1
|
Huo T, Zeng G, He Y. A new conjugated mesoporous polymer as fluorescence sensor for the detection of nerve agent simulant dimethyl chlorophosphonate via specific nucleophilic substitution reaction. Talanta 2024; 285:127323. [PMID: 39647279 DOI: 10.1016/j.talanta.2024.127323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Conjugated micro/mesoporous polymers (CMPs) represent a category of porous organic materials formed via covalent bonds. Here, DAC-TFP CMP was synthesized using 3,6-diaminocarbazole (DAC) and 2-hydroxy-1,3,5-benzenetricarbaldehyde (TFP) as building blocks. DAC-TFP CMP is a porous conjugation polymer with remarkable thermal and chemical stability. DAC-TFP CMP suspension demonstrates selective "on-off" fluorescence response towards nerve agent simulant dimethyl chlorophosphonate (DMCP) in 1,4-dioxane with exceptionally low detection limits. DMCP and DAC-TFP CMP undergo a nucleophilic substitution reaction, leading to the formation of an N-P bond between N atom on carbazole of DAC-TFP CMP and P atom of DMCP. The new polymer DAC-TFP CMP@DMCP has electron donor-acceptor structure and the fluorescence quenching can be ascribed to the intramolecular charge transfer (ICT) from DAC-TFP CMP unit to DMCP group, as supported by XPS results and DFT calculation. Upon the addition of DMCP to the 1,4-dioxane suspension of DAC-TFP CMP, a subtle blue shift is observed in both the fluorescence emission spectra and UV-vis absorption spectra, providing further validation of the ICT mechanism. DAC-TFP CMP shows excellent recoveries in detecting DMCP in both soil and pesticide samples containing mesotrione and atrazine, highlighting its strong potential as a reliable chemosensor for DMCP detection and analysis.
Collapse
Affiliation(s)
- Tingyan Huo
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guowei Zeng
- College of Physics, Jilin University, Changchun, 130012, PR China
| | - Yi He
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Zhang X, Li Z. Modeling the impact of pesticide drift deposition on off-field non-target receptors. CHEMOSPHERE 2024; 365:143363. [PMID: 39299464 DOI: 10.1016/j.chemosphere.2024.143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Pesticide application can result in residue drift deposition in off-field areas, which can be harmful to non-target organisms inhabiting adjacent off-field environments. In order to comprehend the impact of pesticide drift deposition on off-field non-target organisms, an integrated modeling approach was incorporated into the life cycle analysis perspective for the assessment of their exposure to pesticide residues and the characterization of their human toxicity and ecotoxicity potentials. The modeling assumption comprises four modeling scenarios: children & cattle & sensitive crops (tomatoes) based on exposure assessment, and the continent-scale human health toxicity & ecotoxicity under a life cycle analysis perspective. The simulation results for the nearby off-field exposure scenario revealed that pesticide dissipation kinetics in environments and drift deposition type were two important factors influencing non-target organisms' exposure to pesticide residues deposited in off-field environments. The continental scenario simulated via USEtox revealed that considering off-field drift deposition resulted in lower simulated human toxicity potentials of pesticides when compared to simulation results that did not consider drift deposition, given that pesticide residues remaining within the treated field contributed the most to overall human exposure. Taking drift deposition into account, on the other hand, could result in higher or lower simulated ecotoxicity potentials of pesticides than not taking drift deposition in off-field areas into account, depending on the physicochemical properties of pesticides. The proposed modeling approach, which is adaptable to drift deposition types and chemical species, can aid in investigating the off-field impacts of pesticide residues. Future research will incorporate spatiotemporal factors to characterize region-specific drift deposition functions and pesticide fate in off-field environments to conduct site-specific impact assessments.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Méndez García M, García de Llasera MP, Lara Ruiz ME, Sevilla Agustín CU. Benzo(b)fluoranthene and benzo(k)fluoranthene removal by microalgae in the presence of triazine herbicides: Matrix solid-phase dispersion and solid-phase extraction (MSPD/SPE) for HPLC-UV analysis of the different culture components. J Chromatogr A 2024; 1731:465194. [PMID: 39047443 DOI: 10.1016/j.chroma.2024.465194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, human activities in the industrial and agricultural sectors have significantly increased the concentration of persistent and harmful pollutants in aquatic ecosystems. The use of microorganisms is a green strategy for the bio-removal of certain contaminants. However, other pollutants in the same ecosystems can reduce their degrading activity and even affect their survival. Therefore, this study aimed to evaluate the efficiency of benzo(b)fluoranthene (BbF) and benzo(k)fluoranthene (BkF) removal by Selenastrum capricornutum in the presence of triazine herbicides, compounds mainly used in broadleaf weeds. The interest of this work focused on identifying in which of the microalgal components the degrading activity is best evidenced and affected. For this purpose, the use of solid-phase extraction (SPE) and matrix solid-phase dispersion (MSPD) extraction procedures and HPLC-UV analysis allowed the BbF and BkF trace quantification in biomass, liquid medium, and cell lysate separately from cultures exposed to these polycyclic aromatic hydrocarbons (PAHs) alone or with herbicides. The recovery percentages were between 78 and 94 %, good linearity (r2 ≈ 0.99), precision values measured as RSD < 15 %, and limits of detection (LOQs) at levels of ng mL-1 and ng mg-1 were obtained. The individual PAH amounts measured in the components of microalgae cultures show similar removal kinetics (removal percentages: 82-89 %). Likewise, the analysis demonstrated that the removal of PAHs is not affected in the presence of triazine herbicides (atrazine and cyanazine) and with similar removal percentages (79-86 %) compared to those cultures exposed to individual PAHs (74-83 %). These results support the possible real-world applications of PAH removal by extracts from S. capricornutum in aquatic environments contaminated with PAHs and near agriculture areas where triazine herbicides are used.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico.
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| | - María Elena Lara Ruiz
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| | - Carlos Uriel Sevilla Agustín
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| |
Collapse
|
4
|
Huang Y, Zhang X, Li Z. Analysis of nationwide soil pesticide pollution: Insights from China. ENVIRONMENTAL RESEARCH 2024; 252:118988. [PMID: 38663666 DOI: 10.1016/j.envres.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
China is a typical agricultural country that heavily relies on pesticides. Some pesticides can remain in the soil after application and thus pose a significant threat to human health. In order to characterize the status and hazards of nationwide soil contamination, this study extracted concentration data from published literature and analyzed them by a scoring approach, standard comparison and health risk assessment. For the soil pollution score, northern regions got the highest values, such as Henan (0.63), Liaoning (0.55), Heilongjiang (0.54) and Jilin (0.53), which implies high soil pesticide residues in these provinces. In contrast, Qinghai (-0.77), Guizhou (-0.64) and Tibet (-0.63) had lower scores. China's soil pesticide standards cover only 16 pesticides, and these pesticide concentrations were all below the corresponding standards. Direct exposure to soil pesticides in this study generally posed a negligible risk to children. Furthermore, pesticide dissipation and usage intensity in each province were analyzed as they were possible influences on pollution. The result showed that soil in the northern regions could accumulate more pesticides than those in the southern regions, and this geographic pattern was basically consistent with the distribution of soil pollution. However, the relationship between agricultural activities and soil pollution was less well characterized. It is recommended to establish a long-term monitoring database for pesticides and include more pesticides in regulatory frameworks. Additionally, efforts to accelerate pesticide degradation and shift the planting structure to reduce pesticide usage can help alleviate the pressure on soil from pesticides. This study can serve as a critical reference for policymakers and stakeholders in the field of agriculture.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
5
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
6
|
Jie Chen Z, Yan Zhai X, Liu J, Zhang N, Yang H. Detoxification and catabolism of mesotrione and fomesafen facilitated by a Phase II reaction acetyltransferase in rice. J Adv Res 2023; 51:1-11. [PMID: 36494064 PMCID: PMC10491983 DOI: 10.1016/j.jare.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The excessive dosage of pesticides required for agronomic reality results in growing contamination of pesticide residues in environment, thus bringing high risks to crop production and human health. OBJECTIVES This study aims to unveil a novel mechanism for catabolism of two pesticides MTR and FSA facilitated by an uncharacterized Phase II reaction enzyme termed acetyltransferase-1 (ACE1) in rice and to make assessment of its potential for bioremediation to minimize the risks to crop production and food safety. METHODS We developed genetically improved cultivars overexpressing OsACE1 (OE) and knockout mutant lines by CRISPR-Cas9 technology to identify the MTR and FSA detoxic and metabolic functions and characterized their metabolites and conjugates by HPLC-LTQ-MS/MS. RESULTS OsACE1 overexpression conferred rice resistance to toxicity of MTR/FSA compared to wild-type, manifested by improved plant elongation and biomass, attenuated cellular injury, and increased chlorophyll accumulation. The OE plants accumulated significantly less parent MTR/FSA and more degradative metabolites, and removed MTR/FSA from their growth medium by 1.38 and 1.61 folds over the wild-type. In contrast, knocking out OsACE1 led to compromised growth fitness and intensified toxic symptoms under MTR/FSA stress and accumulation of more toxic MTR and FSA in rice. The reduced metabolites of MTR and FSA detected in the Cas9 plants suggest the impaired capability of OsACE1 function. CONCLUSIONS These results signified that OsACE1 expression is required for detoxifying the two poisoning chemicals in rice and plays a critical role in accelerating breakdown of the pesticides mainly through Phase II reaction mechanism pathways.
Collapse
Affiliation(s)
- Zhao Jie Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Li Z, Ai Z. Mapping Plant Bioaccumulation Potentials of Pesticides from Soil Using Satellite-Based Canopy Transpiration Rates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:117-129. [PMID: 36349963 DOI: 10.1002/etc.5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The transpiration rate is an important factor that determines the bioaccumulation potential of pesticides from soil and can present a spatiotemporal pattern. In the present study, we proposed a satellite-based approach to map the bioaccumulation potential of pesticides from soil using the Global Land Evaporation Amsterdam Model (GLEAM). In the proposed model, the spatiotemporal variable (i.e., plant transpiration rate) was separately analyzed from the plant- and chemical-specific variables. The simulated bioaccumulation factors (BAFs; steady-state concentration ratios between plants and soil) of atrazine and lindane for the United States indicated that the proposed model can better predict the spatiotemporal pattern of bioaccumulation potentials of pesticides from soil than a previous weather-based model. The proposed approach using GLEAM's satellite data avoids the overestimation of plant transpiration rate in regions with a dry and warm climate. The comparison of BAFs between the proposed and weather-based models indicated that the satellite-based simulation was consistent with the weather-based simulation for most states and was more effective for the southwest region. Furthermore, plant- and chemical-specific variables were simulated for over 700 pesticides, which could be multiplied by satellite-based canopy transpiration rates to map the bioaccumulation potentials of chemicals from soil. Further evaluation of plant-specific variables, partitioning behaviors of ionizable compounds, and multiple uptake routes (e.g., airborne residue deposition) will aid in the evaluation of the spatiotemporal patterns of pesticide BAFs in plants in future research. Environ Toxicol Chem 2023;42:117-129. © 2022 SETAC.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhipin Ai
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba-City, Ibaraki, Japan
| |
Collapse
|
8
|
Fei L, Bilal M, Qamar SA, Imran HM, Riasat A, Jahangeer M, Ghafoor M, Ali N, Iqbal HMN. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2022; 211:113060. [PMID: 35283076 DOI: 10.1016/j.envres.2022.113060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.
Collapse
Affiliation(s)
- Liu Fei
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Sarmad Ahmad Qamar
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Areej Riasat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Jahangeer
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Misbah Ghafoor
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Li Z. New implication of pesticide regulatory management in soils: Average vs ceiling legal limits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151705. [PMID: 34793794 DOI: 10.1016/j.scitotenv.2021.151705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
To help regulatory agencies better interpret pesticide soil standards (PSSs) and promote pesticide soil regulations, this study revealed new PSS implications by introducing the average (i.e., PSSAC) and ceiling (i.e., PSSCC) legal limits of pesticides. The PSSAC indicates the average legal limit of a pesticide in the soil over a duration (e.g., annual or monthly average), ensuring that no adverse human health effects can occur. The PSSCC indicates the ceiling legal limit that cannot be exceeded by pesticide concentrations in the soil, which was introduced to comply with pesticide application in real-world scenarios. We introduced the regulatory ceiling factor (RCF) to screen whether a pesticide in the surface soil could be regulated using the PSSAC and PSSCC values. The results indicated that except for some pesticides with high lipophilicity and low degradability (e.g., legacy pesticides), many pesticides were eligible to be regulated by both average and ceiling legal limits. In addition, we conducted a case study to evaluate chlorpyrifos soil standards via a four-step regulatory procedure; the results indicated that our new interpretation using the simulated PSSAC and PSSCC values of chlorpyrifos demonstrated that most current chlorpyrifos soil standards can protect population health, which is in contrast to the findings of current regulatory studies. Furthermore, based on the new implication of PSSs interpreted in this study, we recommend that regulatory agencies clarify PSSs to avoid confusion and promote cost-efficient remediations, and recommend improving the regulatory communication between environmental agencies and pesticide manufacturers to define a comprehensive policy integrating PSSs and application patterns.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
10
|
CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Int J Mol Sci 2022; 23:ijms23084454. [PMID: 35457271 PMCID: PMC9027422 DOI: 10.3390/ijms23084454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
To increase the potentiality of crop production for future food security, new technologies for plant breeding are required, including genome editing technology—being one of the most promising. Genome editing with the CRISPR/Cas system has attracted researchers in the last decade as a safer and easier tool for genome editing in a variety of living organisms including rice. Genome editing has transformed agriculture by reducing biotic and abiotic stresses and increasing yield. Recently, genome editing technologies have been developed quickly in order to avoid the challenges that genetically modified crops face. Developing transgenic-free edited plants without introducing foreign DNA has received regulatory approval in a number of countries. Several ongoing efforts from various countries are rapidly expanding to adopt the innovations. This review covers the mechanisms of CRISPR/Cas9, comparisons of CRISPR/Cas9 with other gene-editing technologies—including newly emerged Cas variants—and focuses on CRISPR/Cas9-targeted genes for rice crop improvement. We have further highlighted CRISPR/Cas9 vector construction model design and different bioinformatics tools for target site selection.
Collapse
|
11
|
Li Z. Improving pesticide fate models for a simple household food processing: considering multiple crop units. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30507-30520. [PMID: 35000168 DOI: 10.1007/s11356-021-17983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
To understand the fate of pesticides in crops during household cooking processes and human health risks associated with the ingestion of pesticide-contaminated crops, we propose unit-variability-enhanced models, which are capable of evaluating the removal efficiency of pesticides in multiple crop units by soaking in water. The approach integrates the lognormal production model to reveal the modeling mechanics of internal contamination among two crop units in one soaking bowl. The simulated results for 197 pesticides indicate that pesticides with larger unit-to-unit variability factors (VF) at the residue levels and diffusivity rates in water (DW) are more likely to cause internal contamination. Although internal contamination of pesticide residues between two crop units may occur, we find that the overall removal factor ([Formula: see text]) for two crop units is independent of the ratio of initial residue levels between the two crop units. Based on this discovery, we propose the unit-variability-based (UVB) rule to generalize the [Formula: see text] for an n-crop-unit system, where n crop units soak simultaneously in one container. In addition, we demonstrate that under the same consumable and recycling resources, the soaking of two crop units together in one container can yield a maximum mass removal of pesticides if the two units are randomly sampled. Although other factors, such as temperature and the nature of solutions in the cooking process, should be considered in future studies, our models suggest that this soaking method can be conveniently realized in households to reduce negative health effects.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
12
|
Li Z. A disease-specific screening-level modeling approach for assessing the cancer risks of pesticide mixtures. CHEMOSPHERE 2022; 286:131811. [PMID: 34365169 DOI: 10.1016/j.chemosphere.2021.131811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
As humans are always exposed to multiple pesticides, it is necessary to conduct risk assessments for pesticide mixtures. Due to data limitations, in this study, we introduced a disease-specific screening-level modeling framework to simulate the cumulative cancer risk (CR) of carcinogenic pesticides, which was developed based on the lognormal dose-response (LDR) curve of chemicals with disease-specific modes of action (MOAs). The simulated results of a case study indicate that the cumulative CR can be at least two orders of magnitude higher than the simulated CRs of individual pesticides. The comparison between the LDR model and the linear extrapolation (or cancer slope factor, CSF) model indicates that the CSF model can greatly overestimate population cancer risks. In addition, we applied our model to evaluate current regulatory standards of carcinogenic pesticide mixtures, and the results indicate that current standards for the selected jurisdictions can control the cumulative cancer risks within the acceptable level. However, the CSF model suggests that all selected jurisdictions cannot protect population health against the carcinogenic pesticide mixture, which is due to the nature of the low-dose linear extrapolation that triggers an initial slope when the effect dose is close to zero. Thus, we concluded that although the MOAs of pesticides in human bodies must be evaluated in future studies, our disease-specific model can be a useful and practical tool for cancer risk assessment and regulatory management of pesticide mixtures.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, China.
| |
Collapse
|
13
|
Li Z, Niu S. Modeling pesticides in global surface soils: Exploring relationships between continuous and discrete emission patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149309. [PMID: 34375253 DOI: 10.1016/j.scitotenv.2021.149309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Continuous pesticide emission at constant rate does not occur in reality, but can be a useful and simple concept in modeling studies. To explore the relationship between continuous and discrete emission patterns, we introduced a simple equivalent approach based on a comparison of simulated surface soil pesticide concentrations. The simulated results indicate that, at high soil pesticide dissipation rates and low emission frequencies, the average concentrations under the continuous and discrete emission scenarios were very similar. We demonstrated that the continuous emission model that used the simple average method to calculate the emission rate always overestimated the simulated pesticide concentrations in the surface soil compared to the discrete emission model when using a one-year period based on agricultural practices. In addition, we incorporated the equivalent approach into the USEtox model (a screening-level tool), which can approximate the average pesticide concentrations in surface soil using the time-integrated fate factors at different emission frequencies. The results indicate that the continuous-emission simulations agree with the discrete emission for at least 90% of the selected pesticides based on annual or semi-annual emission patterns. Further studies into other topics, such as random emission patterns and simulation periods, are required to improve the model. Nevertheless, the equivalent approach presented in this study can aid in transforming discrete emission patterns into continuous-emission-based models and improve surface soil pesticide management.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Shan Niu
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
14
|
Xiao S, Li Z, Fantke P. Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics. PEST MANAGEMENT SCIENCE 2021; 77:5096-5108. [PMID: 34236751 PMCID: PMC8518939 DOI: 10.1002/ps.6549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is a continuous need to advance pesticide plant uptake models in support of improving pest control and reducing human exposure to pesticide residues. The periderm of harvested root and tuber crops may affect pesticide uptake, but is usually not considered in plant uptake models. To quantify the influence of the periderm on pesticide uptake from soil into potatoes, we propose a model that includes an explicit periderm compartment in the soil-plant mass balance for pesticides. RESULTS Our model shows that the potato periderm acts as an active barrier to the uptake of lipophilic pesticides with high KOW , while it lets more lipophobic pesticides accumulate in the medulla (pulp). We estimated bioconcentration factors (BCFs) for over 700 pesticides and proposed parameterizations for including the effects of the periderm into a full plant uptake modeling framework. A sensitivity analysis shows that both the degradation half-life inside the tuber and the lipophilicity drive the contributions of other aspects to the variability of BCFs, while highlighting distinct dynamics in the periderm and medulla compartments. Finally, we compare model estimates with measured data, showing that predictions agree with field observations for current-use pesticides and some legacy pesticides frequently found in potatoes. CONCLUSION Considering the periderm improves the accuracy of quantifying pesticide uptake and bioconcentration in potatoes as input for optimizing pest control and minimizing human exposure to pesticide residues in edible crops.
Collapse
Affiliation(s)
- Shenglan Xiao
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Zijian Li
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and EconomicsTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
15
|
Li Z. Regulation of pesticide soil standards for protecting human health based on multiple uses of residential soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113369. [PMID: 34325373 DOI: 10.1016/j.jenvman.2021.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
To help environmental agencies manage pesticides in residential soil and reduce the associated risks to human health, we developed a screening-level framework that derives pesticide soil standards (PSSs) while considering the multiple uses of residential soil. Our screening models simulated the risk from exposure to soil pesticides via direct and three major indirect (i.e., tuber crops, animal-sourced food, and groundwater) exposure pathways. Based on these models, we derived PSSs for five types of residential soil. Our results showed that, in general, indirect pathways contributed more than the direct pathway to the overall exposure to soil pesticides. Consequently, in rural environments, where residential soil is also subjected to activities such as agriculture, animal grazing, and groundwater consumption, the derived PSSs were low. In addition, we compared the derived PSSs to the current worldwide standards for 13 commonly used pesticides. We found that the current global PSSs were appropriate only for urban residential soil. In many rural environments where the boundaries between different soil uses may be indistinct, the current PSSs are insufficient to protect humans from exposure to soil pesticides. Based on this analysis and the proposed PSSs, we provide regulatory recommendations for the management of pesticides in various types of residential soils.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
16
|
Shen MW, Chen HC, Chen ST. A Pest or Otherwise? Encounter of Oryctes rhinoceros (Coleoptera: Scarabaeidae) with Persistent Organic Pollutants. INSECTS 2021; 12:insects12090818. [PMID: 34564258 PMCID: PMC8467767 DOI: 10.3390/insects12090818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary A native, widely spread beetle, Oryctes rhinoceros, in Southeast Asia may clean up some of the persistent organic pollutants (POPs) for us if guarded in a controlled manner. Some xenobiotics persisting in our environment may cause harmful effects to the living creatures within their food web via a so-called “bioaccumulation effect”. The encounter of wild creatures with the POPs appears inevitable. Luckily, this study revealed that the proper breeding of the commonly seen beetle could degrade more than 95% of some studied POPs simply by ingestion. The beetle larvae tolerated different POPs at various extents, yet through an acclimation operation, the beetle’s mortality rate could be greatly reduced. Even though O. rhinoceros is considered a pest for some valuable corps, its removal of POPs in a natural, efficient and passive (i.e., fewer energy inputs) manner makes this alternative promising and deserving of further explorations. Abstract The potential use of invertebrates as bioreactors to treat environmental pollutants is promising and of great interest. Three types of the persistent organic pollutants (POPs), namely pentachlorophenol (PCP), PAHs (naphthalene and phenanthrene) and dieldrin (DLN), were spiked in soil and treated by using Oryctes rhinoceros larvae, a known pest of coconut trees in southeast Asia, and also the indicators of POP toxicity and the fate and degradability of the ingested POPs were assessed. The larvae were tested at various levels of the POPs and went through an acclimation process. Without acclimation, the tolerance limits of the larvae toward PCP, PAHs and DLN were 200, 100 and 0.1 mg/kg-soil, respectively, yet with acclimation, the tolerance levels increased to 800, 400 and 0.5 mg/kg-soil, respectively. Biodegradation rates of all the tested POPs were >90% by week 2, with <5% and nearly 0% remaining in the feces and body of the larvae, respectively. The results suggest that the use of the beetle larvae in soil POP decontamination is doable.
Collapse
Affiliation(s)
- Meng-Wei Shen
- Ph.D. Program in Engineering Science and Technology, College of Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Hung-Chuan Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
| | - Shyi-Tien Chen
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-601-1000 (ext. 32327); Fax: +886-7-601-1061
| |
Collapse
|
17
|
Fiaz S, Ahmar S, Saeed S, Riaz A, Mora-Poblete F, Jung KH. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int J Mol Sci 2021; 22:5585. [PMID: 34070430 PMCID: PMC8197453 DOI: 10.3390/ijms22115585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur 22620, Pakistan
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sajjad Saeed
- Department of Forestry and Wildlife Management, University of Haripur, Haripur 22620, Pakistan
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 2 Norte 685, Talca 3460000, Chile
| | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
18
|
Chen R, Teng Y, Chen H, Yue W, Su X, Liu Y, Zhang Q. A coupled optimization of groundwater remediation alternatives screening under health risk assessment: An application to a petroleum-contaminated site in a typical cold industrial region in Northeastern China. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124796. [PMID: 33352419 DOI: 10.1016/j.jhazmat.2020.124796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Contaminated sites have been recognized as posing serious comprehensive social and environmental issues and have earned worldwide attention. China is becoming one of the largest contaminated sites remediation markets in the world and the contaminated sites in northeastern China need to rehabilitate urgently. However, remediation planning is often hindered by high financial costs resulting from incomplete assessments of pollution and inappropriate remediation plans. In-depth contaminated site assessments can provide the necessary baseline data for remediation alternatives screening. Therefore, risk assessments and remediation decisions will play crucial roles in the rehabilitation and reconstruction of contaminated sites in China. The main objectives of this study were to present a novel method for health risk assessment (HRA) and to demonstrate a multicriteria decision analysis (MCDA) based on this method to select the most suitable remediation alternatives of groundwater and to prioritize management of contaminated site. To demonstrate the HRA and MCDA processes, a typical contaminated site in Longtan, Jilin province, China, was used. The results of this research indicated that Benzene (PhH) and 1,2-Dichloroethylene (1,2-DCE) were the main organic pollutants and the vanillin plant in the north of the site was main pollution source. Pollution migrated from the north to the south and the health risk range in winter was significantly greater than in summer. Four remediation alternatives were proposed on the basis of the HRA results. The MCDA results showed that PRB was the most suitable technology for integrating the relevant environmental, social, economic, and technical aspects required for remediation. This study may help responsible agencies to strengthen local risk-based program screening frameworks for contaminated sites, to promote reconstruction projects, and to increase local public confidence of contaminated sites remediation.
Collapse
Affiliation(s)
- Ruihui Chen
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaosi Su
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yaning Liu
- Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA
| | - Qianru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 China.
| |
Collapse
|
19
|
Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit. Food Chem 2021; 350:129195. [PMID: 33636620 DOI: 10.1016/j.foodchem.2021.129195] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/25/2020] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
This study investigated the effect of plasma-activated liquid (PAL) including plasma-activated water (PAW) and plasma-activated buffer solution (PABS) for the reduction of chlorothalonil (CTL) and thiram (THM) pesticide residues on tomato fruit. Results revealed that the PAL obtained by using atmospheric air as the feed gas, CTL residues were decreased to 85.3% and 74.2% and THM residues decreased to 79.47 and 72.21% after treatments with PAW10 and PABS10, respectively, and increasing the activation time caused a significant reduction in fungicide residues. In addition, CTL and THM residues were also decreased while increasing the activation time of PAL using Ar/O2 as the feed gas, the concentrations of the CTL residues were decreased to 75.07 and 69.89% for PAW10 and PABS10, respectively and THM residues decreased to 65.89 and 61.91% for PAW10 and PABS10, respectively. Oxidation-reduction potential (ORP) and electrical conductivity (EC) were increased significantly after plasma treatment, while pH values of both solutions were decreased significantly with activation time. NO3- and NO2- concentrations of PAW increased significantly, while for PABS, NO3- concentration decreased but NO2-, with increasing the plasma activation time. Additionally, washing with PAW and PABS caused no notable negative impact on tomato fruit. Results confirmed that PAL treatments showed a significant reduction of CTL and THM fungicide residues (p < 0.05) in tomato without affecting the quality.
Collapse
|
20
|
Fan D, Jing Y, Zhu Y, Ahmad S, Han J. Toluene induces hormetic response of soil alkaline phosphatase and the potential enzyme kinetic mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111123. [PMID: 32861005 DOI: 10.1016/j.ecoenv.2020.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Hormesis of soil enzyme that involved in heavy metal has been attracting much more attention for risk assessment of heavy metal toxicity, but insufficient studies were conducted to define the hormetic responses induced by toluene or other organic pollutions. The objectives of this study were to investigate the hormetic responses of soil enzyme induced by toluene and explore the potential enzyme kinetic mechanism. Soil alkaline phosphatase (ALP) activity was regarded as the endpoint to explore the hormetic responses under different doses of toluene (0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 50.0 and 100.0 μL g-1). Subsequently, we conducted the experiments of enzymatic reaction kinetics and pure enzyme to further verify the potential mechanisms of soil ALP's hormesis. Results showed that ALP activities at 0.1-1.0 μL g-1 toluene were significantly increased in contrast to the control (0 μL g-1 toluene) (P < 0.05) at the exposure time of 30, 36, 48 and 54 h, with the maximum stimulation magnitudes of 24-43%. ALP activities were almost not affected by toluene (2-100 μL L-1) in the whole experimental period (6-54 h). Meanwhile, the values of catalytic efficiency (the radio Vmax/Km, Vmax: maximum reaction velocity and Km: Michaelis constant) and Vmax significantly increased compared with the control, but the value of Km decreased from 2.5 to 1.6. Overall, low dose toluene can induce hormesis of soil ALP. The potential reason is that low-dose toluene could enhance the combination of soil ALP and substrates. We believe that this study will provide a new viewpoint for ecological risk assessment of toluene contaminated soils.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujing Jing
- College of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yongli Zhu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Sajjad Ahmad
- Department of Civil and Environmental Engineering, University of Nevada, Las Vegas, NV, 89154-4015, USA
| | - Jiangang Han
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
21
|
Chen H, Shi Q, Fu H, Hu O, Fan Y, Xu L, Zhang L, Lan W, Sun D, Yang T, She Y. Rapid detection of five pesticide residues using complexes of gold nanoparticle and porphyrin combined with ultraviolet visible spectrum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4464-4473. [PMID: 32399965 DOI: 10.1002/jsfa.10487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUD Pesticides are widely used to control insect infestation and weeds in agriculture. However, concerns about the pesticide residues in agricultural products have been raised in recent years because of public interest in health and food quality and safety. Thus, rapid, convenient, and accurate analytical methods for the detection and quantification of pesticides are urgently required. RESULTS A nanohybrid system composed of gold nanoparticles (AuNPs) and tetrakis(N-methyl-4-pyridiniumyl) porphyrin (TMPyP) was used as an optical probe for the detection and quantification of five pesticides (Paraquat, Dipterex, Dursban, methyl thiophanate and Cartap). The method is based on the aggregation effect of pesticides on the carboxyl group modified by AuNPs. Subsequently, with the help of particle swarm optimization-optimized sample weighted least squares-support vector machine (PSO-OSWLS-SVM), all the pesticides could be successfully quantified. In addition, partial least squares discriminant analysis (PLS-DA) was applied and the five pesticides were satisfactorily recognized based on data array obtained from the ultraviolet visible (UV-visible) spectra of AuNP-TMPyP complex. Furthermore, the quantitative and qualitative analysis of the five pesticides could be also achieved in the complex real samples, in which all the relative standard deviations (RSDs) were less than 0.3‰ and all the linear absolute correlation coefficients were more than 0.9990. Furthermore, recognition rate of the training set and the prediction set based on multiplicative scatter correction (MSC), or second-order derivative (2nd derivative) UV-visible spectra in PLS-DA model could reach 100%. CONCLUSION This method was successfully applied for the rapid and accurate determination of multicomponent pesticide residues in real food samples. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Qiong Shi
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Ou Hu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Yao Fan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren, P. R. China
| | - Lei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Donglei Sun
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Tianming Yang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
22
|
Chlorpyrifos degradation efficiency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles. 3 Biotech 2020; 10:366. [PMID: 32832327 DOI: 10.1007/s13205-020-02363-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022] Open
Abstract
The present study explored the immobilization of laccase onto iron magnetic nanoparticles (MNPs) to enhance its enzymatic properties and applications. The immobilization process was optimized using Box-Behnken design (BBD). BBD showed significance towards the quadratic model with experimental data. Maximum laccase activity recovery (99%) of the predicted model was observed at 0.75 mg/mL of laccase concentration, 200 mg/mL of MNPs, 0.3% cross linking with carbodiimide, and 3 h of cross-linking time. The magnetization activity of MNPs (8 emu/g) and the immobilized laccase with MNPs (4 emu/g) was analyzed using vibrating sample magnetometer (VSM). Maximum activity of immobilized laccase was observed at pH 7.0 and 55 °C. The immobilized laccase has greater stability (100 h) and significant chlorpyrifos (pesticide) degradation activity. High-performance liquid chromatography (HPLC) results confirmed the degraded metabolic products of chlorpyrifos. In all, the immobilized laccase was superior to free laccase, showing promising structural and application characteristics.
Collapse
|
23
|
Wei Q, Wu M, Xiao F, Wang D. Development of a fast method for the determination of pesticide multiresidues in tomatoes using QuEChERS and GC–MS/MS. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03510-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
He J, Li J, Ma L, Wu N, Zhang Y, Niu Z. Large-scale distribution of organophosphate esters (flame retardants and plasticizers) in soil from residential area across China: Implications for current level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:133997. [PMID: 31479902 DOI: 10.1016/j.scitotenv.2019.133997] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/04/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
To recognize the occurrence and health risk of organophosphate esters (OPEs) in soil of residential areas, a nationwide survey was conducted covering 32 provincial-level administrative regions of China in 2018. Except for triamyl phosphate (TAP), twelve OPEs were detected in residential soil from 89 cities with a total concentration of 1.70-179 ng/g dw, indicating a relatively low contamination level of OPEs in residential soil of China (compared with point source soils and urban soils). Tris(1-chloro-2-propyl) phosphate (TCIPP) was the most abundant OPEs, followed by tris(2-butoxyethyl) phosphate (TBOEP), tris(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPHP), which suggested that TCIPP has been a replacement of TCEP in recent years. An apparent geographical distribution of higher OPEs levels in the Bohai Rim, the Yangtze Delta and Shanxi province than other regions was found. According to the division of administrative levels, the most serious OPEs pollution occurred in prefecture-level city (20.2 ng/g dw), followed by provincial capital (17.9 ng/g dw) and county town (14.1 ng/g dw), which was affected by the usage of OPEs products and behaviors of local residents. The correlation analysis results showed that environmental parameters (total organic carbon (TOC), precipitation and temperature) were not the major factors determining OPEs contamination, while socioeconomic parameters were significantly correlated with OPEs concentration in undeveloped regions/cities with rare industrial source. Although the health risk assessment suggested a negligible risk to local residents (5.92 × 10-7-1.75 × 10-6 for non-carcinogenic risk and 4.82 × 10-12-2.10 × 10-11 for carcinogenic risk), the production and usage of TCIPP and TCEP should be paid more attention due to their relatively high risks. Our study was attempted to provide a nationwide baseline concentration of OPEs in soil of residential areas, which could be used to support further studies.
Collapse
Affiliation(s)
- Jiahui He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Luyao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Nan Wu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
25
|
Bilal M, Iqbal HMN, Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133896. [PMID: 31756868 DOI: 10.1016/j.scitotenv.2019.133896] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 02/05/2023]
Abstract
Inevitable use of pesticides due to modern agricultural practices and the associated worldwide environmental pollution has called the special attention of the researchers to overcome the persistence, recalcitrance, and multi-faceted toxicity of pesticides-based emerging contaminants. Some restricted use pesticides (RUPs) are highly toxic and carcinogenic chemicals that can be easily accumulated into non-target organisms, including humans, aquatic invertebrates, algae, and microbes. With regard to physicochemical strategies, enzymes-mediated bioremediation is a compelling and meaningful strategy for biodegradation and biotransformation of pesticides into harmless chemical species. Oxidoreductases hydrolases and transferases are among the most representative classes of enzymes pursued and engineered for this purpose. Ligninolytic enzymes, particularly laccases, are of exceptional interest due to high efficiency, specificity, eco-sustainability, and wide-ranging substrates. However, the use of native enzymes is often hindered in industrial processes for the effective removal of refractory compounds by their high cost and susceptibility. Many of these drawbacks can be addressed by enzyme immobilization on some suitable support materials. Increase in stability, reusability, reduction of product inhibition, enhanced activity, specificity, and easier product separation are amid the desirable characteristics of immobilization to construct biocatalysts for continuous systems. This review summarizes recent and up-to-date literature on the use of enzymes, explicitly, free as well as immobilized laccases in the degradation of different pesticides. In the first part, source and occurrence of pesticides in the environment, their types, and associated detrimental effects on the ecosystem/human health are comprehensively described. Afterward, we highlighted the use of different enzymes with a particular emphasis on laccase for the degradation and detoxification of an array of pesticides. Finally, the review is closed with concluding remarks, and possible future direction is proposed in this very important research arena. In conclusion, it is envisioned that effective deployment of laccase-assisted biocatalytic systems for the degradation or removal of diverse pesticides and related contaminants will help to better understand the persistence and removal fate of these hazardous pollutants. Moreover, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to remediate pesticides-contaminated environmental matrices effectively.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
26
|
Núñez-Gastélum JA, Hernández-Carreón S, Delgado-Ríos M, Flores-Marguez JP, Meza-Montenegro MM, Osorio-Rosas C, Cota-Ruiz K, Gardea-Torresdey JL. Study of organochlorine pesticides and heavy metals in soils of the Juarez valley: an important agricultural region between Mexico and the USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36401-36409. [PMID: 31722095 DOI: 10.1007/s11356-019-06724-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The Juarez Valley is an important agricultural region in northern Mexico, conveniently organized into three modules (I to III). For decades, their soils have been exposed to organochlorine pesticides (OCPs) and also have been irrigated with wastewaters, which may contain heavy metals. Nowadays, there is very limited information regarding the presence of OCPs and heavy metals in these soils. Thus, the aim of this study was to diagnose these soils for OCPs and heavy metal content by using gas chromatography coupled with electron micro-capture detector and atomic absorption spectrometry, respectively. The results indicated that 4,4'-dichlorodiphenyldichloroethylene and 4,4'-dichlorodiphenyltrichloroethane were primarily disseminated across the three modules since they were found in 100% and 97% of the analyzed soils, respectively. According to international regulations, none of the determined OCP concentrations are out of the limits. Additionally, the Cu, Zn, Fe, Pb, and Mn were found in all sampled soils from the three modules. The highest concentration of Fe was found in module II (1902.7 ± 332.2 mg kg-1), followed by Mn in module III (392.43 ± 74.43 mg kg-1), Zn in module I (38.36 ± 26.57 mg kg-1), Pb in module II (23.48 ± 6.48 mg kg-1), and Cu in module I (11.04 ± 3.83 mg kg-1) (p ≤ 0.05). These values did not exceed the limits proposed by international standards. The Cd was detected in most of the analyzed soils and all their values, with an average of 2 mg kg-1, surpassed the Mexican standards (0.35 mg kg-1). This study has mapped the main OCPs and heavy metals in the Juarez Valley and can serve as a starting point to further monitor the behave of xenobiotics. Since these recalcitrant compounds might be bio-accumulated in biological systems, further analytical methods, as well as remediation techniques, should be developed.
Collapse
Affiliation(s)
- José A Núñez-Gastélum
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, 32310, Ciudad Juárez, Chihuahua, México.
| | - Stephanie Hernández-Carreón
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, 32310, Ciudad Juárez, Chihuahua, México
| | - Marcos Delgado-Ríos
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, 32310, Ciudad Juárez, Chihuahua, México
| | - Juan Pedro Flores-Marguez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, 32310, Ciudad Juárez, Chihuahua, México
| | - María M Meza-Montenegro
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Cd. Obregón, Sonora, México
| | - Claudia Osorio-Rosas
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Cd. Obregón, Sonora, México
| | - Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
- UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
- UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
- Environmental Science and Engineering Ph.D. program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
- NSF-ERC Nanotechnology-Enabled Water Treatment Center (NEWT), Houston, USA
| |
Collapse
|
27
|
Choudri BS, Charabi Y, Ahmed M. Ecological and human health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1072-1079. [PMID: 31386779 DOI: 10.1002/wer.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
The literature review presented in this paper covers the risk assessment process that is important to human health as well as the health of ecology in the form of receptors. One of the important objectives of present review is to provide summary of the scientific studies published in the year 2018. The review starts with literature published on the assessment of health risks, which are valuable to human and ecology. Most of the literature in the entire article focuses on techniques used for the analysis of scientific data and methods. In addition, review also highlights data interpretation, uncertainty, policy, and regulatory guidance associated with the management of human and ecological risks. Particularly, the review on the risk assessment related to human health and ecology is divided into two main sections. These sections provide broad state of knowledge on the risk assessment process used to health of human and ecological systems focused on investigation of polluted sites, techniques of remediation, and tools required for natural resource management.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Mushtaque Ahmed
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
28
|
Insights into the Kinetics of Intermediate Formation during Electrochemical Oxidation of the Organic Model Pollutant Salicylic Acid in Chloride Electrolyte. WATER 2019. [DOI: 10.3390/w11071322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigated the kinetics and formation of hydroxylated and chlorinated intermediates during electrochemical oxidation of salicylic acid (SA). A chloride (NaCl) and sulfate (Na2SO4) electrolyte were used, along with two different anode materials, boron doped diamond (BDD) and platinum (Pt). Bulk electrolysis of SA confirmed the formation of both hydroxylated and chlorinated intermediates. In line with the density functional theory (DFT) calculations performed in this study, 2,5- and 2,3-dihydroxybenzoic acid, 3- and 5- chlorosalicylic acid and 3,5-dichlorosalicylic acid were the dominating products. In the presence of a chloride electrolyte, the formation of chlorinated intermediates was the predominant oxidation mechanism on both BDD and Pt anodes. In the absence of a chloride electrolyte, hydroxylated intermediates prevailed on the Pt anode and suggested the formation of sulfonated SA intermediates on the BDD anode. Furthermore, direct oxidation at the anode surface only played a subordinate role. First order kinetic models successfully described the degradation of SA and the formation of the observed intermediates. Rate constants provided by the model showed that chlorination of SA can take place at up to more than 60 times faster rates than hydroxylation. In conclusion, the formation of chlorinated intermediates during electrochemical oxidation of the organic model pollutant SA is confirmed and found to be dominant in chloride containing waters.
Collapse
|
29
|
Liu L, Bilal M, Duan X, Iqbal HMN. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:444-454. [PMID: 30833243 DOI: 10.1016/j.scitotenv.2019.02.390] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
Industries are the paramount driving force for the economic and technological development of society. However, the flourishing industrialization and unimpeded growth of current production unit's result in widespread environmental pollution due to increased discharge of wastes loaded with baleful, hazardous, and carcinogenic contaminants. Physicochemical-based remediation means are costly, create a secondary disposal problem and remain inadequate for pollution mitigating because of the continuous emergence of new recalcitrant pollutants. Due to eco-friendly, social acceptance, and lesser health hazards, microbial bioremediation has received considerable global attention for pollution abatement. Moreover, with the recent advancement in biotechnology and microbiology, genetically engineered bacteria with high ability to remove environmental pollutants are widely used in the fields of environmental restoration, resulting in the bioremediation in a more viable and eco-friendly way. This review summarized the advantages of genetically engineered bacteria and their application in the treatment of a wide variety of environmental contaminants such as synthetic dyestuff, heavy metal, petroleum hydrocarbons, polychlorinated biphenyls, phenazines and agricultural chemicals which will include herbicides, pesticides, and fertilizers. Considering the risk of genetic material exchange by using genetically engineered bacteria, the challenges and limitations associated with the application of recombinant bacteria on contaminated sites are also discussed. An integrated microbiological, biological and ecological acquaintance accompanied by field engineering designs are the desired features for effective in situ bioremediation of hazardous waste polluted sites by recombinant bacteria.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
30
|
Hlihor RM, Pogăcean MO, Rosca M, Cozma P, Gavrilescu M. Modelling the behavior of pesticide residues in tomatoes and their associated long-term exposure risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:523-529. [PMID: 30594117 DOI: 10.1016/j.jenvman.2018.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
This study is focused on the dissipation behavior of 7 fungicides and 5 insecticides applied in tomatoes after a third spraying at recommended and double doses by considering 6 kinetic models which allow estimating the pesticides half-lives (t1/2). Except studying the pesticides dissipation, another scope of our manuscript was investigating the risk to human health after application of different pesticide treatments in tomatoes. The pesticides analysis in tomatoes at harvest showed that the residues were below the maximum residue level (MRL), with the exception of chlorotalonil (included in Group 2B - "Possibly carcinogenic to humans") and bifenthrin for recommended dose treatments, while for double dose treatments, the MRLs was exceeded for 7 pesticides, once again including chlorotalonil. For recommended dose treatments, the 1st order kinetic model is confirmed only for metalaxyl-M. The values of pesticides t1/2 ranged from 0.006 days (for chlorothalonil) to 48.59 days (for myclobutanil). For double dose treatments, the 1st order kinetic model is confirmed for deltamethrin and triadimenol. In this case, the values of pesticides t1/2 ranged from 0.32 to 10.67 days. Further, consumers' exposure was estimated by calculating the long-term risk based on hazard quotient (HQ). The results indicated that the risks generated by pesticide residues in tomatoes applied in recommended or double doses are in an acceptable limit, except for chlorothalonil which may pose a threat for children health. However, if we consider the cumulative hazard index (HI) values which were higher than 1, consumption of tomatoes containing pesticides residues may cause harmful non-carcinogenic health effects.
Collapse
Affiliation(s)
- Raluca-Maria Hlihor
- "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Faculty of Horticulture, Department of Horticultural Technologies, 3 Aleea Mihail Sadoveanu, 700490 Iasi, Romania; "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Str., 700050 Iasi, Romania.
| | - Manuela Olga Pogăcean
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Str., 700050 Iasi, Romania; Phytosanitary Office Mureş, Regional Laboratory for Quality Control of Pesticides, 8 Dezrobirii Street, Târgu Mureş, Romania
| | - Mihaela Rosca
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Str., 700050 Iasi, Romania
| | - Petronela Cozma
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Str., 700050 Iasi, Romania.
| | - Maria Gavrilescu
- "Gheorghe Asachi" Technical University of Iasi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, 73 Prof. Dr. Docent D. Mangeron Str., 700050 Iasi, Romania; Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| |
Collapse
|
31
|
Ali N, Khan S, Khan MA, Waqas M, Yao H. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8808-8820. [PMID: 30712208 DOI: 10.1007/s11356-019-04287-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/16/2019] [Indexed: 04/16/2023]
Abstract
A comprehensive study was conducted to appraise the concentrations of 30 endocrine disrupting pesticides (EDPs) in soil and vegetable samples collected from Khyber Pakhtunkhwa, Pakistan. The sum of 30 EDPs (Σ30EDPs) ranged from 192 to 2148 μg kg-1 in the collected soils. The selected EDP concentrations exceeded their respective limits in most of the tested soils and showed great variation from site to site. Similarly, high variations in Σ30EDP concentrations were also observed in vegetables with the highest mean concentration in lettuce (28.9 μg kg-1), followed by radish (26.6 μg kg-1), spinach (25.7 μg kg-1), onion (16.2 μg kg-1), turnip (15.6 μg kg-1), and garlic (14.7 μg kg-1). However, EDP levels in all studied vegetables were within FAO/WHO limits. The mean bioconcentration factor values were observed < 1 for all the studied vegetables. The health risk assessment revealed that the incremental lifetime cancer risk (ILCR) of Σ30EDPs associated with vegetable ingestion was below the acceptable risk level (1 × 10-6), showing no cancer risk to local inhabitants. However, exposure to endocrine disruptor and probable carcinogen heptachlor epoxide poses a potential non-cancer risk (hazard quotient (HQ > 1)) to children through vegetable consumption. The presence of banned EDPs in soils and vegetables of the study area indicates the stability of these legacy chemicals in the environment from over usage in the past or illegal current application for agricultural purposes. Graphical abstract.
Collapse
Affiliation(s)
- Neelum Ali
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Muhammad Amjad Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Waqas
- Department of Environmental and Conservation Sciences, University of Swat, Mingora, Pakistan
| | - Huaiying Yao
- Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| |
Collapse
|
32
|
Fiaz S, Ahmad S, Noor MA, Wang X, Younas A, Riaz A, Riaz A, Ali F. Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. Int J Mol Sci 2019; 20:E888. [PMID: 30791357 PMCID: PMC6412304 DOI: 10.3390/ijms20040888] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Grain quality improvement is a key target for rice breeders, along with yield. It is a multigenic trait that is simultaneously influenced by many factors. Over the past few decades, breeding for semi-dwarf cultivars and hybrids has significantly contributed to the attainment of high yield demands but reduced grain quality, which thus needs the attention of researchers. The availability of rice genome sequences has facilitated gene discovery, targeted mutagenesis, and revealed functional aspects of rice grain quality attributes. Some success has been achieved through the application of molecular markers to understand the genetic mechanisms for better rice grain quality; however, researchers have opted for novel strategies. Genomic alteration employing genome editing technologies (GETs) like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for reverse genetics has opened new avenues of research in the life sciences, including for rice grain quality improvement. Currently, CRISPR/Cas9 technology is widely used by researchers for genome editing to achieve the desired biological objectives, because of its simple targeting. Over the past few years many genes that are related to various aspects of rice grain quality have been successfully edited via CRISPR/Cas9 technology. Interestingly, studies on functional genomics at larger scales have become possible because of the availability of GETs. In this review, we discuss the progress made in rice by employing the CRISPR/Cas9 editing system and its eminent applications. We also elaborate possible future avenues of research with this system, and our understanding regarding the biological mechanism of rice grain quality improvement.
Collapse
Affiliation(s)
- Sajid Fiaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Mehmood Ali Noor
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China.
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Aamir Riaz
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fahad Ali
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
33
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|
34
|
Li W, Li Z, Jennings A. A standard-value-based comparison tool to analyze U.S. soil regulations for the top 100 concerned pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:663-675. [PMID: 30092522 DOI: 10.1016/j.scitotenv.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Residential surface soil contamination is often addressed by the use of regulatory guidance values (RGVs), which specify the maximum allowed concentration that can be present without prompting a regulatory action. In the U.S., there are at least 72 jurisdictions, including national, state, and regional, that have published guidance values for one or more of the one hundred most frequently regulated chemicals. A standard-value-based comparison tool in this study is developed to analyze values from 40 states and from the U.S. Environmental Protection Agency (U.S. EPA). The comparison tool can help evaluate the completeness of RGV sets, quantify the average deviation of RGVs from worldwide central tendencies, and measure the overall difference between the numbers of RGVs above and below central tendencies. The pollutants considered in this study include benzidines/aromatic amines, dioxins and polychlorinated biphenyls (PCBs), hydrocarbons, inorganic substances, nitroamines/ethers/alcohols, organophosphates and carbamates, pesticides, phenols/phenoxy acids, phthalates, and volatile organic compounds. Based on completeness and comparisons of order of magnitude variations, five types of scores are generated. The results from the completeness scores indicate that some states lack soil RGVs for the top 100 concerned pollutants. The results from the comparison scores indicate that some jurisdictions have provided the RGVs averagely deviating from worldwide central tendencies and U.S. EPA scores by over two orders of magnitude, which might be beyond the risk model variabilities and increase human health risks. Hopefully, the regulatory comparison tool developed in this study will help risk assessors and regulatory scientists to better evaluate soil standards and protect public health.
Collapse
Affiliation(s)
- Wenbiao Li
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zijian Li
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Parsons Corporation, Chicago, IL 60606, USA.
| | - Aaron Jennings
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
35
|
Ravindra K. Emission of black carbon from rural households kitchens and assessment of lifetime excess cancer risk in villages of North India. ENVIRONMENT INTERNATIONAL 2019; 122:201-212. [PMID: 30522824 DOI: 10.1016/j.envint.2018.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The use of biomass solid fuels (BSFs) for cooking, contribute significantly to the household air pollution (HAP) in developing countries. Emissions resulting from a variety of BSFs (cow dung cakes, wood, and agriculture residues) contain a significant amount of air pollutants, which are now recognized for their role in climatic change and adverse human health impacts. In the current study, daily variations in black carbon (BC) or Short-Lived Climate Forcer concentrations were studied from rural household kitchens using portable aethalometer. The hourly average concentration of BC ranges from 5.4 μg·m-3 to 34.9 μg·m-3 for various types of household kitchens. The peak levels of BC were found to be significantly higher, when compared to World Health Organization PM2.5 limits for ambient air and hence pose a threat to the health of the vulnerable population, i.e., women, children, older adults and those who have health problems. The study also highlights the variation of BC concentration in different kitchen type. The average BC concentration in indoor, outdoor and semi-open kitchen was observed to be 14.54, 14.28 and 24.69 μg·m-3, respectively. The excess lifetime carcinogenic risk for cooking 4 h/day in these kitchens in the North Indian villages was estimated to be 1.25 × 10-7, 1.22 × 10-7, and 2.12 × 10-7 respectively. Age-specific excess cancer deaths due to BC exposure were measured highest in children below four years of age in Chandigarh, India. Hence, there is a need to shift the BSF users to clean fuel alternatives to reduce the exposure to HAP. This can be achieved by generating local/regional evidences of BSFs associated health risks to support policy interventions. Further, more research is required to improve the air quality in indoor micro-environments and specifically in kitchens. NOVELTY: The first study reporting the near real-time measurements of BC from different types of rural households kitchens of north India. Diurnal pattern of BC concentration was also studied including the effect of chimney, ventilation and kitchen size on observed BC concentration. This study also estimates lifetime excess cancer risk due to BC exposure in rural households in India. The recent 'Global Burden of Disease' report identifies household air pollutants as a major cause of disease and disability in Asia. The study will help to plan suitable policies and intervention to reduce household air pollution in the region.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
36
|
Li W, Li Z, Jennings A. Regulatory performance dataset constructed from U.S. soil jurisdictions based on the top 100 concerned pollutants. Data Brief 2018; 21:36-49. [PMID: 30338272 PMCID: PMC6186953 DOI: 10.1016/j.dib.2018.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 11/23/2022] Open
Abstract
The regulatory performance dataset based on the standard-value-based comparison tool was summarized in this Data in Brief. The dataset includes the identified top 100 concerned soil pollutants, the computed C2-C5 regulatory performance scores for each state soil jurisdiction, and the reference sources of the soil regulatory guidance values (RGVs). A total of 20 elements, seven cyanides, five halogenated methanes, seven chloroethanes and choroethenes, 12 benzenes, eight phenols, eight carcinogenic PAHs, eight noncarcinogenic PAHs, nine historically used pesticides, 12 currently used pesticides, and nine miscellaneous pollutants were selected as the top 100 concerned pollutants. Four comparison scores simulated from state soil regulations can be directly applied and compared with the U.S. Environmental Protection Agency to quantify the regulatory performance.
Collapse
Affiliation(s)
- Wenbiao Li
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zijian Li
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Parsons Corporation, Chicago, IL 60606, USA
| | - Aaron Jennings
- Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
37
|
Díaz SM, Muñoz-Guerrero MN, Palma-Parra M, Becerra-Arias C, Fernández-Niño JA. Exposure to Mercury in Workers and the Population Surrounding Gold Mining Areas in the Mojana Region, Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2337. [PMID: 30360528 PMCID: PMC6266810 DOI: 10.3390/ijerph15112337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
In Colombia, the inhabitants of the Mojana region have historically been subjected to high levels of environmental and occupational exposure to mercury; however, there are few robust data on the magnitude of this exposure and associated factors. This study aimed to describe the levels of mercury in the workers and inhabitants in this region, and to identify the main sociodemographic and occupational factors that are associated with this exposure. A cross-sectional study was conducted, in which mercury levels were determined in biological samples (blood, urine, hair) from 1119 people in the Mojana region. A questionnaire was also administered, which was adapted from the Global Mercury Assessment. Linear regression models were adjusted for the natural logarithm of mercury levels in blood, urine, and hair, using the factors that were explored as independent variables. The study reports high mercury levels in 35.0% of blood samples (95% CI 31.9⁻38.1%), 28.8% (95% CI 24.9⁻32.8%) of urine samples, and 56.3% (95% CI 53.1⁻59.5%) of hair samples. The reported source of water for consumption was associated with high levels of mercury (p-value < 0.05). We provide evidence of high levels of mercury exposure for the population in the Mojana region.
Collapse
Affiliation(s)
- Sonia Mireya Díaz
- Environmental and Labor Health Group, National Institute of Health, Bogotá 111321, Colombia.
| | | | - Marien Palma-Parra
- Environmental and Labor Health Group, National Institute of Health, Bogotá 111321, Colombia.
| | - Carolina Becerra-Arias
- Research Group on Health, Rehabilitation and Work (SARET), Manuela Beltrán University, Bucaramanga 680002, Colombia.
| | | |
Collapse
|
38
|
Li Z. The use of a disability-adjusted life-year (DALY) metric to measure human health damage resulting from pesticide maximum legal exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:438-456. [PMID: 29800838 DOI: 10.1016/j.scitotenv.2018.05.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/26/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Most agencies around the world have developed a separate regulation frameworks for pesticides with different modes of action, likely because of the lack of a uniform quantification for health damage, which may underestimate pesticides' impact on human health and disease burden. In this study, the disability-adjusted life-year, a uniform metric used to express the human health impact and damage, was used to measure theoretical health damage resulting from maximum exposure as permitted by law to the most widely used pesticides. The total human risk characterization factors computed from chlorpyrifos and diazinon standard values through main exposure routes are generally larger than that of other widely used pesticides, and most factors of chlorpyrifos exceed the upper bounds of health risk. In addition, the damages to human health quantified from soil legal exposure to these widely used pesticides are much lower than that from exposure to drinking water or foods, which could help derive exposure allocation factors for different exposure routes. A total of 412 (28.3% of the total) computed total risk characterization factors of the 13 pesticides exceed the upper bound of tolerable risk uncertainty. Some nations, such as those in Europe, have adopted uniform and strict pesticide standard values as well as some computed risk characterization factors presented in the consensus data cluster. In addition, the results of an analysis on the geographical distribution of health risk characterization factors indicated that European nations have provided more conservative pesticide standard values in general. It is hoped that regulatory agencies can apply this uniform metric to compare and formulate legal limits for pesticides that have different modes of action.
Collapse
Affiliation(s)
- Zijian Li
- Parsons Corporation, Chicago, IL 60606, USA; Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
39
|
Hutter HP, Kundi M, Lemmerer K, Poteser M, Weitensfelder L, Wallner P, Moshammer H. Subjective Symptoms of Male Workers Linked to Occupational Pesticide Exposure on Coffee Plantations in the Jarabacoa Region, Dominican Republic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2099. [PMID: 30257443 PMCID: PMC6209871 DOI: 10.3390/ijerph15102099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
Acute and sub-acute effects of pesticide use in coffee farmers have rarely been investigated. In the present field study, self-reported health symptoms from 38 male pesticide users were compared to those of 33 organic farmers. Results of cytological findings have been reported in an accompanying paper in this issue. The present second part of the study comprises a questionnaire based survey for various, potentially pesticide related symptoms among the coffee farmers. Symptom rates were generally higher in exposed workers, reaching significance in nine out of 19 assessed symptoms. Significantly increased symptom frequencies were related to neurotoxicity, parasympathic effects and acetylcholine esterase inhibition, with the highest differences found for excessive salivation, dizziness and stomach ache. We revealed a lack of precautionary measures in the majority of farmers. Better education, regulations, and safety equipment are urgently needed.
Collapse
Affiliation(s)
- Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Michael Kundi
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Kathrin Lemmerer
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Michael Poteser
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Lisbeth Weitensfelder
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Peter Wallner
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| | - Hanns Moshammer
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Wien, Austria.
| |
Collapse
|
40
|
Yan J, Wang X, Gong P, Wang C, Cong Z. Review of brown carbon aerosols: Recent progress and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1475-1485. [PMID: 29710646 DOI: 10.1016/j.scitotenv.2018.04.083] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 05/21/2023]
Abstract
Brown carbon (BrC), a carbonaceous aerosol which absorbs solar radiation over a broad range of wavelengths, is beginning to be seen as an important contributor to global warming. BrC absorbs both inorganic and organic pollutants, leading to serious effects on human health. We review the fundamental features of BrC, including its sources, chemical composition, optical properties and radiative forcing effects. We detail the importance of including photochemical processes related to BrC in the GEOS-Chem transport model for the estimation of aerosol radiative forcing. Calculation methods for BrC emission factors are examined, including the problems and limitations of current measurement methods. We provide some insight into existing publications and recommend areas for future research, such as further investigations into the reaction mechanisms of the aging of secondary BrC, calculations of the emission factors for BrC from different sources, the absorption of large and long-lived BrC molecules and the construction of an enhanced model for the simulation of radiative forcing. This review will improve our understanding of the climatic and environmental effects of BrC.
Collapse
Affiliation(s)
- Juping Yan
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Gong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China
| | - Chuanfei Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Science, Beijing 100101, China
| |
Collapse
|
41
|
Li Z. Variation of United States environmental regulations on pesticide soil standard values. ACS CHEMICAL HEALTH & SAFETY 2018. [DOI: 10.1016/j.jchas.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030521. [PMID: 29543706 PMCID: PMC5877066 DOI: 10.3390/ijerph15030521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 11/17/2022]
Abstract
Water environmental risk is the probability of the occurrence of events caused by human activities or the interaction of human activities and natural processes that will damage a water environment. This study proposed a water environmental risk index (WERI) model to assess the water environmental risk in the Yinma River Basin based on hazards, exposure, vulnerability, and regional management ability indicators in a water environment. The data for each indicator were gathered from 2000, 2005, 2010, and 2015 to assess the spatial and temporal variations in water environmental risk using particle swarm optimization and the analytic hierarchy process (PSO-AHP) method. The results showed that the water environmental risk in the Yinma River Basin decreased from 2000 to 2015. The risk level of the water environment was high in Changchun, while the risk levels in Yitong and Yongji were low. The research methods provide information to support future decision making by the risk managers in the Yinma River Basin, which is in a high-risk water environment. Moreover, water environment managers could reduce the risks by adjusting the indicators that affect water environmental risks.
Collapse
|
43
|
Conti CL, Barbosa WM, Simão JBP, Álvares-da-Silva AM. Pesticide exposure, tobacco use, poor self-perceived health and presence of chronic disease are determinants of depressive symptoms among coffee growers from Southeast Brazil. Psychiatry Res 2018; 260:187-192. [PMID: 29202382 DOI: 10.1016/j.psychres.2017.11.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
The lifestyle and other factors associated with the appearance of several health conditions that affect quality of life in rural zone is an issue that has been increasingly explored. Brazil is the largest coffee-producing nation in the world and has been a considerable consumer of pesticides since 2008. The aim of the present study was to investigate factors that could be contributing to the appearance of depressive symptoms in rural workers. Two hundred twenty male volunteers from nine cities in Southeast Brazil completed the Beck Depression Inventory-II (BDI-II) questionnaire about depressive symptoms and provided other information about socio-demographic characteristics and additional confounding factors. The adjusted multivariate logistic analysis demonstrated that pesticide exposure, tobacco use, poor self-perceived health and the presence of chronic disease contribute as risk factors for the appearance of depressive symptoms at a level above ups and downs considered normal in the BDI-II. This survey contributes to the search for solutions to improve quality of life and mental health in the rural living to the extent that social determinants of depression are being investigated.
Collapse
Affiliation(s)
- Catarine Lima Conti
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Alegre, ES, Brazil.
| | - Wagner Miranda Barbosa
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Alegre, ES, Brazil
| | - João Batista Pavesi Simão
- Coordination of Technology and Coffee Growing Course, Federal Institute of Espírito Santo, Alegre, ES, Brazil
| | | |
Collapse
|
44
|
Eggers MJ, Doyle JT, Lefthand MJ, Young SL, Moore-Nall AL, Kindness L, Medicine RO, Ford TE, Dietrich E, Parker AE, Hoover JH, Camper AK. Community Engaged Cumulative Risk Assessment of Exposure to Inorganic Well Water Contaminants, Crow Reservation, Montana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E76. [PMID: 29304032 PMCID: PMC5800175 DOI: 10.3390/ijerph15010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/19/2022]
Abstract
An estimated 11 million people in the US have home wells with unsafe levels of hazardous metals and nitrate. The national scope of the health risk from consuming this water has not been assessed as home wells are largely unregulated and data on well water treatment and consumption are lacking. Here, we assessed health risks from consumption of contaminated well water on the Crow Reservation by conducting a community-engaged, cumulative risk assessment. Well water testing, surveys and interviews were used to collect data on contaminant concentrations, water treatment methods, well water consumption, and well and septic system protection and maintenance practices. Additive Hazard Index calculations show that the water in more than 39% of wells is unsafe due to uranium, manganese, nitrate, zinc and/or arsenic. Most families' financial resources are limited, and 95% of participants do not employ water treatment technologies. Despite widespread high total dissolved solids, poor taste and odor, 80% of families consume their well water. Lack of environmental health literacy about well water safety, pre-existing health conditions and limited environmental enforcement also contribute to vulnerability. Ensuring access to safe drinking water and providing accompanying education are urgent public health priorities for Crow and other rural US families with low environmental health literacy and limited financial resources.
Collapse
Affiliation(s)
- Margaret J Eggers
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA.
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
| | - John T Doyle
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
- Crow Water Quality Project, P.O. Box 370, Little Big Horn College, Crow Agency, MT 59022, USA.
| | - Myra J Lefthand
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
| | - Sara L Young
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
| | - Anita L Moore-Nall
- Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717, USA.
| | - Larry Kindness
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
| | - Roberta Other Medicine
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
- Environmental Health Department, Crow/Northern Cheyenne Indian Health Service Hospital,Crow Agency, MT 59022, USA.
| | - Timothy E Ford
- School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 N. Pleasant Street,Amherst, MA 01003, USA.
| | - Eric Dietrich
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA.
| | - Albert E Parker
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA.
- Department of Mathematical Sciences, Montana State University, P.O. Box 173980,Bozeman, MT 59717, USA.
| | - Joseph H Hoover
- Health Sciences Center, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Anne K Camper
- Center for Biofilm Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA.
- Crow Environmental Health Steering Committee, Little Big Horn College, Crow Agency, MT 59022, USA.
- College of Engineering, Montana State University, P.O. Box 173980, Bozeman, MT 59717, USA.
| |
Collapse
|
45
|
Hong YS, Ye BJ, Kim YM, Kim BG, Kang GH, Kim JJ, Song KH, Kim YH, Seo JW. Investigation of Health Effects According to the Exposure of Low Concentration Arsenic Contaminated Ground Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1461. [PMID: 29186890 PMCID: PMC5750880 DOI: 10.3390/ijerph14121461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022]
Abstract
Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III) and pentavalent arsenate (As V)) and organic forms (monomethylarsonate (MMA) and dimethylarsinate (DMA)) of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents.
Collapse
Affiliation(s)
- Young-Seoub Hong
- Department of Preventive Medicin, Dong-A University, Busan 49201, Korea.
- Environmental Health Center, Dong-A University, Busan 49201, Korea.
| | - Byeong-Jin Ye
- Gimhae Clinic Occupational Health Center, Inje University, Gimhae 50969, Korea.
| | - Yu-Mi Kim
- Department of Preventive Medicin, Dong-A University, Busan 49201, Korea.
- Environmental Health Center, Dong-A University, Busan 49201, Korea.
| | - Byoung-Gwon Kim
- Department of Preventive Medicin, Dong-A University, Busan 49201, Korea.
- Environmental Health Center, Dong-A University, Busan 49201, Korea.
| | | | - Jeong-Jin Kim
- Department of Earth and Environmental Science, Andong National University, Andong 36729, Korea.
| | - Ki-Hoon Song
- Department of Dermatology, Dong-A University, Busan 49201, Korea.
| | - Young-Hun Kim
- Department of Environmental Engineering, Andong National University, Andong 36729, Korea.
| | - Jeong-Wook Seo
- Environmental Health Center, Dong-A University, Busan 49201, Korea.
| |
Collapse
|
46
|
Optimization of the Use of His₆-OPH-Based Enzymatic Biocatalysts for the Destruction of Chlorpyrifos in Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121438. [PMID: 29168784 PMCID: PMC5750857 DOI: 10.3390/ijerph14121438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023]
Abstract
Applying enzymatic biocatalysts based on hexahistidine-containing organophosphorus hydrolase (His6-OPH) is suggested for the decomposition of chlorpyrifos, which is actively used in agriculture in many countries. The application conditions were optimized and the following techniques was suggested to ensure the highest efficiency of the enzyme: first, the soil is alkalinized with hydrated calcitic lime Ca(OH)2, then the enzyme is introduced into the soil at a concentration of 1000 U/kg soil. Non-equilibrium low temperature plasma (NELTP)-modified zeolite is used for immobilization of the relatively inexpensive polyelectrolyte complexes containing the enzyme His6-OPH and a polyanionic polymer: poly-l-glutamic acid (PLE50) or poly-l-aspartic acid (PLD50). The soil’s humidity is then increased up to 60–80%, the top layer (10–30 cm) of soil is thoroughly stirred, and then exposed for 48–72 h. The suggested approach ensures 100% destruction of the pesticide within 72 h in soils containing as much as 100 mg/kg of chlorpyrifos. It was concluded that using this type of His6-OPH-based enzyme chemical can be the best approach for soils with relatively low humus concentrations, such as sandy and loam-sandy chestnut soils, as well as types of soil with increased alkalinity (pH 8.0–8.4). Such soils are often encountered in desert, desert-steppe, foothills, and subtropical regions where chlorpyrifos is actively used.
Collapse
|