1
|
Zhang Y, Zhang Y, Wu A. Design and construction of magnetic nanomaterials and their remediation mechanisms for heavy metal contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175369. [PMID: 39122020 DOI: 10.1016/j.scitotenv.2024.175369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Soil heavy metal pollution poses huge threat to ecosystem and human health. In-situ chemical remediation aims to immobilize free heavy metals in soil through adding passivators, thereby greatly reducing the mobility and bioavailability of heavy metals. Magnetic nanomaterials (MaN) have strong adsorption and immobilization capabilities for heavy metals due to their significant surface effects, small size effects and interfacial effects. Compared with traditional remediation materials, MaN can be recovered and reused using external magnetic fields. These advantages give MaN broad application prospects in the field of soil remediation. This work provides a comprehensive review of the application of MaN in heavy metal contaminated soil, including the design and application effect of various types of MaN, the influence of MaN on soil properties, environmental toxicity, and microbial composition, the in-situ remediation mechanism of MaN on heavy metal contaminated soil. On the other hand, there are potential risks associated with the remediation of heavy metal contaminated soil using MaN, including their impact on the soil ecosystem and biosafety concerns, requiring further research. Finally, this review proposes the future prospects for the application of MaN in the remediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China.
| |
Collapse
|
2
|
He Y, Ou GZ, Zhang Z, Shen ZT, Wei H, Ding XH, Wang Q, Zhang KN, Chen YG, Ye WM. On-site monitoring and numerical simulation on groundwater flow and pollution plume evolution in a hexavalent-chromium contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135662. [PMID: 39216239 DOI: 10.1016/j.jhazmat.2024.135662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Accurately ascertaining spatiotemporal distribution of pollution plume is critical for evaluating the effectiveness of remediation technologies and environmental risks associated with contaminated sites. This study concentrated on a typical Cr(VI) contaminated smelter being currently remediated using pump-and-treat (PAT) technology. Long-term on-site monitoring data revealed that two highly polluted regions with Cr(VI) concentrations of 162.9 mg/L and 234.5 mg/L existed within the contaminated site, corresponding to previous chromium slag yard and sewage treatment plant, respectively. The PAT technology showed significant removal performance in these highly polluted areas (>160 mg/L) after six months of pumping, ultimately achieving complete removal of the pollutants in these high-pollution areas. Numerical simulation results showed that although the current remediation scheme significantly reduced the Cr(VI) pollution degree, it did not effectively prevent the incursion of the pollution plume into the downstream residential area after 20 years. Additionally, an improved measure involving supplementary pumping wells was proposed, and its remediation effects were quantitatively evaluated. Results indicated that the environmental pollution risk of groundwater downstream could be effectively mitigated by adding pumping wells, resulting in a reduction of the pollution area by 20 % in the case of adding an internal well and 41 % with the addition of external wells after 20 years. The findings obtained in this study will provide an important reference and theoretical guidance for the reliability analysis and design improvement of the PAT remediation project.
Collapse
Affiliation(s)
- Yong He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Ge-Zhi Ou
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Zhao Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China.
| | - Zheng-Tao Shen
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, PR China
| | - He Wei
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Xiang-Hong Ding
- School of Civil Engineering, Central South University, Changsha 410083, PR China
| | - Qiong Wang
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| | - Ke-Neng Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Central South University, Ministry of Education, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Yong-Gui Chen
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei-Min Ye
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
3
|
Liu H, Guo H, Pourret O, Wang Z. Anthropogenic impact of rare earth elements on groundwater and surface water in the watershed of the largest freshwater lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175063. [PMID: 39067591 DOI: 10.1016/j.scitotenv.2024.175063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Limited knowledge exists regarding the potential risks associated with anthropogenic release of rare earth elements (REEs) in the environment. This study aimed to investigate REE signatures in the watershed Poyang Lake, the largest freshwater lake in China. Samples of surface water, wastewater, and groundwater were collected from five rivers discharging into the lake. Results revealed wastewater from wastewater treatment plants contained total REE concentrations from 231 to 904 μg/L, exceeding those found in surface water (0.4 to 1.3 μg/L) and groundwater (0.5 to 416 μg/L). Samples with elevated REE were found in Ca-Mg-Cl/SO4 type waters and exhibited an 18OD deviation from local meteoric water line. Wastewater exhibited a higher positive Gd anomaly compared to surface water and groundwater, attributed to anthropogenic input of Gd (Gdanth). The determined Gdanth concentration ranged from 0.04 to 0.21 μg/L, and from 0.06 to 0.37 μg/L, accounting for 4 % to 21 % and 49 % to 84 % of total Gd concentrations in groundwater and surface water, respectively. Gdanth concentration in wastewater (0.19 to 0.43 μg/L) remained constant in effluent after wastewater treatment. Surface water displayed relatively complex normalized REE patterns influenced by anthropogenic activities and natural processes (weathering and complexation), while groundwater exhibited heavy REEs enrichment, due to carbonate solution complexation. Additionally, Gdanth concentration showed a positive correlation with ΣREE, Pb, Ni, and Co concentrations in groundwater, indicating a good pollution tracing potential. Health risk assessment using the hazard quotient (HQ) suggested higher HQGd values in groundwater compared to surface water. Residents in the eastern part of Poyang Lake were found to face higher risks associated with Gd in groundwater compared to the western part, with infants and children at greater risk than adult males and females. These findings offer valuable insights into environmental behavior and health risks of REEs in aquatic systems impacted by human activities.
Collapse
Affiliation(s)
- Haiyan Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution and School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China.
| | - Huaming Guo
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | | | - Zhen Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution and School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| |
Collapse
|
4
|
Ibáñez J, Pérez-de-Mora A, Santiago-Herrera M, Belloncle B, de Wilde H, Martel-Martín S, Blanco-Alcántara D, Barros R. Environmental and socio-economic evaluation of a groundwater bioremediation technology using social Cost-Benefit Analysis: Application to an in-situ metal(loid) precipitation case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176720. [PMID: 39378832 DOI: 10.1016/j.scitotenv.2024.176720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Bioremediation can be an alternative or complementary approach to conventional soil and water treatment technologies. Determining the environmental and socio-economic impacts of bioremediation is important but rarely addressed. This work presents a comprehensive sustainability assessment for a specific groundwater bioremediation case study based on In-situ Metal(loid) Precipitation (ISMP) by conducting a social Cost-Benefit Analysis (CBA) using two different approaches: environmental Life Cycle Costing (eLCC) and Impact Pathway Approach (IPA). Externalities are calculated in two ways: i) using Environmental Prices (EP) to monetize Life Cycle Assessment (LCA) results and metal(loid)s removed at field scale, and ii) following the IPA steps to determine the social costs avoided by removing arsenic contamination at full scale. The results show that, in the baseline scenario, the project is not socio-economically viable in both cases as the Net Present Value (NPV) is -129,512.61 € and - 415,185,140 € respectively. Sensitivity and scenario analyses are performed to identify the key parameters and actions needed to reach a positive NPV. For instance, increasing the amount of water treated per year to 90 m3 and assuming a 20 % increase in operation costs and a 60 % increase in construction costs can make the project socio-economically viable at the field scale, while a reduction in the social discount rate from a 4 % to a 2 % can lead to a positive NPV at the full scale. The approaches proposed in this work may be useful for practitioners and policymakers when evaluating the environmental and socio-economic impacts of bioremediation technologies at different scales and regions, as well as human health impacts caused by contaminants at the current legal limits.
Collapse
Affiliation(s)
- Jesús Ibáñez
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | | | - Mario Santiago-Herrera
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | | | - Herwig de Wilde
- TAUW België nv, Dept. of Soil & Groundwater, Waaslandlaan 8A3, 9160 Lokeren, Belgium
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - David Blanco-Alcántara
- Department of Economics and Business Administration, Faculty of Economic and Business Sciences, University of Burgos, Calle Parralillos, s/n, 09001 Burgos, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
5
|
Guo L, Xu X, Wang Q, Yuan X, Niu C, Dong X, Liu X, Lei H, Zhou L. A comprehensive investigation of the adsorption behaviour and mechanism of industrial waste sintering and bayer red muds for heavy metals. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:434. [PMID: 39316166 DOI: 10.1007/s10653-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
The issue of heavy metal pollution is a critical global concern that requires urgent solution. However, conventional heavy metal adsorbents are too costly to be applied in large-scale engineering. In this study, adsorption behavior and mechanism of sintering red mud (RM-A) and bayer red mud (RM-B) for heavy metals were investigated to address the disposal of red mud as industrial waste and remediation of heavy metal pollution. Batch adsorption experiments were conducted to explore the adsorption performances of RM-A and RM-B under various conditions. Characterization of RM-A and RM-B before and after adsorption by XRD, FTIR and SEM-EDX was applied to investigate the specific adsorption behavior and mechanism. Adsorption experiments of both RM-A and RM-B fitted pseudo-second-order kinetic model and Langmuir isotherm model, with estimated maximum adsorption capacity of 21.96 and 25.19 mg/g for Cd2+, 21.47 and 26.06 mg/g for Cu2+ and 55.47 and 59.65 mg/g for Pb2+, respectively. Precipitation transformation of calcite was the primary adsorption mechanism for RM-A, whereas ion exchange of cancrinite, surface coordination compounds of hematite and minor precipitation transformation of calcite accounted for the adsorption mechanism for RM-B. Overall, RM-A and RM-B exhibited best adsorption performance for Pb2+, with RM-B showing greater adsorption capacity attributed to its higher specific surface area. This study compared the adsorption properties of RM-A and RM-B for the first time and demonstrated that both red muds can be effectively applied to remove heavy metals, thereby contributing to the sustainable industrial waste management and resourceful reuse.
Collapse
Affiliation(s)
- Lisheng Guo
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Xin Xu
- College of Construction Engineering, Jilin University, Changchun, 130026, China.
| | - Qing Wang
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Xiaoqing Yuan
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Cencen Niu
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Xiaoqiang Dong
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaofeng Liu
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haomin Lei
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| | - Lu Zhou
- College of Construction Engineering, Jilin University, Changchun, 130026, China
| |
Collapse
|
6
|
Qiu H, Xu J, Yuan Y, Alesi EJ, Liang X, Cao B. Low-disturbance land remediation using vertical groundwater circulation well technology: The first commercial deployment in an operational chemical plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173804. [PMID: 38848922 DOI: 10.1016/j.scitotenv.2024.173804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Soil and groundwater contamination by organic pollutants from chemical plants presents significant risks to both environmental and human health. We report a significant field trial where a chemical plant in operation showed soil and groundwater pollution, as verified by sampling and laboratory tests. While many remediation methods are effective, they often require the temporary shutdown of plant operations to install necessary equipment. This paper introduces a novel combination of low-disturbance contaminant remediation technologies, including groundwater circulation well (GCW), pump and treat (P&T), and in-situ chemical oxidation (ISCO) technologies, that can be applied on the premises of an active plant without halting production. The groundwater with dissolved contaminants is removed through P&T and GCW, while GCW enhances ISCO that focus on eliminating the remaining hard-to-pump contaminants. Results show: (1) after two years of remediation effort, the contaminant levels in soil and groundwater were significantly reduced; (2) the average concentration reduction rate of four contaminants, including 1,2-dichloroethane, methylbenzene, ethylbenzene, and M&P-xylene, exceeds 98 %; (3) the presented remediation strategy results in the improvement of remediation efficiency. Specifically, the concentration of 1,2-dichloroethane in observation wells dropped from 40,550.7 μg/L to 44.6 μg/L. This study offers a first-of-its-kind commercial deployment of a GCW-based remediation strategy in an active plant setting. Moreover, the combined remediation approach presented here can serve as a model for designing contaminant remediation projects that require minimal operational disruption.
Collapse
Affiliation(s)
- Huiyang Qiu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jian Xu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, China.
| | - Yizhi Yuan
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Eduard J Alesi
- IEG Technologie GmbH, Hohlbachweg 2, D-73344 Gruibingen, Baden-Württemberg, Germany
| | - Xin Liang
- Jiangsu Zhongchuan Ecological Environment Co., Ltd, China
| | - Benyi Cao
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
7
|
Ansari AH, Das A, Sonker A, Ansari NG, Ansari MA, Morthekai P. Assessment of the health risks associated with heavy metal contamination in the groundwaters of the Leh district, Ladakh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:369. [PMID: 39167338 DOI: 10.1007/s10653-024-02149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
There has been a significant rise in cancer-related mortality in the Ladakh region during the past 10 years. The most common type of case is gastrointestinal cancer, which has been linked in theory by medical research to lifestyle factors, high altitude conditions, and the prevalence of Helicobacter pylori bacteria brought on by poor hygiene. Nevertheless, the precise cause of the rise in cancer cases is still unknown. Concurrently, there has been a significant change in Ladakh's water use practices due to development, improved basic utilities, and related vocational shifts. The local population has become increasingly reliant on groundwater since it provides a year-round, continuous water supply for home and agricultural uses. In this study, we assessed heavy metal contamination in groundwaters and associated human health risks. The results indicate that 46-96% of the groundwater samples have heavy metal pollution with a health hazard index > 1, which means using these groundwaters for drinking, food preparation, and agriculture is likely to result in carcinogenic and non-carcinogenic health hazards. The main heavy metal contaminants found in the groundwater of the Leh district include Cr, As, Hg, and U. According to the health risk assessment, 46-76% of the groundwater samples contain unsafe levels of Cr and As. Prolonged exposure to these levels is likely to cause gastrointestinal cancer in the local population. Acute to chronic exposure to U and Hg concentrations present in some groundwater samples is likely to result in various non-carcinogenic health risks.
Collapse
Affiliation(s)
- A H Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Arunaditya Das
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Archana Sonker
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Nasreen Ghazi Ansari
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Mohammad Arif Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - P Morthekai
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
8
|
Zhang L, Zhu Y, Gu H, Lam SS, Chen X, Sonne C, Peng W. A review of phytoremediation of environmental lead (pb) contamination. CHEMOSPHERE 2024; 362:142691. [PMID: 38914287 DOI: 10.1016/j.chemosphere.2024.142691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
An estimated one billion people globally are exposed to hazardous levels of lead (Pb), resulting in intellectual disabilities for over 600,000 children each year. This critical issue aligns with the expanding worldwide population and the demand for food security, emphasizing the urgency of effectively addressing heavy metal pollution especially from Pb for sustainable development. Phytoremediation, a highly favoured approach in conjunction with conventional physical, chemical, and microbial methods, is a promising approach to mitigating soil and environmental contamination. In this review, we delve into a range of soil pollution mitigation strategies, with focus on the mechanisms that underpin the phytoremediation of environmental Pb. This detailed exploration sheds light on the efficacy and complexities of utilizing plants for the detoxification and removal of lead from contaminated environments. It also examines strategies to enhance phytoremediation by incorporating microbiology, composting, nanotechnology, and foliar spraying. The potential remediation strategies largely depend on the investigation and incorporation of environmentally friendly catalysts, as well as the utilization of innovative methods such as genetic engineering to improve phytoremediation processes. Studies have also shown that biochar has the capability to lower heavy metal concentrations in plant branches by over 50%, without affecting the pH of the soil. Specifically, magnetic biochar (MBC) has been shown to decrease lead levels in plants by up to 42%. Employing these methods showcases an effective strategy to enhance the efficacy of remediation techniques and fosters sustainable solutions to the pervasive issue of Pb pollution, thereby contributing to sustainable development efforts globally.
Collapse
Affiliation(s)
- Lele Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yachen Zhu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Xiangmeng Chen
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, POBox 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India.
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
9
|
Prasannakumari ASN, Madhu GDP, Bhuvanendran RK, Bhuvaneshwari S. Development of a continuous electrochemical reactor incorporated with waste-derived activated carbon electrode for the effective removal of hexavalent chromium from industrial effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50297-50315. [PMID: 39093392 DOI: 10.1007/s11356-024-34512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Being a recognized carcinogen, hexavalent chromium is hazardous to both human and environmental health. Thus, it is imperative to regulate and oversee their levels in a variety of industries, including textiles, dyes, pigments, and metal finishing. This study strives to reduce Cr(VI) in wastewater by using capacitive deionization in conjunction with an activated carbon-based electrode and a continuous electrochemical reactor (CER). Activated carbon derived from rubberwood sawdust demonstrated excellent properties, including a high surface area of 1157 m2 g-1. The electrical conductivity and mechanical stability of the electrode were enhanced by the incorporation of synthesized expanded graphite (EG) into the AC. Key parameters were optimized via systematic batch electroreduction experiments with an optimal response surface design. The efficacy of the fabricated CER was proved when it successfully reduced Cr(VI) in a 5 mg L-1 solution within 15 min under optimized conditions, in contrast to the considerably longer durations anticipated by conventional methods. Validation of these findings was done by treating industrial wastewater of 30 mg L-1 in the CER. The electroreduction of Cr(VI) followed the Langmuir isotherm with a maximum capacity of 13.491 mg g-1 and pseudo-second-order kinetics. These results indicate that the combined use of the modified AC electrode and CER holds potential as a sustainable and economical approach to effectively eliminate Cr(VI) from wastewater.
Collapse
Affiliation(s)
| | | | - Rahul Krishna Bhuvanendran
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601
| | - Soundararajan Bhuvaneshwari
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India, 673601.
| |
Collapse
|
10
|
Wang P, Huang X, Li W, Wang K, Chen Z, Liu H. Enhanced consolidation and removal of accumulated flocculants in dredged soil via leaching with vacuum preloading. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:286. [PMID: 38967819 DOI: 10.1007/s10653-024-02067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/04/2024] [Indexed: 07/06/2024]
Abstract
The vacuum preloading coupling flocculation treatment is a widely employed method for reinforcing soils with high water content in practical construction. However, uneven distribution and accumulation of flocculants pose significant damage to the soil environment and result in uneven soil consolidation, leading to severe issues in subsequent soil development and exploitation. To address these concerns, an evolved leaching with vacuum method is developed for facilitating soil consolidation while preventing the accumulation of flocculant in the soil. In this study, five model tests are conducted in which FeCl3 is chosen as the typical flocculant to promote soil consolidation, and deionized water is used for leaching. The final discharged water, settlement, water content and penetration resistance of soil are obtained to evaluate the soil reinforcement effect, while the flocculant removal effect is evaluated by the Fe3+ content in the filtrate and soil. The comprehensive reinforcement and flocculant removal effect show that this method is extremely effective compared to traditional vacuum preloading. The two leaching is clarified as the best choice, resulting in a 22% decrease in the soil water content and a 25% in soil penetration resistance, meanwhile a 12.8% removal rate of the flocculant. The test results demonstrate that leaching with vacuum preloading can contribute to promoting soil consolidation and reducing the accumulation of flocculant in the soil, ensuring the safe and eco-friendly use of the soil for future applications. The conclusions obtained are of significant theoretical value and technical support for practical construction and sustainable development.
Collapse
Affiliation(s)
- Peng Wang
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Xianfeng Huang
- College of Life and Environment Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Wenqian Li
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Kairu Wang
- College of Life and Environment Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Zhanou Chen
- College of Civil Engineering and Architecture, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Hongzhi Liu
- State Grid Shandong Electric Power Company Economic and Technology Research Institute, Jinan, 250021, China
| |
Collapse
|
11
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. A review on arsenic pollution, toxicity, health risks, and management strategies using nanoremediation approaches. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:269-289. [PMID: 36563406 DOI: 10.1515/reveh-2022-0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Over 50 countries are affected by arsenic contamination. The problem is becoming worse as the number of affected people increases and new sites are reported globally. CONTENT Various human activities have increased arsenic pollution, notably in both terrestrial and aquatic environments. Contamination of our water and soil by arsenic poses a threat to our environment and natural resources. Arsenic poisoning harms several physiological systems and may cause cancer and death. Excessive exposure may cause toxic build-up in human and animal tissues. Arsenic-exposed people had different skin lesion shapes and were vulnerable to extra arsenic-induced illness risks. So far, research shows that varying susceptibility plays a role in arsenic-induced diseases. Several studies have revealed that arsenic is a toxin that reduces metabolic activities. Diverse remediation approaches are being developed to control arsenic in surrounding environments. SUMMARY AND OUTLOOK A sustainable clean-up technique (nanoremediation) is required to restore natural equilibrium. More research is therefore required to better understand the biogeochemical processes involved in removing arsenic from soils and waters.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Manganyi MC, Dikobe TB, Maseme MR. Exploring the Potential of Endophytic Microorganisms and Nanoparticles for Enhanced Water Remediation. Molecules 2024; 29:2858. [PMID: 38930923 PMCID: PMC11206248 DOI: 10.3390/molecules29122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Endophytic microorganisms contribute significantly to water bioremediation by enhancing pollutant degradation and supporting aquatic plant health and resilience by releasing bioactive compounds and enzymes. These microorganisms inhabit plant tissues without causing disease or any noticeable symptoms. Endophytes effectively aid in eliminating contaminants from water systems. Nanoparticles serve as potent enhancers in bioremediation processes, augmenting the efficiency of pollutant degradation by increasing surface area and bioavailability, thereby improving the efficacy and rate of remediation. Their controlled nutrient release and ability to stabilize endophytic colonization further contribute to the enhanced and sustainable elimination of contaminated environments. The synergistic effect of endophytes and nanoparticles in water remediation has been widely explored in recent studies, revealing compelling outcomes. Water pollution poses significant threats to human health, ecosystems, and economies; hence, the sixth global goal of the Sustainable Development Agenda 2030 of the United Nations aims to ensure the availability and sustainable management of water resources, recognizing their crucial importance for current and future generations. Conventional methods for addressing water pollution exhibit several limitations, including high costs, energy-intensive processes, the production of hazardous by-products, and insufficient effectiveness in mitigating emerging pollutants such as pharmaceuticals and microplastics. Noticeably, there is an inability to effectively remove various types of pollutants, thus resulting in incomplete purification cycles. Nanoparticle-enhanced water bioremediation offers an innovative, eco-friendly alternative for degrading contaminants. A growing body of research has shown that integrating endophytic microorganisms with nanoparticles for water bioremediation is a potent and viable alternative. This review examines the potential of using endophytic microorganisms and nanoparticles to enhance water remediation, exploring their combined effects and applications in water purification. The paper also provides an overview of synthetic methods for producing endophyte-nanoparticle composites to optimize their remediation capabilities in aqueous environments. The final section of the review highlights the constraints related to integrating endophytes with nanoparticles.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Biological and Environmental sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Medunsa 0204, South Africa
| | - Tshegofatso Bridget Dikobe
- Unit for Environmental Sciences and Management, Department of Botany, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mametsi Rahab Maseme
- Department of Chemical and Physical Sciences, Walter Sisulu University, Private Bag XI, Mthatha 5117, South Africa
| |
Collapse
|
13
|
Pérez-de-Mora A, de Wilde H, Paulus D, Roosa S, Onderwater R, Paint Y, Avignone Rossa C, Farkas D. Biostimulation of sulfate reduction for in-situ metal(loid) precipitation at an industrial site in Flanders, Belgium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172298. [PMID: 38615778 DOI: 10.1016/j.scitotenv.2024.172298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
A 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.5 units. The study focused on the most impacted permeable fine sand aquifer (8-9 m below groundwater level) confined by layers of non-permeable clay. The fine sands exhibited initially oxic conditions (50-200 mV), an acidic pH of 4.5 and sulfate concentrations ranging from 600 to 800 mg/L. At the central monitoring well, anoxic conditions (-200 to -400 mV) and a pH of 5.9 established shortly after the second substrate and reagent injection. Over the course of 12 months, there was a significant decrease in the concentration of arsenic (from 2500 to 12 μg/L), nickel (from 360 to <2 μg/L), zinc (from 78,000 to <2 μg/L), and sulfate (from 930 to 450 mg/L). Low levels of metal(loid)s were still present after 34 months (end of study). Mineralogical analysis indicated that the precipitates formed were amorphous in nature. Evidence for biologically driven metal(loid) precipitation was provided by compound specific stable isotope analysis of sulfate. In addition, changes in microbial populations were assessed using next-generation sequencing, revealing stimulation of native sulfate-reducing bacteria. These results highlight the potential of biostimulation for long-term in situ metal(loid) plume treatment/containment.
Collapse
Affiliation(s)
| | - Herwig de Wilde
- TAUW België nv, Dept. of Soil & Groundwater, Waaslandlaan 8A3, 9160 Lokeren, Belgium
| | - Dirk Paulus
- TAUW België nv, Dept. of Soil & Groundwater, Remylaan 4C, Bus 3, 3018 Leuven, Belgium
| | - Stephanie Roosa
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Rob Onderwater
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Yoann Paint
- Materia NOVA Institute, 6 Avenue du champ de Mars, 7000 Mons, Belgium
| | - Claudio Avignone Rossa
- University of Surrey, Deptartment of Microbial Sciences, Guildford GU2 7XH, United Kingdom
| | - Daniel Farkas
- University of Surrey, Deptartment of Microbial Sciences, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
14
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
15
|
Hashem HM, El-Maghrabey M, El-Shaheny R. Inclusive study of peanut shells derived activated carbon as an adsorbent for removal of lead and methylene blue from water. Sci Rep 2024; 14:13515. [PMID: 38866816 PMCID: PMC11169236 DOI: 10.1038/s41598-024-63585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Green and efficient agro-waste-based activated carbon has been prepared utilizing peanut shells for adsorptive elimination of an industrial dye, methylene blue, and lead from polluted water. The carbonaceous biomass obtained from peanut shells was chemically activated using either NaOH, ZnCl2, or steam and characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and N2 adsorption and desorption studies. The adsorption process was optimal for methylene blue at alkaline pH, while pH 4.5 was optimal for Pb (II) adsorption. The adsorption takes place through pseudo-second-order kinetic, and the rate-governing step of the adsorption procedure are intraparticle diffusion and film diffusion. Furthermore, the thermodynamics of the adsorption process has been studied, and the obtained Gibbs free energy (ΔG°) values are negative (- 35.90 to - 43.59 kJ mol-1) indicating the spontaneous adsorption of the investigated pollutants on the prepared activated carbon. As per the correlation coefficient, the obtained results were best fit by the Langmuir isotherm with maximum adsorption capacity of 303.03 mg g-1 for methylene blue and 130.89 mg g-1 for Pb (II). The activated carbon successfully removed methylene blue and Pb (II) with %removal exceeding 95%. The mechanisms of interaction of Pb (II) with the activated carbon is a combination of electrostatic interaction and ion exchange, while methylene blue interacts with the activated carbon via π-π interaction, hydrogen bonds, and electrostatic interaction. Thus, the prepared activated carbon has been employed to decontaminate wastewater and groundwater samples. The developed agro-waste-based activated carbon is a promising, cost-efficient, green, and accessible tool for water remediation.
Collapse
Affiliation(s)
- Heba M Hashem
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Wang M, Han Q, Zhang M, Liu X, Liu B, Wang Z. Efficient remediation of mercury-contaminated groundwater using MoS 2 nanosheets in an in situ reactive zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104347. [PMID: 38657473 DOI: 10.1016/j.jconhyd.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS2 nanosheets have been proven promising in removing Hg from groundwater, an effective tool for in situ groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS2 nanosheets in sand column, and employed the formed MoS2in situ reactive zone (IRZ) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS2 initial concentration promoted the transport of MoS2 in sand column, while the addition of Ca ions increased the retention of MoS2. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS2 and Hg. With an optimized MoS2 loading, MoS2IRZ effectively reduced the Hg effluent concentration down to <1 μg/L without apparent Hg remobilization. Additionally, flake-like MoS2 employed in this study showed much better Hg removal performance than flower-like and bulk MoS2, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS2 nanosheets have the potential to be an efficient IRZ reactive material for in situ remediation of Hg in contaminated groundwater.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
17
|
Wang Z, Huang K, Zheng Y, Ye H, Wang J, Tao X, Zhou J, Dang Z, Lu G. Efficient removal of heavy metals in water utilizing facile cross-link conjugated linoleic acid micelles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20665-20677. [PMID: 38381288 DOI: 10.1007/s11356-024-32517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Micellar-enhanced ultrafiltration (MEUF) technology is an effective method to treat low-concentration heavy metal wastewater. However, the leakage of surfactants in the ultrafiltration (UF) process will inevitably cause secondary pollution. In this study, a biosurfactant of conjugated linoleic acid (CLA) with conjugated double bonds was selected to bind its micelles by simple thermal crosslinking to obtain morphologically stable stearic acid (SA) nanoparticles. The pure SA nanoparticles were obtained by repeated dialysis. The stability of the SA nanoparticles was verified by comparing the particle size distribution and solubility of the materials before and after crosslinking at different pH levels. The effectiveness of SA nanoparticle-enhanced UF in removing heavy metals was verified by exploring the adsorption performance of SA nanoparticles. The dialysis device was used to simplify the UF device, wherein SA nanoparticles were assessed as adsorbents for the elimination of Cu2+, Pb2+, and Cd2+ ions from aqueous solutions under diverse process parameters, including pH, contact time, metal ion concentration, and coexisting ions. The findings indicate that the SA nanoparticles have no evidence of secondary contamination in UF and exhibit compatibility with a broad pH range and coexisting ions. The maximum adsorption capacities for Cu2+, Pb2+, and Cd2+ were determined to be 152.77, 403.56, and 271.46 mg/g, respectively.
Collapse
Affiliation(s)
- Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Kaibo Huang
- School of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Juan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Hussain F, Kim LH, Kim H, Kim Y, Oh SE, Kim S. Enhanced bioremediation of acid mine-influenced groundwater with micro-sized emulsified corn oil droplets (MOD) and sulfate-reducing bacteria (Desulfovibrio vulgaris) in a microcosm assay. CHEMOSPHERE 2024; 352:141403. [PMID: 38368967 DOI: 10.1016/j.chemosphere.2024.141403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
High concentrations of metals and sulfates in acid mine drainage (AMD) are the cause of the severe environmental hazard that mining operations pose to the surrounding ecosystem. Little study has been conducted on the cost-effective biological process for treating high AMD. The current research investigated the potential of the proposed carbon source and sulfate reduction bacteria (SRB) culture in achieving the bioremediation of sulfate and heavy metals. This work uses individual and combinatorial bioaugmentation and bio-stimulation methods to bioremediate acid-mine-influenced groundwater in batch microcosm experiments. Bioaugmentation and bio-stimulation methods included pure culture SRB (Desulfovibrio vulgaris) and microsized oil droplet (MOD) by emulsifying corn oil. The research tested natural attenuation (T 1), bioaugmentation (T2), biostimulation (T3), and bioaugmentation plus biostimulation (T4) for AM-contaminated groundwater remediation. Bioaugmentation and bio-stimulation showed the greatest sulfate reduction (75.3%) and metal removal (95-99%). Due to carbon supply scarcity, T1 and T2 demonstrated 15.7% and 27.8% sulfate reduction activities. Acetate concentrations in T3 and T4 increased bacterial activity by providing carbon sources. Metal bio-precipitation was substantially linked with sulfate reduction and cell growth. SEM-EDS study of precipitates in T3 and T4 microcosm spectra indicated peaks for S, Cd, Mn, Cu, Zn, and Fe, indicating metal-sulfide association for metal removal precipitates. The MOD provided a constant carbon source for indigenous bacteria, while Desulfovibrio vulgaris increased biogenic sulfide synthesis for heavy metal removal.
Collapse
Affiliation(s)
- Fida Hussain
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea; Department of Environmental Science, University of Lahore, Lahore, 545590, Pakistan; Department of biological Environment, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Lan Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Huiyun Kim
- Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Young Kim
- Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea
| | - Sang-Eun Oh
- Department of biological Environment, Kangwon National University, Chuncheon-si, 24341, Republic of Korea
| | - Sungpyo Kim
- Research Institute for Advanced Industrial Technology, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea; Department of Environmental Engineering, Korea University, 2511 Sejong-ro, Sejong city, 30019, Republic of Korea.
| |
Collapse
|
19
|
Viotti P, Marzeddu S, Antonucci A, Décima MA, Lovascio P, Tatti F, Boni MR. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:809. [PMID: 38399060 PMCID: PMC10890072 DOI: 10.3390/ma17040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
Collapse
Affiliation(s)
- Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Simone Marzeddu
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Angela Antonucci
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - María Alejandra Décima
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Pietro Lovascio
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Tatti
- National Centre of Waste and Circular Economy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
20
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
21
|
Xue S, Wang Y, Jiang J, Tang L, Xie Y, Gao W, Tan X, Zeng J. Groundwater heavy metal(loid)s risk prediction based on topsoil contamination and aquifer vulnerability at a zinc smelting site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122939. [PMID: 37981182 DOI: 10.1016/j.envpol.2023.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.
Collapse
Affiliation(s)
- Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| | - Yuanyuan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China
| | - Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yi Xie
- New World Environment Protection Group of Hunan, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xingyao Tan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
22
|
Yuan L, Wang K, Zhao Q, Yang L, Wang G, Jiang M, Li L. An overview of in situ remediation for groundwater co-contaminated with heavy metals and petroleum hydrocarbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119342. [PMID: 37890298 DOI: 10.1016/j.jenvman.2023.119342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Groundwater is an important component of water resources. Mixed pollutants comprising heavy metals (HMs) and petroleum hydrocarbons (PHs) from industrial activities can contaminate groundwater through such processes as rainfall infiltration, runoff and discharge, which pose direct threats to human health through the food chain or drinking water. In situ remediation of contaminated groundwater is an important way to improve the quality of a water environment, develop water resources and ensure the safety of drinking water. Bioremediation and permeable reactive barriers (PRBs) were discussed in this paper as they were effective and affordable for in situ remediation of complex contaminated groundwater. In addition, media types, technology combinations and factors for the PRBs were highlighted. Finally, insights and outlooks were presented for in situ remediation technologies for complex groundwater contaminated with HMs and PHs. The selection of an in situ remediation technology should be site specific. The remediation of complex contaminated groundwater can be approached from various perspectives, including the development of economical materials, the production of slow-release and encapsulated materials, and a combination of multiple technologies. This review is expected to provide technical guidance and assistance for in situ remediation of complex contaminated groundwater.
Collapse
Affiliation(s)
- Luzi Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangzhi Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
23
|
Gao B, Wei F, Yang H, Li J. Effective removal of Cr (VI) from aqueous solution by reinforced sodium alginate/polyethyleneimine/graphene oxide composite aerogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111008-111020. [PMID: 37801251 DOI: 10.1007/s11356-023-30189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
A reinforced composite aerogel absorbent was synthesized using a green chemistry method and an environmentally friendly freeze-drying technique. The absorbent consisted of sodium alginate, polyethyleneimine (PEI), and graphene oxide (GO). The ability of the absorbent to remove Cr (VI) ions from aqueous solutions was studied. PEI was a nitrogen source for Cr (VI) removal and a cross-linking agent for GO sheets, while SA was a reinforcing material. The aerogel was investigated using X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, texture analysis, Raman spectroscopy, and thermogravimetric analysis (TGA). Batch studies were conducted to investigate the effect of pH and contact time on adsorption. The results indicated that the SA/PEI/GO aerogel had a maximum adsorption capacity of 174.05 mg·g-1 for Cr (VI) at pH 2. The adsorption mechanism was described using the Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic. The aerogel demonstrated good regeneration ability and satisfactory recovery for Cr (VI) even after five cycles. These findings suggest that the composite aerogel could be a promising adsorbent for efficiently removing Cr (VI) from wastewater.
Collapse
Affiliation(s)
- Bo Gao
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an, 710123, People's Republic of China
| | - Fei Wei
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hongwei Yang
- School of Computer Science, Xijing University, Xi'an, 710123, People's Republic of China
| | - Ji Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China.
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
24
|
Malik A, Katyal D, Narwal N, Kataria N, Ayyamperumal R, Khoo KS. Sources, distribution, associated health risks and remedial technologies for inorganic contamination in groundwater: A review in specific context of the state of Haryana, India. ENVIRONMENTAL RESEARCH 2023; 236:116696. [PMID: 37482126 DOI: 10.1016/j.envres.2023.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Haryana is one of the leading states in India in the agricultural and industrial production. With the expansion of these sectors, a continuous increase in water demand is leading to water crises arising from overexploitation and quality deterioration of the available water. Contamination of aquifer resources is a significant concern, because majority of population depends on the groundwater for various agricultural, industrial, and domestic needs. This review article provides an overview of groundwater contamination, associated health risks with different contaminants with regions severely affected by poor water quality, and delves in identifying the sources, by observing and recognising the types of industries dominant in the state with types of effluents discharge. It further suggests the possible mitigation measures such as advanced remedial technologies and proper management practices from the consequent contamination sources. It has been observed during the perusal of various studies and data that the degree of contamination was considerably higher in districts with heavy agro-industrial activities. The groundwater resources in three highly industrialized districts were found to be gravely contaminated with toxic heavy metals. Alongwith heavy metals, the salinity, hardness, nitrate, and fluoride are also posing significant problems in the aquifer resources of Haryana state. The article also discusses various technologies for remediation of different pollutants from groundwater so it can be made potable after treatment.
Collapse
Affiliation(s)
- Aastha Malik
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India.
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | | | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
25
|
de Deus Ferreira E Silva J, Júnior JM, Vieira da Silva LF, Chitlhango AP, Silva LS, De Bortoli Teixeira D, Moitinho MR, Fernandes K, Ferracciú Alleoni LR. Magnetic signature and X-ray fluorescence for mapping trace elements in soils originating from basalt and sandstone. CHEMOSPHERE 2023; 341:140028. [PMID: 37660783 DOI: 10.1016/j.chemosphere.2023.140028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
The knowledge of the lithological context is necessary to interpret trace elements concentrations in the soil. Soil magnetic signature (χ) and soil X-ray fluorescence (XRF) are promising approaches in the study of the spatial variability of trace elements and the environmental monitoring of soil quality. This research aimed to assess the efficiency of measurements of χ and XRF sensors for spatial characterization of zinc (Zn), manganese (Mn), and copper (Cu) contents in soils of a sandstone-basalt transitional environment, using machine learning modeling. The studied area consisted of the Western Plateau of São Paulo (WPSP), with soils originating from sandstone and basalt. A total of 253 soil samples were collected at a depth of 0.0-0.2 m. The soils were characterized by particle size and chemical analysis: organic matter (OM), cation exchange capacity (CEC), ammonium oxalate-extracted iron (Feo), sodium dithionite-citrate-bicarbonate-extracted iron (Fed), and sulfuric acid-extracted iron (Fet). Hematite (Hm), goethite (Gt), kaolinite (Kt), and gibbsite (Gb) contents were obtained by X-ray diffraction (XRD). Magnetite (Mt) and maghemite (Mh) contents were obtained by soil χ, while trace elements contents were obtained by XRF and predicted by χ. Descriptive analysis, the test of means, and correlation were performed between attributes. Zn, Mn, and Cu contents were predicted using the machine learning algorithm random forest, and the spatial variability was obtained using the ordinary kriging interpolation technique. Landscape dissections influenced iron oxides, which had the highest contents in slightly dissected environments. Trace elements contents were not influenced by landscape dissections, demonstrating that lithological knowledge is necessary to characterize trace elements in soils. The prediction models developed through the machine learning algorithm random forest showed that χ can be used to characterize trace elements. The similar spatial pattern of trace elements obtained by XRF and χ measurements confirm the applicability of these sensors for mapping it under lithological and landscape transition, aiming for sustainable strategic planning of land use and occupation.
Collapse
Affiliation(s)
- João de Deus Ferreira E Silva
- School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - José Marques Júnior
- School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Luis Fernando Vieira da Silva
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Department of Soil Science, Avenida Pádua Dias, 11, 13418900, Piracicaba, SP, Brazil.
| | - Angelina Pedro Chitlhango
- Pedagogical University of Maputo (UP) - Mozambique, Faculty of Engineering and Technologies, Campus da Lhanguene, Av. do Trabalho, 248, Maputo, Mozambique.
| | - Laércio Santos Silva
- Rondonópolis Federal University (UFR), Av. dos Estudantes 5055, 78736-900, Rondonópolis, Mato Grosso, Brazil.
| | - Daniel De Bortoli Teixeira
- Usina Santa Cruz - São Martinho Group, Fazenda Martinho, sl. 0, 14850-000, Pradópolis, São Paulo, Brazil.
| | - Mara Regina Moitinho
- School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Kathleen Fernandes
- School of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, 14884-900, Jaboticabal, São Paulo, Brazil.
| | - Luis Reynaldo Ferracciú Alleoni
- University of São Paulo (USP), Luiz de Queiroz College of Agriculture (ESALQ), Department of Soil Science, Avenida Pádua Dias, 11, 13418900, Piracicaba, SP, Brazil.
| |
Collapse
|
26
|
Le HV, Dao NT, Bui HT, Kim Le PT, Le KA, Tuong Tran AT, Nguyen KD, Mai Nguyen HH, Ho PH. Bacterial Cellulose Aerogels Derived from Pineapple Peel Waste for the Adsorption of Dyes. ACS OMEGA 2023; 8:33412-33425. [PMID: 37744831 PMCID: PMC10515182 DOI: 10.1021/acsomega.3c03130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Valorization of pineapple peel waste is an attractive research topic because of the huge quantities of this byproduct generated from pineapple processing industries. In this study, the extract from pineapple waste was collected to produce a hydrogel-like form containing bacterial cellulose fibers with a three-dimensional structure and nanoscale diameter by the Acetobacter xylinum fermentation process. The bacterial cellulose suspension was subsequently activated by freeze-drying, affording lightweight aerogels as potential adsorbents in wastewater treatment, in particular the adsorptive removal of organic dyes. Intensive tests were carried out with the adsorption of methylene blue, a typical cationic dye, to investigate the influence of adsorption conditions (temperature, pH, initial dye concentration, time, and experiment scale) and aerogel-preparation parameters (grinding time and bacterial cellulose concentration). The bacterial cellulose-based aerogels exhibited high adsorption capacity not only for methylene blue but also for other cationic dyes, including malachite green, rhodamine B, and crystal violet (28-49 mg/g). However, its activity was limited for most of the anionic dyes, such as methyl orange, sunset yellow, and quinoline yellow, due to the repulsion of these anionic dyes with the aerogel surface, except for the case of congo red. It is also an anionic dye but has two amine groups providing a strong interaction with the hydroxyl group of the aerogel via hydrogen bonding. Indeed, the aerogel has a substantially large congo red-trapping capacity of 101 mg/g. Notably, the adsorption process exhibited similar performances, upscaling the solution volume to 50 times. The utilization of abundant agricultural waste in the simple aerogel preparation to produce a highly efficient and biodegradable adsorbent is the highlight of this work.
Collapse
Affiliation(s)
- Ha Vu Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Nghia Thi Dao
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Ha Truc Bui
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phung Thi Kim Le
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Kien Anh Le
- Institute
for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung, Phu Nhuan
District, Ho Chi Minh City 726500, Viet Nam
| | - An Thi Tuong Tran
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Khoa Dang Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Hanh Huynh Mai Nguyen
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 740010, Viet Nam
- Vietnam
National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi
Minh City 740010, Viet Nam
| | - Phuoc Hoang Ho
- Chemical
Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
| |
Collapse
|
27
|
Wang F, Li S, Liang J, Wang Y, Song H, Yang J, Zou X, Li C. Removal and reuse of heavy metal ions on mildly oxidized Ti 3C 2 @BF membrane via synergistic photocatalytic-photothermal approach. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131954. [PMID: 37392643 DOI: 10.1016/j.jhazmat.2023.131954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
The pollution of heavy metal ions in water seriously affects the ecosystem and human health. Here, an efficient synergetic photocatalytic-photothermal system is designed by combining a mildly oxidized Ti3C2 (mo-Ti3C2) with a super hydrophilic bamboo fiber (BF) membrane. The mo-Ti3C2 heterojunction promotes the transfer and separation of photoinduced charges and thus enhances the photocatalytic reduction of heavy metal ions (Co2+, Pb2+, Zn2+, Mn2+ and Cu2+). The photoreduced metal nanoparticles with high conductivity and LSPR effect further accelerate the transfer and separation of photoinduced charges, and improve photothermal and evaporative performance. The mo-Ti3C2-2.4 @BF membrane in Co(NO3)2 solution can achieve an excellent evaporation rate of 4.6 kg·m-2·h-1 and a high solar-vapor efficiency of up to 97.5% under the light intensity of 2.44 kW·m-2, which are 27.8% and 19.6% higher than those in H2O, respectively, demonstrating the reuse of photoreduced Co nanoparticles. No heavy metal ions are detected in any of the condensed water, and the Co2+ removal rate in the concentrated Co(NO3)2 solution is up to 80.4%. The synergetic photocatalytic-photothermal approach on the mo-Ti3C2 @BF membrane provides a new scope for the continuous removal and reuse of heavy metal ions, as well as for obtaining clean water.
Collapse
Affiliation(s)
- Fangxian Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shihao Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwen Liang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haoran Song
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junwei Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xuelin Zou
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
28
|
Li X, Ren H, Xu Z, Chen G, Zhang S, Zhang L, Sun Y. Practical application for legacy acid mine drainage (AMD) prevention and treatment technologies in karst-dominated regions: A case study. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 258:104238. [PMID: 37673015 DOI: 10.1016/j.jconhyd.2023.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Acid mine drainage (AMD) from abandoned mines in karst-dominated regions in southwestern China was causing contamination of groundwater and surface streams. To avert the unwise decisions of "pollution first before treatment" during pre-mining, mid-mining and post-mining activities, this paper proposes a contaminant migration prevention technical framework covering 4 comprehensive processes. The formation mechanism of spring pollution, engineering remediation processes and contamination treatment effects were described in Longdong Spring. In 2018, the Longdong Spring water had Fe 33.83 mg/L and Mn 3.60 mg/L, exceeding the Chinese surface water standard (0.3 mg/L and 0.1 mg/L in GB 3838-2002) by 112 and 36 times, respectively. In 2020, after grout blocking, in situ treatment and wetland remediation, the highest Fe was 4.5 mg/L in a short period, and the spring water pollution days in this year were 42 days compared with the previous 320 spring water pollution days in 2018. In 2021, two years of remediation with the implementation of terminal remediation wetlands, the Fe was less than 0.03 mg/L compared with the previous 33.83 mg/L, and the water quality reached water standard (less than 0.3 mg/L). At present, Longdong Spring has become one of the most beautiful natural local landscapes.
Collapse
Affiliation(s)
- Xin Li
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Hujun Ren
- China Coal Hydrogeological Bureau Group Company, 18 Dafeng Road, Hongqiao District, Tianjin 300131, People's Republic of China
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| | - Ge Chen
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Shangguo Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Li Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China; Fundamental Research Laboratory for Mine Water Hazards Prevention and Controlling Technology, Xuzhou 221006, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
30
|
Won S, Shin C, Kang HY. Potential Self-Attenuation of Arsenic by Indigenous Microorganisms in the Nakdong River. Microorganisms 2023; 11:1910. [PMID: 37630470 PMCID: PMC10457984 DOI: 10.3390/microorganisms11081910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The toxic element arsenic (As) has become the major focus of global research owing to its harmful effects on human health, resulting in the establishment of several guidelines to prevent As contamination. The widespread industrial use of As has led to its accumulation in the environment, increasing the necessity to develop effective remediation technologies. Among various treatments, such as chemical, physical, and biological treatments, used to remediate As-contaminated environments, biological methods are the most economical and eco-friendly. Microbial oxidation of arsenite (As(III)) to arsenate (As(V)) is a primary detoxification strategy for As remediation as it reduces As toxicity and alters its mobility in the environment. Here, we evaluated the self-detoxification potential of microcosms isolated from Nakdong River water by investigating the autotrophic and heterotrophic oxidation of As(III) to As(V). Experimental data revealed that As(III) was oxidized to As(V) during the autotrophic and heterotrophic growth of river water microcosms. However, the rate of oxidation was significantly higher under heterotrophic conditions because of the higher cell growth and density in an organic-matter-rich environment compared to that under autotrophic conditions without the addition of external organic matter. At an As(III) concentration > 5 mM, autotrophic As(III) oxidation remained incomplete, even after an extended incubation time. This inhibition can be attributed to the toxic effect of the high contaminant concentration on bacterial growth and the acidification of the growth medium with the oxidation of As(III) to As(V). Furthermore, we isolated representative pure cultures from both heterotrophic- and autotrophic-enriched cultures. The new isolates revealed new members of As(III)-oxidizing bacteria in the diversified bacterial community. This study highlights the natural process of As attenuation within river systems, showing that microcosms in river water can detoxify As under both organic-matter-rich and -deficient conditions. Additionally, we isolated the bacterial strains HTAs10 and ATAs5 from the microcosm which can be further investigated for potential use in As remediation systems. Our findings provide insights into the microbial ecology of As(III) oxidation in river ecosystems and provide a foundation for further investigations into the application of these bacteria for bioremediation.
Collapse
Affiliation(s)
- Sangmin Won
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Education/Research Group of Longevity and Marine Biotechnology for Innovative Talent, Pusan National University, Busan 46241, Republic of Korea
| | - Chajeong Shin
- BUSAN IL Science Highschool, Busan 49317, Republic of Korea;
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
31
|
Liu W, Zhang X, Ren H, Hu X, Yang X, Liu H. Co-production of spirosiloxane and biochar adsorbent from wheat straw by a low-cost and environment-friendly method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117851. [PMID: 37019023 DOI: 10.1016/j.jenvman.2023.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
To enhance the value of wheat straw derivatives, wheat straw ash (WSA) was used as a reactant for the first time to synthesize spirocyclic alkoxysilane, an important organosilicon raw material, using an energy-saving and environmentally friendly non-carbon thermal reduction method. After spirocyclic alkoxysilane extraction, the biochar in the wheat straw ash prepared an adsorbent for Cu2+. The maximum copper ion adsorption capacity (Qm) of silica-depleted wheat straw ash (SDWSA) was 31.431nullmg/g, far exceeding those of WSA and similar biomass adsorbents. The effects of the pH, adsorbent dose, and contact time on the adsorption behaviour of the SDWSA for Cu2+ adsorption were systematically investigated. The adsorption mechanism of Cu2+ by the SDWSA was investigated using the Langmuir, Freundlich, pseudo-first-order kinetic, pseudo-second-order kinetic, and Weber and Morris models by combining the preliminary experimental data and characterization results. The adsorption isotherm and Langmuir equation matched perfectly. The Weber and Morris model can describe the mass-transfer mechanism of Cu2+ adsorption by SDWSA. Both film and intraparticle diffusion are rapid control steps. Compared to WSA, SDWSA has a larger specific surface area and a higher content of oxygen-containing functional groups. A large specific surface area provides more adsorption sites. Oxygen-containing functional groups react with Cu2+ through electrostatic interactions, surface complexation, and ion exchange, which are the possible adsorption mechanisms for SDWSA. These methods improve the added value of wheat straw derivatives and promote wheat straw ash recovery and centralized treatment. This makes it possible to use the thermal energy of wheat straw and facilitates the treatment of exhaust gases and carbon capture.
Collapse
Affiliation(s)
- Wenlong Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xingwen Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| | - Hongyu Ren
- School of Resources and Environment, Northeast Agricultural University, No. 600, Changjiang Street, Harbin, 150030, China.
| | - Xingcheng Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Xinyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China
| | - Hui Liu
- School of Energy Science and Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Harbin, 150001, China.
| |
Collapse
|
32
|
Zakrzewska M, Rzepa G, Musialowski M, Goszcz A, Stasiuk R, Debiec-Andrzejewska K. Reduction of bioavailability and phytotoxicity effect of cadmium in soil by microbial-induced carbonate precipitation using metabolites of ureolytic bacterium Ochrobactrum sp. POC9. FRONTIERS IN PLANT SCIENCE 2023; 14:1109467. [PMID: 37416890 PMCID: PMC10321601 DOI: 10.3389/fpls.2023.1109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
The application of ureolytic bacteria for bioremediation of soil contaminated with heavy metals, including cadmium (Cd), allows for the efficient immobilization of heavy metals by precipitation or coprecipitation with carbonates. Microbially-induced carbonate precipitation process may be useful also in the case of the cultivation of crop plants in various agricultural soils with trace but legally permissible Cd concentrations, which may be still uptaken by plants. This study aimed to investigate the influence of soil supplementation with metabolites containing carbonates (MCC) produced by the ureolytic bacterium Ochrobactrum sp. POC9 on the Cd mobility in the soil as well as on the Cd uptake efficiency and general condition of crop plants (Petroselinum crispum). In the frame of the conducted studies (i) carbonate productivity of the POC9 strain, (ii) the efficiency of Cd immobilization in soil supplemented with MCC, (iii) crystallization of cadmium carbonate in the soil enriched with MCC, (iv) the effect of MCC on the physico-chemical and microbiological properties of soil, and (v) the effect of changes in soil properties on the morphology, growth rate, and Cd-uptake efficiency of crop plants were investigated. The experiments were conducted in soil contaminated with a low concentration of Cd to simulate the natural environmental conditions. Soil supplementation with MCC significantly reduced the bioavailability of Cd in soil with regard to control variants by about 27-65% (depending on the volume of MCC) and reduced the Cd uptake by plants by about 86% and 74% in shoots and roots, respectively. Furthermore, due to the decrease in soil toxicity and improvement of soil nutrition with other metabolites produced during the urea degradation (MCC), some microbiological properties of soil (quantity and activity of soil microorganisms), as well as the general condition of plants, were also significantly improved. Soil supplementation with MCC enabled efficient Cd stabilization and significantly reduced its toxicity for soil microbiota and plants. Thus, MCC produced by POC9 strain may be used not only as an effective Cd immobilizer in soil but also as a microbe and plant stimulators.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Rzepa
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| | - Marcin Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Goszcz
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Ecotoxicology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
33
|
Lei Y, Xie J, Quan W, Chen Q, Long X, Wang A. Advances in the adsorption of heavy metal ions in water by UiO-66 composites. Front Chem 2023; 11:1211989. [PMID: 37408555 PMCID: PMC10318541 DOI: 10.3389/fchem.2023.1211989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study.
Collapse
Affiliation(s)
- Yuanhang Lei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Jiangqin Xie
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xingyu Long
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Anping Wang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, Guizhou, China
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
34
|
Daurov D, Zhambakin K, Shamekova M. Phytoremediation as a way to clean technogenically polluted areas of Kazakhstan. BRAZ J BIOL 2023; 83:e271684. [PMID: 37222372 DOI: 10.1590/1519-6984.271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023] Open
Abstract
One of the most serious problems worldwide is heavy metal (HM) pollution. HMs can have a toxic effect on human health and thus cause serious diseases. To date, several methods have been used to clean environments contaminated by HMs, but most of them are expensive, and it is difficult to achieve the desired result. Phytoremediation is currently an effective and affordable processing solution used to clean and remove HMs from the environment. This review article discusses in detail the technology of phytoremediation and mechanisms of HM absorption. In addition, methods are described using genetic engineering of various plants to enhance the resistance and accumulation of HMs. Thus, phytoremediation technology can become an additional aid to traditional methods of purification.
Collapse
Affiliation(s)
- D Daurov
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - K Zhambakin
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| | - M Shamekova
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
35
|
Wang LL, Yin ZY, Xu Y, Deng MY, Zhang KM, Wang Q, Chen RP, Yu L. Responses of Bacillus sp. under Cu(II) stress in relation to extracellular polymeric substances and functional gene expression level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27589-8. [PMID: 37195605 DOI: 10.1007/s11356-023-27589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
The production and composition of extracellular polymeric substances (EPS), as well as the EPS-related functional resistance genes and metabolic levels of Bacillus sp. under Cu(II) stress, were investigated. EPS production increased by 2.73 ± 0.29 times compared to the control when the strain was treated with 30 mg L-1 Cu(II). Specifically, the polysaccharide (PS) content in EPS increased by 2.26 ± 0.28 g CDW-1 and the PN/PS (protein/polysaccharide) ratio value increased by 3.18 ± 0.33 times under 30 mg L-1 Cu(II) compared to the control. The increased EPS secretion and higher PN/PS ratio in EPS strengthened the cells' ability to resist the toxic effect of Cu(II). Differential expression of functional genes under Cu(II) stress was revealed by Gene Ontology pathway enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The enriched genes were most obviously upregulated in the UMP biosynthesis pathway, the pyrimidine metabolism pathway, and the TCS metabolism pathway. This indicates an enhancement of EPS regulation-related metabolic levels and their role as a defense mechanism for cells to adapt to Cu(II) stress. Additionally, seven copper resistance genes were upregulated while three were downregulated. The upregulated genes were related to the heavy metal resistance, while downregulated genes were related to cell differentiation, indicating that the strain had initiated an obvious resistance to Cu(II) despite its severe cell toxicity. These results provided a basis for promoting EPS-regulated associated functional genes and the application of gene-regulated bacteria in heavy metal-containing wastewater treatment.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zheng-Yan Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yun Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Miao-Yu Deng
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Kai-Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
36
|
Zhang K, Chang S, Zhang Q, Bai Y, Wang E, Zhang M, Fu Q, Wei L, Yu Y. Heavy metals in influent and effluent from 146 drinking water treatment plants across China: Occurrence, explanatory factors, probabilistic health risk, and removal efficiency. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131003. [PMID: 36857822 DOI: 10.1016/j.jhazmat.2023.131003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) in drinking water have drawn worldwide attention due to their risks to public health; however, a systematic assessment of the occurrence of HMs in drinking water treatment plants (DWTPs) at a large geographical scale across China and the removal efficiency, human health risks, and the correlation with environmental factors have yet to be established. Therefore, this study characterised the occurrence patterns of nine conventional dissolved HMs in the influent and effluent water samples from 146 typical DWTPs in seven major river basins across China (which consist of the Yangtze River, the Yellow River, the Songhua River, the Pearl River, the Huaihe River, the Liaohe River and the Haihe River) for the first time and removal efficiency, probabilistic health risks, and the correlation with water quality. According to the findings, a total of eight HMs (beryllium (Be), antimony (Sb), barium (Ba), molybdenum (Mo), nickel (Ni), vanadium (V), cobalt (Co) and titanium (Ti)) were detected, with detection frequencies in influent and effluent water ranging from 2.90 (Mo) to 99.30% (Ba) and 1.40 (Ti) to 97.90% (Ba), respectively. The average concentration range was 0.41 (Be)- 77.36 (Sb) μg/L. Among them, Sb (exceeding standard rate 8%), Ba (2.89%), Ni (21.43%), and V (1.33%) were exceeded the national standard (GB5749-2022). By combining Spearman's results and redundancy analysis, our results revealed a close correlation among pH, turbidity (TURB), potassium permanganate index (CODMn), and total nitrogen (TN) along with the concentration and composition of HMs. In addition, the concentration of HMs in finished water was strongly affected by the concentration of HMs in raw water, as evidenced by the fact that HMs in surface water poses a risk to the quality of finished water. Metal concentration was the primary factor in assessing the health risk of a single metal, and the carcinogenic risk of Ba, Mo, Ni, and Sb should be paid attention to. In DWTPs, the removal efficiencies of various HMs also vary greatly, with an average removal rate ranging from 16.30% to 95.64%. In summary, our findings provide insights into the water quality and health risks caused by HMs in drinking water.
Collapse
Affiliation(s)
- Kunfeng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Sheng Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qi Zhang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Yunsong Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Enrui Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Moli Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Research Centre of Lake Environment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanling Yu
- Elite Engineers School, Harbin Institute of Technology, Harbin 150080, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
37
|
Budania R, Dangayach S. A comprehensive review on permeable reactive barrier for the remediation of groundwater contamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117343. [PMID: 36758361 DOI: 10.1016/j.jenvman.2023.117343] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality is deteriorating due to contamination from both natural and anthropogenic sources. Traditional "Pump and Treat" techniques of treating the groundwater suffer from the disadvantages of a small-scale and energy-intensive approach. Permeable reactive barriers (PRBs), owing to their passive operation, offer a more sustainable strategy for remediation. This promising technique focuses on eliminating heavy metal pollutants and hazardous aromatic compounds by physisorption, chemisorption, precipitation, denitrification, and/or biodegradation. Researchers have utilized ZVI, activated carbon, natural and manufactured zeolites, and other by-products as reactive media barriers. Environmental parameters, i.e., pH, initial pollutant concentration, organic substance, dissolved oxygen, and reactive media by-products, all influence a PRB's performance. Although their long-term impact and performance are uncertain, PRBs are still evolving as viable alternatives to pump-and-treat techniques. The use of PRBs to remove anionic contaminants (e.g., Fluoride, Nitrate, etc.) has received less attention since precipitates can clog the reactive barrier and hinder groundwater flow. In this paper, we present an insight into this approach and the tremendous implications for future scientific study that integrates this strategy using sustainability and explores the viability of PRBs for anionic pollutants.
Collapse
Affiliation(s)
- Ravindra Budania
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| | - Sanyam Dangayach
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
38
|
Kumar A, Thakur A, Panesar PS. A review on the industrial wastewater with the efficient treatment techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
39
|
Lyu Z, Liu W, Chi Z. Enhanced nitrate removal using in situ reactive zone with reduced graphene oxide supported nanoscale zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53605-53615. [PMID: 36862295 DOI: 10.1007/s11356-023-26147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Nitrate pollution in groundwater is becoming more serious, which is harmful to human health. The reduced graphene oxide supported nanoscale zero-valent iron (nZVI/rGO) composite prepared in this paper can effectively remove nitrate in groundwater. In situ remediation of nitrate-contaminated aquifer was also studied. The results showed that NH4+-N was the main product of NO3--N reduction, and N2 and NH3 were also produced. When the dosage of rGO/nZVI was more than 0.2 g/L, there was no accumulation of intermediate NO2--N during the reaction process. NO3--N was removed by rGO/nZVI mainly through physical adsorption and reduction process with the maximum adsorbing ability of 37.44 mg NO3--N/g. After the slurry of rGO/nZVI was injected into the aquifer, a stable reaction zone could be formed. NO3--N could be removed continuously within 96 h at the simulated tank, and NH4+-N and NO2--N were as the main reduction products. Moreover, the concentration of TFe near the injection well increased rapidly after rGO/nZVI injection, and could be detected at the downstream end, indicating that the reaction range was large enough for NO3--N removal.
Collapse
Affiliation(s)
- Zhibo Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Wanting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
40
|
Sahour S, Khanbeyki M, Gholami V, Sahour H, Kahvazade I, Karimi H. Evaluation of machine learning algorithms for groundwater quality modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46004-46021. [PMID: 36715809 DOI: 10.1007/s11356-023-25596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Groundwater quality is typically measured through water sampling and lab analysis. The field-based measurements are costly and time-consuming when applied over a large domain. In this study, we developed a machine learning-based framework to map groundwater quality in an unconfined aquifer in the north of Iran. Groundwater samples were provided from 248 monitoring wells across the region. The groundwater quality index (GWQI) in each well was measured and classified into four classes: very poor, poor, good, and excellent, according to their cut-off values. Factors affecting groundwater quality, including distance to industrial centers, distance to residential areas, population density, aquifer transmissivity, precipitation, evaporation, geology, and elevation, were identified and prepared in the GIS environment. Six machine learning classifiers, including extreme gradient boosting (XGB), random forest (RF), support vector machine (SVM), artificial neural networks (ANN), k-nearest neighbor (KNN), and Gaussian classifier model (GCM), were used to establish relationships between GWQI and its controlling factors. The algorithms were evaluated using the receiver operating characteristic curve (ROC) and statistical efficiencies (overall accuracy, precision, recall, and F-1 score). Accuracy assessment showed that ML algorithms provided high accuracy in predicting groundwater quality. However, RF was selected as the optimum model given its higher accuracy (overall accuracy, precision, and recall = 0.92; ROC = 0.95). The trained RF model was used to map GWQI classes across the entire region. Results showed that the poor GWQI class is dominant in the study area (covering 66% of the study area), followed by good (19% of the area), very poor (14% of the area), and excellent (< 1% of the area) classes. An area of very poor GWQI was observed in the north. Feature analysis indicated that the distance to industrial locations is the main factor affecting groundwater quality in the region. The study provides a cost-effective methodology in groundwater quality modeling that can be duplicated in other regions with similar hydrological and geological settings.
Collapse
Affiliation(s)
| | - Matin Khanbeyki
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Vahid Gholami
- Department of Range and Watershed Management and Dept. of Water Eng. and Environment, Faculty of Natural Resources, University of Guilan, Sowmeh Sara 1144, Guilan, Iran.
| | - Hossein Sahour
- Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Irene Kahvazade
- Department of Computer Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - Hadi Karimi
- Department of Geological and Environmental Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| |
Collapse
|
41
|
Saadatpour M, Goeini M, Afshar A, Shahmirnoori A. A preliminary approach based on numerical simulation modelling and evaluation of permeable reactive barrier for aquifer remediation susceptible to selenium contaminant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117242. [PMID: 36630800 DOI: 10.1016/j.jenvman.2023.117242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
In this study, numerical groundwater modelling software (GMS) was applied for a 2D transient state predictive (flow and contaminant fate and transport) conceptual model for heavy metal (Selenium in this research) contaminated groundwater, Imamzadeh-Jafar Aquifer, Kohgiluyeh and Boyer-Ahmad Province, Iran. The performances of permeable reactive barrier (PRB) in pollutant removal in the contaminated aquifers were studied by helping the MODFLOW-MT3DMS model. The spatiotemporal distribution of Selenium (Se) contaminant over the aquifer was illustrated using the calibrated flow and contaminant model. According to the findings, the downward movement of Se has resulted in an unsafe and undesirable water quality status in the Imamzadeh-Jafar aquifer, which is supported by field data. The sensitivity analysis of PRB layouts, geometric features, and reactant material characteristics was conducted in groundwater remediation. The numerical model results illustrated that the PRB thickness, ranging from 10 to 500 m, manifested the drop in Se concentration approximately from 40 to 46%. The results shed light on the hydraulic conductivity variations of reactant materials have effects less than 0.5% in Se removals. Furthermore, the decay rate variations in the ranges from 0.0001 to 0.01 d-1 could result in Se removal from 5 to 100%. According to studies, if the contaminant sources are prevented, in a) installation of PRB and b) not installation of PRB scenarios, the Imamzadeh-Jafar aquifer remediation will take 6 months and 84 months, respectively.
Collapse
Affiliation(s)
- Motahareh Saadatpour
- School of Civil Engineering, Iran University of Science and Technology, P. O. Box: 16846-13114, Tehran, Iran.
| | - Marziyeh Goeini
- Master of Water Resources Planning and Management Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Abbas Afshar
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Alireza Shahmirnoori
- Master of Water Resources Planning and Management Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
42
|
Mojtahedi N, Zare‐Dorabei R, Hossein Mosavi S. A Zn‐Based Metal‐Organic Framework Modified by CuCl
2
Under Ambient Conditions for Simultaneous Ultrasonic‐Assisted Removal of Pb and Cd Ions with Fast Kinetics from Aqueous Solution. ChemistrySelect 2023. [DOI: 10.1002/slct.202204948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
43
|
Lencina MS, Piqueras CM, Vega DA, Villar MA, Del Barrio MC. Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:369-381. [PMID: 36946333 DOI: 10.1080/10934529.2023.2188847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods. Finally, the drying step was done via CO2sc leading to aerogels and via freeze-drying leading to cryogels. Process parameters influence on the final properties of materials was evaluated by BET isotherms, SEM, EDS, and TGA. Regardless the gelation method applied, interesting materials with meso- and macro-pore structure were prepared from pregel mixtures with 3% w/w biopolymer concentration and an alginate content of only 25% w/w. Low alginate content reduces the final cost of the materials. Concerning copper removal, the adsorption data were well fitted to the pseudo-second order kinetic model for aerogels and cryogels, showing aerogels the highest adsorption capacity (40 mg/g) and removal efficiency (∼ 92%). Materials demonstrated excellent reusability throughout five consecutive adsorption/desorption cycles. Hence, environmentally friendly materials with a high practical value as low-cost bioadsorbents were synthesized, having great performance in the removal of copper ions from aqueous solution.
Collapse
Affiliation(s)
- María S Lencina
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian M Piqueras
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Daniel A Vega
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Física, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marcelo A Villar
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María C Del Barrio
- Instituto de Física del Sur, IFISUR (UNS-CONICET), Bahía Blanca, Argentina
- Departamento de Ingeniería Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
44
|
Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies. Bioprocess Biosyst Eng 2023; 46:467-482. [PMID: 36520279 DOI: 10.1007/s00449-022-02826-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.
Collapse
|
45
|
Bolan S, Wijesekara H, Tanveer M, Boschi V, Padhye LP, Wijesooriya M, Wang L, Jasemizad T, Wang C, Zhang T, Rinklebe J, Wang H, Lam SS, Siddique KHM, Kirkham MB, Bolan N. Beryllium contamination and its risk management in terrestrial and aquatic environmental settings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121077. [PMID: 36646409 DOI: 10.1016/j.envpol.2023.121077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.
Collapse
Affiliation(s)
- Shiv Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, 70140, Sri Lanka
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania Australia, Hobart, 7005, Australia
| | - Vanessa Boschi
- Chemistry Department, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Madhuni Wijesooriya
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | - Lei Wang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, Xinjiang, China
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland, 1010, New Zealand
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai , India
| | - Kadambot H M Siddique
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
46
|
Lamy-Mendes A, Lopes D, Girão AV, Silva RF, Malfait WJ, Durães L. Carbon Nanostructures-Silica Aerogel Composites for Adsorption of Organic Pollutants. TOXICS 2023; 11:232. [PMID: 36976997 PMCID: PMC10059775 DOI: 10.3390/toxics11030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Silica aerogels are a class of materials that can be tailored in terms of their final properties and surface chemistry. They can be synthesized with specific features to be used as adsorbents, resulting in improved performance for wastewater pollutants' removal. The purpose of this research was to investigate the effect of amino functionalization and the addition of carbon nanostructures to silica aerogels made from methyltrimethoxysilane (MTMS) on their removal capacities for various contaminants in aqueous solutions. The MTMS-based aerogels successfully removed various organic compounds and drugs, achieving adsorption capacities of 170 mg⋅g-1 for toluene and 200 mg⋅g-1 for xylene. For initial concentrations up to 50 mg⋅L-1, removals greater than 71% were obtained for amoxicillin, and superior to 96% for naproxen. The addition of a co-precursor containing amine groups and/or carbon nanomaterials was proven to be a valuable tool in the development of new adsorbents by altering the aerogels' properties and enhancing their adsorption capacities. Therefore, this work demonstrates the potential of these materials as an alternative to industrial sorbents due to their high and fast removal efficiency, less than 60 min for the organic compounds, towards different types of pollutants.
Collapse
Affiliation(s)
- Alyne Lamy-Mendes
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - David Lopes
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| | - Ana V. Girão
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui F. Silva
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wim J. Malfait
- Laboratory for Building Energy Materials and Components, Empa—Swiss Federal Laboratory for Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Luísa Durães
- University of Coimbra, CIEPQPF—Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
47
|
Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Adv Colloid Interface Sci 2023; 314:102859. [PMID: 36934514 DOI: 10.1016/j.cis.2023.102859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/25/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
The science and interface chemistry between the arsenic (As) anions and the different adsorbent systems have been gaining interest in recent years in environmental remediation applications. Metal-oxides and the corresponding hybrid systems have shown promising performance as novel adsorbents in various treatment technologies. The abundance, surface chemistry, high surface area (active-centres), various synthesis and functionalization methodologies, and good recyclability make these metal oxide-based nanomaterials as potential remediating agents for As oxyanions. This work critically reviews eight different platforms focused on the arsenic contamination issue, where the first classification describes the origin of arsenic contamination and presents geographical and demo-graphical considerations. The following section briefs the state-of-the-art remediation techniques for arsenic treatment with a comparative evaluation. An emphasized discussion has been provided regarding the adsorption and classification of various metal oxide adsorbents. In the next classification, various multi-synergism abilities like Redox activity, Surface functional groups, Surface area/morphology, Heterogeneous catalysis, Reactive oxygen species, Photo-catalytic/electro-catalytic reactions, and Electrosorption are detailed. The classification of various characterization tools for accessing the arsenic remediation qualitatively and quantitatively are given in the fifth chapter. The first-of-its-kind dedicated analysis has been given on the surface complexation aspects of the arsenic speciation onto various metal adsorbent systems using synchrotron results, surface-complexation modeling, and molecular simulation (e.g., DFT) in the sixth chapter. The current sensing applications of these novel nano-material systems for arsenic determination using colorimetric and electrochemical-based analytical tools and a note about the economic parameters, i.e., regeneration aspects of various adsorbent systems/the sustainable applications of the treated sludge materials, are provided in the final sections. This work makes a critical analysis of 'Environmental Nanotechnology' towards 'Arsenic Treatment'.
Collapse
Affiliation(s)
- Yaswanth K Penke
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| | - Kamal K Kar
- Advanced Nanoengineering Materials Laboratory, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India; Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, U.P, India.
| |
Collapse
|
48
|
Zhang Z, Li B, Wicaksana F, Yu W, Young B. Comparison of struvite and K-struvite for Pb and Cr immobilisation in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116570. [PMID: 36308964 DOI: 10.1016/j.jenvman.2022.116570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Struvite is a value-added by-product recovered from phosphorus-rich wastewater treatment by adding magnesium. Struvite is mainly used as slow-release fertilisers containing phosphate that can form insoluble salts with certain heavy metals. Hence, struvite may have potential application as a phosphate remediation agent for the immobilisation of heavy metals in contaminated soil, while the related study is limited. Similarly, an analogue compound of struvite, K-struvite, may also have this value but has not been reported elsewhere. This study investigated the effect of struvite and K-struvite on the remediation of Cr-spiked and Pb-spiked soil. To evaluate the feasibility, the agent dosage and two quality parameters (particle size and purity) of struvite and K-struvite were considered for the experimental design and statically analysed by principal component analysis (PCA) and partial least squares (PLS). The results show that the dosage significantly impacts the immobilisation process, while the effect of particle size and purity are negligible. Struvite and K-struvite have similar performance on heavy metals immobilisation, and both are significant in Pb immobilisation (up to 96% of F5, stable fraction) and are beneficial for reducing the most mobilised fractions (F1 and F2) of Cr to lesser than 3%. Struvite and K-struvite share similar performance due to their similar atomic radius, and the different performance between Cr and Pb immobilisation can be explained by the strong hydrolysis trend of chromium ion, which may inhibit the binding of the phosphate and chromium. The kinetic study finds that all three variables positively impact the free chromium ion, and the immobilisation process is fast so unlikely to be kinetically limited. These findings of this project will provide insight into how the immobilisation process changes in response to the dosage and quality of struvite compounds.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Bing Li
- Water Research Centre, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Filicia Wicaksana
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Wei Yu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| | - Brent Young
- Department of Chemical & Materials Engineering, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
49
|
Ait Ichou A, Benhiti R, Abali M, Dabagh A, Carja G, Soudani A, Chiban M, Zerbet M, Sinan F. Characterization and sorption study of Zn2[FeAl]-CO3 layered double hydroxide for Cu(II) and Pb(II) removal. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Nakhaei M, Heidarian MH, Vatanpour V, Rezaei K. Evaluation the feasibility of using clinoptilolite as a gravel pack in water wells for removal of lead from contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4653-4668. [PMID: 35974266 DOI: 10.1007/s11356-022-22519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The ability of clinoptilolite zeolite as a filter in water wells to remove lead from polluted groundwater was tested in batch and fixed-bed column experiments. XRF, XRD, SEM, and BET were used to characterize the zeolite. Because of the pH variation in groundwater, batch experiments were performed at pH = 6, 7, and 8, with the highest removal efficiency (84.2%) at pH = 6 and 298 K within 90 min. The Freundlich model accurately predicted metal ion adsorption behavior and indicated a multilayer adsorption of Pb(II) molecules on the inhomogeneous surface of clinoptilolite. The best-fitting kinetic model for clinoptilolite is the pseudo-second order equation, highlighting that the rate of adsorption is dependent on absorbent capacity. Next, the effect of flow rate, bed depth, and grain size of clinoptilolite on lead removal was investigated in column experiments at an initial concentration of 450 mg pb/L. The highest removal efficiency was achieved in column experiments with a flow rate of 1 mL/min, a bed height of 10 cm, and a grain size of 0.6 to 0.8 mm. Breakthrough curves were predicted by the Thomas and Yoon-Nelson models, with excellent agreement with the corresponding experimental data. This research will be used to develop a new in situ remedial approach for removing lead from polluted groundwater.
Collapse
Affiliation(s)
- Mohammad Nakhaei
- Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
- Water Research Center, Kharazmi University, Tehran, Iran
| | | | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, P.O. Box, Tehran, 15719-14911, Iran
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Khalil Rezaei
- Department of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|