1
|
Zure D, Sung MH, Rahim A, Kuo HW. In Silico Assessment of Chemical Disinfectants on Surface Proteins Unveiled Dissimilarity in Antiviral Efficacy and Suitability towards Pathogenic Viruses. Int J Mol Sci 2024; 25:6009. [PMID: 38892197 PMCID: PMC11172749 DOI: 10.3390/ijms25116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.
Collapse
Affiliation(s)
| | | | | | - Hsion-Wen Kuo
- Department of Environmental Science and Engineering, Tunghai University, Taichung 407224, Taiwan; (D.Z.); (M.-H.S.); (A.R.)
| |
Collapse
|
2
|
Sachdeva H, Shahin R, Ota S, Isabel S, Mangat CS, Stuart R, Padhi S, Chris A, Mishra S, Tan DHS, Braukmann TW, Eshaghi A, Mejia EM, Hizon NA, Finkelstein M. Preparing for Mpox Resurgence: Surveillance Lessons From Outbreaks in Toronto, Canada. J Infect Dis 2024; 229:S305-S312. [PMID: 38035826 PMCID: PMC10965211 DOI: 10.1093/infdis/jiad533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND With many global jurisdictions, Toronto, Canada, experienced an mpox outbreak in spring/summer 2022. Cases declined following implementation of a large vaccination campaign. A surge in early 2023 led to speculation that asymptomatic and/or undetected local transmission was occurring in the city. METHODS Mpox cases and positive laboratory results are reported to Toronto Public Health. Epidemic curves and descriptive risk factor summaries for the 2022 and 2023 outbreaks were generated. First- and second-dose vaccination was monitored. Mpox virus wastewater surveillance and whole genome sequencing were conducted to generate hypotheses about the source of the 2023 resurgence. RESULTS An overall 515 cases were reported in spring/summer 2022 and 17 in the 2022-2023 resurgence. Wastewater data correlated with the timing of cases. Whole genome sequencing showed that 2022-2023 cases were distinct from 2022 cases and closer to sequences from another country, suggesting a new importation as a source. At the start of the resurgence, approximately 16% of first-dose vaccine recipients had completed their second dose. CONCLUSIONS This investigation demonstrates the importance of ongoing surveillance and preparedness for mpox outbreaks. Undetected local transmission was not a likely source of the 2022-2023 resurgence. Ongoing preexposure vaccine promotion remains important to mitigate disease burden.
Collapse
Affiliation(s)
- Herveen Sachdeva
- Toronto Public Health
- Dalla Lana School of Public Health, University of Toronto
| | - Rita Shahin
- Toronto Public Health
- Dalla Lana School of Public Health, University of Toronto
| | | | - Sandra Isabel
- Public Health Ontario, Toronto
- Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec–Université Laval
| | - Chand S Mangat
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - Shovita Padhi
- Toronto Public Health
- Dalla Lana School of Public Health, University of Toronto
| | - Allison Chris
- Toronto Public Health
- Dalla Lana School of Public Health, University of Toronto
| | - Sharmistha Mishra
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Department of Medicine, Temerty Faculty of Medicine
- Institute of Health Policy, Management and Evaluation and Institute of Medical Science, University of Toronto
- Institute for Clinical Evaluative Sciences (ICES)
- Division of Infectious Diseases, St Michael's Hospital, Toronto, Ontario, Canada
| | - Darrell H S Tan
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto
- Department of Medicine, Temerty Faculty of Medicine
- Institute of Health Policy, Management and Evaluation and Institute of Medical Science, University of Toronto
- Division of Infectious Diseases, St Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Edgard M Mejia
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Nikho A Hizon
- Wastewater Surveillance Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Michael Finkelstein
- Toronto Public Health
- Dalla Lana School of Public Health, University of Toronto
| |
Collapse
|
3
|
Armenta-Castro A, Núñez-Soto MT, Rodriguez-Aguillón KO, Aguayo-Acosta A, Oyervides-Muñoz MA, Snyder SA, Barceló D, Saththasivam J, Lawler J, Sosa-Hernández JE, Parra-Saldívar R. Urine biomarkers for Alzheimer's disease: A new opportunity for wastewater-based epidemiology? ENVIRONMENT INTERNATIONAL 2024; 184:108462. [PMID: 38335627 DOI: 10.1016/j.envint.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid β, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Collapse
Affiliation(s)
| | - Mónica T Núñez-Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Kassandra O Rodriguez-Aguillón
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Shane A Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain; Sustainability Cluster, School of Engineering at the UPES, Dehradun, Uttarakhand, India
| | - Jayaprakash Saththasivam
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Jenny Lawler
- Water Center, Qatar Environment & Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Qatar
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
4
|
Yan C, Hu YN, Gui ZC, Lai TN, Ali W, Wan NH, He SS, Liu S, Li X, Jin TX, Nasir ZA, Alcega SG, Coulon F. Quantitative SARS-CoV-2 exposure assessment for workers in wastewater treatment plants using Monte-Carlo simulation. WATER RESEARCH 2024; 248:120845. [PMID: 37976948 DOI: 10.1016/j.watres.2023.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Several studies on COVID-19 pandemic have shown that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originating from human stool are detected in raw sewage for several days, leading to potential health risks for workers due to the production of bioaerosols and droplets during wastewater treatment process. In this study, data of SARS-CoV-2 concentrations in wastewater were gathered from literatures, and a quantitative microbial risk assessment with Monte Carlo simulation was used to estimate the daily probability of infection risk through exposure to viable infectious viral airborne particles of the workers during four seasons and under six environmental conditions. Inhalation of bioaerosols and direct ingestion of wastewater droplets were selected as exposure pathways. Spearman rank correlation coefficients were used for sensitivity analysis to identify the variables with the greatest influence on the infection risk probability. It was found that the daily probability of infection risk decreased with temperature (T) and relative humidity (RH) increase. The probability of direct droplet ingestion exposure pathway was higher than that of the bioaerosol inhalation pathway. The sensitivity analysis indicated that the most sensitive variable for both exposure pathways was the concentration of SARS-CoV-2 in stool. So, appropriate aeration systems, covering facilities, and effective ventilation are suggested to implement in wastewater treatment plants (WWTPs) to reduce emission concentration. Further to this, the exposure time (t) had a larger variance contribution than T and RH for the bioaerosol inhalation pathway. Implementing measures such as adding more work shifts, mandating personal protective equipment for all workers, and implementing coverage for treatment processes can significantly reduce the risk of infection among workers at WWTPs. These measures are particularly effective during environmental conditions with low temperatures and humidity levels.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| | - Yi-Ning Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Zi-Cheng Gui
- CCDI (Suzhou) exploration and design consultant Co., Ltd., Suzhou 215123, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Nian-Hong Wan
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co, Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Ting-Xu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, PR China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
5
|
Wilhelm A, Schoth J, Meinert-Berning C, Bastian D, Blum H, Elsinga G, Graf A, Heijnen L, Ho J, Kluge M, Krebs S, Stange C, Uchaikina A, Dolny R, Wurzbacher C, Drewes JE, Medema G, Tiehm A, Ciesek S, Teichgräber B, Wintgens T, Weber FA, Widera M. Interlaboratory comparison using inactivated SARS-CoV-2 variants as a feasible tool for quality control in COVID-19 wastewater monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166540. [PMID: 37634730 DOI: 10.1016/j.scitotenv.2023.166540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | | | - Daniel Bastian
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15-17, D-52056 Aachen, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Mariana Kluge
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Claudia Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Regina Dolny
- Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074 Aachen, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany; German Center for Infection Research (DZIF), 38124 Braunschweig, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D 60595 Frankfurt am Main, Germany
| | - Burkhard Teichgräber
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | - Thomas Wintgens
- Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074 Aachen, Germany
| | - Frank-Andreas Weber
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15-17, D-52056 Aachen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| |
Collapse
|
6
|
Xu Y, Liu J, You G, Yang Z, Miao L, Wu J, Yang G, Hou J. A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166515. [PMID: 37619725 DOI: 10.1016/j.scitotenv.2023.166515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (108-109 CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Jialin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guang Yang
- Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
7
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
8
|
Mališová E, Guštafík A, Tamáš M, Strečanský T, Imreová Z, Konečná B, Červenková A, Peciar P, Mackuľak T, Híveš J. Effective stabilization of electrochemically prepared ecological oxidizing agent-ferrate(VI)-by encapsulation in zeolite and its application to water containing SARS-CoV-2 virus. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10940. [PMID: 37815302 DOI: 10.1002/wer.10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Improper and insufficient treatment of infectious hospital wastewater could seriously endanger public health and the environment. Ferrate(VI), a strong oxidizing, disinfecting, and coagulating agent, has the potential as a green solution for decontamination of water and wastewater. In this paper, electrochemically prepared potassium ferrate (K2 FeO4 ) with high purity was successfully encapsulated and applied to the water contaminated by SARS-CoV-2. Natural zeolite was chosen as an appropriate ecological material for ferrate encapsulation. The stability of encapsulated ferrate (in tablet form) was monitored for an extended time period (290 days) and has significantly increased in contrast with free potassium ferrate by almost 30%. Subsequently, the K2 FeO4 encapsulated with zeolite in tablet form was applied to the water and municipal water samples containing the SARS-CoV-2 virus. The removal efficiency reached up to 98.5% and 86.7%, respectively, under natural conditions. Combination of environmentally friendly oxidizing agent and natural excellent adsorbent leads to the creation of very effective water treatment matter. These findings are essentially immediate and especially important for immediate water treatment in urgent situations such as natural disasters or military conflict. PRACTITIONER POINTS: Electrochemical preparation of oxidizing agent, K2 FeO4 , in high purity by own constructed electrolyzer. Encapsulation of ferrate(VI) to natural zeolite threefold improving the stability during 9 months. SARS-CoV-2 virus was successfully removed from various contaminated types of water. High degradation efficiency of virus fragments by Fe(VI) was achieved without additional water adjustment, in natural pH range.
Collapse
Affiliation(s)
- Emília Mališová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Adam Guštafík
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Michal Tamáš
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Tomáš Strečanský
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Zuzana Imreová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Andrea Červenková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Peter Peciar
- Institute of Process Engineering, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Tomáš Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| | - Ján Híveš
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
9
|
Joung MJ, Mangat CS, Mejia EM, Nagasawa A, Nichani A, Perez-Iratxeta C, Peterson SW, Champredon D. Coupling wastewater-based epidemiological surveillance and modelling of SARS-COV-2/COVID-19: Practical applications at the Public Health Agency of Canada. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:166-174. [PMID: 38404704 PMCID: PMC10890812 DOI: 10.14745/ccdr.v49i05a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Wastewater-based surveillance (WBS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offers a complementary tool for clinical surveillance to detect and monitor coronavirus disease 2019 (COVID-19). Since both symptomatic and asymptomatic individuals infected with SARS-CoV-2 can shed the virus through the fecal route, WBS has the potential to measure community prevalence of COVID-19 without restrictions from healthcare-seeking behaviours and clinical testing capacity. During the Omicron wave, the limited capacity of clinical testing to identify COVID-19 cases in many jurisdictions highlighted the utility of WBS to estimate disease prevalence and inform public health strategies; however, there is a plethora of in-sewage, environmental and laboratory factors that can influence WBS outcomes. The implementation of WBS, therefore, requires a comprehensive framework to outline a pipeline that accounts for these complex and nuanced factors. This article reviews the framework of the national WBS conducted at the Public Health Agency of Canada to present WBS methods used in Canada to track and monitor SARS-CoV-2. In particular, we focus on five Canadian cities-Vancouver, Edmonton, Toronto, Montréal and Halifax-whose wastewater signals are analyzed by a mathematical model to provide case forecasts and reproduction number estimates. The goal of this work is to share our insights on approaches to implement WBS. Importantly, the national WBS system has implications beyond COVID-19, as a similar framework can be applied to monitor other infectious disease pathogens or antimicrobial resistance in the community.
Collapse
Affiliation(s)
- Meong Jin Joung
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON
- Dalla Lana School of Public Health, University of Toronto. Toronto, ON
| | - Chand S Mangat
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - Edgard M Mejia
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - Audra Nagasawa
- Statistics Canada, Centre for Direct Health Measures, Ottawa, ON
| | - Anil Nichani
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON
| | | | - Shelley W Peterson
- National Microbiology Laboratory, Wastewater Surveillance Unit, Public Health Agency of Canada, Winnipeg, MB
| | - David Champredon
- National Microbiology Laboratory, Public Health Risk Sciences Division, Public Health Agency of Canada, Guelph, ON
| |
Collapse
|
10
|
Qamsari EM, Mohammadi P. Evaluation of SARS-CoV-2 RNA Presence in Treated and Untreated Hospital Sewage. WATER, AIR, AND SOIL POLLUTION 2023; 234:273. [PMID: 37073306 PMCID: PMC10090750 DOI: 10.1007/s11270-023-06273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is a potential approach for determining the viral prevalence in a community. In the wake of the COVID-19 pandemic, researchers have begun to pay close attention to the presence of SARS-COV-2 RNA in various wastewaters. The potential for detecting SARS-CoV-2 RNA in hospital sewage could make it an invaluable resource for epidemiological studies. In this regard, two specialized hospitals dedicated to COVID-19 patients were chosen for this investigation. Both hospitals utilize the same wastewater treatment systems. The influent and effluents of the two hospitals were sampled in May and June of 2021, and the samples were evaluated for their chemical properties. According to the findings of this study, the wastewater qualities of the two studied hospitals were within the standard ranges. The sewage samples were concentrated using ultrafiltration and PEG precipitation techniques. The E and S genes were studied with RT-qPCR commercial kits. We found E gene of SARS-CoV-2 in 83.3% (5/6) and 66.6% (4/6) of wastewater samples from hospital 1 and hospital 2, respectively, using ultrafiltration concentration method. Wastewater samples taken after chlorine treatment accounted for 16.6% of all positive results. In addition, due to the small sample size, there was no significant correlation (p > 0.05) between the presence of SARS-CoV-2 in wastewater and the number of COVID-19 cases. Hospitals may be a source of SARS-CoV-2 pollution, thus it is important to monitor and enhance wastewater treatment systems to prevent the spread of the virus and safeguard the surrounding environment.
Collapse
Affiliation(s)
- Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
11
|
Mare R, Mare C, Hadarean A, Hotupan A, Rus T. COVID-19 and Water Variables: Review and Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:957. [PMID: 36673718 PMCID: PMC9859563 DOI: 10.3390/ijerph20020957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 has changed the world since 2020, and the field of water specifically, boosting scientific productivity (in terms of published articles). This paper focuses on the influence of COVID-19 on scientific productivity with respect to four water variables: (i) wastewater, (ii) renewable water resources, (iii) freshwater withdrawal, and (iv) access to improved and safe drinking water. The field's literature was firstly reviewed, and then the maps were built, emphasizing the strong connections between COVID-19 and water-related variables. A total of 94 countries with publications that assess COVID-19 vs. water were considered and evaluated for how they clustered. The final step of the research shows that, on average, scientific productivity on the water topic was mostly conducted in countries with lower COVID-19 infection rates but higher development levels as represented by gross domestic product (GDP) per capita and the human development index (HDI). According to the statistical analysis, the water-related variables are highly significant, with positive coefficients. This validates that countries with higher water-related values conducted more research on the relationship with COVID-19. Wastewater and freshwater withdrawal had the highest impact on the scientific productivity with respect to COVID-19. Access to safe drinking water becomes insignificant in the presence of the development parameters.
Collapse
Affiliation(s)
- Roxana Mare
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Codruța Mare
- Department of Statistics-Forecasts-Mathematics, Faculty of Economics and Business Administration, Babes-Bolyai University, 58-60 Teodor Mihali Str., 400591 Cluj-Napoca, Romania
- Interdisciplinary Centre for Data Science, Babes-Bolyai University, 68 Avram Iancu Str., 4th Floor, 400083 Cluj-Napoca, Romania
| | - Adriana Hadarean
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Anca Hotupan
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| | - Tania Rus
- Department of Building Services Engineering, Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 128-130 21 Decembrie 1989 Blv., 400604 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Fonseca MS, Machado BAS, Rolo CDA, Hodel KVS, Almeida EDS, de Andrade JB. Evaluation of SARS-CoV-2 concentrations in wastewater and river water samples. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100214. [PMID: 37520921 PMCID: PMC9055419 DOI: 10.1016/j.cscee.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
There are only a few established methods to determine the concentration of encapsulated viruses, such as SARS-CoV-2, in water matrices, limiting the application of wastewater-based epidemiology (WBE)-an important tool for public health research. The present study compared four methods that are commonly used to concentrate non-encapsulated enteric viruses for determining SARS-CoV-2 concentration in wastewater and wastewater-enriched river water samples. The four methods tested were electronegative membrane with Mg+2 addition, aluminum hydroxide-based precipitation, polyethylene glycol (PEG) 8000 precipitation, and ultrafiltration (with porosity of 10 and 50 kDa). Prior to the concentration step, filtration or centrifugation was performed to remove suspended particles from the samples (pretreatment). To evaluate the recovery efficiency (%), samples of SARS-CoV-2 from nasopharyngeal swabs obtained from RT-qPCR-positive patients were used as spiked samples. The second part of the analysis involved the quantification of the SARS-CoV-2 copy number in analytes without SARS-CoV-2-spiked samples. Among the tested methods, pretreatment via centrifugation followed by ultrafiltration with a 50-kDa cut-off was found the most efficient method for wastewater samples with spiked samples (54.3 or 113.01% efficiency). For the wastewater-enriched river samples with spiked samples, pretreatment via centrifugation followed by filtration using an electronegative membrane was the most efficient method (110.8% and 95.9% for N1 and N2 markers, respectively). However, ultrafiltration of the raw river water samples using 10 or 50 kDa cut-off filters and PEG 8000 precipitation showed the best concentration efficiency based on copy number, regardless of the pretreatment approach or sample type (values ranging from 3 × 105 to 6.7 × 103). The effectiveness of the concentration method can vary depending on the type of sample and concentration method. We consider that this study will contribute to more widespread use of WBE for the environmental surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Maísa Santos Fonseca
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Edna Dos Santos Almeida
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
| | - Jailson Bittencourt de Andrade
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente - INCT E&A, Federal University of Bahia, Salvador, 40170-115, Brazil
| |
Collapse
|
13
|
Wilhelm A, Schoth J, Meinert-Berning C, Agrawal S, Bastian D, Orschler L, Ciesek S, Teichgräber B, Wintgens T, Lackner S, Weber FA, Widera M. Wastewater surveillance allows early detection of SARS-CoV-2 omicron in North Rhine-Westphalia, Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157375. [PMID: 35850355 PMCID: PMC9287496 DOI: 10.1016/j.scitotenv.2022.157375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 05/25/2023]
Abstract
Wastewater-based epidemiology (WBE) has demonstrated its importance to support SARS-CoV-2 epidemiology complementing individual testing strategies. Due to their immune-evasive potential and the resulting significance for public health, close monitoring of SARS-CoV-2 variants of concern (VoC) is required to evaluate the regulation of early local countermeasures. In this study, we demonstrate a rapid workflow for wastewater-based early detection and monitoring of the newly emerging SARS-CoV-2 VoCs Omicron in the end of 2021 at the municipal wastewater treatment plant (WWTP) Emschermuendung (KLEM) in the Federal State of North-Rhine-Westphalia (NRW, Germany). Initially, available primers detecting Omicron-related mutations were rapidly validated in a central laboratory. Subsequently, RT-qPCR analysis of purified SARS-CoV-2 RNA was performed in a decentral PCR laboratory in close proximity to KLEM. This decentralized approach enabled the early detection of K417N present in Omicron in samples collected on 8th December 2021 and the detection of further mutations (N501Y, Δ69/70) in subsequent biweekly sampling campaigns. The presence of Omicron in wastewater was confirmed by next generation sequencing (NGS) in a central laboratory with samples obtained on 14th December 2021. Moreover, the relative increase of the mutant fraction of Omicron was quantitatively monitored over time by dPCR in a central PCR laboratory starting on 12th December 2021 confirming Omicron as the dominant variant by the end of 2021. In conclusions, WBE plays a crucial role in surveillance of SARS-CoV-2 variants and is suitable as an early warning system to identify variant emergence. In particular, the successive workflow using RT-qPCR, RT-dPCR and NGS demonstrates the strength of WBE as a versatile tool to monitor variant spreading.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | | | - Shelesh Agrawal
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Water and Environmental Biotechnology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Daniel Bastian
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15- 17, D-52056 Aachen, Germany
| | - Laura Orschler
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Water and Environmental Biotechnology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany; German Center for Infection Research (DZIF), 38124 Braunschweig, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern Kai 7, D-60595 Frankfurt am Main, Germany
| | - Burkhard Teichgräber
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | - Thomas Wintgens
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15- 17, D-52056 Aachen, Germany; Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074, Aachen, Germany
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Water and Environmental Biotechnology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Frank-Andreas Weber
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15- 17, D-52056 Aachen, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| |
Collapse
|
14
|
Islam A, Hossen F, Rahman A, Sultana KF, Hasan MN, Haque A, Sosa-Hernández JE, Oyervides-Muñoz MA, Parra-Saldívar R, Ahmed T, Islam T, Dhama K, Sangkham S, Bahadur NM, Reza HM, Jakariya, Al Marzan A, Bhattacharya P, Sonne C, Ahmed F. An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 Infections. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 31:100396. [PMID: 36320818 PMCID: PMC9612100 DOI: 10.1016/j.coesh.2022.100396] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.
Collapse
Affiliation(s)
- Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Arifur Rahman
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Khandokar Fahmida Sultana
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | | | | | | | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | | | - Kuldeep Dhama
- Indian Veterinary Research Institute, Izzatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, 56000, Phayao, Thailand
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and TechnologyUniversity, Noakhali-3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
15
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
One-Year Surveillance of SARS-CoV-2 Virus in Natural and Drinking Water. Pathogens 2022; 11:pathogens11101133. [PMID: 36297189 PMCID: PMC9609174 DOI: 10.3390/pathogens11101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Although the SARS-CoV-2 virus has been detected in wastewater from several countries, monitoring its presence in other water matrices is still limited. This study aimed to evaluate the presence of this virus in natural and drinking water over one year of monitoring (2021). A survey of viral RNA was carried out by RT-qPCR in concentrated samples of surface water, groundwater, and drinking water from different regions of Portugal. SARS-CoV-2 RNA—quantified in genomic copies per liter (gc/L) of sampled water—was not detected in groundwater, but was detected and quantified in samples of surface water (two out of 43; 8035 and 23,757 gc/L) and in drinking water (one out of 43 samples; 7463 gc/L). The study also detected and quantified Norovirus RNA, intending to confirm the use of this enteric virus to assess variations in fecal matter throughout the sampling campaign. The samples positive for SARS-CoV-2 RNA also had the highest concentrations of Norovirus RNA—including the drinking water sample, which proved negative for fecal enteric bacteria (FIB). These results indicate that, to protect human health, it is advisable to continue monitoring these viruses, and noroviruses as fecal indicators (FI) as well—especially in low-flow water bodies that receive wastewater.
Collapse
|
17
|
Gonçalves SDO, Luz TMD, Silva AM, de Souza SS, Montalvão MF, Guimarães ATB, Ahmed MAI, Araújo APDC, Karthi S, Malafaia G. Can spike fragments of SARS-CoV-2 induce genomic instability and DNA damage in the guppy, Poecilia reticulate? An unexpected effect of the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153988. [PMID: 35192827 PMCID: PMC8857768 DOI: 10.1016/j.scitotenv.2022.153988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
The identification of SARS-CoV-2 particles in wastewater and freshwater ecosystems has raised concerns about its possible impacts on non-target aquatic organisms. In this particular, our knowledge of such impacts is still limited, and little attention has been given to this issue. Hence, in our study, we aimed to evaluate the possible induction of mutagenic (via micronucleus test) and genotoxic (via single cell gel electrophoresis assay, comet assay) effects in Poecilia reticulata adults exposed to fragments of the Spike protein of the new coronavirus at the level of 40 μg/L, denominated PSPD-2002. As a result, after 10 days of exposure, we have found that animals exposed to the peptides demonstrated an increase in the frequency of erythrocytic nuclear alteration (ENA) and all parameters assessed in the comet assay (length tail, %DNA in tail and Olive tail moment), suggesting that PSPD-2002 peptides were able to cause genomic instability and erythrocyte DNA damage. Besides, these effects were significantly correlated with the increase in lipid peroxidation processes [inferred by the high levels of malondialdehyde (MDA)] reported in the brain and liver of P. reticulata and with the reduction of the superoxide dismutase (SOD) and catalase (CAT) activity. Thus, our study constitutes a new insight and promising investigation into the toxicity associated with the dispersal of SARS-CoV-2 peptide fragments in freshwater environments.
Collapse
Affiliation(s)
- Sandy de Oliveira Gonçalves
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Sindoval Silva de Souza
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, MG, Brazil
| | | | | | | | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Monomania Sundaranar University, Alwarkurichi 627 412, India
| | - Guilherme Malafaia
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, MG, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, GO, Brazil.
| |
Collapse
|
18
|
Tanimoto Y, Ito E, Miyamoto S, Mori A, Nomoto R, Nakanishi N, Oka N, Morimoto T, Iwamoto T. SARS-CoV-2 RNA in Wastewater Was Highly Correlated With the Number of COVID-19 Cases During the Fourth and Fifth Pandemic Wave in Kobe City, Japan. Front Microbiol 2022; 13:892447. [PMID: 35756040 PMCID: PMC9223763 DOI: 10.3389/fmicb.2022.892447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the current coronavirus disease 2019 (COVID-19) pandemic and associated respiratory infections, has been detected in the feces of patients. Therefore, determining SARS-CoV-2 RNA levels in sewage may help to predict the number of infected people within the area. In this study, we quantified SARS-CoV-2 RNA copy number using reverse transcription quantitative real-time PCR with primers and probes targeting the N gene, which allows the detection of both wild-type and variant strain of SARS-CoV-2 in sewage samples from two wastewater treatment plants (WWTPs) in Kobe City, Japan, during the fourth and fifth pandemic waves of COVID-19 between February 2021 and October 2021. The wastewater samples were concentrated via centrifugation, yielding a pelleted solid fraction and a supernatant, which was subjected to polyethylene glycol (PEG) precipitation. The SARS-CoV-2 RNA was significantly and frequently detected in the solid fraction than in the PEG-precipitated fraction. In addition, the copy number in the solid fraction was highly correlated with the number of COVID-19 cases in the WWTP basin (WWTP-A: r = 0.8205, p < 0.001; WWTP-B: r = 0.8482, p < 0.001). The limit of capturing COVID-19 cases per 100,000 people was 0.75 cases in WWTP-A and 1.20 cases in WWTP-B, respectively. Quantitative studies of RNA in sewage can be useful for administrative purposes related to public health, including issuing warnings and implementing preventive measures within sewage basins.
Collapse
Affiliation(s)
- Yoshihiko Tanimoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Erika Ito
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Sonoko Miyamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ai Mori
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Naohiro Oka
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Takao Morimoto
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| |
Collapse
|
19
|
Augusto MR, Claro ICM, Siqueira AK, Sousa GS, Caldereiro CR, Duran AFA, de Miranda TB, Bomediano Camillo LDM, Cabral AD, de Freitas Bueno R. Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107478. [PMID: 35251931 PMCID: PMC8882035 DOI: 10.1016/j.jece.2022.107478] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/25/2022] [Indexed: 05/06/2023]
Abstract
The shedding of SARS-CoV-2 RNA titers by infected individuals, even asymptomatic and oligosymptomatic ones, allows the use of wastewater monitoring to track the COVID-19 spread in a community. This approach is interesting especially for emerging countries with limited clinical testing capabilities. However, there are still important methodological aspects that need validation so that wastewater monitoring data become more representative and useful for public health. This study evaluated the between-day and within-day variability of SARS-CoV-2 RNA concentrations in 24-hour composite and grab samples from three different sampling points, including two wastewater treatment plants (WTTP) and a sewer manhole. In the between-day evaluation (17 weeks of monitoring), a good agreement between the SARS-CoV-2 RNA concentration of each sampling method was observed. There were no significant differences between the mean concentrations of the grab and composite samples (p-value > 0.05), considering N1 and N2 gene assays. The strong relationship between composite and grab samples was proven by correlation coefficients: Pearson's r of 0.83 and Spearman's rho of 0.78 (p-value < 0.05). In within-day evaluation, 24-hour cycles were analyzed and low variability in hourly viral concentrations was observed for three sampling points. The coefficient of variation (CV) values ranged from 3.0% to 11.5%. Overall, 24-hour profiles showed that viral RNA concentrations had less variability and greater agreement with the mean values between 8 a.m. and 10 a.m, the recommended time for grab sampling. Therefore, this study provides important information on wastewater sampling techniques for COVID-19 surveillance. Wastewater monitoring information will only be useful to public health and decision-makers if we ensure data quality through best practices.
Collapse
Affiliation(s)
- Matheus Ribeiro Augusto
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Kaori Siqueira
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Guilherme Santos Sousa
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Cláudio Roberto Caldereiro
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Taís Browne de Miranda
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Lívia de Moraes Bomediano Camillo
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| | - Aline Diniz Cabral
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
- Federal University of Uberlândia (UFU), Faculty of Veterinary Medicine, Uberlândia, Minas Gerais 38402-018, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC (UFABC), Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo 09210-580, Brazil
| |
Collapse
|
20
|
Tomasi IT, Machado CA, Boaventura RAR, Botelho CMS, Santos SCR. Tannin-based coagulants: Current development and prospects on synthesis and uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153454. [PMID: 35093370 DOI: 10.1016/j.scitotenv.2022.153454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Population growth, industrialization, urbanization, and agriculture lead to a decrease in the availability of clean water. Coagulation/flocculation is one of the most common operations in water, urban wastewater, and industrial effluents treatment systems. Usually, this process is achieved using conventional coagulants that have their performance affected by pH, are poorly biodegradable, produce a huge volume of sludge, and are associated with degenerative diseases. As a substitute for these chemicals, natural coagulants have been highly researched for the last ten/fifteen years, especially the tannin-based (TB) ones. This review paper highlights the advantages of using these greener products to treat different types of water, wastewater, and effluents, especially from dairy, cosmetics, laundries, textile, and other industries. TB coagulants can successfully remove turbidity, color, suspended solids, soluble organic (chemical/biochemical oxygen demand) and inorganic matter (total phosphate, and heavy metals), and microorganisms. TB coagulants are compatible with other treatment technologies and can be used as coagulant-aid to reduce the consumption of chemicals. TB coagulants can reduce operating costs of water treatment due to less alkalinity consumption, as pH adjustment is sometimes unnecessary, and the production of a smaller volume of biodegradable sludge. TB coagulants can be synthesized by valorizing wastes/by-products, from the bark of some specific trees and skins/pomace of different fruits and vegetables. The strengths, weaknesses, opportunities, and threats (SWOT) on TB coagulants are discussed. The progress of TB coagulants is promising, but some threats should be overcome, especially on tannin extraction and cationization. The market competition with conventional coagulants, the feasibility of application in real waters, and the reluctance of the industries to adapt to new technologies are other weaknesses to be surpassed.
Collapse
Affiliation(s)
- Isabella T Tomasi
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cláudia A Machado
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A R Boaventura
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cidália M S Botelho
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Sílvia C R Santos
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
21
|
Charlie-Silva I, Malafaia G. Fragments SARS-Cov-2 in aquatic organism represent an additional environmental risk concern: Urgent need for research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153064. [PMID: 35032525 PMCID: PMC8755410 DOI: 10.1016/j.scitotenv.2022.153064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 05/21/2023]
Affiliation(s)
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urataí Campus, GO, Brazil; Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-graduation Program in Ecology, Conservation and Biodiversity, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
22
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
23
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|