franciele Wolfart
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil,Corresponding author
| |
Collapse
|
24
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
25
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Behbahan NGG, Arjmand M, Ramakrishna S, Lankarani KB, Moghadami M, Firoozsani M. Graphene-Based Femtogram-Level Sensitive Molecularly Imprinted Polymer of SARS-CoV-2. ADVANCED MATERIALS INTERFACES 2021; 8:2101466. [PMID: 34900518 PMCID: PMC8646612 DOI: 10.1002/admi.202101466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Rapid distribution of viral-induced diseases and weaknesses of common diagnostic platforms for accurate and sensitive identification of infected people raises an urgent demand for the design and fabrication of biosensors capable of early detection of viral biomarkers with high specificity. Accordingly, molecularly imprinted polymers (MIPs) as artificial antibodies prove to be an ideal preliminary detection platform for specific identification of target templates, with superior sensitivity and detection limit (DL). MIPs detect the target template with the "lock and key" mechanism, the same as natural monoclonal antibodies, and present ideal stability at ambient temperature, which improves their practicality for real applications. Herein, a 2D MIP platform consisting of decorated graphene oxide with the interconnected complex of polypyrrole-boronic acid is developed that can detect the trace of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen in aquatic biological samples with ultrahigh sensitivity/specificity with DL of 0.326 and 11.32 fg mL-1 using voltammetric and amperometric assays, respectively. Additionally, the developed MIP shows remarkable stability, selectivity, and accuracy toward detecting the target template, which paves the way for developing ultraspecific and prompt screening diagnostic configurations capable of detecting the antigen in 1 min or 20 s using voltammetric or amperometric techniques.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
| | - Sonia Bahrani
- Health Policy Research Center Health Institute Shiraz University of Medical Sciences Shiraz 71348‐45794 Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei City 310635 Taiwan
| | - Navid Omidifar
- Clinical Education Research Center Shiraz University of Medical Sciences Shiraz 71348‐14336 Iran
- Department of Pathology School of Medicine Shiraz University of Medical Sciences Shiraz 71348‐14336 Iran
| | - Nader Ghaleh Golab Behbahan
- Department of Poultry Disease Razi Vaccine and Serum Research Institute Shiraz Branch Agricultural Research, Education and Extension Organization (AREEO) Shiraz 7188843568 Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
| | - Seeram Ramakrishna
- Department of Mechanical Engineering Center for Nanofibers and Nanotechnology National University of Singapore Singapore 117576 Singapore
| | - Kamran Bagheri Lankarani
- Health Policy Research Center Health Institute Shiraz University of Medical Sciences Shiraz 71348‐45794 Iran
| | - Mohsen Moghadami
- Health Policy Research Center Health Institute Shiraz University of Medical Sciences Shiraz 71348‐45794 Iran
| | - Mohammad Firoozsani
- Member of Board of Trustees Zand Institute of Higher Education Shiraz 7188773489 Iran
| |
Collapse
|
26
|
Antibody mounting capability of 1D/2D carbonaceous nanomaterials toward rapid-specific detection of SARS-CoV-2. Talanta 2021; 239:123113. [PMID: 34863060 PMCID: PMC8628627 DOI: 10.1016/j.talanta.2021.123113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 11/26/2021] [Indexed: 02/08/2023]
Abstract
Carbonaceous immunosensors are ideal nanoplatforms for developing rapid, precise, and ultra-specific diagnostic kits capable of early detection of viral infectious illnesses such as COVID-19. However, developing a proper carbonic immunosensor requires stepwise protocols to find optimum operating conditions to minimize drawbacks. Herein, for the first time and through a stepwise protocol, activation, and monoclonal IgG antibody mounting capability of multi-walled carbon nanotubes (MWCNTs) at two diverse outer diameters (ODs), viz., 20–30 nm and 50–80 nm, and graphene deriv atives (graphene oxide (GO) and reduced graphene oxide (rGO)) were examined and compared with each other toward finding the prime carbonaceous nanomaterial(s) for maximized antibody loading efficiency along with an ideal detection limit (DL) and sensitivity. Next, the effect of common amplifying agents, i.e., Au nanostars (Au NSs) and Ag nanowires (Ag NWs), on the total performance of the best carbonaceous structure was carefully assessed, and the responsible detection mechanism is investigated in detail. Next, the developed carbonaceous immunosensors were assessed via voltammetric and impedance assays, and their performances toward specific detection of SARS-CoV-2 antigen through immunoreaction were examined in detail. The study's outcome showed the superior performance of conjugated rGO-based immunosensor with Au NSs toward specific and quick (1 min) detection of SARS-CoV-2 antigen in biological fluids compared with other 1D/2D carbonaceous nanomaterials.
Collapse
|
27
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Arjmand M, Behbahan NGG, Ramakrishna S, Lankarani KB, Moghadami M, Firoozsani M. Ultrasensitive Biomolecule‐Less Nanosensor Based on β‐Cyclodextrin/Quinoline Decorated Graphene Oxide toward Prompt and Differentiable Detection of Corona and Influenza Viruses. ADVANCED MATERIALS TECHNOLOGIES 2021. [DOI: 10.1002/admt.202100341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
| | - Sonia Bahrani
- Health Policy Research Center Health Institute Shiraz University of Medica Sciences Shiraz 71348‐45794 Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Navid Omidifar
- Clinical Education Research Center Shiraz University of Medical Sciences Shiraz 71348‐14336 Iran
- Department of Pathology Medical School Shiraz University of Medical Sciences Shiraz 71348‐14336 Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory School of Engineering University of British Columbia Kelowna BC V1V 1V7 Canada
| | - Nader Ghaleh Golab Behbahan
- Razi Vaccine and Serum Research Institute Agricultural Research Education and Extension Organization (AREEO) Shiraz Branch Shiraz 71888‐43568 Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering Center for Nanofibers and Nanotechnology National University of Singapore Singapore 117575 Singapore
| | - Kamran Bagheri Lankarani
- Health Policy Research Center Health Institute Shiraz University of Medica Sciences Shiraz 71348‐45794 Iran
| | - Mohsen Moghadami
- Health Policy Research Center Health Institute Shiraz University of Medica Sciences Shiraz 71348‐45794 Iran
| | - Mohammad Firoozsani
- Member of the Board of Trustees Zand Institute of Higher Education Shiraz 71887‐73489 Iran
| |
Collapse
|