1
|
Coraggio G, Cera M, Cirelli M, Valentini PP. Review and comparison of linear algorithms to quantify muscle fatigue based on sEMG signals. ERGONOMICS 2024; 67:1729-1747. [PMID: 38733111 DOI: 10.1080/00140139.2024.2349962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/27/2024] [Indexed: 05/13/2024]
Abstract
Surface electromyography techniques are widely used in field of motion analysis and ergonomics combining precise muscular activation assessment with low-invasiveness and wearability. The aim of this investigation is to identify the myoelectrical manifestations of fatigue and to compare the effectiveness of sEMG-based quantitative indices for fatigue assessment. The investigated indexes are the ARV and RMS signal amplitudes, the mean frequency, the median frequency, the Dimitrov index, the instantaneous mean frequency and Wavelet distribution-based WIRE51 index. Two different protocols were developed, and the activity of the lateral deltoid and middle trapezius muscles was recorded. The WIRE51 index is found to have the highest sensitivity in the detection of the difference between the repetitions of each exercise for both protocols. Due to the lack of a unified standard for the performance comparison of fatigue indices, a correlation analysis was carried out between the result provided by the indices and the subjective fatigue perception employing the RPE scale.
Collapse
Affiliation(s)
- Giorgia Coraggio
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Mattia Cera
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Marco Cirelli
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Pier Paolo Valentini
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Lin C, Zhang X. Fusion inception and transformer network for continuous estimation of finger kinematics from surface electromyography. Front Neurorobot 2024; 18:1305605. [PMID: 38765870 PMCID: PMC11100415 DOI: 10.3389/fnbot.2024.1305605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
Decoding surface electromyography (sEMG) to recognize human movement intentions enables us to achieve stable, natural and consistent control in the field of human computer interaction (HCI). In this paper, we present a novel deep learning (DL) model, named fusion inception and transformer network (FIT), which effectively models both local and global information on sequence data by fully leveraging the capabilities of Inception and Transformer networks. In the publicly available Ninapro dataset, we selected surface EMG signals from six typical hand grasping maneuvers in 10 subjects for predicting the values of the 10 most important joint angles in the hand. Our model's performance, assessed through Pearson's correlation coefficient (PCC), root mean square error (RMSE), and R-squared (R2) metrics, was compared with temporal convolutional network (TCN), long short-term memory network (LSTM), and bidirectional encoder representation from transformers model (BERT). Additionally, we also calculate the training time and the inference time of the models. The results show that FIT is the most performant, with excellent estimation accuracy and low computational cost. Our model contributes to the development of HCI technology and has significant practical value.
Collapse
Affiliation(s)
- Chuang Lin
- School of Information Science and Technology, Dalian Maritime University, Dalian, China
| | | |
Collapse
|
3
|
Yu J, Zhang L, Du Y, Wang X, Yan J, Chen J, Xie P. Exploration and Application of a Muscle Fatigue Assessment Model Based on NMF for Multi-Muscle Synergistic Movements. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1725-1734. [PMID: 38656861 DOI: 10.1109/tnsre.2024.3393132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Muscle fatigue significantly impacts coordination, stability, and speed in daily activities. Accurate assessment of muscle fatigue is vital for effective exercise programs, injury prevention, and sports performance enhancement. Current methods mostly focus on individual muscles and strength evaluation, overlooking overall fatigue in multi-muscle movements. This study introduces a comprehensive muscle fatigue model using non-negative matrix factorization (NMF) weighting. NMF is employed to analyze the duration multi-muscle weight coefficient matrix (DMWCM) during synergistic movements, and four electromyographic (EMG) signal features in time, frequency, and complexity domains are selected. Particle Swarm Optimization (PSO) optimizes feature weights. The DMWCM and weighted features combine to calculate the Comprehensive Muscle Fatigue Index (CMFI) for multi-muscle synergistic movements. Experimental results show that CMFI correlates with perceived exertion (RPE) and Speed Dynamic Score (SDS), confirming its accuracy and real-time tracking in assessing multi-muscle synergistic movements. This model offers a more comprehensive approach to muscle fatigue assessment, with potential benefits for exercise training, injury prevention, and sports medicine.
Collapse
|
4
|
Tyagi O, Mehta RK. Sex-specific Neural Strategies During Fatiguing Work in Older Adults. HUMAN FACTORS 2024; 66:1490-1503. [PMID: 36898850 DOI: 10.1177/00187208231159526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Historical biases in ergonomics-related studies have been attributed to lack of participant diversity and sensitivity of measurements to capture variability between diverse groups. We posit that a neuroergonomics approach, that is, study of brain-behavior relationships during fatiguing work, allows for unique insights on sex differences in fatigue mechanisms that are not available via traditional "neck down" measurement approaches. OBJECTIVE This study examined the supraspinal mechanisms of exercise performance under fatigue and determined if there were any sex differences in these mechanisms. METHODS Fifty-nine older adults performed submaximal handgrip contractions until voluntary fatigue. Traditional ergonomics measures, namely, force variability, electromyography (EMG) of arm muscles, and strength and endurance times, and prefrontal and motor cortex hemodynamic responses were recorded. RESULTS There were no significant differences observed between older males and females in fatigability outcomes (i.e., endurance times, strength loss, and EMG activity) and brain activation. Effective connectivity from prefrontal to motor areas was significant for both sexes throughout the task, but during fatigue, males had higher interregional connectivity than females. DISCUSSION While traditional metrics of fatigue were comparable between the sexes, we observed distinct sex-specific neuromotor strategies (i.e., information flow between frontal-motor regions) that were adopted by older adults to maintain motor performance. APPLICATION The findings from this study offer insights into the capabilities and adaptation strategies of older men and women under fatiguing conditions. This knowledge can facilitate in the development of effective and targeted ergonomic strategies that accommodate for the varying physical capacities of diverse worker demographics.
Collapse
Affiliation(s)
- Oshin Tyagi
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Ranjana K Mehta
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Homma T, Uemura N, Tanaka K, Mori H, Okazaki M. Objective Assessment of the Repeated Botox Treatment to the Synkinesis of Facial Paralysis by the Integrated Electromyography. J Craniofac Surg 2024; 35:577-581. [PMID: 38231192 DOI: 10.1097/scs.0000000000009932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND The widely used botox type A (BTX-A) is effective against synkinesis in facial palsy sequelae. Repeated injections are necessary and permanent improvements have been reported. We objectively evaluated the changes in synkinesis at >6 months after BTX-A injection, including changes over time with the number of administrations. METHODS In 48 patients who received multiple BTX-A injections, evaluation by the Sunnybrook Facial Grading System (FGS) and integrated electromyography (iEMG) was performed before treatment and at least 6 months after the first, second, and third BTX-A injection. The iEMG ratio on the affected and healthy sides was calculated for each mimetic muscle and mimic motion. RESULTS There was no significant difference in the FGS synkinesis score before treatment and after the third injection, although an improvement was observed. The iEMG ratio was significantly improved in the orbicularis oculi with open-mouth smile and lip pucker after the third dose compared to before treatment. The orbicularis oris showed a significant improvement when the eyelids were closed, while the platysma showed a significant improvement when the eyelids were closed and when the lip was pursed. Multiple regression analysis revealed that the orbicularis oculi and platysma had a greater effect on the iEMG ratio for the number of treatments than other factors. CONCLUSIONS Repeated BTX-A injections showed improvements in synkinesis for the orbicularis oculi, orbicularis oris, and platysma, even after >6 months, compared to before treatment.
Collapse
Affiliation(s)
- Tsutomu Homma
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University
| | - Noriko Uemura
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University
| | - Kentaro Tanaka
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University
| | - Hiroki Mori
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Dutra YM, Lopes JPF, Murias JM, Zagatto AM. Within- and between-day reliability and repeatability of neuromuscular function assessment in females and males. J Appl Physiol (1985) 2023; 135:1372-1383. [PMID: 37916269 DOI: 10.1152/japplphysiol.00539.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023] Open
Abstract
The study evaluated the reliability and repeatability of the force and surface electromyography activity (EMG) outcomes obtained through voluntary and electrically evoked contractions of knee extensors in females (n = 18) and males (n = 20) and compared these data between sexes. Maximal isometric voluntary contractions (iMVCs) of knee extensors associated with electrical stimulation of the femoral nerve were performed over 4 days (48-h interval), with the first day involving familiarization procedures, the second involving three trials (1-h interval), and the third and fourth involving just one trial. The intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability of outcomes from within- and between-day trials were determined for each sex. Females presented lower maximal voluntary force during iMVC (iMVCForce) and associated vastus lateralis EMG activity (root mean square, RMSVL), force evoked by potentiated doublet high-frequency (Db100Force) and single stimuli (Qtw), and M-wave amplitude than males (P ≤ 0.01, partial eta squared ≥0.94). Voluntary activation (VA) and RMSVL/M-wave amplitude did not differ between sexes. iMVCForce, VA, Db100Force, Qtw, and M-wave amplitude were the most reliable outcomes in within-day trials, with similar results between sexes (ICC > 0.62; CV < 6.4%; repeatability: 12.2%-22.6%). When investigating between-day trials, the iMVCForce, VA, Db100Force, and Qtw were the most reliable (ICC > 0.66; CV < 7.5%; repeatability: 13.2%-33.45%) with similar results between sexes. In conclusion, females presented lower iMVCForce and evoked response than males. Although reliability and repeatability statistics vary between trials, data (e.g., from EMG or force signal), and sexes, most of the outcomes obtained through this technique are reliable in females and males.NEW & NOTEWORTHY Although reliability and repeatability of knee extensors vary according to the type of neuromuscular function outcome (e.g., from force or EMG responses), the trial intervals (i.e., hours or days), and the sex of the participant, most force and EMG outcomes obtained through these neuromuscular assessment protocols present ICC > 0.75, very good CV (<10%), and repeatability <25% in within- and between-day trials in both sexes.
Collapse
Affiliation(s)
- Yago Medeiros Dutra
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - João Pedro Fialho Lopes
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| | - Juan M Murias
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alessandro Moura Zagatto
- Department of Physical Education, Laboratory of Physiology and Sport Performance (LAFIDE), School of Sciences, São Paulo State University (UNESP), Bauru, Brazil
| |
Collapse
|
7
|
Ota K, Sasaki K. Influence of temperature on twitch potentiation following submaximal voluntary contractions in human plantar flexor muscles. Physiol Rep 2023; 11:e15802. [PMID: 37620102 PMCID: PMC10449604 DOI: 10.14814/phy2.15802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
This study aimed to clarify the influence of temperature on post-activation twitch potentiation, a possible indicator of fast-twitch fiber activation during a preceding voluntary contraction. Ten healthy males immersed their left lower leg in water of different temperatures (cold: 0°C, neutral: 32-35°C, hot: ~43°C) for 20 min each. In each temperature condition, they performed submaximal (10%-50% of maximal voluntary contraction torque measured before water immersion) and maximal plantar flexions. Immediately after each voluntary contraction, twitch contractions were evoked with supramaximal stimulation of the posterior tibial nerve. The magnitude of twitch potentiation, defined as a percent increase in twitch torque following a voluntary contraction, increased with the intensity of the preceding voluntary contraction. The magnitude of twitch potentiation after the maximal voluntary contraction was smaller in Cold than in the other temperature conditions. However, temperature had no influence on the relative magnitude of twitch potentiation following the submaximal contractions. In addition, there was no difference in electromyographic activity between the gastrocnemius and soleus muscles in any temperature conditions. Collectively, the temperature dependence was not observed when using twitch potentiation or electromyographic amplitude as an indicator of fast-twitch fiber activation during brief submaximal voluntary contractions.
Collapse
Affiliation(s)
- Kazutaka Ota
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Kazushige Sasaki
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. The Effects of Anchor Schemes on Performance Fatigability, Neuromuscular Responses and the Perceived Sensations That Contributed to Task Termination. J Funct Morphol Kinesiol 2023; 8:jfmk8020049. [PMID: 37218845 DOI: 10.3390/jfmk8020049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The present study examined the effect of anchor schemes on the time to task failure (TTF), performance fatigability, neuromuscular responses, and the perceived sensations that contributed to task termination following the sustained, isometric forearm flexion tasks. Eight women completed sustained, isometric forearm flexion tasks anchored to RPE = 8 (RPEFT) and the torque (TRQFT) that corresponded to RPE = 8. The subjects performed pre-test and post-test maximal isometric contractions to quantify performance fatigability and changes in electromyographic amplitude (EMG AMP) and neuromuscular efficiency (NME). In addition, the subjects completed a post-test questionnaire (PTQ) to quantify the contributions of perceived sensations to task termination. Repeated measure ANOVAs were used to assess the mean differences for TTF, performance fatigability, and neuromuscular responses. Wilcoxon Signed Rank Tests were used to assess the differences between anchor schemes for the average values from the PTQ item scores. For TTF, the RPEFT was longer than the TRQFT (174.9 ± 85.6 vs. 65.6 ± 68.0 s; p = 0.006). Collapsed across the anchor scheme, there were decreases in torque (23.7 ± 5.5 Nm vs. 19.6 ± 4.9 Nm; p < 0.001) and NME (1.00 ± 0.00 vs. 0.76 ± 0.15; p = 0.003). There were no significant (p > 0.577) changes for EMG AMP. For the PTQ, there were no differences (p > 0.05) between anchor schemes. There were, however, inter-individual differences in the response scores. The current findings indicated that performance fatigability was likely due to peripheral fatigue (based on NME), not central fatigue (based on EMG AMP). Furthermore, the use of a PTQ may serve as a simple tool to assess the contributions of perceived sensations to task termination.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68510, USA
| |
Collapse
|
9
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. Utilizing the RPE-Clamp model to examine interactions among factors associated with perceived fatigability and performance fatigability in women and men. Eur J Appl Physiol 2023; 123:1397-1409. [PMID: 36856798 DOI: 10.1007/s00421-023-05163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE The purpose of the present study was to examine the interactions between perceived fatigability and performance fatigability in women and men by utilizing the RPE-Clamp model to assess the fatigue-induced effects of a sustained, isometric forearm flexion task anchored to RPE = 8 on time to task failure (TTF), torque, and neuromuscular responses. METHODS Twenty adults (10 men and 10 women) performed two, 3 s forearm flexion maximal voluntary isometric contractions (MVICs) followed by a sustained, isometric forearm flexion task anchored to RPE = 8 using the OMNI-RES (0-10) scale at an elbow joint angle of 100°. Electromyographic amplitude (EMG AMP) was recorded from the biceps brachii. Torque and EMG AMP values resulting from the sustained task were normalized to the pretest MVIC. Neuromuscular efficiency was defined as NME = normalized torque/normalized EMG AMP. Mixed factorial ANOVAs and Bonferroni corrected dependent t tests and independent t tests were used to examine differences across time and between sex for torque and neuromuscular parameters. RESULTS There were no differences between the women and men for the fatigue-induced decreases in torque, EMG AMP, or NME, and the mean decreases (collapsed across sex) were 50.3 ± 8.6 to 2.8 ± 2.9% MVIC, 54.7 ± 12.0 to 19.6 ± 5.3% MVIC, and 0.94 ± 0.19 to 0.34 ± 0.16, respectively. Furthermore, there were no differences between the women and men for TTF (251.8 ± 74.1 vs. 258.7 ± 77.9 s). CONCLUSION The results suggested that the voluntary reductions in torque to maintain RPE and the decreases in NME were likely due to group III/IV afferent feedback from peripheral fatigue that resulted in excitation-contraction coupling failure.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
- , 840 N 14th Street, Lincoln, NE, 68508, USA.
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
10
|
Bahrpeyma F, Shahrjerdi S, C. M. Savelberg H, Bagherian S, Jamshidpour B. Force generation and muscle activation of knee extensor and flexor muscles in type 2 diabetes mellitus patients. JOURNAL OF MEDICAL SIGNALS & SENSORS 2023. [DOI: 10.4103/jmss.jmss_129_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
11
|
Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare (Basel) 2022; 10:healthcare10101937. [PMID: 36292384 PMCID: PMC9601777 DOI: 10.3390/healthcare10101937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak−moderate negative (range r: [−0.26]−[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak−moderate positive correlation (range r: 0.177−0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]−[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28−0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality.
Collapse
|
12
|
Wilson CD, Zheng F, Fantegrossi WE. Convulsant doses of abused synthetic cannabinoid receptor agonists AB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA and JWH-018 do not elicit electroencephalographic (EEG) seizures in male mice. Psychopharmacology (Berl) 2022; 239:3237-3248. [PMID: 35933518 DOI: 10.1007/s00213-022-06205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
RATIONALE Synthetic cannabinoid receptor agonists (SCRAs) are found in illicit smoking products, such as "K2" or "Spice." Convulsions are commonly reported adverse effects of SCRAs but are poorly understood. OBJECTIVES We determined convulsant effects of SCRAs AB-PINACA, and 5F-ADB-PINACA in adult male NIH Swiss mice, and then determined if convulsant effects of AB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, and JWH-018 elicited seizure-like effects using EEG. METHODS Mice were administered SCRAs or pentylenetetrazole (PTZ) and placed in observation chambers where convulsant effects were scored. The capacity of the CB1R antagonist rimonabant, the benzodiazepine diazepam, or the non-specific CYP450 inhibitor 1-aminobenzotriazole (1-ABT) to attenuate convulsant effects was determined. Other mice were prepared with EEG headmounts to ascertain whether observed convulsions occurred concurrently with seizure-like effects by assessing root-mean-square (RMS) power, high amplitude EEG spike analysis, and videography. RESULTS Mice receiving AB-PINACA or 5F-ADB-PINACA exhibited dose-dependent convulsant effects that were blocked by 10 mg/kg rimonabant pretreatment but not by pretreatment with 10 mg/kg diazepam; these convulsant effects were not altered in the presence of 100 mg/kg 1-ABT. Repeated administration of 10 mg/kg AB-PINACA and 3 mg/kg 5F-ADB-PINACA produced partial tolerance to convulsant effects but did not lead to cross-tolerance to PTZ-induced convulsions. In EEG studies, convulsant doses of AB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, and JWH-018 did not produce seizures concomitantly with convulsions. CONCLUSIONS These data extend previous findings of convulsant effects of SCRAs and suggest that convulsant effects of AB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, and JWH-018 are CB1R-mediated but are not associated with electroencephalographic seizures. These results further suggest that benzodiazepines may not effectively treat convulsions elicited by SCRA use in humans.
Collapse
Affiliation(s)
- Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Fang Zheng
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
| |
Collapse
|
13
|
PELTONEN HEIKKI, MIKKONEN-TAIPALE RITVA, UIMONEN TEEMU, WALKER SIMON, HACKNEY ANTHONYC, VALTONEN MAARIT, KYRÖLÄINEN HEIKKI, IHALAINEN JOHANNAK. Power Loading-Induced Fatigue Is Influenced by Menstrual Cycle Phase. Med Sci Sports Exerc 2022; 54:1190-1198. [PMID: 35320150 PMCID: PMC9208809 DOI: 10.1249/mss.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to examine the effects of fatiguing power loading on neuromuscular properties, force production, and metabolic capacities during four phases of the menstrual cycle (MC): menstruation (M), midfollicular (mid FOL), ovulation (OV), and midluteal (mid LUT). METHODS Sixteen eumenorrheic women performed sessions of maximal explosive leg press (2 × 10 at 60% one-repetition maximum load with 2-min recovery between sets). Serum hormones and neuromuscular responses were measured. RESULTS The loading protocol significantly decreased power (between -14.2% and -12.5%; P < 0.001) and maximal force production (between maximum voluntary force (MVC); -15.0% and -7.8%; P < 0.001-0.05), while decreasing activation level (between AL; -6.9% and -2.2%; P < 0.001-0.05) in all MC phases. The decreases in AL were greater during mid LUT (P < 0.01) compared with OV. Changes in MVC and AL were associated (r2 = 0.53; P < 0.01) at all MC phases. The decrease in EMG during MVC did not differ between the MC phases; however, mean power frequency was higher during M (+7.7%; P < 0.05) and mid LUT (+3.1%; P < 0.05) compared with OV (-7.5%). Resting twitch force decreased during mid FOL (-6.9%; P < 0.05) and mid LUT (-16.2%; P < 0.001), and these values were significantly decreased (P < 0.05) compared with OV. In addition, resting twitch force at mid LUT was lower (P < 0.01) compared with M. Blood lactate levels increased more (P < 0.05) during M compared with mid LUT. Some serum hormone concentrations were associated with fatigue-induced changes in neuromuscular properties and force production, but these correlations behaved differently between the MC phases. CONCLUSIONS OV may offer a more favorable hormonal milieu for acute neural responses, whereas mid FOL and mid LUT seem to be superior for acute muscular responses.
Collapse
Affiliation(s)
- HEIKKI PELTONEN
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - RITVA MIKKONEN-TAIPALE
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
- Sports Technology Unit, Faculty of Sport and Health Sciences, University of Jyväskylä, Vuokatti, FINLAND
| | - TEEMU UIMONEN
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - SIMON WALKER
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - ANTHONY C. HACKNEY
- Department of Exercise & Sport Science–Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - MAARIT VALTONEN
- Research Institute for Olympic Sports (KIHU), Jyväskylä, FINLAND
| | - HEIKKI KYRÖLÄINEN
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - JOHANNA K. IHALAINEN
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| |
Collapse
|
14
|
Neto FR, Costa RRG, Tanhoffer RA, Leal JC, Bottaro M, Carregaro RL. Neuromuscular efficiency of men with high and low spinal cord injury levels compared with non-disabled participants. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The neuromuscular efficiency index (NME) is defined as the individual ability to generate force in relation to the muscle activation level and might be useful to the assessment of individuals with spinal cord injury (SCI) and might elucidate the modifications in strength after an SCI compared to non-disabled subjects (CG). OBJECTIVE: Verify if the NME of fully and partially preserved muscles discriminate men with low and high levels of SCI and a matched non-disabled CG. METHODS: Fifty-four men with SCI were stratified into the high (HP), and low (LP) paraplegia groups and twenty-seven non-disabled individuals were selected (CG). All subjects performed maximum strength tests in the isokinetic dynamometer for shoulder abduction/adduction (isokinetic) and trunk flexion/extension (isometric). Surface electromyography was measured to calculate the NME, and discriminant analysis was carried out to identify which NME variables would be able to discriminate HP, LP, and CG. RESULTS: There were no NME significant differences between groups for the primary muscles of the shoulder abduction/adduction. All NME data failed at discriminant tolerance test to compare HP from LP. The latissimus dorsi NME during trunk extension discriminated CG from HP and LP. CONCLUSIONS: The latissimus dorsi NME during trunk extension might be used as an assessment tool to compare SCI individuals and the non-disabled-matched controls. The authors recommend using the NME index for the analysis or comparisons between the same SCI levels.
Collapse
Affiliation(s)
- Frederico Ribeiro Neto
- Faculty of Physical Education, Universidade de Brasilia, Brasilia, DF, Brazil
- SARAH Rehabilitation Hospital Network, Brasilia, DF, Brazil
| | | | - Ricardo Antônio Tanhoffer
- Physiology Department, Metabolism Laboratory, Setor de Ciências Biológicas, Universidade do Paraná, Curitiba, PR, Brazil
| | - Josevan Cerqueira Leal
- Faculty of Physical Education, Universidade de Brasilia, Brasilia, DF, Brazil
- School of Physical Therapy, Universidade de Brasilia, Brasilia, DF, Brazil
| | - Martim Bottaro
- Faculty of Physical Education, Universidade de Brasilia, Brasilia, DF, Brazil
| | - Rodrigo Luiz Carregaro
- Faculty of Physical Education, Universidade de Brasilia, Brasilia, DF, Brazil
- School of Physical Therapy, Universidade de Brasilia, Brasilia, DF, Brazil
| |
Collapse
|
15
|
Paz G, de Freitas Maia M, de Araújo Farias D, Miranda H, Willardson J. Muscle activation and volume load performance of paired resistance training bouts with differing inter-session recovery periods. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Pulverenti TS, Trajano GS, Kirk BJC, Bochkezanian V, Blazevich AJ. Plantar flexor muscle stretching depresses the soleus late response but not tendon tap reflexes. Eur J Neurosci 2021; 53:3185-3198. [PMID: 33675055 DOI: 10.1111/ejn.15178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to investigate changes in muscle spindle sensitivity with early and late soleus reflex responses via tendon taps and transcranial magnetic stimulation, respectively, after an acute bout of prolonged static plantar flexor muscle stretching. Seventeen healthy males were tested before and after 5 min (5 × 60-s stretches) of passive static stretching of the plantar flexor muscles. Maximal voluntary isometric torque and M wave-normalized triceps surae muscle surface electromyographic activity were recorded. Both soleus tendon reflexes, evoked by percussion of the Achilles tendon during rest and transcranial magnetic stimulation-evoked soleus late responses during submaximal isometric dorsiflexion were also quantified. Significant decreases in maximal voluntary isometric plantar flexion torque (-19.2 ± 13.6%, p = .002) and soleus electromyographic activity (-20.1 ± 11.4%, p < .001) were observed immediately after stretching, and these changes were highly correlated (r = 0.76, p < .001). No changes were observed in tendon reflex amplitude or latency or peak muscle twitch torque (p > .05). Significant reductions in soleus late response amplitudes (-46.9 ± 36.0%, p = .002) were detected, although these changes were not correlated with changes in maximal electromyographic activity, torque or tendon reflex amplitudes. No changes in soleus late response latency were detected. In conclusion, impaired neural drive was implicated in the stretch-induced force loss; however, no evidence was found that this loss was related to changes in muscle spindle sensitivity. We hypothesize that the decrease in soleus late response indicates a stretch-induced reduction in a polysynaptic postural reflex rather than spindle reflex sensitivity.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Benjamin J C Kirk
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Vanesa Bochkezanian
- Department of Exercise and Health Sciences, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
17
|
Beretta-Piccoli M, Cescon C, D’Antona G. Evaluation of performance fatigability through surface EMG in health and muscle disease: state of the art. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1862985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matteo Beretta-Piccoli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Scano A, Pirovano I, Manunza ME, Spinelli L, Contini D, Torricelli A, Re R. Sustained fatigue assessment during isometric exercises with time-domain near infrared spectroscopy and surface electromyography signals. BIOMEDICAL OPTICS EXPRESS 2020; 11:7357-7375. [PMID: 33409002 PMCID: PMC7747893 DOI: 10.1364/boe.403976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The effect of sustained fatigue during an upper limb isometric exercise is presented to investigate a group of healthy subjects with simultaneous time-domain (TD) NIRS and surface electromyography (sEMG) recordings on the deltoid lateralis muscle. The aim of the work was to understand which TD-NIRS parameters can be used as descriptors for sustained muscular fatigue, focusing on the slow phase of this process and using median frequency (MF) computed from sEMG as gold standard measure. It was found that oxygen saturation and deoxy-hemoglobin are slightly better descriptors of sustained fatigue, than oxy-hemoglobin, since they showed a higher correlation with MF, while total-hemoglobin correlation with MF was lower.
Collapse
Affiliation(s)
- A. Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche, Via Previati 1/E Lecco, Italy e Via Alfonso Corti 12, Milan, Italy
| | - I. Pirovano
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| | - M. E. Manunza
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche, Via Previati 1/E Lecco, Italy e Via Alfonso Corti 12, Milan, Italy
| | - L. Spinelli
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, Italy
| | - D. Contini
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
| | - A. Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, Italy
| | - R. Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, Italy
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milan, Italy
| |
Collapse
|
19
|
Effect of a 6-week strength-training program on neuromuscular efficiency in type 2 diabetes mellitus patients. Diabetol Int 2020; 11:376-382. [PMID: 33088645 DOI: 10.1007/s13340-020-00432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Abstract
Background The neuromuscular system generates human movement. The functional capacity of the neuromuscular system in patients with type 2 diabetes mellitus (T2DM) is decreased and this affects the generation of muscle force. Exercise is recommended as an effective treatment in such cases. Short-duration strength training causes neural adaptations in healthy participants, but the effects of strength training on T2DM are unclear. The present study aimed to evaluate the effect of strength training on neuromuscular efficiency of lower limb muscles in T2DM. Methods Surface electromyograms (SEMG) of the knee flexors and extensors were recorded during isometric contractions. The ratio of peak torque to SEMG amplitude was calculated as neuromuscular efficiency. Measurements were taken before the intervention after 6 weeks of non-training, and after 6 weeks of strength training. Results SEMG amplitudes did not differ among the subsequent measurement sessions. Flexor and extensor peak torque increased after the strength-training program. The neuromuscular efficiency of all muscles increased after the 6 weeks of strength training. Conclusion A 6-week strength-training program increased the neuromuscular efficiency and peak torque in patients with T2DM; however, the electrical properties of the muscles did not change. These results may be related to increased neural adaptations and motor learning in the early stages of strength training.
Collapse
|
20
|
Pulverenti TS, Trajano GS, Walsh A, Kirk BJC, Blazevich AJ. Lack of cortical or Ia-afferent spinal pathway involvement in muscle force loss after passive static stretching. J Neurophysiol 2020; 123:1896-1906. [PMID: 32267196 DOI: 10.1152/jn.00578.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated whether modulation of corticospinal-motoneuronal excitability and/or synaptic transmission of the Ia afferent spinal reflex contributes to decreases in voluntary activation and muscular force after an acute bout of prolonged static muscle stretching. Fifteen men performed five 60-s constant-torque stretches (15-s rest intervals; total duration 5 min) of the plantar flexors on an isokinetic dynamometer and a nonstretching control condition in random order on 2 separate days. Maximum isometric plantar flexor torque and triceps surae muscle electromyographic activity (normalized to M wave; EMG/M) were simultaneously recorded immediately before and after each condition. Motor-evoked potentials (using transcranial magnetic stimulation) and H-reflexes were recorded from soleus during EMG-controlled submaximal contractions (23.4 ± 6.9% EMG maximum). No changes were detected in the control condition. After stretching, however, peak torque (mean ± SD; -14.3 ± 7.0%) and soleus EMG/M (-17.8 ± 6.2%) decreased, and these changes were highly correlated (r = 0.83). No changes were observed after stretching in soleus MEP or H-reflex amplitudes measured during submaximal contractions, and interindividual variability of changes was not correlated with changes in EMG activity or maximum torque. During EMG-controlled submaximal contractions, torque production was significantly decreased after stretching (-22.7 ± 15.0%), indicating a compromised muscular output. These data provide support that changes in the excitability of the corticospinal-motoneuronal and Ia afferent spinal reflex pathways do not contribute to poststretch neural impairment.NEW & NOTEWORTHY This study is the first to specifically examine potential sites underlying the decreases in neural activation of muscle and force production after a bout of muscle stretching. However, no changes were found in either the H-reflex or motor-evoked potential amplitude during submaximal contractions.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Andrew Walsh
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Benjamin J C Kirk
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
21
|
Graja A, Kacem M, Hammouda O, Borji R, Bouzid MA, Souissi N, Rebai H. Physical, Biochemical, and Neuromuscular Responses to Repeated Sprint Exercise in Eumenorrheic Female Handball Players: Effect of Menstrual Cycle Phases. J Strength Cond Res 2020; 36:2268-2276. [PMID: 32168179 DOI: 10.1519/jsc.0000000000003556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Graja, A, Kacem, M, Hammouda, O, Borji, R, Bouzid, MA, Souissi, N, and Rebai, H. Physical, biochemical, and neuromuscular responses to repeated sprint exercise in eumenorrheic female handball players: effect of menstrual cycle phases. J Strength Cond Res XX(X): 000-000, 2020-Very few studies have been interested in the relationship between ovarian hormones and physiological function in female athletes. The aim of this study was to assess the effect of menstrual phases (MP) on physical, neuromuscular, and biochemical responses after repeated sprint exercise (RSE) in female handball players. Ten eumenorrheic athletes (22.5 ± 1.5 years, 1.70 ± 0.04 m) participated in 3 study visits (follicular phase [FP], luteal phase [LP], and premenstrual phase [PMP]). During each MP, they performed 20 × 5-second cycle sprints interspersed with 25 seconds of rest. Maximal voluntary contraction (MVC) tests of the knee extensor muscles at 90° of knee flexion were performed before and after RSE. Peak force and electromyography (EMG) signals were measured during the MVC tests. Blood samples were collected before and 3 minutes after each session. The percentage of decrement in peak power output over the 20 × 5-second cycle test (i.e., fatigue index) calculated between sprints 1 and 20 decreased significantly during PMP (-43.3% ± 5.7%) but not in LP (-39.2% ± 7.7%) compared with FP (-32.44% ± 6.3%) (p < 0.05). Moreover, no significant difference was found between MP in all frequency components of EMG before RSE (p > 0.05). Maximal voluntary contraction, neuromuscular efficiency, and median frequency values of vastus lateralis and rectus femoris were significantly decreased in PMP compared with FP and LP (p < 0.05). Creatine kinase (CK) levels were significantly higher in PMP compared with FP and LP after RSE (p < 0.05). These findings suggest that RSE induces more peripheral fatigue associated with muscle damage in PMP. This might be attributable to hormonal variation across MP. Therefore, FP seems to be the right time for intense training to improve strength performance.
Collapse
Affiliation(s)
- Ahmed Graja
- Research Laboratory, Molecular Bases of Human Pathology, LR12ES17, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,High Institute of Sport and Physical Education, Ksar-Said, Manouba University, Manouba, Tunisia
| | - Maissa Kacem
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR12ES17, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and learning (LINP2-APSA), UPL, Paris Nanterre University, UFR STAPS, Nanterre, France
| | - Rihab Borji
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed A Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Nizar Souissi
- Research Unit Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
| | - Haithem Rebai
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
22
|
Pulverenti TS, Trajano GS, Kirk BJC, Blazevich AJ. The loss of muscle force production after muscle stretching is not accompanied by altered corticospinal excitability. Eur J Appl Physiol 2019; 119:2287-2299. [DOI: 10.1007/s00421-019-04212-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
|
23
|
Gillen ZM, Shoemaker ME, McKay BD, Bohannon NA, Gibson SM, Cramer JT. Muscle strength, size, and neuromuscular function before and during adolescence. Eur J Appl Physiol 2019; 119:1619-1632. [PMID: 31087141 DOI: 10.1007/s00421-019-04151-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/24/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To compare measurements of muscle strength, size, and neuromuscular function among pre-adolescent and adolescent boys and girls with distinctly different strength capabilities. METHODS Fifteen boys (mean age ± confidence interval: 13.0 ± 1.0 years) and 13 girls (12.9 ± 1.1 years) were categorized as low strength (LS, n = 14) or high strength (HS, n = 14) based on isometric maximal voluntary contraction strength of the leg extensors. Height (HT), seated height, and weight (WT) determined maturity offset, while percent body fat and fat-free mass (FFM) were estimated from skinfold measurements. Quadriceps femoris muscle cross-sectional area (CSA) was assessed from ultrasound images. Isometric ramp contractions of the leg extensors were performed while surface electromyographic amplitude (EMGRMS) and mechanomyographic amplitude (MMGRMS) were recorded for the vastus lateralis (VL). Neuromuscular efficiency from the EMG and MMG signals (NMEEMG and NMEMMG, respectively) and log-transformed EMG and MMG vs. torque relationships were also used to examine neuromuscular responses. RESULTS HS was 99-117% stronger, 2.3-2.8 years older, 14.0-15.7 cm taller, 20.9-22.3 kg heavier, 2.3-2.4 years more biologically mature, and exhibited 39-43% greater CSA than LS (p ≤ 0.001). HS exhibited 74-81% higher NMEEMG than LS (p ≤ 0.022), while HS girls exhibited the highest NMEMMG (p ≤ 0.045). Even after scaling for HT, WT, CSA, and FFM, strength was still 36-90% greater for HS than LS (p ≤ 0.031). The MMGRMS patterns in the LS group displayed more type I motor unit characteristics. CONCLUSIONS Neuromuscular adaptations likely influence strength increases from pre-adolescence to adolescence, particularly when examining large, force-producing muscles and large strength differences explained by biological maturity, rather than simply age.
Collapse
Affiliation(s)
- Zachary M Gillen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA
| | - Marni E Shoemaker
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA
| | - Brianna D McKay
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA
| | - Nicholas A Bohannon
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA
| | - Sydney M Gibson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA
| | - Joel T Cramer
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 211 Ruth Leverton Hall, Lincoln, NE, 68583, USA.
| |
Collapse
|
24
|
Emanuelsen A, Voigt M, Madeleine P, Kjær P, Dam S, Koefoed N, Hansen EA. Repeated Bout Rate Enhancement Is Elicited by Various Forms of Finger Tapping. Front Neurosci 2018; 12:526. [PMID: 30108479 PMCID: PMC6079229 DOI: 10.3389/fnins.2018.00526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023] Open
Abstract
Voluntary rhythmic movements, such as, for example, locomotion and other cyclic tasks, are fundamental during everyday life. Patients with impaired neural or motor function often take part in rehabilitation programs, which include rhythmic movements. Therefore, it is imperative to have the best possible understanding of control and behaviour of human voluntary rhythmic movements. A behavioural phenomenon termed repeated bout rate enhancement has been established as an increase of the freely chosen index finger tapping frequency during the second of two consecutive tapping bouts. The present study investigated whether the phenomenon would be elicited when the first bout consisted of imposed passive finger tapping or air tapping. These two forms of tapping were applied since they can be performed without descending drive (passive tapping) and without afferent feedback related to impact (air tapping) – as compared to tapping on a surface. Healthy individuals (n = 33) performed 3-min tapping bouts separated by 10 min rest. Surface electromyographic, kinetic, and kinematic data were recorded. Supportive experiments were made to measure, for example, the cortical sensory evoked potential (SEP) response during the three different forms of tapping. Results showed that tapping frequencies in the second of two consecutive bouts increased by 12.9 ± 14.8% (p < 0.001), 9.9 ± 6.0% (p = 0.001), and 16.8 ± 13.6% (p = 0.005) when the first bout had consisted of tapping, passive tapping, and air tapping, respectively. Rate enhancement occurred without increase in muscle activation. Besides, the rate enhancements occurred despite that tapping, as compared with passive tapping and air tapping, resulted in different cortical SEP responses. Based on the present findings, it can be suggested that sensory feedback in an initial bout increases the excitability of the spinal central pattern generators involved in finger tapping. This can eventually explain the phenomenon of repeated bout rate enhancement seen after a consecutive bout of finger tapping.
Collapse
Affiliation(s)
- Anders Emanuelsen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Michael Voigt
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pascal Madeleine
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Pia Kjær
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Sebastian Dam
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nikolaj Koefoed
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernst A Hansen
- Sport Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Ferreira MC, Porto de Toledo I, Dutra KL, Stefani FM, Porporatti AL, Flores-Mir C, De Luca Canto G. Association between chewing dysfunctions and temporomandibular disorders: A systematic review. J Oral Rehabil 2018; 45:819-835. [DOI: 10.1111/joor.12681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Affiliation(s)
- M. C. Ferreira
- Department of Speech Language Pathology; Federal University of Santa Catarina; Florianópolis Brazil
| | - I. Porto de Toledo
- Health Sciences Faculty; University of Brasilia; Brasilia Brazil
- Department of Dentistry; Brazilian Centre for Evidence-Based Research; Federal University of Santa Catarina; Florianópolis Brazil
| | - K. L. Dutra
- Department of Dentistry; Brazilian Centre for Evidence-Based Research; Federal University of Santa Catarina; Florianópolis Brazil
| | - F. M. Stefani
- Department of Speech Language Pathology; Federal University of Santa Catarina; Florianópolis Brazil
| | - A. L. Porporatti
- Department of Dentistry; Brazilian Centre for Evidence-Based Research; Federal University of Santa Catarina; Florianópolis Brazil
| | - C. Flores-Mir
- Department of Dentistry; Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB Canada
| | - G. De Luca Canto
- Department of Dentistry; Brazilian Centre for Evidence-Based Research; Federal University of Santa Catarina; Florianópolis Brazil
| |
Collapse
|
26
|
Abstract
It is well known that prolonged passive muscle stretch reduces maximal muscle force production. There is a growing body of evidence suggesting that adaptations occurring within the nervous system play a major role in this stretch-induced force reduction. This article reviews the existing literature, and some new evidence, regarding acute neurophysiological changes in response to passive muscle stretching. We discuss the possible contribution of supra-spinal and spinal structures to the force reduction after passive muscle stretch. In summary, based on the recent evidence reviewed we propose a new hypothesis that a disfacilitation occurring at the motoneuronal level after passive muscle stretch is a major factor affecting the neural efferent drive to the muscle and, subsequently, its ability to produce maximal force.
Collapse
|
27
|
Macgregor LJ, Fairweather MM, Bennett RM, Hunter AM. The Effect of Foam Rolling for Three Consecutive Days on Muscular Efficiency and Range of Motion. SPORTS MEDICINE-OPEN 2018; 4:26. [PMID: 29884972 PMCID: PMC5993692 DOI: 10.1186/s40798-018-0141-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/27/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Foam rolling (FR) has been shown to alleviate some symptoms of exercise-induced muscle damage and has been suggested to increase range of motion (ROM) without negatively impacting strength. However, it is unclear what neuromuscular effects, if any, mediate these changes. METHODS In a randomized, crossover design, 16 healthy active males completed 2 min of rest or FR of the knee extensors on three consecutive days. Mechanical properties of vastus lateralis (VL) and rectus femoris (RF) were assessed via Tensiomyography. Knee extension maximal voluntary contraction (MVC) and knee flexion ROM were also assessed, and surface electromyography amplitude (RMS) was recorded during a submaximal isometric contraction (50% of MVC). Measures were performed before and after (0, 15, and 30 min) FR or rest. RESULTS MVC was reduced on subsequent days in the rest condition compared to FR (p = 0.002, pη2 = 0.04); ROM was not different across time or condition (p = 0.193, pη2 = 0.01). Stiffness characteristics of the VL were different on the third day of FR (p = 0.002, pη2 = 0.03). RMS was statistically reduced 0, 15, and 30 min after FR compared to rest (p = 0.006, pη2 = 0.03; p = 0.003, pη2 = 0.04; p = 0.002, pη2 = 0.04). CONCLUSIONS Following FR, MVC was elevated compared to rest and RMS was transiently reduced during a submaximal task. Excitation efficiency of the involved muscles may have been enhanced by FR, which protected against the decline in MVC which was observed with rest.
Collapse
Affiliation(s)
- Lewis J Macgregor
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK.
| | | | - Ryan M Bennett
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Angus M Hunter
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
28
|
Girard O, Bishop DJ, Racinais S. M-wave normalization of EMG signal to investigate heat stress and fatigue. J Sci Med Sport 2018; 21:518-524. [DOI: 10.1016/j.jsams.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/25/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023]
|
29
|
A Comparative Study of EMG Indices in Muscle Fatigue Evaluation Based on Grey Relational Analysis during All-Out Cycling Exercise. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9341215. [PMID: 29850588 PMCID: PMC5926489 DOI: 10.1155/2018/9341215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/09/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
The increased popularization of cycling has brought an increase in cycling-related injuries, which has been suggested to be associated with muscle fatigue. However, it still remains unclear on the utility of different EMG indices in muscle fatigue evaluation induced by cycling exercise. In this study, ten cyclist volunteers performed a 30-second all-out cycling exercise after a warm-up period. Surface electromyography (sEMG) from vastus lateralis muscle (VL) and power output and cadence were recorded and EMG RMS, MF and MPF based on Fourier Transform, MDF and MNF based on wavelet packet transformation, and C(n) based on Lempel–Ziv complexity algorithm were calculated. Utility of the indices was compared based on the grey rational grade of sEMG indices and power output and cadence. The results suggested that MNF derived from wavelet packet transformation was significantly higher than other EMG indices, indicating the potential application for fatigue evaluation induced by all-out cycling exercise.
Collapse
|
30
|
Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front Physiol 2018; 8:985. [PMID: 29354060 PMCID: PMC5758546 DOI: 10.3389/fphys.2017.00985] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Surface electromyography (sEMG) is a popular research tool in sport and rehabilitation sciences. Common study designs include the comparison of sEMG amplitudes collected from different muscles as participants perform various exercises and techniques under different loads. Based on such comparisons, researchers attempt to draw conclusions concerning the neuro- and electrophysiological underpinning of force production and hypothesize about possible longitudinal adaptations, such as strength and hypertrophy. However, such conclusions are frequently unsubstantiated and unwarranted. Hence, the goal of this review is to discuss what can and cannot be inferred from comparative research designs as it pertains to both the acute and longitudinal outcomes. General methodological recommendations are made, gaps in the literature are identified, and lines for future research to help improve the applicability of sEMG are suggested.
Collapse
Affiliation(s)
- Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Israel Halperin
- Physiology Discipline, Australian Institute of Sport, Canberra, ACT, Australia.,Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|
31
|
Abbasi E, Kahrizi S, Razi M, Faghihzadeh S. The effect of whole-body vibration training on the lower extremity muscles' electromyographic activities in patients with knee osteoarthritis. Med J Islam Repub Iran 2017; 31:107. [PMID: 29951408 PMCID: PMC6014769 DOI: 10.14196/mjiri.31.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 11/18/2022] Open
Abstract
Background: Whole-Body Vibration Training (WBVT) is a novel neuromuscular training method that has been recently developed as a rehabilitation tool. The purpose of this study was to determine whether WBVT is effective on electromyographic activity of the muscles of the lower limbs in patients with knee osteoarthritis. Methods: The study was designed as a single blinded randomized clinical trial (IRCT201601171637N5), 45 patients with knee osteoarthritis were randomly assigned to three groups; WBVT (n = 15) receiving 12 sessions vibration therapy, control group (n =15) doing two exercise in the home and placebo (n =15) doing exercise like WBVT group on-off vibration system. Electromyographic activities of vastus lateralis and vastus medialis, semitendinosus, gastrocnemius and soleus were evaluated pre and post intervention. The pairedsamples t-test and ANOVA were applied respectively to determine the differences in each group and among the groups (P≤0.05). Results: The RMS value of vastus medialis in semi squat position in placebo group (p=0.024), vastus lateralis in SLR position in WBVT group (p=0.037), soleus in knee flexion in WBVT group (p=0.018), semitendinosus in knee flexion in WBVT group (p=0.007) and RMS response of Semitendinosus in ankle plantar flexion in control group (p=0.047) were revealed significant differences between the pre- and post- intervention. The ANOVA test confirmed the significant differences between the studied groups according to the EMG activity of vastus medialis in semi squat position (p=0.045), semitendinosus in semi squat position (p=0.046) and in plantar flexion position (p=0.015) and also soleus in plantar flexion position (p=0.003). Conclusions: The findings of this study showed the beneficial effects of WBVT in the improvement of the muscles RMS values in the patients with knee OA especially muscles' progression rates in a four-week period.
Collapse
Affiliation(s)
- Ebrahim Abbasi
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sedighe Kahrizi
- Department of Physiotherapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Soghrat Faghihzadeh
- Department of Biostatistics, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
32
|
de A Rocha V, do Carmo JC, Assis de O Nascimento F. Weighted-Cumulated S-EMG Muscle Fatigue Estimator. IEEE J Biomed Health Inform 2017; 22:1854-1862. [PMID: 29990024 DOI: 10.1109/jbhi.2017.2783849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This paper addresses a new approach to objectively evaluate muscle fatigue in isometric and dynamic physical exertions using surface electromyography (S-EMG). The emphasis of this proposal is to preserve the spectral signature of the muscle fatigue phenomenon while reducing the spatial effects of electrode localization, and decreasing the disparity of results obtained by the same experimental protocol at different times. A cumulated and normalized modeling was sought to make evident the nonstationary characteristics of muscle fatigue that is gradually identified with its inertia and intensity. A metric involving the proposal of temporal, frequency, and time-frequency weighted-cumulated indicators is presented. Results based on real signals are shown for isometric and dynamic experimental protocols. Performance comparison of the various proposed weighted-cumulated indexes is shown and discussed. The presented approach for the objective cumulative evaluation of muscle fatigue with S-EMG signals has shown to be promising.
Collapse
|
33
|
Paz GA, Robbins DW, de Oliveira CG, Bottaro M, Miranda H. Volume Load and Neuromuscular Fatigue During an Acute Bout of Agonist-Antagonist Paired-Set vs. Traditional-Set Training. J Strength Cond Res 2017; 31:2777-2784. [DOI: 10.1519/jsc.0000000000001059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Miranda H, Maia M, de Oliveira CG, Farias D, da Silva JB, Lima VP, Willardson JM, Paz GA. Myoeletric indices of fatigue adopting different rest intervals during leg press sets. J Bodyw Mov Ther 2017; 22:178-183. [PMID: 29332743 DOI: 10.1016/j.jbmt.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The purpose of this study was to examine the acute effect of different rest intervals between multiple sets of the 45° angled leg press exercise (LP45) on surface electromyographic (SEMG) spectral and amplitude indices of fatigue. METHODS Fifteen recreationally trained females performed three protocols in a randomized crossover design; each consisting of four sets of 10 repetitions with 1 (P1), 3 (P3), or 5 (P5) minute rest intervals between sets. Each set was performed with 70% of the LP45 ten-repetition maximum load. The SEMG data for biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles was then evaluated. RESULTS The SEMG amplitude change in the time coefficient (CRMS) and spectral fatigue index (Cf5) indicated higher levels of fatigue for all muscles evaluated during the P3 protocol versus the P1 and P5 protocols (p ≤ 0.05), respectively. The RF and VL muscles showed greater fatigue levels by the second and third sets; whereas, greater fatigue was shown in the VM and BF muscles by the fourth set (p ≤ 0.05). CONCLUSIONS A three-minute rest interval between sets might represent a neuromuscular window between a fatigue stated and fully recovered state in the context of neural activation. Moreover, a three minute rest interval between sets might allow for consistent recruitment of high threshold motor units over multiple sets, and thus promote a more effective stimulus for strength gains.
Collapse
Affiliation(s)
- Humberto Miranda
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marianna Maia
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil
| | - Carlos G de Oliveira
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Déborah Farias
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jurandir B da Silva
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Vicente P Lima
- Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil; Institute of Physical Education and Sports, Postgraduate Program in Exercise and Sport Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeffrey M Willardson
- Department of Health and Human Performance, Rocky Mountain College, Billings, MT, United States
| | - Gabriel A Paz
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
EMG Processing Based Measures of Fatigue Assessment during Manual Lifting. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3937254. [PMID: 28303251 PMCID: PMC5337807 DOI: 10.1155/2017/3937254] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/31/2017] [Indexed: 01/28/2023]
Abstract
Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
Collapse
|
36
|
Paz G, Maia M, Whinchester J, Miranda H. Strength performance parameters and muscle activation adopting two antagonist stretching methods before and between sets. Sci Sports 2016. [DOI: 10.1016/j.scispo.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Characterizing cerebral and locomotor muscle oxygenation to incremental ramp exercise in healthy children: relationship with pulmonary gas exchange. Eur J Appl Physiol 2016; 116:2345-2355. [DOI: 10.1007/s00421-016-3486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
|
38
|
Boone J, Vandekerckhove K, Coomans I, Prieur F, Bourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol 2016; 116:2085-2102. [PMID: 27613650 DOI: 10.1007/s00421-016-3468-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022]
Abstract
In the past two decades oxygenation responses to incremental ramp exercise, measured non-invasively by means of near-infrared spectroscopy at different locations in the body, have advanced the insights on the underpinning mechanisms of the whole-body pulmonary oxygen uptake ([Formula: see text]) response. In healthy subjects the complex oxygenation responses at the level of locomotor and respiratory muscles, and brain were simplified and quantified by the detection of breakpoints as a deviation in the ongoing response pattern as work rate increases. These breakpoints were located in a narrow intensity range between 75 and 90 % of the maximal [Formula: see text] and were closely related to traditionally determined thresholds in pulmonary gas exchange (respiratory compensation point), blood lactate measurements (maximal lactate steady state), and critical power. Therefore, it has been assumed that these breakpoints in the oxygenation patterns at different sites in the body might be equivalent and could, therefore, be used interchangeably. In the present review the typical oxygenation responses (at locomotor and respiratory muscle level, and cerebral level) are described and a possible framework is provided showing the physiological events that might link the breakpoints at different body sites with the thresholds determined from pulmonary gas exchange and blood lactate measurements. However, despite a possible physiological association, several arguments prevent the current practical application of these breakpoints measured at a single site as markers of exercise intensity making it highly questionable whether measurements of the oxygenation response at one single site can be used as a reflection of whole-body responses to different exercise intensities.
Collapse
Affiliation(s)
- Jan Boone
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | - Ilse Coomans
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Fabrice Prieur
- CIAMS, Univ Paris-Sud, Université Paris Saclay, 91405, Orsay Cedex, France
- CIAMS Université d'Orléans, 45067, Orléans, France
| | - Jan G Bourgois
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
39
|
Rodriguez-Falces J, Malanda A, Latasa I, Lavilla-Oiz A, Navallas J. Influence of timing variability between motor unit potentials on M-wave characteristics. J Electromyogr Kinesiol 2016; 30:249-62. [PMID: 27567139 DOI: 10.1016/j.jelekin.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022] Open
Abstract
The transient enlargement of the compound muscle action potential (M wave) after a conditioning contraction is referred to as potentiation. It has been recently shown that the potentiation of the first and second phases of a monopolar M wave differed drastically; namely, the first phase remained largely unchanged, whereas the second phase underwent a marked enlargement and shortening. This dissimilar potentiation of the first and second phases has been suggested to be attributed to a transient increase in conduction velocity after the contraction. Here, we present a series of simulations to test if changes in the timing variability between motor unit potentials (MUPs) can be responsible for the unequal potentiation (and shortening) of the first and the second M-wave phases. We found that an increase in the mean motor unit conduction velocity resulted in a marked enlargement and narrowing of both the first and second M-wave phases. The enlargement of the first phase caused by a global increase in motor unit conduction velocities was apparent even for the electrode located over the innervation zone and became more pronounced with increasing distance to the innervation zone, whereas the potentiation of the second phase was largely independent of electrode position. Our simulations indicate that it is unlikely that an increase in motor unit conduction velocities (accompanied or not by changes in their distribution) could account for the experimental observation that only the second phase of a monopolar M wave, but not the first, is enlarged after a brief contraction. However, the combination of an increase in the motor unit conduction velocities and a spreading of the motor unit activation times could potentially explain the asymmetric potentiation of the M-wave phases.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain.
| | - Armando Malanda
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Iban Latasa
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| | - Ana Lavilla-Oiz
- Pediatric Neurology Unit, Virgen del Camino Hospital, Pamplona, Spain
| | - Javier Navallas
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain
| |
Collapse
|
40
|
Magalhães I, Bottaro M, Mezzarane RA, Neto FR, Rodrigues BA, Ferreira-Júnior JB, Carregaro RL. Kinesiotaping enhances the rate of force development but not the neuromuscular efficiency of physically active young men. J Electromyogr Kinesiol 2016; 28:123-9. [PMID: 27128956 DOI: 10.1016/j.jelekin.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Investigations on the effects of KT on human performance have been increasing in the last few years. However, there is a paucity of studies investigating its effects on neuromuscular efficiency (NME) and rate of force development (RFD). OBJECTIVE To evaluate the NME and RFD of the soleus and gastrocnemius muscles in physically active individuals under KT application. METHOD Twenty young males (79.7±8.2kg; 1.78±0.05m; 24.7±4.4years) performed three conditions in a randomized order: (1) Baseline (BL, no tape); (2) Activation (ACTIKT, tape for muscle activation); and (3) Inhibition (INHIKT, tape for muscle inhibition). The tape was applied along the lateral and medial border of gastrocnemius with 30% tension for 48h. Peak torque (PT), RFD and NME were measured at BL and 48h after ACTIKT and INHIKT by performing a maximum isometric contraction. RESULTS The RFD was significantly higher in ACTIKT compared to BL at 0-30 (P=0.010), 0-50 (P=0.008) and 0-100ms (P=0.007). The PT and NME did not differ among conditions (P>0.05). CONCLUSION KT applied for muscle activation yielded a higher RFD during the initial phase of the muscle contraction. However, KT has no enhancement effect on NME and peak torque.
Collapse
Affiliation(s)
- Igor Magalhães
- College of Physical Education, University of Brasilia (UnB), Brazil
| | - Martim Bottaro
- College of Physical Education, University of Brasilia (UnB), Brazil
| | - Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília (UnB), Brasília, Brazil
| | | | - Bruno A Rodrigues
- School of Physical Therapy, Campus UnB Ceilândia, University of Brasilia (UnB), Brazil
| | | | - Rodrigo Luiz Carregaro
- College of Physical Education, University of Brasilia (UnB), Brazil; School of Physical Therapy, Campus UnB Ceilândia, University of Brasilia (UnB), Brazil.
| |
Collapse
|
41
|
Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol 2016; 116:1159-77. [PMID: 27076217 DOI: 10.1007/s00421-016-3352-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE This study examined the relative influence of anatomical and neuromuscular variables on maximal isometric and concentric knee extensor torque and provided a comparative dataset for healthy young males. METHODS Quadriceps cross-sectional area (CSA) and fascicle length (l f) and angle (θ f) from the four quadriceps components; agonist (EMG:M) and antagonist muscle activity, and percent voluntary activation (%VA); patellar tendon moment arm distance (MA) and maximal voluntary isometric and concentric (60° s(-1)) torques, were measured in 56 men. Linear regression models predicting maximum torque were ranked using Akaike's Information Criterion (AICc), and Pearson's correlation coefficients assessed relationships between variables. RESULTS The best-fit models explained up to 72 % of the variance in maximal voluntary knee extension torque. The combination of 'CSA + θ f + EMG:M + %VA' best predicted maximum isometric torque (R (2) = 72 %, AICc weight = 0.38) and 'CSA + θ f + MA' (R (2) = 65 %, AICc weight = 0.21) best predicted maximum concentric torque. CONCLUSION Proximal quadriceps CSA was included in all models rather than the traditionally used mid-muscle CSA. Fascicle angle appeared consistently in all models despite its weak correlation with maximum torque in isolation, emphasising the importance of examining interactions among variables. While muscle activity was important for torque prediction in both contraction modes, MA only strongly influenced maximal concentric torque. These models identify the main sources of inter-individual differences strongly influencing maximal knee extension torque production in healthy men. The comparative dataset allows the identification of potential variables to target (i.e. weaknesses) in individuals.
Collapse
Affiliation(s)
- J Trezise
- Centre of Exercise and Health Science, Edith Cowan University, Joondalup, Australia.
| | - N Collier
- Faculty of Sustainability, Leuphana University, Lüneburg, Germany
| | - A J Blazevich
- Centre of Exercise and Health Science, Edith Cowan University, Joondalup, Australia.,School of Exercise and Health Sciences, Centre for Exercise and Sport Science Research (CESSR), Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
42
|
de Freitas Maia M, Paz GA, Miranda H, Lima V, Bentes CM, da Silva Novaes J, dos Santos Vigário P, Willardson JM. Maximal repetition performance, rating of perceived exertion, and muscle fatigue during paired set training performed with different rest intervals. J Exerc Sci Fit 2015; 13:104-110. [PMID: 29541107 PMCID: PMC5812862 DOI: 10.1016/j.jesf.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND/OBJECTIVE The purpose of this study was to examine rest interval length between agonist-antagonist paired set training (PS) on maximal repetition performance, rating of perceived exertion, and neuromuscular fatigue. METHODS Fourteen trained men (age, 24.2 ± 1.1 years; height, 175 ± 5.5 cm; body mass, 76.6 ± 7.0 kg) performed two experimental protocols in random order with 2 minutes (P2) or 4 minutes (P4) between agonist-antagonist PS, which consisted of a bench press set followed immediately by a seated row set with 8-repetition maximum loads, respectively. A total of three PS were performed for each rest interval protocol. The total repetitions performed and the rating of perceived exertion were recorded for each exercise set within each rest interval protocol. Electromyography signals were recorded for the posterior deltoid, biceps brachii, pectoralis major, and triceps brachii muscles during the SR exercise. The electromyography signals were then used to calculate a fatigue index for each rest interval protocol. RESULTS No significant differences were identified in the total repetitions completed between rest interval protocols for the bench press (P2 = 22.9 ± 1.3 and P4 = 22.6 ± 0.8) and seated row (P2 = 25.4 ± 1.7 and P4 = 25.1 ± 1.3). However, a significantly higher fatigue index was found for all muscles under the P2 versus the P4 protocol. CONCLUSION When performing agonist-antagonist PS, prescribing a shorter rest interval between PS may induce higher levels of fatigue, albeit with similar total repetitions versus a longer rest interval.
Collapse
Affiliation(s)
| | | | - Humberto Miranda
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vicente Lima
- Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, RJ, Brazil
| | - Claudio Melibeu Bentes
- Oswaldo Cruz Foundation–Fernandes Figueira Institute, Graduate Program in Applied Clinical Research On Women's Health, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
43
|
Noorkõiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc 2015; 46:1525-37. [PMID: 24504427 DOI: 10.1249/mss.0000000000000269] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. METHODS Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. RESULTS Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. CONCLUSION The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.
Collapse
Affiliation(s)
- Marika Noorkõiv
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, AUSTRALIA
| | | | | |
Collapse
|
44
|
Milligan A, Mills C, Scurr J. The effect of breast support on upper body muscle activity during 5km treadmill running. Hum Mov Sci 2014; 38:74-83. [DOI: 10.1016/j.humov.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
|
45
|
Musculoskeletal effects of 5 days of bed rest with and without locomotion replacement training. Eur J Appl Physiol 2014; 115:727-38. [PMID: 25425257 PMCID: PMC4359292 DOI: 10.1007/s00421-014-3045-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/02/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The present study evaluated the effectiveness of a short and versatile daily exercise regime, named locomotion replacement training (LRT), to maintain muscle size, isometric strength, power, and endurance capacity of the leg muscles following 5 days of head-down tilt (HDT) bed rest. METHODS 10 male subjects (age 29.4 ± 5.9 years; height 178.8 ± 3.7 cm; body mass 77.7 ± 4.1 kg) performed, in random order, 5 days of 6° head-down tilt bed rest (BR) with no exercise (CON), or BR with daily 25 min of upright standing (STA) or LRT. RESULTS Knee extensor and plantar flexor cross-sectional area (CSA) were reduced by 2-3 % following bed rest (P < 0.01) for CON and STA, yet maintained for LRT. Knee extensor isometric strength (MVC) decreased by 8 % for CON (P < 0.05), was maintained for STA, and increased with 12 % for LRT (P < 0.05). Plantar flexor MVC remained unaltered during the study. Maximum jump height declined (~1.5 cm) for all conditions (P < 0.001). Neural activation and knee extensor fatigability did not change with bed rest. Bone resorption increased during BR and neither LRT nor STA was able to prevent or attenuate this increase. CONCLUSION LRT was adequate to maintain muscle size and to even increase knee extensor MVC, but not muscle power and bone integrity, which likely requires more intense and/or longer exercise regimes. However, with only some variables showing significant changes, we conclude that 5 days of BR is an inadequate approach for countermeasure assessments.
Collapse
|
46
|
Smith-Ryan AE, Ryan ED, Fukuda DH, Costa PB, Cramer JT, Stout JR. The effect of creatine loading on neuromuscular fatigue in women. Med Sci Sports Exerc 2014; 46:990-7. [PMID: 24152706 DOI: 10.1249/mss.0000000000000194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to examine the effects of intermittent isometric fatigue on maximal voluntary contraction (MVC) strength, percent voluntary activation (%VA), peak twitch force (PTF), peak rate of force development (PRFD), half relaxation time (HRT), and maximal compound action potential (M-wave) amplitude of the soleus and medial gastrocnemius muscles before and after creatine (Cr) loading. METHODS Using a double-blinded, placebo-controlled, randomized design, 12 women were assigned to a Cr (n = 6; mean age ± SD = 23.3 ± 3.0 yr) or placebo (PL; n = 6; mean age ± SD = 21.3 ± 1.6 yr) group. Participants supplemented four times daily for 5 d with 5 g of Cr + 10 g of fructose or 10 g of fructose. At baseline and after testing, an isometric MVC and the twitch interpolation procedure were used before and after a 4-min isometric fatigue protocol of the plantarflexor muscles, which consisted of six intermittent duty cycles per minute (7-s contraction, 3-s relaxation) at 70% MVC. RESULTS There were no interactions between the Cr and PL groups (P > 0.05) for any dependent variable. The fatigue protocol reduced voluntary strength (-17.8%, P < 0.001) and %VA (-3.7%, P = 0.005). Baseline PTF (P < 0.005) and PRFD (P < 0.001) values were less than those of all respective time points, but PTF value decreased from 3 min to 4 min and after testing (P < 0.005). HRT increased from baseline to minutes 1 and 2 and then returned to baseline at minutes 3 and 4 and after testing. The M-wave did not change (P > 0.05). CONCLUSIONS Five days of Cr loading did not influence isometric force, %VA, evoked twitch properties, or the central and peripheral aspects of fatigue measured in this study.
Collapse
Affiliation(s)
- Abbie E Smith-Ryan
- 1Department of Exercise and Sport Science, University of North Carolina Chapel Hill, Chapel Hill, NC; 2Sport and Exercise Science, University of Central Florida, Orlando, FL; 3Department of Kinesiology, California State University-San Bernardino, San Bernardino, CA; and 4Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | | | | | | | | | | |
Collapse
|
47
|
Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J. The impact of pedal rate on muscle oxygenation, muscle activation and whole-body VO₂ during ramp exercise in healthy subjects. Eur J Appl Physiol 2014; 115:57-70. [PMID: 25204279 DOI: 10.1007/s00421-014-2991-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this project was to study the impact of pedal rate on breakpoints in muscle oxygenation (deoxy[Hb + Mb] and total[Hb + Mb]) and activation (iEMG and MPF) at high intensities during ramp exercise. METHODS Twelve physically active students performed incremental ramp exercises at 60 rpm, starting either at 50 or 80 W (i.e., 60rpm50 and 60rpm80), and at 100 rpm, starting at 50 W (100rpm50). Pulmonary VO2, muscle activation (iEMG and MPF) and oxygenation were recorded with EMG and NIRS, respectively. IEMG, MPF, deoxy[Hb + Mb] and total[Hb + Mb] were expressed as functions of work rate (WR) and pulmonary VO2 (%VO2peak) and analyzed with double-linear models. RESULTS The breakpoints (BP) of iEMG, MPF, total[Hb + Mb] and deoxy[Hb + Mb] in %VO2peak did not differ among the pedal rate conditions (P > 0.05), whereas the BPs in WR were significantly lower in 100rpm50 compared to 60rpm50 and 60rpm80 (P < 0.01). Across the pedal rate conditions the BP (in %VO2peak) of total[Hb + Mb] (82.7 ± 1.5 %VO2peak) was significantly lower (P < 0.01) compared to the BP in iEMG (84.3 ± 1.7 %VO2peak) and MPF (84.2 ± 1.6 %VO2peak), whereas the BP in deoxy[Hb + Mb] (87.4 ± 1.4 %VO2peak) and respiratory compensation point (89.9 ± 1.8 %VO2peak) were significantly higher (P < 0.01) compared to the BP in total[Hb + Mb], iEMG and MPF. Additionally, the BPs in iEMG, MPF, total[Hb + Mb] and deoxy[Hb + Mb], and the RCP were highly correlated (r > 0.90; P < 0.001). CONCLUSIONS The present study showed that muscle activation and oxygenation at high intensities during incremental exercise are related to pulmonary VO2 rather than external WR, with a close interrelationship between that muscle activation, oxygenation and pulmonary VO2.
Collapse
Affiliation(s)
- Jan Boone
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium,
| | | | | | | | | |
Collapse
|
48
|
Arabadzhiev TI, Dimitrov VG, Dimitrov GV. The increase in surface EMG could be a misleading measure of neural adaptation during the early gains in strength. Eur J Appl Physiol 2014; 114:1645-55. [PMID: 24789744 DOI: 10.1007/s00421-014-2893-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To test the validity of using the increase in surface EMG as a measure of neural adaptation during the early gains in strength. METHODS Simulation of EMG signals detected by surface bipolar electrode with 20-mm inter-pole distance at different radial distances from the muscle and longitudinal distances from the end-plate area. The increases in the root mean square (RMS) of the EMG signal due to possible alteration in the neural drive or elevation of the intracellular negative after-potentials, detected in fast fatigable muscle fibres during post-tetanic potentiation and assumed to accompany post-activation potentiation, were compared. RESULTS Lengthening of the intracellular action potential (IAP) profile due to elevation of the negative after-potentials could affect amplitude characteristics of surface EMG detected at any axial distance stronger than alteration in the neural drive. This was irrespective of the fact that the elevation of IAP negative after-potential was applied to fast fatigable motor units (MUs) only, while changes in frequency of activation (simulating neural drive changes) were applied to all MUs. In deeper muscles, where the fibre-electrode distance was larger, the peripheral effect was more pronounced. The normalization of EMG amplitude characteristics to an M-wave one could result only in partial elimination of peripheral factor influence CONCLUSIONS The increase in RMS of surface EMG during the early gains in strength should not be directly related to the changes in the neural drive. The relatively small but long-lasting elevated free resting calcium after high-resistance strength training could result in force potentiation and EMG increase.
Collapse
Affiliation(s)
- Todor I Arabadzhiev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113, Sofia, Bulgaria,
| | | | | |
Collapse
|
49
|
Staudenmann D, van Dieën JH, Stegeman DF, Enoka RM. Increase in heterogeneity of biceps brachii activation during isometric submaximal fatiguing contractions: a multichannel surface EMG study. J Neurophysiol 2013; 111:984-90. [PMID: 24335206 DOI: 10.1152/jn.00354.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of fatigue emerge from the beginning of sustained submaximal contractions, as shown by an increase in the amplitude of the surface electromyogram (EMG). The increase in EMG amplitude is attributed to an augmentation of the excitatory drive to the motor neuron pool that, more importantly than increasing discharge rates, recruits additional motor units for the contraction. The aim of this study was to determine whether the spatiotemporal distribution of biceps brachii (BB) activity becomes more or less heterogeneous during a fatiguing isometric contraction sustained at a submaximal target force. Multiple electrodes were attached over the entire BB muscle, and principal component analysis (PCA) was used to extract the representative information from multiple monopolar EMG channels. The development of heterogeneity during the fatiguing contraction was quantified by applying a cluster algorithm on the PCA-processed EMG amplitudes. As shown previously, the overall EMG amplitude increased during the sustained contraction, whereas there was no change in coactivation of triceps brachii. However, EMG amplitude did not increase in all channels and even decreased in some. The change in spatial distribution of muscle activity varied across subjects. As found in other studies, the spatial distribution of EMG activity changed during the sustained contraction, but the grouping and size of the clusters did not change. This study showed for the first time that muscle activation became more heterogeneous during a sustained contraction, presumably due to a decrease in the strength of common inputs with the recruitment of additional motor units.
Collapse
Affiliation(s)
- Didier Staudenmann
- Movement and Sport Science, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | | | | | | |
Collapse
|
50
|
Borji R, Sahli S, Zarrouk N, Zghal F, Rebai H. Neuromuscular fatigue during high-intensity intermittent exercise in individuals with intellectual disability. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:4477-4484. [PMID: 24139713 DOI: 10.1016/j.ridd.2013.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 06/02/2023]
Abstract
This study examined neuromuscular fatigue after high-intensity intermittent exercise in 10 men with mild intellectual disability (ID) in comparison with 10 controls. Both groups performed three maximal voluntary contractions (MVC) of knee extension with 5 min in-between. The highest level achieved was selected as reference MVC. The fatiguing exercise consists of five sets with a maximal number of flexion-extension cycles at 80% of the one maximal repetition (1RM) for the right leg at 90° with 90 s rest interval between sets. The MVC was tested again after the last set. Peak force and electromyography (EMG) signals were measured during the MVC tests. Root Mean Square (RMS) and Median Frequency (MF) were calculated. Neuromuscular efficiency (NME) was calculated as the ratio of peak force to the RMS. Before exercise, individuals with ID had a lower MVC (p<0.05) and a lower RMS (p<0.05). No significant difference between groups in MF and NME. After exercise, MVC decreases significantly in both groups (p<0.001). Individuals with ID have greater force decline (p<0.001 vs. p<0.01). RMS decreased significantly (p<0.001) whereas the NME increased significantly (p<0.05) in individuals with ID, but both remained unchanged in controls. The MF decreased significantly in both groups (p<0.001). In conclusion, individuals with ID presented a lower peak force than individuals without ID. After a high-intensity intermittent exercise, individuals with ID demonstrated a greater force decline caused by neural activation failure. When rehabilitation and sport train ID individuals, they should consider this nervous system weakness.
Collapse
Affiliation(s)
- Rihab Borji
- Unité de Recherche Adaptations Cardio-circulatoires, Respiratoires, Métaboliques et Hormonales à l'Exercice Musculaire, Faculté de Médecine Ibn El Jazzar, Université du Centre, Sousse, Tunisia.
| | | | | | | | | |
Collapse
|