1
|
Zhang P, Yan J, Ji H, Ge L, Li Y. The influence mechanism of environmental factors on DGT adsorbing sulfonamides and the migration between water and sediment. J Environ Sci (China) 2025; 151:347-359. [PMID: 39481944 DOI: 10.1016/j.jes.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 11/03/2024]
Abstract
Obtaining the sulfonamides (SAs) concentrations in the water body and sediment bulk was a prerequisite to reveal their transport and partitioning behavior in sediment-water environments and accurately assess their ecological risk. In the present study, the influences of multifactor interactions on the performance of o-DGTs with XAD-18 binding gels were analyzed by central combination experiments and response surfaces analysis, in which the target compounds were 9 SAs. The results indicated that dissolved organic matter (DOM), pH, and suspended particulate matter (SS) had significant effects on the o-DGT sampling, whereas this o-DGT was independent of the ionic strength (IS). Concentning the composite influence of the four factors, the interaction between DOM and SS posed the most significant effect on all 9 SAs compounds. Subsequently, an o-DGT and DIFS model was applied to explore the SAs migration between the water-sediments interface. The difference between desorption rate (kb) and adsorption rates (kf) values suggested that the kinetics of SAs was dominated by adsorption. Moreover, the short-term sediment-water partitioning of SAs was clarified on the basis of distribution coefficient (Kdl) for the labile SAs, among which the sulfadiazine (SDZ) had the largest labile pool. The ability of sediments to release SAs to the liquid phase as a sink was determined by response time (Tc). Among the 9 SAs, the long-term release of soseulfamethoxypyridazine (SMP) from the solid phase of sediments would have a potential risk to the aquatic environment, to which more attention should be paid in the future.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingfeng Yan
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Ji
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Linke Ge
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Yanying Li
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Sun P, Tan Y, Zhu Z, Yang T, Thevarajan S, Zhang L. Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics (Basel) 2024; 13:820. [PMID: 39334994 PMCID: PMC11429403 DOI: 10.3390/antibiotics13090820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, the widespread application of antibiotics has raised global concerns, posing a severe threat to ecological health. In this study, the occurrence, source, and ecological risks of 39 antibiotics belonging to 5 classes in mangrove sediments from Lianzhou Bay, China, were assessed. The total concentrations of the antibiotics (∑39 antibiotics) ranged from 65.45 to 202.24 ng/g dry weight (dw), with an average of 142.73 ± 36.76 ng/g dw. The concentrations of these five classes of antibiotics were as follows: Sulfonamides (SAs) > Tetracyclines (TCs) > Fluoroquinolones (QUs) > Penicillin (PCs) > Macrolides (MLs). The spatial distribution of antibiotics varied as high tidal zone > middle tidal zone > low tidal zone. The total organic carbon (TOC), pH, nitrate (NO3--N), and nitrite (NO2--N) of the sediment significantly influenced the distribution of antibiotics (p < 0.05). A source analysis identified untreated sewage from aquaculture as the primary source of antibiotics in the local mangrove. A risk assessment revealed that ciprofloxacin, norfloxacin, ofloxacin of QUs, and tetracycline of TCs exhibited medium risks to algae in certain sampling sites, while other antibiotics exhibited low or no risks to all organisms. Nevertheless, the total risk of all the detected antibiotics to algae was medium in 95% of the sites. The overall ecological risk level of antibiotics in the middle tidal zone was slightly lower than in the high tidal zone and the lowest in the low tidal zone. In summary, the experimental results provided insights into the fate and transport behaviors of antibiotics in mangrove sediments from Lianzhou Bay.
Collapse
Affiliation(s)
- Pengfei Sun
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yongyu Tan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Zuhao Zhu
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Tinglong Yang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Shalini Thevarajan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Li Zhang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| |
Collapse
|
4
|
Majid S, Ahmad KS, Yusuf K, Ashraf GA. Exploring the sorption and degradation dynamics of validamycin-A in agricultural soils for environmental management. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:340. [PMID: 39073647 DOI: 10.1007/s10653-024-02124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Validamycin A (VA) is one of the antibiotics that have been utilized in agriculture in Asia; nevertheless, there haven't been many investigations on what happens to VA in soil. The rate at which pesticides are adsorbed into the soil must be determined, since their usage in agriculture is growing. In order to accomplish this, the current study investigated the sorption and degradation of VA in ten distinct soil samples via batch equilibrium studies while maintaining strict laboratory controls. In thermodynamic analysis with a C-type curve, the negative values of Gibbs free energy (ΔG) are thoroughly evaluated using both linear and Freundlich models. These values vary from - 16.8 to - 22.2 kJ/mol. Impact of temperature (18, 23, and 30 °C) and pH (5, 7, and 9) on the degradation of this antibiotic in soil was also scrutinized. Our findings demonstrated that, as a result of enhanced microbial activity at higher temperatures, VA deteriorated more quickly at 23 °C and 30 °C than at 18 °C. In comparison to lower pH values, the VA removal efficiencies with sample-4 was significantly greater at pH 7.4 (92.9%) and pH 9 (97.4%). Moreover, first order reaction kinetics were followed in the degradation of VA. The results demonstrated that VA bound to the selected soils, resulting in medium to low persistence as demonstrated by degradation values. In summary, this study provides important information regarding the behavior and fate of VA in different types of soil, information that might be useful in developing workable management strategies and environmental risk assessments.
Collapse
Affiliation(s)
- Sara Majid
- Department of Environmental Sciences, Fatima Jinnah Women University, Old Presidency, The Mall, Rawalpindi, 46000, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Old Presidency, The Mall, Rawalpindi, 46000, Pakistan.
| | - Kareem Yusuf
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing, 210098, China
- New Uzbekistan University, Muustaqillik Ave. 54, 100007, Tashkent, Uzbekistan
| |
Collapse
|
5
|
Zhu H, He J, Wu Y, Tong L, Zhang W, Zhuang L. Assessment of Global Antibiotic Exposure Risk for Crops: Incorporating Soil Adsorption via Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031084 DOI: 10.1021/acs.est.4c03695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The overuse and misuse of antibiotics could significantly increase their accumulation in soils. Consequently, antibiotics possibly enter food chain through crop uptake, posing a threat to global food security. Assessing the exposure risks of antibiotics for crops is crucial for addressing this global issue. In this study, we assessed global antibiotic exposure risk for crops, incorporating a machine learning adsorption model based on 4893 data sets from nine antibiotics. The optimized machine learning adsorption model, using the eXtreme Gradient Boosting algorithm and the class-specific modeling strategy, demonstrated relatively good performance. Notably, we introduced unsaturated soil conditions and considered spatiotemporal variations in soil moisture and temperature for the first time in such a risk assessment. Global distributions of antibiotic exposure risk for crops were predicted for March, June, September, and December. The results indicate that soil moisture significantly influences the exposure risk assessment. Relatively high exposure risk for crops was observed during months with colder local temperatures: generally June for the Southern Hemisphere and December for the Northern Hemisphere. The resulting map highlights high-risk agricultural regions, including southern Canada, western Russia, and southern Australia.
Collapse
Affiliation(s)
- Han Zhu
- Center for Water Resources and Environment, and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jianliang He
- Center for Water Resources and Environment, and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yanmei Wu
- Center for Water Resources and Environment, and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lizhi Tong
- National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, P. R. China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Luwen Zhuang
- Center for Water Resources and Environment, and Guangdong Key Laboratory of Marine Civil Engineering, School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
6
|
Chen H, Yin L, He Y, Bai L, Wu Y, Zhao Y, Reguyal F, Sarmah AK, Yang X, Ge C, Wang H. Biogas slurry-derived dissolved organic matter inhibited oxytetracycline adsorption by tropical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174785. [PMID: 39009170 DOI: 10.1016/j.scitotenv.2024.174785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The increasing presence of oxytetracycline (OTC) in agricultural soils has raised global environmental concerns. We investigated the environmental behavior and fate of OTC in two types of tropical agricultural soils, focusing on the impact of dissolved organic matter (DOM) from biogas slurry. Techniques such as three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectrophotometer (UV-vis) were used to explore the adsorption mechanisms. Our findings revealed that biogas slurry-derived DOM decreased the OTC adsorption on soils and extended the time to reach adsorption equilibrium. Specifically, the equilibrium adsorption of OTC by the two soils decreased by 19.41 and 15.32 %, respectively. These adsorption processes were effectively modelled by Elovich, intraparticle diffusion, linear, and Freundlich thermodynamic models. Thermodynamic parameters suggested that OTC adsorption onto soils was spontaneous and endothermic, with competitive interactions between biogas slurry-derived DOM and OTC molecules intensifying at higher DOM concentrations. The adsorption mechanisms were governed by both physical and chemical processes. Furthermore, the presence of Ca2+ and Na+ ions significantly inhibited OTC adsorption. These insights advanced our understanding of the fate and risk of OTC in soil environments influenced by DOM, contributing to more informed agricultural and environmental management practices.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lingfei Yin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuan He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Liangtai Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuejun Wu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Pribate Bag 92019, Auckland 1142, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Zhao K, Liu S, Feng Y, Li F. Bioelectrochemical remediation of soil antibiotic and antibiotic resistance gene pollution: Key factors and solution strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174517. [PMID: 38977104 DOI: 10.1016/j.scitotenv.2024.174517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, People's Republic of China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yimeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Li X, Wang H, Sun Z, Cao X, Zhang J, Chen Q, Ma R. Effect of ph on migration patterns and degradation pathways of sulfamethazine in soil systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:425-436. [PMID: 38847499 DOI: 10.1080/03601234.2024.2363580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/25/2024] [Indexed: 06/19/2024]
Abstract
Sulfonamide antibiotics (SAs) are widely used antimicrobial agents in livestock and aquaculture, and most of them entering the animal's body will be released into the environment as prodrugs or metabolites, which ultimately affect human health through the food chain. Both acid deposition and salinization of soil may have an impact on the migration and degradation of antibiotics. Sulfamethazine (SM2), a frequently detected compound in agricultural soils, has a migration and transformation process in the environment that is closely dependent on environmental pH. Nevertheless, scarcely any studies have been conducted on the effect of soil pH changes on the environmental behavior of sulfamethazine. We analyzed the migration and degradation mechanisms of SM2 using simulation experiments and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) techniques. The results showed that acidic conditions limited the vertical migration of sulfadimidine, and SM2 underwent different reaction processes under different pH conditions, including S-C bond breaking, S-N bond hydrolysis, demethylation, six-membered heterocyclic addition, methyl hydroxylation and ring opening. The study of the migration pattern and degradation mechanism of SM2 under different pH conditions can provide a solid theoretical basis for assessing the pollution risk of sulfamethazine degradation products under acid rain and saline conditions, and provide a guideline for remediation of antibiotic contamination, so as to better prevent, control and protect groundwater resources.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Haifang Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Zhumei Sun
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xia Cao
- Taiyuan Ecological Environment Monitoring and Scientific Research Center, Taiyuan, China
| | - Junli Zhang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Qihua Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| | - Rui Ma
- School of Environmental and Safety Engineering, North University of China, Taiyuan, China
| |
Collapse
|
9
|
Wang S, Han J, Ge Z, Su X, Chen Y, Meng J. Biotransformation characteristics of tetracycline by strain Serratia marcescens MSM2304 and its mechanism evaluation based on products analysis and genomics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120684. [PMID: 38531133 DOI: 10.1016/j.jenvman.2024.120684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Microbial biotransformation is a recommended and reliable method in face of formidable tetracycline (TC) with broad-spectrum antibacterial activity. Herein, comprehensive characteristics of a newfound strain and its molecular mechanism in process of TC bioremediation were involved in this study. Specifically, Serratia marcescens MSM2304 isolated from pig manure sludge grew well in presence of TC and achieved optimal removal efficiency of 61% under conditions of initial TC concentration of 10 mg/L, pH of 7.0, cell inoculation amount of 5%, and tryptone of 10 g/L as additional carbon. The pathways of biotransformation include EPS biosorption, cell surface biosorption and biodegradation, which enzymatic processes of biodegradation were occurred through TC adsorbed by biofilms was firstly broken down by extracellular enzymes and part of TC migrated towards biofilm interior and degraded by intracellular enzymes. Wherein extracellular polysaccharides in extracellular polymeric substances (EPS) from biofilm of strain MSM2304 mainly performed extracellular adsorption, and changes in position and intensity of CO, =CH and C-O-C/C-O of EPS possible further implied TC adsorption by it. Biodegradation accounting for 79.07% played a key role in TC biotransformation and could be fitted well by first-order model that manifesting rapid and thorough removal. Potential biodegradation pathway including demethylation, dihydroxylation, oxygenation, and ring opening possibly involved in TC disposal process of MSM2304, TC-degrading metabolites exhibited lower toxicity to indicator bacteria relative to parent TC. Whole genome sequencing as underlying molecular evidence revealed that TC resistance genes, dehydrogenases-encoding genes, monooxygenase-encoding genes, and methyltransferase-encoding genes of strain MSM2304 were positively related to TC biodegradation. Collectively, these results favored a theoretical evaluation for Serratia marcescens MSM2304 as a promising TC-control agent in environmental bioremediation processes.
Collapse
Affiliation(s)
- Siyu Wang
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jie Han
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang,110866, China.
| | - Ziyi Ge
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Xu Su
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Yixuan Chen
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Afairs, 120 # Dongling Road, Shenyang 110866, China.
| |
Collapse
|
10
|
Yuan S, Wang Z, Yuan S. Insights into the pH-dependent interactions of sulfadiazine antibiotic with soil particle models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170537. [PMID: 38301792 DOI: 10.1016/j.scitotenv.2024.170537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Sulfonamide antibiotics (SAs) are widely used as a broad-spectrum antibiotic, leading to global concerns due to their potential soil accumulation and subsequent effects on ecosystems. SAs often exhibit remarkable environmental persistence, necessitating further investigation to uncover the ultimate destiny of these molecules. In this work, molecular dynamics simulations combined with complementary quantum chemistry calculations were employed to investigate the influence of pH on the behavior of sulfadiazine (SDZ, a typical SAs) in soil particle models (silica, one of the main components of soil). Meanwhile, the quantification of SDZ molecules aggregation potential onto silica was further extended. SDZ molecules tend to form a monolayer on the soil surface under acidic conditions while forming aggregated adsorption on the surface under neutral conditions. Due to the hydrophilicity of the silica, multiple hydration layers would form on its surface, hindering the further adsorption of SDZ molecules on its surface. The calculated soil-water partition coefficient (Psoil/water) of SDZ+ and SDZ were 9.01 and 7.02, respectively. The adsorption evaluation and mechanisms are useful in controlling the migration and transformation of SAs in the soil environment. These findings provide valuable insights into the interactions between SDZ and soil components, shedding light on its fate and transport in the environment.
Collapse
Affiliation(s)
- Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100, PR China
| |
Collapse
|
11
|
Wang J, Huang R, Liang Y, Long X, Wu S, Han Z, Liu H, Huangfu X. Prediction of antibiotic sorption in soil with machine learning and analysis of global antibiotic resistance risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133563. [PMID: 38262323 DOI: 10.1016/j.jhazmat.2024.133563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Although the sorption of antibiotics in soil has been extensively studied, their spatial distribution patterns and sorption mechanisms still need to be clarified, which hinders the assessment of antibiotic resistance risk. In this study, machine learning was employed to develop the models for predicting the soil sorption behavior of three classes of antibiotics (sulfonamides, tetracyclines, and fluoroquinolones) in 255 soils with 2203 data points. The optimal independent models obtained an accurate predictive performance with R2 of 0.942 to 0.977 and RMSE of 0.051 to 0.210 on test sets compared to combined models. Besides, a global map of the antibiotic sorption capacity of soil predicted with the optimal models revealed that the sorption potential of fluoroquinolones was the highest, followed by tetracyclines and sulfonamides. Additionally, 14.3% of regions had higher antibiotic sorption potential, mainly in East and South Asia, Central Siberia, Western Europe, South America, and Central North America. Moreover, a risk index calculated with the antibiotic sorption capacity of soil and population density indicated that about 3.6% of soils worldwide have a high risk of resistance, especially in South and East Asia with high population densities. This work has significant implications for assessing the antibiotic contamination potential and resistance risk.
Collapse
Affiliation(s)
- Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Youheng Liang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xinlong Long
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhengpeng Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment, and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
12
|
Ding F, Li Y, He T, Ou D, Huang Y, Yin G, Yang J, Wu S, He E, Liu M. Urban agglomerations as an environmental dimension of antibiotics transmission through the "One Health" lens. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133283. [PMID: 38134700 DOI: 10.1016/j.jhazmat.2023.133283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The spatiotemporal distributions of antibiotics in different media have been widely reported; however, their occurrence in the environmental dimension of the Chinese urban agglomerations has received less attention, especially in bioaccumulation and health risks of antibiotics through the "One Health" lens. The review presents the current knowledge on the environmental occurrence, bioaccumulation, as well as health exposure risks in urban agglomerations through the "One Health" lens, and identifies current information gaps. The reviewed studies suggested antibiotic concentrations in water and soil were more sensitive to social indicators of urban agglomerations than those in sediment. The ecological risk and resistance risk of antibiotics in water were much higher than those of sediments, and the high-risk phenomenon occurred at a higher frequency in urban agglomerations. Erythromycin-H2O (ETM-H2O), amoxicillin (AMOX) and norfloxacin (NFC) were priority-controlled antibiotics in urban waters. Tetracyclines (TCs) posed medium to high risks to soil organisms in the soil of urban agglomerations. Health risk evaluation based on dietary intake showed that children had the highest dietary intake of antibiotics in urban agglomerations. The health risk of antibiotics was higher in children than in other age groups. Our results also demonstrated that dietary structure might impact health risks associated with target antibiotics in urban agglomerations to some extent.
Collapse
Affiliation(s)
- Fangfang Ding
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Tianhao He
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Dongni Ou
- Environment, Health and Safety Services, SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd., 889 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Shixue Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| |
Collapse
|
13
|
Yang L, Zhao F, Yen H, Feng Q, Li M, Wang X, Tang J, Bu Q, Chen L. Urbanization and land use regulate soil vulnerability to antibiotic contamination in urban green spaces. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133363. [PMID: 38157809 DOI: 10.1016/j.jhazmat.2023.133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The presence of antibiotics in environment is an emerging concern because of their ubiquitous occurrence, adverse eco-toxicological effects, and promotion of widespread antibiotic resistance. Urban soil, which plays a noticeable role in human health, may be a reservoir of antibiotics because of intensive human disturbance. However, little is understood about the vulnerability of soil to antibiotic contamination in urban areas and the spatial-temporal characteristics of anthropogenic and environmental pressures. In this study, we developed a framework for the dynamic assessment of soil vulnerability to antibiotic contamination in urban green spaces, combining antibiotic release, exposure, and consequence layers. According to the results, soil vulnerability risks shown obvious spatial-temporal variation in urban areas. Areas at a high risk of antibiotic contamination were usually found in urban centers with high population densities and in seasons with low temperature and vegetation coverage. Quinolones (e.g., ofloxacin and norfloxacin) were priority antibiotics that posed the highest vulnerability risks, followed by tetracyclines. We also confirmed the effectiveness of the vulnerability assessment by correlating soil vulnerability indexes and antibiotic residues in urban soils. Furthermore, urbanization- and land use-related parameters were shown to be critical in regulating soil vulnerability to antibiotic contamination based on sensitivity analysis. These findings have important implications for the prediction and mitigation of urban soil contamination with antibiotics and strategies to improve human health.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Auburn 36849, USA; Environmental Exposure Modeling, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Tang
- Key laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Zhang S, Hou J, Zhang X, Cai T, Chen W, Zhang Q. Potential mechanism of biochar enhanced degradation of oxytetracycline by Pseudomonas aeruginosa OTC-T. CHEMOSPHERE 2024; 351:141288. [PMID: 38272135 DOI: 10.1016/j.chemosphere.2024.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Extensive use of oxytetracycline (OTC) and the generation of its corresponding resistance genes have resulted in serious environmental problems. Physical-biological combined remediation is an attractive method for OTC degradation because of its high remediation efficiency, stability, and environmental friendliness. In this study, an effective OTC-degrading strain identified as Pseudomonas aeruginosa OTC-T, was isolated from chicken manure. In the degradation experiment, the degradation rates of OTC in the degradation systems with and without the biochar addition were 92.71-100 % and 69.11-99.59 %, respectively. Biochar improved the tolerance of the strain to extreme environments, and the OTC degradation rate increased by 20.25 %, 18.61 %, and 13.13 % under extreme pH, temperature, and substrate concentration conditions, respectively. Additionally, the degradation kinetics showed that biochar increased the reaction rate constant in the degradation system and shortened the degradation period. In the biological toxicity assessment, biochar increased the proportion of live cells by 17.63 % and decreased the proportion of apoptotic cells by 58.87 %. Metabolomics revealed that biochar had a significant effect on the metabolism of the strains and promoted cell growth and reproduction, effectively reducing oxidative stress induced by OTC. This study elucidates how biochar affects OTC biodegradation and provides insights into the future application of biochar-assisted microbial technology in environmental remediation.
Collapse
Affiliation(s)
- Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
15
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
16
|
Bian X, Xia G, Xin JH, Jiang S, Ma K. Applications of waste polyethylene terephthalate (PET) based nanostructured materials: A review. CHEMOSPHERE 2024; 350:141076. [PMID: 38169200 DOI: 10.1016/j.chemosphere.2023.141076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
While polyethylene terephthalate (PET) has enjoyed widespread use, a large volume of plastic waste has also been produced as a result, which is detrimental to the environment. Traditional treatment of plastic waste, such as landfilling and incinerating waste, causes environmental pollution and poses risks to public health. Recycling PET waste into useful chemicals or upcycling the waste into high value-added materials can be remedies. This review first provides a brief introduction of the synthesis, structure, properties, and applications of virgin PET. Then the conversion process of waste PET into high value-added materials for different applications are introduced. The conversion mechanisms (including degradation, recycling and upcycling) are detailed. The advanced applications of these upgraded materials in energy storage devices (supercapacitors, lithium-ion batteries, and microbial fuel cells), and for water treatment (to remove dyes, heavy metals, and antibiotics), environmental remediation (for air filtration, CO2 adsorption, and oil removal) and catalysis (to produce H2, photoreduce CO2, and remove toxic chemicals) are discussed at length. In general, this review details the exploration of advanced technologies for the transformation of waste PET into nanostructured materials for various applications, and provides insights into the role of high value-added waste products in sustainability and economic development.
Collapse
Affiliation(s)
- Xueyan Bian
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Xia
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - John H Xin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Shouxiang Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Kaikai Ma
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
17
|
Rietra RPJJ, Berendsen BJA, Mi-Gegotek Y, Römkens PFAM, Pustjens AM. Prediction of the mobility and persistence of eight antibiotics based on soil characteristics. Heliyon 2024; 10:e23718. [PMID: 38187236 PMCID: PMC10767508 DOI: 10.1016/j.heliyon.2023.e23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Antibiotics are widely used in intensive animal husbandry in the Netherlands and are subsequently emitted to soil via manure. To predict degradation and mobility in soil, generic sorption models have been derived. However, most of the coefficients used in generic models are based on a limited range of soils and have not been validated for agricultural soils in the Netherlands. To improve model predictions and assess to what extent differences among soils affect sorption and degradation, an experimental study has been performed. Using a recently developed experimental approach, both the degradation (DT50) and mobility (Kd) of eight selected commonly used antibiotics were determined in 29 typical Dutch agricultural soils. Median DT50 values range from 5.3 days for Sulfadiazine to 120 days for Trimethoprim but are affected by soil type. The ratio of the lowest and highest DT50 for a given antibiotic among soils can be as large as 151, for Tylosin. Measured values of the logKd also range from 0.19 for Sulfadiazine to more than 2 for Doxycycline, Flumequine, Trimethoprim, Tylosin and Enrofloxacine. The impact of soil on Kd is large, especially for more mobile antibiotics such as Sulfadoxine and Sulfadiazine. Both the range in DT50 and Kd can be predicted reasonably well using a Freundlich type regression model that accounts for the variation in soil type and sampling depth. Organic matter, iron oxides, pH and clay content appear to be the main constituents and explain between 29 % (Trimethoprim) and 77 % of the variation in DT50 and between 64 % (Lincomycin) and 87 % (Sulfadoxine and Sulfadiazine) of the variation of Kd. The effect of depth on DT50 and Kd is however limited. The information thus obtained in combination with local data on soil type can be used to more accurately predict the potential risk of relevant antibiotics in soil and transport to ground- and nearby surface waters.
Collapse
Affiliation(s)
- R P J J Rietra
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research, Wageningen University & Research, PO Box 230, 6700 AE, Wageningen, the Netherlands
| | - Y Mi-Gegotek
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - P F A M Römkens
- Wageningen Environmental Research, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, the Netherlands
| | - A M Pustjens
- Wageningen Food Safety Research, Wageningen University & Research, PO Box 230, 6700 AE, Wageningen, the Netherlands
| |
Collapse
|
18
|
Lee SM, Kim JG, Jeong WG, Alessi DS, Baek K. Adsorption of antibiotics onto low-grade charcoal in the presence of organic matter: Batch and column tests. CHEMOSPHERE 2024; 346:140564. [PMID: 38303384 DOI: 10.1016/j.chemosphere.2023.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Antibiotics contaminate diverse ecosystems and threaten human health. In ecosystems including water, sediment, and soil, the amount of antibiotics present is tiny compared to the amount of natural organic matter. However, most studies have ignored the co-presence of natural organic matter in the adsorption of target antibiotics. In this study, we quantitatively evaluated the effect of co-presenting natural organic matter on the adsorption of sulfamethazine (SMZ) through batch and column experiments using low-grade charcoal, an industrial by-product. SMZ was used as a model antibiotic compound and humic acid (HA) was used to represent natural organic matter. The co-presence of 2000 mg/L HA (400 times the concentration of SMZ) lowered the adsorption rate of SMZ from 0.023 g/mg·min to 0.007 g/mg·min, and the maximum adsorption capacity from 39.8 mg/g to 15.6 mg/g. HA blocked the charcoal's pores and covered its surface adsorption sites, which dramatically lowered its capacity to adsorb SMZ. Similar results were obtained in the flow-through column experiments, where the co-presence of natural organic matter shortened the lifetime of the charcoal. As a result, the co-presence of a relatively high concentration of natural organic matter can inhibit the adsorption of SMZ and likely other antibiotic compounds, and thus the presence of natural organic matter should be accounted for in the design of adsorption processes to treat antibiotics in water.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Civil and Environmental Engineering, Northeastern University, Boston, 02115, MA, USA
| | - Won-Gune Jeong
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kitae Baek
- Department of Environment and Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 54896, Republic of Korea.
| |
Collapse
|
19
|
Li J, Ma D, Huang Q, Du Y, He Q, Ji H, Ma W, Zhao J. Cu 2+ coordination-induced in situ photo-to-heat on catalytic sites to hydrolyze β-lactam antibiotics pollutants in waters. Proc Natl Acad Sci U S A 2023; 120:e2302761120. [PMID: 38109527 PMCID: PMC10756305 DOI: 10.1073/pnas.2302761120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/26/2023] [Indexed: 12/20/2023] Open
Abstract
For degradation of β-lactam antibiotics pollution in waters, the strained β-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening β-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the β-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common β-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of β-lactam antibiotics pollutants by the only energy source available, the sunlight.
Collapse
Affiliation(s)
- Jiazhen Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing100048, People’s Republic of China
| | - Qiang Huang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Yangyang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Qin He
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
20
|
Zheng J, Zhang P, Li X, Ge L, Niu J. Insight into typical photo-assisted AOPs for the degradation of antibiotic micropollutants: Mechanisms and research gaps. CHEMOSPHERE 2023; 343:140211. [PMID: 37739134 DOI: 10.1016/j.chemosphere.2023.140211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Jinshuai Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xuanyan Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
21
|
Zi S, Xu J, Zhang Y, Wu D, Liu J. Transport of bisphenol A, bisphenol S, and three bisphenol F isomers in saturated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116091-116104. [PMID: 37906332 DOI: 10.1007/s11356-023-30453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
With the limitation of the use of bisphenol A (BPA), the production of its substitutes, bisphenol S (BPS), and bisphenol F (4,4'-BPF) is increasing. Understanding the fate and transport of BPA and its substitutes in porous media can help reduce their risk of contaminating soil and groundwater systems. In this study, column and batch adsorption experiments were performed with 14C-labeled bisphenol analogs and combined with mathematical models to investigate the interaction of BPA, BPS, 4,4'-BPF, 2,2'-BPF, and 2,4'-BPF with four standard soils with different soil organic matter (SOM) contents. The results show that the transport capacity of BPS and 4,4'-BPF in the saturated soils is significantly stronger than that of BPA. Meanwhile, the mobility of the three isomers of bisphenol F exhibits variability in saturated soils with high SOM content. The two-site nonequilibrium sorption model was applied to simulate and interpret column experimental data, and model simulations described the interactions between the bisphenol analogs and soil very well. The fitting results underscore SOM's role in providing dynamic adsorption sites for bisphenol analogs. Hydrophobicity primarily accounts for the disparity in adsorption affinity between BPA, BPS, 4,4'-BPF, and soil, whereas hydrogen bonding forces may predominantly influence the differential adsorption affinity between 4,4'-BPF and its isomers and soil. The results of this study indicate that BPS and three isomers of BPF, as alternatives to BPA, have higher mobility in saturated soils and may pose a substantial risk to groundwater quality. This study enhances our understanding of bisphenol analogs' behavior in natural soils, facilitating an assessment of their environmental implications, particularly regarding groundwater contamination.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jiale Xu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Wang Z, Zhang N, Li C, Shao L. Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Front Microbiol 2023; 14:1291599. [PMID: 37928655 PMCID: PMC10623414 DOI: 10.3389/fmicb.2023.1291599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.
Collapse
Affiliation(s)
- Zhuoran Wang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Na Zhang
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Chunming Li
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Liang Shao
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| |
Collapse
|
23
|
Wang B, Lin J, Hu Q, Huang F, Huang Y, Tu W, Chen Q, Li S. Adsorption of oxytetracycline on subalpine meadow soil from Zoige Plateau, China: Effects of the coexisting Cu 2. ENVIRONMENTAL RESEARCH 2023; 231:116221. [PMID: 37224943 DOI: 10.1016/j.envres.2023.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Subalpine meadow soil with high moisture and humus content is a unique soil type in the Zoige Plateau. Oxytetracycline and copper are common soil contaminants which interact to form compound pollution. Oxytetracycline's adsorption on natural subalpine meadow soil and its components (humin and the soil without iron and manganese oxides) was studied in the laboratory with and without the presence of Cu2+. The effects of temperature, pH and Cu2+ concentration were documented in batch experiments, allowing deduction of the main sorption mechanisms. The adsorption process had two phases: one rapid, taking place in the first 6 h, and another slower, reaching equilibrium at around 36 h. The adsorption kinetics were pseudo-second-order, and the adsorption isotherm conformed to the Langmuir model at 25 °C. Higher concentrations oxytetracycline increased the adsorption, but higher temperature did not. The presence of Cu2+ had no effect on the equilibrium time, but the amount and rate adsorbed were much greater with Cu2+ concentration increased (except for the soil without iron and manganese oxides). The amounts adsorbed with/without Cu2+ were in the order the humin from subalpine meadow soil (7621 and 7186 μg/g) > the subalpine meadow soil (7298 and 6925 μg/g) > the soil without iron and manganese oxides (7092 and 6862 μg/g), but the difference among those adsorbents was slight. It indicates that humin is a particularly important adsorbent in the subalpine meadow soil. The amount of oxytetracycline adsorbed was greatest at pH 5-9. In addition, Surface complexation through metal bridging was the most important sorption mechanism. Cu2+ and oxytetracycline formed positively-charged complex that was adsorbed and then formed a ternary complex "adsorbent-Cu(II)-oxytetracycline", in which Cu2+ acted as a bridge. These findings provide a good scientific basis for soil remediation, and for assessing environmental health risks.
Collapse
Affiliation(s)
- Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Jing Lin
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Qicheng Hu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China.
| | - Yan Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China
| | - Weiguo Tu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| | - Qingsong Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, People's Republic of China; Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| | - Sen Li
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan, 610015, People's Republic of China
| |
Collapse
|
24
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
25
|
Li Y, An X, Liu G, Li G, Yin Y. The fate of sulfonamides in microenvironments of rape and hot pepper rhizosphere soil system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:159-168. [PMID: 37424147 DOI: 10.1080/15226514.2023.2231552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sulfonamides (SAs) in agricultural soils can be degraded in rhizosphere, but can also be taken up by vegetables, which thereby poses human health and ecological risks. A glasshouse experiment was conducted using multi-interlayer rhizoboxes to investigate the fate of three SAs in rape and hot pepper rhizosphere soil systems to examine the relationship between the accumulation and their physicochemical processes. SAs mainly entered pepper shoots in which the accumulation ranged from 0.40 to 30.64 mg kg-1, while SAs were found at high levels in rape roots ranged from 3.01 to 16.62 mg kg-1. The BCFpepper shoot exhibited a strong positive linear relationship with log Dow, while such relationship was not observed between other bioconcentration factors (BCFs) and log Dow. Other than lipophilicity, the dissociation of SAs may also influence the uptake and translocation process. Larger TF and positive correlation with log Dow indicate preferential translocation of pepper SAs. There was a significant (p < 0.05) dissipation gradient of SAs observed away from the vegetable roots. In addition, pepper could uptake more SAs under solo exposure, while rape accumulated more SAs under combined exposure. When SAs applied in mixture, competition between SAs might occur to influence the translocation and dissipation patterns of SAs.
Collapse
Affiliation(s)
- Yaning Li
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Xinlong An
- OceanCollege, Hebei Agricultural University, Qinhuangdao, China
| | - Gang Liu
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Guodong Li
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| | - Yanyan Yin
- Laboratory of Environmental Science and Engineering, Nankai University BinHai College, Tianjin, China
| |
Collapse
|
26
|
Fang L, Chen C, Li S, Ye P, Shi Y, Sharma G, Sarkar B, Shaheen SM, Lee SS, Xiao R, Chen X. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115175. [PMID: 37379666 DOI: 10.1016/j.ecoenv.2023.115175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
The occurrence of antibiotics in agricultural soils has raised concerns due to their potential risks to ecosystems and human health. However, a comprehensive understanding of antibiotic accumulation, distribution, and potential risks to terrestrial ecosystems on a global scale is still limited. Therefore, in this study, we evaluated the accumulation of antibiotics and their potential risks to soil microorganisms and plants, and highlighted the driving factors of antibiotic accumulation in agricultural soils based on 134 peer-reviewed studies (between 2000 and 2022). The results indicated that 56 types of antibiotics were detected at least once in agricultural soils with concentrations ranging from undetectable to over 7000 µg/kg. Doxycycline, tylosin, sulfamethoxazole, and enrofloxacin, belonging to the tetracyclines, macrolides, sulfonamides, and fluoroquinolones, respectively, were the most accumulated antibiotics in agricultural soil. The accumulation of TCs, SAs, and FQs was found to pose greater risks to soil microorganisms (average at 29.3%, 15.4%, and 21.8%) and plants (42.4%, 26.0%, and 38.7%) than other antibiotics. East China was identified as a hot spot for antibiotic contamination due to high levels of antibiotic concentration and ecological risk to soil microorganisms and plants. Antibiotic accumulation was found to be higher in vegetable fields (245.5 µg/kg) and orchards (212.4 µg/kg) compared to croplands (137.2 µg/kg). Furthermore, direct land application of manure resulted in a greater accumulation of TCs, SAs, and FQs accumulation in soils than compost fertilization. The level of antibiotics decreased with increasing soil pH and organic matter content, attributed to decreasing adsorption and enhancing degradation of antibiotics. In conclusion, this study highlights the need for further research on the impacts of antibiotics on soil ecological function in agricultural fields and their interaction mechanisms. Additionally, a whole-chain approach, consisting of antibiotic consumption reduction, manure management strategies, and remediation technology for soil contaminated with antibiotics, is needed to eliminate the potential environmental risks of antibiotics for sustainable and green agriculture.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - ShiYang Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Sabry M Shaheen
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212 Himachal Pradesh, India; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
27
|
Chen J, Zhang Q, Zhu Y, Zhang M, Zhu Y, Farooq U, Lu T, Qi Z, Chen W. Adsorption of fluoroquinolone antibiotics onto ferrihydrite under different anionic surfactants and solution pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28059-x. [PMID: 37269523 DOI: 10.1007/s11356-023-28059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
To date, little information is available regarding the impacts of the widespread anionic surfactants on the adsorption behaviors of antibiotics onto typical iron oxides. Herein, we have investigated the effects of two typical surfactants (sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)) on the adsorption of two widely used antibiotics (i.e., levofloxacin (LEV) and ciprofloxacin (CIP)) onto ferrihydrite. Results of kinetic experiments showed that the adsorption of antibiotics was well fitted by the pseudo-second-order kinetic models, indicating that the adsorption process might be controlled by chemisorption. The affinity of ferrihydrite toward CIP was greater than that toward LEV, which was ascribed to the higher hydrophobicity of CIP than LEV. Both surfactants enhanced antibiotic adsorption owing to SDS or SDBS molecules as bridge agents between ferrihydrite particles and antibiotics. Interestingly, the extent of the enhanced effects of surfactants on antibiotic adsorption declined as the background solution pH increased from 5.0 to 9.0, which was mainly due to the weaker hydrophobic interactions between antibiotics and the adsorbed surfactants on the iron oxide surfaces as well as the greater electrostatic repulsion between the anionic species of antibiotics and the negatively charged ferrihydrite particles at higher pH. Together, these findings emphasize the importance of widespread surfactants for illustrating the interactions between fluoroquinolone antibiotics and iron oxide minerals in the natural environment.
Collapse
Affiliation(s)
- Jiuyan Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengli Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yutong Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian normal university, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
28
|
Li Y, Kong F, Li S, Wang J, Hu J, Chen S, Chen Q, Li Y, Ha X, Sun W. Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131706. [PMID: 37247491 DOI: 10.1016/j.jhazmat.2023.131706] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application.
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fanguang Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Yantai Institute of China Agricultural University, Yantai 264670, China.
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shuo Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuejiao Ha
- Planting Technology Promotion Station of Daxing District, Beijing 102600, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
29
|
Lv S, Rong F, Hu S, Wang G, Liu J, Hou G, Xu Y, Li M, Liu K, Liu A. Competitive adsorption and desorption of three antibiotics in distinct soil aggregate size fractions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115002. [PMID: 37201422 DOI: 10.1016/j.ecoenv.2023.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/12/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Multiple antibiotics that are used in veterinary medicine coexist in soils, but their interaction and the effects on adsorption and desorption in soils have not been extensively studied. In this study, using batch experiments, we evaluated the adsorption and desorption of sulfadiazine (SDZ), tetracycline (TC), and norfloxacin (NFX) using four different soil aggregate size fractions and discovered that: (1) TC had the highest adsorption (76-98 %) and the lowest desorption in each tested system, whereas SDZ showed opposite adsorption and desorption ability, (2) the highest adsorption and the lowest desorption of all three tested antibiotics were observed with soil macroaggregates (250-2000 µm) in all the cases; in contrast, opposite adsorption and desorption ability were observed for soil clay (<53 µm), and (3) adsorption of each antibiotic was in the following order: single system (71-89 %) > binary system (56-84 %) > ternary system (50-78 %); however, desorption were in the reverse order. The Freundlich equation fitting and Brunauer-Emmett-Teller (BET) analysis further demonstrated that the adsorption competition between the tested antibiotics depended mainly on the specific surface area of each soil aggregate size fractions and its chemical properties. In conclusion, soil macroaggregates play a key role in the retention of antibiotics in soils, and the coexistence of multiple antibiotics greatly increases leaching risk.
Collapse
Affiliation(s)
- Shiquan Lv
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Fangxu Rong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Shuxiang Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Guizhen Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Guoqin Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yuzhi Xu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Mingyue Li
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Kai Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China
| | - Aiju Liu
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
30
|
Ren Y, Li F, Zhai L, Dong D, Han R, Qi X, Zhang X, Li L, Jiang W, Chen X. Tween 80 assisted washing ciprofloxacin-contaminated soil, and recycled it using active chlorines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121735. [PMID: 37146871 DOI: 10.1016/j.envpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Active chlorines (ACs) can selectively oxidize contaminants with benzene rings to recycle surfactants, which greatly facilitates the resource cycle. This paper firstly utilized Tween 80 to assist in ex-situ washing the ciprofloxacin (CI) contaminated soil, including the solubilization experiment, shake washing and soil column washing, all of which showed that 2 g/L of Tween 80 (TW 80) was the most effective in removing CI. Then electrochemically treated the collected soil washing effluent (SWE) at 10 V with an electrolyte of 20 mM NaCl + 10 mM Na2SO4; Pre-experiments screened the range of electrode spacing, pH and temperature, based on which an orthogonal design Table L9 (34) was designed. Visual analysis and ANOVA were performed on the ciprofloxacin removal efficiency and Tween 80 retention efficiency during the orthogonal experiments in 9 groups, and the results showed that CI was usually degraded within 30 min, and 50% of TW 80 was still present at the end of the experiment, and there was no significant effect of all three factors. LC-MS demonstrated that CI was mainly degraded synergistically by ·OH and ACs, and ·OH effectively reduced the biotoxicity of the SWE, so the mixed electrolyte may be more suitable for the electrochemical recycling system of ACs. This paper conducted the washing remediation study of CI-contaminated soil for the first time, and applied the theory of selective oxidation by ACs on benzene ring to treat the SWE, which provides a new treatment idea for antibiotic-contaminated soil.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Luwei Zhai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Dianxiao Dong
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ruifu Han
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiaoyi Qi
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xin Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xia Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
31
|
Li Y, Tong L, Zhang J, Liu H, Li M, Wen Z. Distribution and risk assessment of antibiotics under water level fluctuation in the riparian zone of the Hanjiang River. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114833. [PMID: 36996666 DOI: 10.1016/j.ecoenv.2023.114833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The riparian zone (RZ) is an important region connecting surface water and groundwater, and it has widely been acknowledged for its pollutant buffering capacity. However, the decontaminating effect of RZ on trace organic compounds such as antibiotics has received little attention. This study explored the distribution of 21 antibiotics and 4 sulfonamide metabolites in river water and groundwater in the lower reaches of the Hanjiang River. The diffusion and exchange of contaminants between the river and riverbanks under the influence of water conservancy projects (Xinglong Dam and the Yangtze-Hanjiang Water Diversion Project) were investigated. Macrolide antibiotics were prevalent in river water (62.5-100%) and groundwater samples (42.9-80.4%). Ofloxacin and chlortetracycline were detected with the highest concentrations in river water (12.2 ng L-1) and groundwater (9.3 ng L-1) respectively. Higher levels of antibiotics were observed in spring and winter than in other seasons. The river-groundwater interaction has a certain interception effect on antibiotics, especially near riverbanks. Redox sensitive element Fe2+ showed significantly positive correlations with some tetracycline and macrolide antibiotics (p < 0.05), and thus the migration mechanism between Fe2+ and antibiotics under the condition of redox change should be investigated further. Environmental risks posed by antibiotics were assessed for algae, daphnids, and fish in surface water and groundwater. Only clarithromycin and chlortetracycline presented a medium risk to algae (0.1 < RQ < 1), and the rest presented low risk (RQ < 0.1). Nevertheless, the risk range may be further extended by interactions between groundwater and surface water. Accurate understanding of antibiotic transport in RZ is critical for developing management strategies aimed at reducing the pollution load on the watershed.
Collapse
Affiliation(s)
- Yuqiong Li
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Lei Tong
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, 430074 Wuhan, China.
| | - Jiayue Zhang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Minjing Li
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Zhang Wen
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
32
|
Li C, Zhou Q. Synergistic effect between Ce-doped SnO 2 and bio-carbon for electrocatalytic degradation of tetracycline: Experiment, CFD, and DFT. CHEMOSPHERE 2023; 332:138705. [PMID: 37076085 DOI: 10.1016/j.chemosphere.2023.138705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based sandwich-like electrocatalyst with a hierarchical structure, carbon sheet (CS)-loaded Ce-doped SnO2 nanoparticles, were successfully prepared using a simple method, which presented a high-efficiency electrocatalytic performance for tetracycline decomposition. Among them, Sn0.75Ce0.25Oy/CS exhibits superior catalytic activity, such as more than 95% of tetracycline was removed (120 min), and over 90% of total organic carbon was mineralized (480 min). It is found from morphology observation and computational fluid dynamics simulation that the layered structure is conducive to improving the mass transfer efficiency. Through X-Ray powder diffraction, X-ray photoelectron spectroscopy, Raman spectrum, and density functional theory calculation analyze that the structural defect in Sn0.75Ce0.25Oy caused by Ce doping is considered to play the key role. Moreover, electrochemical measurements and degradation experiments further prove that the outstanding catalytic performance is attributable to the initiated synergistic effect established between CS and Sn0.75Ce0.25Oy. These results explain the effectiveness of Sn0.75Ce0.25Oy/CS for the remediation of tetracycline-contaminated water and mitigating the potential risks and imply that the Sn0.75Ce0.25Oy/CS composite has a deeply practical value in tetracycline wastewater degradation and a promise for further application.
Collapse
Affiliation(s)
- Chi Li
- Sate-owned Sida Machinery Manufacturing Company (SSMMC), Yangling, Shaanxi, 712200, China.
| | - Qin Zhou
- Modern Agriculture and the Ecological Environment Academy, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
33
|
Wang P, Xu C, Zhang X, Yuan Q, Shan S. Effect of photocatalysis on the physicochemical properties of liquid digestate. ENVIRONMENTAL RESEARCH 2023; 223:115467. [PMID: 36775086 DOI: 10.1016/j.envres.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic residues pose a risk to the agricultural application of liquid digestate. In our previous study, photocatalysis was employed to degrade the antibiotics in liquid digestate and observed that the removal efficiency of TC, OTC, and CTC was up to 94.99%, 88.92%, and 95.52%, respectively, at the optimal experimental level, demonstrating the feasibility of this technology. In this study, the liquid digestate after photocatalysis was analyzed to evaluate the effect of photocatalysis on the nutrients, phytotoxicity, and bacterial community of liquid digestate. The results showed that photocatalysis had little effect on the major nutrients TN, TP, and TK in liquid digestate. However, photocatalysis could cause an increase in tryptophan substances as well as soluble microbial by-products and a decrease in humic acid substances in the liquid digestate. The toxicity of liquid digestate after photocatalysis exhibited an increasing trend followed by a decreasing trend, and the liquid digestate after photocatalysis for 2 h had a promoting effect on seed germination and root growth. The richness, diversity, and evenness of bacterial communities in liquid digestate were decreased as a result of photocatalysis. The dominant species in the liquid digestate was dramatically changed by photocatalysis, and the antibiotic concentration also had a major effect on the dominant species in the liquid digestate after photocatalysis. After photocatalysis for 2 h, the dominant species in the liquid digestate changed from Firmicutes to Proteobacteria.
Collapse
Affiliation(s)
- Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| |
Collapse
|
34
|
Song M, Su Y, Jiang L, Peng K, Li J, Liu S, Sun Y, Chen CE, Luo C. Assessing the bioavailability of antibiotics in soil with the diffusive gradients in thin films (DGT). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130935. [PMID: 36860072 DOI: 10.1016/j.jhazmat.2023.130935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The diffusive gradients in thin films (DGT) technique is an excellent method for investigating the dynamic processes of antibiotics in soils. However, whether it is applicable in antibiotic bioavailability assessment is yet to be disclosed. This study employed DGT to determine the antibiotic bioavailability in soil, and compared the results with plant uptake, soil solutions, and solvent extraction methods. DGT exhibited predictive capability for plant taking in antibiotics proved by the significant linear relationship between the DGT based concentration (CDGT) and antibiotic concentration in roots and shoots. Although the performance of soil solution was acceptable based on linear relationship analysis, its stability was weaker than DGT. The results based on plant uptake and DGT indicated the bioavailable antibiotic contents in different soils were inconsistent because of the distinct mobility and resupply of sulphonamides and trimethoprim in different soils, as represented by Kd and Rds, which were affected by soil properties. Plant species played an important role in antibiotic uptake and translocation. Antibiotic uptake by plants depends on antibiotic, plant and soil. These results confirmed the capability of DGT in determining antibiotic bioavailability for the first time. This work provided a simple and powerful tool for environmental risk evaluation of antibiotics in soils.
Collapse
Affiliation(s)
- Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yicheng Su
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Ke Peng
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Sisi Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Chunling Luo
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
35
|
Yang C, Wu T. A comprehensive review on quinolone contamination in environments: current research progress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48778-48792. [PMID: 36879093 DOI: 10.1007/s11356-023-26263-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/16/2023]
Abstract
Quinolone (QN) antibiotics are a kind of broad-spectrum antibiotics commonly used in the treatment of human and animal diseases. They have the characteristics of strong antibacterial activity, stable metabolism, low production cost, and no cross-resistance with other antibacterial drugs. They are widely used in the world. QN antibiotics cannot be completely digested and absorbed in organisms and are often excreted in urine and feces in the form of original drugs or metabolites, which are widely occurring in surface water, groundwater, aquaculture wastewater, sewage treatment plants, sediments, and soil environment, thus causing environmental pollution. In this paper, the pollution status, biological toxicity, and removal methods of QN antibiotics at home and abroad were reviewed. Literature data showed that QNs and its metabolites had serious ecotoxicity. Meanwhile, the spread of drug resistance induced by continuous emission of QNs should not be ignored. In addition, adsorption, chemical oxidation, photocatalysis, and microbial removal of QNs are often affected by a variety of experimental conditions, and the removal is not complete, so it is necessary to combine a variety of processes to efficiently remove QNs in the future.
Collapse
Affiliation(s)
- Chendong Yang
- Water Source Exploration Team, Guizhou Bureau of Coal Geological Exploration, Guiyang, 550000, China
- Guizhou Coal Mine Geological Engineering Consultant and Geological Environmental Monitoring Center, Guiyang, 550000, China
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Tianyu Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| |
Collapse
|
36
|
Zhao F, Yang L, Tang J, Fang L, Yu X, Li M, Chen L. Urbanization-land-use interactions predict antibiotic contamination in soil across urban-rural gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161493. [PMID: 36634779 DOI: 10.1016/j.scitotenv.2023.161493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Antibiotics ubiquitously occur in soils and pose a potential threat to ecosystem health. Concurrently, urbanization and land-use intensification have transformed soil ecosystems, but how they affect antibiotic contamination remain largely unknown. Therefore, we profiled a broad-scale pattern of antibiotics in soil from agricultural lands and green spaces across urbanization gradients, and explored the hypothetical models to verify the effects of urbanization and land-use intensity on antibiotic contamination. The results showed that antibiotic concentrations and seasonality were higher in agricultural soil than in green spaces, which respectively showed linear or hump-shaped declines along with the increasing distance to urban centers. However, the response of antibiotic pollution to land-use intensity depended strongly on the urbanization level. More importantly, interactions between urbanization and land-use explained, on average, 59.6 % of the variation in antibiotic concentrations in soil across urbanization gradients. The proposed interactions can predict the non-linear changes in soil vulnerability to antibiotic contamination. Our study revealed that the urbanization can modulate the effects of land-use intensity on antibiotic concentration and seasonality in the soil environment, and that there is high stress on peri-urban soil ecosystems due to ongoing land-use changes arising from rapid urbanization processes.
Collapse
Affiliation(s)
- Fangkai Zhao
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Tang
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Kodešová R, Fedorova G, Kodeš V, Kočárek M, Rieznyk O, Fér M, Švecová H, Klement A, Bořík A, Nikodem A, Grabic R. Assessment of potential mobility of selected micropollutants in agricultural soils of the Czech Republic using their sorption predicted from soil properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161174. [PMID: 36586677 DOI: 10.1016/j.scitotenv.2022.161174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The sorption of organic contaminants in soils and sediment is a crucial factor affecting their mobility in the vadose zone environment. The Freundlich sorption isotherms were evaluated for eleven micropollutants and eight soils. The highest Freundlich sorption coefficients, KF, were obtained for triclosan (324 ± 153 cm3/nμg1-1/ng-1) followed by sertraline (120 ± 74), venlafaxine (74.3 ± 41.2), telmisartan (33.3 ± 13.6), atorvastatin (8.66 ± 4.78), bisphenol S (8.03 ± 4.87), lamotrigine (6.92 ± 3.02), 2-phenylbenzimidazole-5-sulfonic acid (3.77 ± 2.25), memantine (3.42 ± 1.64), 1-methyl-1H-benzotriazole (2.05 ± 0.99), and valsartan (0.88 ± 0.89). The KF values for the individual compounds were correlated with soil properties. Multiple linear regressions were used to derive equations for predicting the KF values using the soil properties. The first set of equations contained mainly properties with the strongest correlations with the KF values, e.g., a base cation saturation for positively charged compounds or a hydrolytic acidity for negatively charged compounds. The second set of equations contained properties included in the map of agricultural soils of the Czech Republic. These equations always indicated positive correlations with oxidizable organic carbon and clay content. They also included either a negative or positive correlation with pHKCl. A positive correlation with pHKCl was obtained for venlafaxine, memantine, and sertraline, which were mostly positively charged. A negative correlation with pHKCl was obtained for the remaining compounds. The second set of equations, the soil map, and the database of soil properties were used to predict the KF value distributions within the Czech agricultural soils. It resulted in similar KF distributions' patterns for valsartan, lamotrigine, atorvastatin, and telmisartan (with a positive correlation between KF and hydrolytic acidity), which considerably differed from the KF patterns for the other compounds. These maps were used to delineate areas with a leaching potential of the compounds toward groundwater that will serve as a tool for assessing a potential groundwater vulnerability.
Collapse
Affiliation(s)
- Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic.
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Na Šabatce 2050/17, CZ-14306 Praha 4, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Oleksandra Rieznyk
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, CZ-16500 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-38925 Vodňany, Czech Republic
| |
Collapse
|
38
|
Ghosh N, Sen S, Biswas G, Saxena A, Haldar PK. Adsorption and Desorption Study of Reusable Magnetic Iron Oxide Nanoparticles Modified with Justicia adhatoda Leaf Extract for the Removal of Textile Dye and Antibiotic. WATER, AIR, AND SOIL POLLUTION 2023; 234:202. [PMID: 36938148 PMCID: PMC10010655 DOI: 10.1007/s11270-023-06217-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 06/02/2023]
Abstract
The release of tetracycline hydrochloride (TCH) and methylene blue (MB) dye into the aquatic system uncontrollably caused major environmental and health problems; hence, their prevention required serious attention. Adsorption process is now being researched in order to increase adsorption efficiency and reprocess to alleviate environmental issues. The use of magnetic nanoparticle as an adsorbent for wastewater treatment has a lot of prospective. A magnetic iron oxide nanoparticle surface modified by Vasaka (Justicia adhatoda) leaf extract (JA-MIONs) is used to give a fast removal approach for MB dye and TCH antibiotics. Dynamic light scattering, UV-Vis and band gap measurement, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy were operated to analyse the formation and size of these magnetic nanoparticles. The impacts of different factors such as contact time (30-150 min), adsorbate concentration (10-50 mg/L), pH (4-10), and adsorbent dose (2-10 mg) were explored. Adsorption kinetics and isotherms show that it follows the pseudo-first-order kinetic and the Freundlich isotherm, with maximum adsorption capacities of 76.92 mg/g for MB and 200 mg/g for TCH at 298 K. The reusability of the JA-MIONs eventually exhibited a decline in the adsorption percentage of MB and TCH after five and four times respectively. After the desorption-adsorption cycles, this adsorbent continued to exhibit significant adsorption capacity. This investigation furnished the significant reference data for the synthesis of JA-MIONs as a novel and auspicious adsorbent for the industrial clean-up of toxic dyes and heavily used antibiotics from water. Graphical abstract
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Physics, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Atul Saxena
- Department of Physics, North-Eastern Hill University, Shillong, 793002 India
| | - Prabir Kumar Haldar
- Department of Physics, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| |
Collapse
|
39
|
Wu JY, Gao JM, Guo JS, Hou XY, Wang DR, Wu JC, Li XJ, Jia CY. Comprehensive analysis of the fates and risks of veterinary antibiotics in a small ecosystem comprising a pig farm and its surroundings in Northeast China. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130570. [PMID: 37055976 DOI: 10.1016/j.jhazmat.2022.130570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 06/19/2023]
Abstract
This study investigated the behavior of veterinary antibiotics (VAs) in a small farm ecosystem. Manure and environmental samples were collected around a large pig farm in northeast China. Thirty-four VAs in six categories were analyzed. Then, a multimedia fugacity model was used to estimate the fates of VAs in the environment. The results showed that VAs were prevalent in manure, soil, water, and sediment, but not in crops. Compared with fresh manure, VA levels were significantly lower in surface manure piles left in the open air for 3-6 months. The main VAs, tetracyclines and quinolones, decreased by 427.12 and 158.45 µg/kg, respectively. VAs from manure piles were transported to the surroundings and migrated vertically into deep soil. The concentrations of ∑VAs detected in agricultural soils were 0.03-4.60 µg/kg; > 94% of the mass inventory of the VAs was retained in soil organic matter (SOM), suggesting that SOM is the main reservoir for antibiotics in soil. Risk assessment and model analysis indicated that the negative impact of mixed antibiotics at low concentrations in farmland on crops may be mediated by indirect effects, rather than direct effects. Our findings highlight the environmental fates and risks of antibiotics from livestock farms.
Collapse
Affiliation(s)
- Jian-Yong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xian-Yu Hou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - De-Rui Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jing-Cheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiao-Jun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chun-Yun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
40
|
Li M, Yang L, Yen H, Zhao F, Wang X, Zhou T, Feng Q, Chen L. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration. J Environ Sci (China) 2023; 125:678-690. [PMID: 36375949 DOI: 10.1016/j.jes.2022.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics in soil environment are regarded as emerging pollutants and have introduced increasing risks to soil ecosystem and human health in rapid urbanization areas. Identifying the occurrence and spatial variability of antibiotics in soils is an urgent issue in sustaining soil security. In this study, antibiotics in soils were investigated and analyzed in Beijing-Tianjin-Hebei urban agglomeration. The occurrence, spatial distribution, and related affecting factors of antibiotics in soils were identified and ecological risks of antibiotics in soil environment were assessed. Results showed that (1) The mean concentration of soil antibiotics in Beijing-Tianjin-Hebei urban agglomeration was 21.79 µg/kg. Land use substantially affected the occurrence and concentration of antibiotics in soils. Concentrations of antibiotics in cropland and orchard soils were 2-3 times higher than the other land use types. (2) The concentrations of antibiotics in soils in Beijing-Tianjin-Hebei urban agglomeration presented a spatial pattern of high values in southeast, and low values in northwest. Spatial variability of antibiotics in soils was closely related to the application of organic fertilizer and wastewater irrigation as well as topographical features. Furthermore, soil properties and land management policy had substantial influences on soil antibiotics, and soil heavy metals may aggravate the accumulation of antibiotics in soils. (3) Ecological risks assessment of antibiotics in soils demonstrated that erythromycin (ERY), sulfamethoxazole (SMX), and doxycycline (DOX) may introduce high risks to soil ecosystem health, and more attention should be paid to the areas with intensive human activities that had potential high risk to soil ecosystem health. This study suggests that scientific land and soil management should be considered to prevent soil antibiotic pollution and sustain soil security in urban agglomeration.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haw Yen
- School of Forestry and Wildlife Sciences, Auburn University, Texas 36849, USA
| | - Fangkai Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xinmiao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Rashid A, Muhammad J, Khan S, Kanwal A, Sun Q. Poultry manure gleaned antibiotic residues in soil environment: A perspective of spatial variability and influencing factors. CHEMOSPHERE 2023; 317:137907. [PMID: 36669535 DOI: 10.1016/j.chemosphere.2023.137907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The antibiotics released by human and animals end up in the environmental sinks like soil and water to cause contamination and induce resistance in the microflora. The knowledge of fate and behavior of antibiotics in diverse geographical, climatological, and physicochemical is limited. Therefore, present study investigated the spatial distribution of antibiotics and their relationship with various factors and the source-sink relationship between soil and poultry manure. This was achieved by employing spatially constrained hierarchical clustering, global and local spatial autocorrelation, and spatial regression techniques. Most of the antibiotics co-occurred in both soil and poultry manure matrices, however antibiotic concentration in soil (1.20 μg kg-1 < antibiotics ≤21.38 μg kg-1) was lower than that in the poultry manure (7.05 μg kg-1< antibiotics ≤60.2 μg kg-1). Majority of the antibiotics showed spatial independence in both poultry manure and soil, except for sulfadiazine, sulfanilamide and sulfapyridine with Moran's I > - 0.111. Local indicator of spatial association indicated localized spatial clustering and outlier behavior of antibiotics. The underlying reasons for spatial heterogeneity of antibiotics resolved by spatial regression models indicated elevation, S%, C%, pH and mean annual temperature as the major factors. The influence of antibiotic concentration in poultry manure as a source was significant but marginal compared to the other predictors of spatial heterogeneity.
Collapse
Affiliation(s)
- Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Juma Muhammad
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir, 18000, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Aatika Kanwal
- Department of Environmental Sciences, The University of Haripur, Haripur, 22620, Pakistan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
42
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
43
|
Wei M, Wang X, Zhou K, Yang R. Binary Adsorption and Migration Simulation of Levofloxacin with zinc at Concentrations Simulating Wastewater on Silty Clay and The Potential Environmental Risk in Groundwater. CHEMOSPHERE 2023; 311:136878. [PMID: 36419267 DOI: 10.1016/j.chemosphere.2022.136878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Migration of soil pollutants can cause groundwater pollution, which is dominated by the soil adsorption of pollutants. Heavy metals and fluoroquinolone antibiotics exist in the soil and form compound pollution, with different adsorption behaviors in the soil. It may make the levofloxacin (LVFX) migration and potential risk of LVFX to groundwater change. Therefore, this research on Zinc (Zn/Zn2+) and LVFX studied the binary adsorption on silty clay in the vadose zone using the batch equilibrium adsorption method. Besides, Hydrus-1D simulate vertical migration. As the results show: (1) Silty clay has excellent storage capacity (adsorption rate>90%) for LVFX and is a natural barrier to reducing groundwater risk; (2) Binary adsorption of LVFX with Zn on silty clay had could be influenced by metallic oxide, pH value, and cation species. The metallic oxides adsorption rate decreased by 10.3%; Compared with single adsorption, Zn2+ promoted the adsorption of LVFX on silty clay, with the exception that the pH value was 2.0; Based on the simulated migration, subtle changes in adsorption may lead to a significant difference in migration and impact on the environmental risk of LVFX to groundwater. This paper proposed three aspects of the research should be strengthened to further develop the potential of silty clay in the prevention and control of groundwater pollution.
Collapse
Affiliation(s)
- Mengxian Wei
- China University of Geosciences (Beijing), Beijing, 450003, China.
| | - Xueshuang Wang
- Northwest Engineering Corporation Limited, Xi'an, Shan Xi Province, 710065, China
| | - Kai Zhou
- Subterranean Hydrology, WuHan University, Wuhan, Hubei Province, 430072, China
| | - Rui Yang
- MCC HuaTian Engineering & Technology corporation, Nanjing, Jiangsu Province, 210000, China
| |
Collapse
|
44
|
Tian J, Chen C, Lartey-Young G, Ma L. Biodegradation of cefalexin by two bacteria strains from sewage sludge. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220442. [PMID: 36686552 PMCID: PMC9832293 DOI: 10.1098/rsos.220442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation has been used as an environmentally-friendly, energy-saving and efficient method for removing pollutants. However, there have been very few studies focusing on the specific antibiotic-degrading microorganisms in the activated sludge and their degradation mechanism. Two strains of cefalexin-degrading bacteria (Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3)) were isolated from the activated sludge in this study. They were capable of rapidly eliminating over 99% of cefalexin at an initial concentration of 10 mg l-1 within 12 h. The exponential phase of cefalexin degradation happened a little earlier than that of bacterial growth. The first-order kinetic model could elucidate the biodegradation process of cefalexin. The optimized environmental temperature and pH values for rapid biodegradation by these two strains were found to be 30°C and 6.5-7, respectively. Furthermore, two major biodegradation metabolites of CLX-3, 7-amino-3-cephem-4-carboxylic acid and 2-hydroxy-3-phenyl pyrazine were identified using UHPLC-MS and the biodegradation pathway of cefalexin was proposed. Overall, the results showed that Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3) could possibly be useful resources for antibiotic pollution remediation.
Collapse
Affiliation(s)
- Jichen Tian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - George Lartey-Young
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
45
|
Xiang W, Zhang X, Luo J, Li Y, Guo T, Gao B. Performance of lignin impregnated biochar on tetracycline hydrochloride adsorption: Governing factors and mechanisms. ENVIRONMENTAL RESEARCH 2022; 215:114339. [PMID: 36115417 DOI: 10.1016/j.envres.2022.114339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 05/27/2023]
Abstract
Corn stalk-based and wheat straw-based biochar were modified by lignin impregnation and applied to adsorb tetracycline hydrochloride (TCH) in wastewater. Porous properties of lignin impregnated biochar were improved and showed better adsorption performance for TCH. Lignin impregnated wheat straw biochar (WS-L) had the maximum adsorption capacity of 31.48 mg/g, which was 1.89 times compared to corresponding pristine biochar, because excellent pore structure developed via the lignin impregnation and carbonization. The adsorption behavior of TCH molecules on biochar could be interpreted well by two-step process, and it postulated to be a physical adsorption process based on pore filling, hydrogen bonding, π-π interaction, and electrostatic interactions. And cations including Na+, K+, Mg2+ and Al3+ could compete with TCH for adsorption, while Ca2+ could promote TCH adsorption by forming tetracycline-Ca2+ complexes. Maximum TCH adsorption occurred at pH of 7. The best performing lignin impregnated biochar was WS-L that demonstrated the biochar modulated by lignin had the potential to remove antibiotics from aqueous solutions.
Collapse
Affiliation(s)
- Wei Xiang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Xueyang Zhang
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Junpeng Luo
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ying Li
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Tingting Guo
- College of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
46
|
Baquero F, Coque TM, Martínez JL. Natural detoxification of antibiotics in the environment: A one health perspective. Front Microbiol 2022; 13:1062399. [PMID: 36504820 PMCID: PMC9730888 DOI: 10.3389/fmicb.2022.1062399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
The extended concept of one health integrates biological, geological, and chemical (bio-geo-chemical) components. Anthropogenic antibiotics are constantly and increasingly released into the soil and water environments. The fate of these drugs in the thin Earth space ("critical zone") where the biosphere is placed determines the effect of antimicrobial agents on the microbiosphere, which can potentially alter the composition of the ecosystem and lead to the selection of antibiotic-resistant microorganisms including animal and human pathogens. However, soil and water environments are highly heterogeneous in their local composition; thus the permanence and activity of antibiotics. This is a case of "molecular ecology": antibiotic molecules are adsorbed and eventually inactivated by interacting with biotic and abiotic molecules that are present at different concentrations in different places. There are poorly explored aspects of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, rates of decay) of antibiotics in water and soil environments. In this review, we explore the various biotic and abiotic factors contributing to antibiotic detoxification in the environment. These factors range from spontaneous degradation to the detoxifying effects produced by clay minerals (forming geochemical platforms with degradative reactions influenced by light, metals, or pH), charcoal, natural organic matter (including cellulose and chitin), biodegradation by bacterial populations and complex bacterial consortia (including "bacterial subsistence"; in other words, microbes taking antibiotics as nutrients), by planktonic microalgae, fungi, plant removal and degradation, or sequestration by living and dead cells (necrobiome detoxification). Many of these processes occur in particulated material where bacteria from various origins (microbiota coalescence) might also attach (microbiotic particles), thereby determining the antibiotic environmental PK/PD and influencing the local selection of antibiotic resistant bacteria. The exploration of this complex field requires a multidisciplinary effort in developing the molecular ecology of antibiotics, but could result in a much more precise determination of the one health hazards of antibiotic production and release.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,*Correspondence: Fernando Baquero,
| | - Teresa M. Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, and Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFECT), Madrid, Spain
| | | |
Collapse
|
47
|
Wei Q, Song F, Lu T, Farooq U, Chen W, Zhang Q, Qi Z. Mobility of tetracycline in saturated porous media: Single and combined functions of ligands and ferrihydrite colloids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Wei Q, Chen J, Zhang Q, Lu T, Farooq U, Chen W, Qi Z. Insight into the effect of phosphate on ferrihydrite colloid-mediated transport of tetracycline in saturated porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80693-80704. [PMID: 35727510 DOI: 10.1007/s11356-022-21536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Colloid-mediated contaminant mobility is absolutely critical for the environmental behavior of contaminants such as antibiotics in water resources. In this study, the influences of phosphate (a commonly inorganic ligand in the environment) on the ferrihydrite colloid-mediated transport of tetracycline (TC, a typical antibiotic) in porous media were investigated. In the absence of colloids, phosphate promoted TC mobility due to the competitive deposition of phosphate and TC on the sand surface as well as the electrostatic repulsion. Interestingly, ferrihydrite colloids could inhibit TC transport; however, the inhibitory effect of the colloids was weakened by the addition of phosphate. This phenomenon stemmed from colloid-associated TC mobility, the increased electrostatic repulsion induced by adsorbed phosphate, and deposition site competition effect. Another interesting finding was that the impacts of phosphate on the colloid-mediated mobility of TC were pH-dependent. That is, phosphate exhibited a weaker effect on the inhibitory role of ferrihydrite colloids in TC mobility at pH 5.0 than that at pH 7.0; specially, ferrihydrite colloids acted as possible carriers of TC and facilitated antibiotic transport at pH 9.0. The observations were ascribed to different influences of phosphate on the binding affinity of ferrihydrite toward TC and the mobility of free TC under different pH conditions. Therefore, the findings of this study provide useful information about the fate and co-transport of antibiotics and natural mineral colloids in the presence of inorganic ligands in the aquatic environment.
Collapse
Affiliation(s)
- Qiqi Wei
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jiuyan Chen
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Taotao Lu
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-Physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
49
|
Lv M, Zhang D, Niu X, Ma J, Lin Z, Fu M. Insights into the fate of antibiotics in constructed wetland systems: Removal performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116028. [PMID: 36104874 DOI: 10.1016/j.jenvman.2022.116028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics have been recognized as emerging contaminants that are widely distributed and accumulated in aquatic environment, posing a risk to ecosystem at trace level. Constructed wetlands (CWs) have been regarded as a sustainable and cost-effective alternative for efficient elimination of antibiotics. This review summarizes the removal of 5 categories of widely used antibiotics in CWs, and discusses the roles of the key components in CW system, i.e., substrate, macrophytes, and microorganisms, in removing antibiotics. Overall, the vertical subsurface flow CWs have proven to perform better in terms of antibiotic removal (>78%) compared to other single CWs. The adsorption behavior of antibiotics in wetland substrates is determined by the physicochemical properties of antibiotics, substrate configuration and operating parameters. The effects of wetland plants on antibiotic removal mainly include direct (e.g., plant uptake and degradation) and indirect (e.g., rhizosphere processes) manners. The possible interactions between microorganisms and antibiotics include biosorption, bioaccumulation and biodegradation. The potential strategies for further enhancement of the antibiotic removal performance in CWs included optimizing operation parameters, innovating substrate, strengthening microbial activity, and integrating with other treatment technologies. Taken together, this review provides useful information for facilitating the development of feasible, innovative and intensive antibiotic removal technologies in CWs, as well as enhancing the economic viability and ecological sustainability.
Collapse
Affiliation(s)
- Mengyu Lv
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
50
|
Wu S, Hua P, Gui D, Zhang J, Ying G, Krebs P. Occurrences, transport drivers, and risk assessments of antibiotics in typical oasis surface and groundwater. WATER RESEARCH 2022; 225:119138. [PMID: 36191526 DOI: 10.1016/j.watres.2022.119138] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Intensive use of antibiotics affects biogeochemical cycles and stimulates the evolution of antibiotic resistance, thus threatening global health and social development. The spatiotemporal distributions of antibiotics in single aqueous matrices have been widely documented; however, their occurrence in surface-groundwater systems has received less attention, especially in arid regions that usually have fragile ecosystems. Therefore, we investigated the occurrence of thirty-one antibiotics in the surface water and adjacent groundwater in the Xinjiang Uygur Autonomous Region, China. The results showed that the total concentrations of detected antibiotics varied from 17.37 to 84.09 ng L-1 and from 16.38 to 277.41 ng L-1 in surface and groundwater, respectively. The median concentration of antibiotics showed the pattern of norfloxacin (4.86 ng L-1) > ciprofloxacin (3.93 ng L-1) > pefloxacin (3.39 ng L-1) in surface water; whereas in groundwater, this was in the order of pefloxacin (6.30 ng L-1) > norfloxacin (4.33 ng L-1) > ciprofloxacin (2.68 ng L-1). Heatmap analysis indicated that vertical infiltration had limited effects on antibiotic exchange in surface-ground water systems because of the high potential evaporation and low water storage. Redundancy analysis suggested that the oxidation-reduction potential (p < 0.01) and dissolved oxygen (p < 0.05) jointly affected the distribution of antibiotics in surface water. Ecological risk assessment showed that antibiotics in 98.9% of surface water and 99.1% of groundwater did not pose significant risks to aquatic species. The findings of this study will help develop effective mitigation strategies for antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Shixue Wu
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| | - Pei Hua
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China.
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Jin Zhang
- Yangtze Institute for Conservation and Development, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, 210098 Nanjing, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011 Urumqi, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, 510006 Guangzhou, China; School of Environment, South China Normal University, University Town, 510006 Guangzhou, China
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|