1
|
Yin Y, Xu J, Ilyas I, Xu S. Bioactive Flavonoids in Protecting Against Endothelial Dysfunction and Atherosclerosis. Handb Exp Pharmacol 2025; 287:1-31. [PMID: 38755351 DOI: 10.1007/164_2024_715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yanjun Yin
- School of Pharmacy, Bengbu Medical University, Bengbu, China
| | - Jingjing Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
3
|
Bai X, Wang S, Shu L, Cao Q, Hu H, Zhu Y, Chen C. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-ⅡA signaling in macrophages in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118006. [PMID: 38442806 DOI: 10.1016/j.jep.2024.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 μg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1β (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.
Collapse
Affiliation(s)
- Xufeng Bai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shuwen Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Limei Shu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qingyu Cao
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China
| | - Huiming Hu
- College of Pharmacy, Nanchang Medical College, Nanchang, Jiangxi, 330052, China; Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi, 330052, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Yanchen Zhu
- College of Computer Science, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
4
|
Xu Q, Yu Z, Zhang M, Feng T, Song F, Tang H, Wang S, Li H. Danshen-Shanzha formula for the treatment of atherosclerosis: ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties, and pharmacological effects. Front Pharmacol 2024; 15:1380977. [PMID: 38910885 PMCID: PMC11190183 DOI: 10.3389/fphar.2024.1380977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
- School of Graduate Studies, Air Force Medical University, Xi’an, China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
6
|
Cui M, Cheng L, Zhou Z, Zhu Z, Liu Y, Li C, Liao B, Fan M, Duan B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117229. [PMID: 37788786 DOI: 10.1016/j.jep.2023.117229] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Crataegus (hawthorn), a member of the Rosaceae family, encompasses several species with broad geographical distribution across the Northern Hemisphere, including Asia, Europe, and the Americas. Hawthorn is recognized as an edible medicinal plant with applications related to strengthening the digestive system, promoting blood circulation, and resolving blood stasis. AIM OF THE REVIEW This study critically summarized the traditional uses, phytochemistry, and pharmacological properties to provide a theoretical basis for further studies on hawthorn and its applications in medicine and food. MATERIALS AND METHODS The available information on hawthorn was gathered from scientific databases (including Google Scholar, Web of Science, PubMed, ScienceDirect, Baidu Scholar, CNKI, online ethnobotanical databases, and ethnobotanical monographs, and considered data from 1952 to 2023). Information about traditional uses, phytochemistry, pharmacology, and safety concerns of the collected data is comprehensively summarized in this paper. RESULTS The literature review revealed that hawthorn includes more than 1000 species primarily distributed in the northern temperate zone. Traditional uses of hawthorn have lasted for millennia in Asia, Europe, and the Americas. Within the past decade, 337 chemical compounds, including flavonoids, lignans, fatty acids and organic acids, monoterpenoids and sesquiterpenoids, terpenoids and steroids, have been identified from hawthorn. Modern pharmacological studies have confirmed numerous bioactivities, such as cardiovascular system influence, antitumor activity, hepatoprotective activity, antimicrobial properties, immunomodulatory functions, and anti-inflammatory activities. Additionally, evaluations have indicated that hawthorn lacks toxicity. CONCLUSIONS Based on its traditional uses, chemical composition, and pharmacological studies, hawthorn has significant potential as a medicinal and edible plant with a diverse range of pharmacological activities. Traditional uses of the hawthorn include the treatment of indigestion, dysmenorrhea, and osteoporosis. However, modern pharmacological research primarily focuses on its cardiovascular and cerebrovascular system effects, antitumor effects, and liver protection properties. Currently, there is a lack of correlative research involving its traditional uses and pharmacological activities. Moreover, phytochemical and pharmacological research has yet to focus on many types of hawthorn with traditional applications. Therefore, it is imperative to research the genus Crataegus extensively.
Collapse
Affiliation(s)
- Meng Cui
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Lei Cheng
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Zhongyu Zhou
- College of Pharmaceutical Science, Dali University, Dali, 671000, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, China
| | - Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Chaohai Li
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali, 671000, China
| | - Min Fan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, 671000, China.
| |
Collapse
|
7
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Li R, Luan F, Zhao Y, Wu M, Lu Y, Tao C, Zhu L, Zhang C, Wan L. Crataegus pinnatifida: A botanical, ethnopharmacological, phytochemical, and pharmacological overview. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115819. [PMID: 36228891 DOI: 10.1016/j.jep.2022.115819] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus pinnatifida belongs to the Rosaceae family and extensively distribute in North China, Europe, and North America. Its usage was first described in "Xinxiu Ben Cao." The dried fruits of Crataegus pinnatifida Bunge or Crataegus pinnatifida var. major N. E. Br., also known as "Shanzha," is a famous medicine and food homology herb with a long history of medicinal usage in China. C. pinnatifida has the functions for digestive promotion, cardiovascular protection, and lipid reduction. It was traditionally used to treat indigestion, cardiodynia, thoracalgia, hernia, postpartum blood stagnation, and hemafecia. In recent years, C. pinnatifida has attracted worldwide attention as an important medicinal and economical crop due to its multiple and excellent health-promoting effects on cardiovascular, nervous, digestive, endocrine systems, and morbigenous microorganisms of the human body due to its medicinal and nutritional values. AIM OF THE REVIEW The current review aims to provide a comprehensive analysis of the geographical distribution, traditional usage, phytochemical components, pharmacological actions, clinical settings, and toxicities of C. pinnatifida. Moreover, the connection between the claimed biological activities and the traditional usage, along with the future perspectives for ongoing research on this plant, were also critically summarized. MATERIALS AND METHODS We collected the published literature on C. pinnatifida using a variety of scientific databases, including Web of Science, ScienceDirect, PubMed, Wiley, Springer, Taylor & Francis, ACS Publications, Google Scholar, Baidu Scholar, CNKI, The Plant List Database, and other literature sources (Ph.D. and MSc dissertations) from 2012 to 2022. RESULTS In the last decade, over 250 phytochemical compounds containing lignans, phenylpropanoids, flavonoids, triterpenoids, and their glycosides, as well as other compounds, have been isolated and characterized from different parts, including the fruit, leaves, and seeds of C. pinnatifida. Among these compounds, flavonoids and triterpenoids were major bioactive components of C. pinnatifida. They exhibited a broad spectrum of pharmacological actions with low toxicity in vitro and in vivo, such as cardiovascular protection, neuroprotection, anti-inflammatory, antioxidant, antibacterial, antiviral, anti-diabetes, anti-cancer, anti-mutagenic, anti-osteoporosis, anti-aging, anti-obesity, and hepatoprotection and other actions. CONCLUSION A long history of traditional uses and abundant pharmacochemical and pharmacological investigations have demonstrated that C. pinnatifida is an important medicine and food homology herb, which displays outstanding therapeutic potential, especially in the digestive system and cardiovascular disease. Nevertheless, the current studies on the active ingredients or crude extracts of C. pinnatifida and the possible mechanism of action are unclear. More evidence-based scientific studies are required to verify the traditional uses of C. pinnatifida. Furthermore, more efforts must be paid to selecting index components for quality control research and toxicity and safety studies of C. pinnatifida.
Collapse
Affiliation(s)
- Ruiyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Mengyao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Yang Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chengtian Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Lv Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Chi Zhang
- Sichuan Engineering Technology Research Centre for Injection of Traditional Chinese Medicines, China Resources Sanjiu (Yaan) Pharmaceutical Co., Ltd., Yaan, Sichuan, 625000, PR China.
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
9
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Zhang SY, Sun XL, Yang XL, Shi PL, Xu LC, Guo QM. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn): a review. J Pharm Pharmacol 2022; 74:1507-1545. [PMID: 36179124 DOI: 10.1093/jpp/rgac050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/18/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Crataegus pinnatifida (C. pinnatifida), including C. pinnatifida Bge. and its variant C. pinnatifida Bge. var. major N, E. Br., has traditionally been used as a homologous plant for traditional medicine and food in ethnic medical systems in China. Crataegus pinnatifida, especially its fruit, has been used for more than 2000 years to treat indigestion, stagnation of meat, hyperlipidemia, blood stasis, heart tingling, sores, etc. This review aimed to provide a systematic summary on the botany, traditional uses, phytochemistry, pharmacology and clinical applications of C. pinnatifida. KEY FINDINGS This plant contains flavonoids, phenylpropanoids, terpenoids, organic acids, saccharides and essential oils. Experimental studies showed that it has hypolipidemic, antimyocardial, anti-ischemia, antithrombotic, anti-atherosclerotic, anti-inflammatory, antineoplastic neuroprotective activity, etc. Importantly, it has good effects in treating diseases of the digestive system and cardiovascular and cerebrovascular systems. SUMMARY There is convincing evidence from both in vitro and in vivo studies supporting the traditional uses of C. pinnatifida. However, multitarget network pharmacology and molecular docking technology should be used to study the interaction between the active ingredients and targets of C. pinnatifida. Furthermore, exploring the synergy of C. pinnatifida with other Chinese medicines to provide new understanding of complex diseases may be a promising strategy.
Collapse
Affiliation(s)
- Shi-Yao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Lei Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing-Liang Yang
- School of Classics, Beijing University of Chinese Medicine, Beijing, China
| | - Peng-Liang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ling-Chuan Xu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing-Mei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Lin YT, Lin HR, Yang CS, Liaw CC, Sung PJ, Kuo YH, Cheng MJ, Chen JJ. Antioxidant and Anti-α-Glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Fruits of Crataegus pinnatifida. Antioxidants (Basel) 2022; 11:antiox11020320. [PMID: 35204203 PMCID: PMC8868160 DOI: 10.3390/antiox11020320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Crataegus pinnatifida is used to treat various diseases, including indigestion, congestive heart failure, hypertension, atherosclerosis, and myocardial dysfunction. We evaluated antioxidant and anti-α-glucosidase activities of various solvent extracts and major bioactive components from the fruit of C. pinnatifida. Ethyl acetate extracts showed potent antioxidant activities with IC50 values of 23.26 ± 1.97 and 50.73 ± 8.03 μg/mL, respectively, in DPPH and ABTS radical scavenging assays. Acetone extract exhibited significant anti-α-glucosidase activity with IC50 values of 42.35 ± 2.48 μg/mL. HPLC analysis was used to examine and compare the content of active components in various solvent extracts. We isolated four active compounds and evaluated their antioxidant and anti-α-glucosidase properties. Among the isolated compounds, chlorogenic acid and hyperoside showed potential antioxidant activities in ABTS and superoxide radical scavenging assays. Moreover, hyperoside also displayed stronger anti-α-glucosidase activity than other isolates. The molecular docking model and the hydrophilic interactive mode of anti-α-glucosidase assay revealed that hyperoside might have a higher antagonistic effect than positive control acarbose. The present study suggests that C. pinnatifida and its active extracts and components are worth further investigation and might be expectantly developed as the candidates for the treatment or prevention of oxidative stress-related diseases and hyperglycemia.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.L.); (C.-S.Y.)
| | - Hsiang-Ru Lin
- Department of Chemistry, College of Science, National Kaohsiung Normal University, Kaohsiung 824, Taiwan;
| | - Chang-Syun Yang
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.L.); (C.-S.Y.)
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Ping-Jyun Sung
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan;
| | - Yueh-Hsiung Kuo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu 300, Taiwan
- Correspondence: (M.-J.C.); (J.-J.C.); Tel.: +886-2-2826-7195 (J.-J.C.); Fax: +886-2-2823-2940 (J.-J.C.)
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-T.L.); (C.-S.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan;
- Correspondence: (M.-J.C.); (J.-J.C.); Tel.: +886-2-2826-7195 (J.-J.C.); Fax: +886-2-2823-2940 (J.-J.C.)
| |
Collapse
|
12
|
Li Y, Zhu L, Guo C, Xue M, Xia F, Wang Y, Jia D, Li L, Gao Y, Shi Y, He Y, Yuan C. Dietary Intake of Hydrolyzable Tannins and Condensed Tannins to Regulate Lipid Metabolism. Mini Rev Med Chem 2021; 22:1789-1802. [PMID: 34967286 DOI: 10.2174/1389557522666211229112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder is a multifactor issue, which contributes to several serious health consequences, such as obesity, hyperlipidemia, atherosclerosis diabetes, non-alcoholic fatty liver etc. Tannins, applied as natural derived plant, are commonly used in the study of lipid metabolism disease with excellent safety and effectiveness, while producing less toxic and side effects. Meanwhile, recognition of the significance of dietary tannins in lipid metabolism disease prevention has increased. As suggested by existing evidence, dietary tannins can reduce lipid accumulation, block adipocyte differentiation, enhance antioxidant capacity, increase the content of short-chain fatty acids, and lower blood lipid levels, thus alleviating lipid metabolism disorder. This study is purposed to sum up and analyze plenty of documents on tannins, so as to provide the information required to assess the lipid metabolism of tannins.
Collapse
Affiliation(s)
- Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yuming He
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
13
|
Ultrahigh-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for separation and identification of hawthorn fruits by multivariate analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
15
|
Su K, Chen B, Tu X, Ye L, Lu X, Yu Z, Wang X, Yang X. Metabolic Changes in Hyperlipidemic Rats After The Administration of Xuezhikang. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200416132311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Xuezhikang capsule, which contains cholesterol synthase inhibitors and a
large number of natural statins, is put in the clinical application of lipid-lowering and so on.
However, the specific use of dose, lipid-lowering effect and the relationship between metabolites
are to be further studied.
Introduction:
Metabonomics is the study of the relationship between the change of quantity and
physiological changes from metabolites. At present metabolomics has been widely used in drug
development and testing. In this study, we developed a metabolomic method based on gas
chromatography-mass spectrometry (GC-MS) to find out hyperlipemia-related substances, and
study the lipid-lowering mechanism of Xuezhikang.
Method:
Fifty SD rats (220 ± 20 g) were given high-fat diet. After four-weeks modeling, they
were randomly divided into semi-control group, high fat group, simvastatin intervention group and
Xuezhikang intervention group (0.23, 0.69, 1.15 mg/kg, low, medium, high), each dosage in eight
rats. The control group (rest eight rats) were given normal diet, and no specific treatment. The rats
were sacrificed at the end of the experiment.
Result:
The biochemical and body weight indexes of the normal control group and the high fat
group were significantly different (P <0.05), which indicated that the model of hyperlipidemia was
established success. There was significant difference (P <0.05) between Xuezhikang intervention
group and high fat control group (P <0.05), and hyperlipemia metabolomics related markers,
oxalic acid, butyric acid, mannitol, glucose, glucuronic acid were found. Glucuronic acid and
non-binding bilirubin combined with bilirubin, combined with some of the liver harmful
substances, play a detoxification effect.
Conclusion:
The results of metabonomics showed that the high-fat group and the control group have
significant differences. Mannose, glucose content is relatively stable, lipid metabolism in high-fat
group stearic acid, palmitic acid levels decreased, suggesting that high-fat diet disorders rat body lipid
metabolism. It is worth mentioning that the experimental evaluation of rats, such as biochemical indicators
and pathological results are prompted to model success, Xuezhikang intervention effect is more
significant, consistent with the expected.
Conclusion:
The results of metabonomics showed that the high fat group and the control group
were significant difference. Mannose, glucose content is relatively stable, lipid metabolism in
high-fat group stearic acid, palmitic acid levels decreased, suggesting that high-fat diet disorders
rat body lipid metabolism. It is worth mentioning that the experimental evaluation of rats such as
biochemical indicators and pathological results are prompted to model success, Xuezhikang
intervention effect is more significant, consistent with the expected.
Collapse
Affiliation(s)
- Ke Su
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Bingbao Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Xiaoting Tu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Luxin Ye
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Xiaojie Lu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Zheng Yu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035,China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000,China
| | - Xuezhi Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000,China
| |
Collapse
|
16
|
Yang H, Tuo X, Wang L, Tundis R, Portillo MP, Simal-Gandara J, Yu Y, Zou L, Xiao J, Deng J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci Technol 2021; 111:114-127. [DOI: 10.1016/j.tifs.2021.02.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Xue Q, Wang Y, Fei C, Ren C, Li W, Li W, Yin F, Li L. Profiling and analysis of multiple constituents in Crataegi Fructus before and after processing by ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9033. [PMID: 33368723 DOI: 10.1002/rcm.9033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE Crataegi Fructus (CF) is one of the most commonly used herbal medicines with a long history of clinical applications. CF is often processed to minimize gastric membrane irritation, although differently processed products can have different biological effects. The purpose of this study was to comprehensively identify the chemical composition of CF, determine the changes caused by processing, and elucidate the active constituents causing the clinical effects. This study aimed to define a theoretical basis for intensive mechanistic studies of CF processing and its reasonable clinical applications. METHODS An optimized ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC/QqTOFMS) method in positive and negative ion modes, coupled with multivariate statistical analyses, was developed for the identification and analysis of chemical components in raw and processed products of CF. RESULTS A total of 87 compounds were identified, including 61 marker compounds that were found to be primary contributors to the significant differences (p < 0.01) between raw and processed products using principal component analysis, t-test, and Venn analysis. The conversion mechanism for a subset of the changed compounds was inferred by analyzing 25 unique differential components between the raw and processed CF. CONCLUSIONS A rapid and efficient analytical method for identifying the chemical components in CF before and after processing was successfully established. We show how the changes in the chemical constituents in processed CF could be investigated using multivariate statistical analysis methods, and thus facilitate understanding of the processing mechanism of CF.
Collapse
Affiliation(s)
- Qianqian Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenchen Ren
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Key Research Laboratory of Chinese Medicine Processing of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Liu YG, Yan JL, Ji YQ, Nie WJ, Jiang Y. Black mulberry ethanol extract attenuates atherosclerosis-related inflammatory factors and downregulates PPARγ and CD36 genes in experimental atherosclerotic rats. Food Funct 2021; 11:2997-3005. [PMID: 32236255 DOI: 10.1039/c9fo02736j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atherosclerosis (AS) is the pathological basis of various vascular diseases and currently is seriously affecting human health. Numerous studies have paid more attention to natural medicines with anti-AS properties. As a traditional Uygur folk medicine, black mulberry fruits are conventionally used in the prevention and treatment of cardiovascular diseases in southern Xinjiang of China, and their underlying mechanisms remain unknown. Our previous study revealed that the ethanol extract of black mulberry (EEBM) inhibited AS development by improving lipid metabolism abnormalities, enhancing anti-oxidative activities, and reducing atherosclerotic lesions of atherosclerotic rats. Based on this, our objective was to further investigate the effects of EEBM on the expression of AS-related inflammatory factors and the key genes PPARγ and CD36 of the ox-LDL-PPARγ-CD36 feed-forward cycle in experimental atherosclerotic rats. Black mulberry fruits were extracted with acid ethanol and chromatographed on an AB-8 macroporous resin to obtain EEBM. All experimental rats were randomly divided into five groups: normal, model, model plus simvastatin (5 mg/kg d·body weight), and model plus low-dose and high-dose EEBM groups (105 and 210 mg/kg d·body weight, respectively). Serum levels of the inflammatory factors were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expression of PPARγ and CD36 in atherosclerotic rats' liver tissue and thoracic aorta were determined by Q-PCR and western blot analysis, respectively. EEBM at high dose effectively attenuated the abnormally expressed AS-related inflammatory factors of TNF-α, IL-6, MMP-9, and CRP in atherosclerotic rats by 41.5%, 66.1%, 77.5%, and 79.5%, respectively. After treatment with high dose EEBM, the elevated-expressions of PPARγ and CD36 at the mRNA and protein levels in atherosclerotic rats were found to be obviously downregulated at both levels. These results demonstrate that EEBM might lessen the AS-related inflammatory reaction, and then inhibit the formation of ox-LDL, consequently downregulating the expression of PPARγ and CD36 at the mRNA and protein levels, thus reducing macrophage-foam-cell formation and prohibiting the development of atherosclerotic plaque through the ox-LDL-PPARγ-CD36 feed-forward cycle, which can effectively prevent the occurrence and development of AS in atherosclerotic rats.
Collapse
Affiliation(s)
- Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi 276005, China
| | - Jia-Li Yan
- Department of Laboratory Medicine, Chengdu Medical College, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu, 610500, China.
| | - Yan-Qing Ji
- College of Life Sciences, Linyi University, Linyi 276005, China
| | - Wen-Jing Nie
- Changji Vocational and Technical College, Changji, 831100, Xinjiang, China
| | - Yan Jiang
- Department of Laboratory Medicine, Chengdu Medical College, Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu, 610500, China.
| |
Collapse
|
19
|
Zhang J, Chen Z, Zhang L, Zhao X, Liu Z, Zhou W. A systems-based analysis to explore the multiple mechanisms of Shan Zha for treating human diseases. Food Funct 2021; 12:1176-1191. [PMID: 33432314 DOI: 10.1039/d0fo02433c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Shan Zha has garnered increasing attention in the field of functional foods and medicines due to its widely reported healing effects. However, the potential mechanisms of Shan Zha for human health benefits have not been fully interpreted. Therefore, in the current study, a systems-based method that integrates ADME evaluation, target fishing, gene ontology enrichment analysis, network pharmacology, and pathway analysis is proposed to clarify the underlying pharmacological mechanisms of Shan Zha. As a result, 45 active components of Shan Zha that interacted with 161 protein targets were screened and identified. Moreover, gene ontology enrichment, network and pathway analysis indicated that Shan Zha is beneficial for the treatment of cardiovascular system diseases, digestive system diseases, immune system diseases, inflammatory diseases, cancer, and other diseases through multiple mechanisms. Our study not only proposed an integrated method to comprehensively elucidate the complicated mechanisms of Shan Zha for the treatment of various disorders at the system level, but also provided a reference approach for the mechanistic research of other functional foods.
Collapse
Affiliation(s)
- Jingxiao Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region
| | - Lilei Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Xiaoxiao Zhao
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China.
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| | - Wei Zhou
- School of Food and Drug, Luoyang Normal University, Luoyang 471934, China. and State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Fei C, Ren C, Wang Y, Li L, Li W, Yin F, Lu T, Yin W. Identification of the raw and processed Crataegi Fructus based on the electronic nose coupled with chemometric methods. Sci Rep 2021; 11:1849. [PMID: 33473146 PMCID: PMC7817683 DOI: 10.1038/s41598-020-79717-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Crataegi Fructus (CF) is widely used as a medicinal and edible material around the world. Currently, different types of processed CF products are commonly found in the market. Quality evaluation of them mainly relies on chemical content determination, which is time and money consuming. To rapidly and nondestructively discriminate different types of processed CF products, an electronic nose coupled with chemometrics was developed. The odour detection method of CF was first established by single-factor investigation. Then, the sensor array was optimised by a stepwise discriminant analysis (SDA) and analysis of variance (ANOVA). Based on the best-optimised sensor array, the digital and mode standard were established, realizing the odour quality control of samples. Meanwhile, mathematical prediction models including the discriminant formula and back-propagation neural network (BPNN) model exhibited good evaluation with a high accuracy rate. These results suggest that the developed electronic nose system could be an alternative way for evaluating the odour of different types of processed CF products.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenchen Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
21
|
He Z, Kwek E, Hao W, Zhu H, Liu J, Ma KY, Chen ZY. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab (Lond) 2021; 18:6. [PMID: 33413490 PMCID: PMC7789617 DOI: 10.1186/s12986-020-00535-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Trimethylamine-N-oxide (TMAO) is an independent risk factor for atherosclerosis. Consumption of hawthorn fruit is believed to be cardio-protective, yet whether it is able to suppress the TMAO-induced atherosclerosis remains unexplored. The present study was to investigate the effects of hawthorn fruit extract (HFE) on TMAO-exacerbated atherogenesis.
Methods Five groups of male Apolipoprotein E knock-out (ApoE−/−) mice were fed a low-fat diet (LFD), a Western high-fat diet (WD), or one of the three WDs containing 0.2% TMAO (WD + TMAO), 0.2% TMAO plus 1% HFE (WD + TMAO + L-HFE), or 0.2% TMAO plus 2% HFE (WD + TMAO + H-HFE), respectively. After 12-weeks of intervention, plasma levels of TMAO, lipid profile, inflammatory biomarkers, and antioxidant enzyme activities were measured. Atherosclerotic lesions in the thoracic aorta and aortic sinus were evaluated. The sterols and fatty acids in the liver and feces were extracted and measured. Hepatic expressions of inflammatory biomarkers and antioxidant enzymes were analyzed. Results Dietary TMAO accelerated atherogenesis, exacerbated inflammation, and reduced antioxidant capacities in the plasma and the liver. TMAO promoted hepatic cholesterol accumulation by inhibiting fecal excretion of acidic sterols. HFE could dose-dependently reduce the TMAO-aggravated atherosclerosis and inflammation. HFE was also able to reverse the TMAO-induced reduction in antioxidant capacity by up-regulating the expression of antioxidant enzymes including superoxide dismutase 1 (SOD1), SOD2, glutathione peroxidase 3 (GSH-Px3), and catalase (CAT) in the liver. Moreover, the hepatic cholesterol content was lowered by HFE via enhanced fecal excretion of neutral and acidic sterols. Conclusions The present results indicated that HFE was able to reduce the TMAO-exacerbated atherogenesis by attenuating inflammation and improving antioxidant capacity at least in mice. Graphic abstract ![]()
Collapse
Affiliation(s)
- Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
22
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
23
|
Abstract
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Collapse
|
24
|
Bujor A, Miron A, Luca SV, Skalicka-Wozniak K, Silion M, Trifan A, Girard C, Demougeot C, Totoson P. Vasorelaxant effects of Crataegus pentagyna: Links with arginase inhibition and phenolic profile. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112559. [PMID: 31935497 DOI: 10.1016/j.jep.2020.112559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crataegus leaves, flowers and fruits have been traditionally used to improve blood circulation, numerous preclinical and clinical studies supporting the cardiovascular benefits of Crataegus preparations. In this respect, there is very limited data on Crataegus pentagyna; in addition, the chemical profile of this species is still incompletely elucidated. AIM OF THE STUDY The objective of this study was to examine the cardiovascular benefits of Crataegus pentagyna Waldst. et Kit. ex Willd. (small-flowered black hawthorn, Rosaceae) extracts (leaf, flower and fruit ethyl acetate extracts) and the underlying mechanisms. We hypothesized that C. pentagyna extracts might exert vasodilatory effects and inhibit arginase activity due, in large part, to their polyphenolic constituents. MATERIALS AND METHODS C. pentagyna extracts induced-relaxation and the mechanisms involved were studied ex vivo in isolated aortic rings from Sprague-Dawley rats. The inhibitory effects on bovine liver arginase I were assessed by an in vitro assay. Metabolite profiling of C. pentagyna extracts was performed and the most endothelium- and nitric oxide synthase-dependent; flower extract additionally reduced Ca2+ entry and, to a lesser extent, Ca2+ release from the sarcoplasmic reticulum. C. pentagyna proved to be an important source of arginase inhibitors with potential benefits in endothelial dysfunction that remains to be explored.
Collapse
Affiliation(s)
- Alexandra Bujor
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Anca Miron
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Simon Vlad Luca
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania; Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Krystyna Skalicka-Wozniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Mihaela Silion
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Adriana Trifan
- Department of Pharmacognosy, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115, Iasi, Romania.
| | - Corine Girard
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Céline Demougeot
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| | - Perle Totoson
- PEPITE EA 4267, FHU INCREASE, University Bourgogne Franche-Comté, 19 rue Ambroise Paré, F-25030, Besançon, France.
| |
Collapse
|
25
|
Ferenczyova K, Kalocayova B, Bartekova M. Potential Implications of Quercetin and its Derivatives in Cardioprotection. Int J Mol Sci 2020; 21:E1585. [PMID: 32111033 PMCID: PMC7084176 DOI: 10.3390/ijms21051585] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system. However, clinical implications of QCT and its derivatives are still rare. In the current paper we provide a complex picture of the most recent knowledge on the effects of QCT and its derivatives in different types of cardiac injury, mainly in ischemia-reperfusion (I/R) injury of the heart, but also in other pathologies such as anthracycline-induced cardiotoxicity or oxidative stress-induced cardiac injury, documented in in vitro and ex vivo, as well as in in vivo experimental models of cardiac injury. Moreover, we focus on cardiac effects of QCT in presence of metabolic comorbidities in addition to cardiovascular disease (CVD). Finally, we provide a short summary of clinical studies focused on cardiac effects of QCT. In general, it seems that QCT and its metabolites exert strong cardioprotective effects in a wide range of experimental models of cardiac injury, likely via their antioxidant, anti-inflammatory and molecular pathways-modulating properties; however, ageing and presence of lifestyle-related comorbidities may confound their beneficial effects in heart disease. On the other hand, due to very limited number of clinical trials focused on cardiac effects of QCT and its derivatives, clinical data are inconclusive. Thus, additional well-designed human studies including a high enough number of patients testing different concentrations of QCT are needed to reveal real therapeutic potential of QCT in CVD. Finally, several negative or controversial effects of QCT in the heart have been reported, and this should be also taken into consideration in QCT-based approaches aimed to treat CVD in humans.
Collapse
Affiliation(s)
- Kristina Ferenczyova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Barbora Kalocayova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (K.F.); (B.K.)
- Institute of Physiology, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
26
|
Wu M, Liu L, Xing Y, Yang S, Li H, Cao Y. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review. Front Pharmacol 2020; 11:118. [PMID: 32153414 PMCID: PMC7047282 DOI: 10.3389/fphar.2020.00118] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), especially atherosclerosis, is a leading cause of morbidity and mortality globally; it causes a considerable burden on families and caregivers and results in significant financial costs being incurred. Hawthorn has an extensive history of medical use in many countries. In China, the use of hawthorn for the treatment of CVD dates to 659 AD. In addition, according to the theory of traditional Chinese medicine, it acts on tonifying the spleen to promote digestion and activate blood circulation to dissipate blood stasis. This review revealed that the hawthorn extracts possess serum lipid-lowering, anti-oxidative, and cardiovascular protective properties, thus gaining popularity, especially for its anti-atherosclerotic effects. We summarize the four principal mechanisms, including blood lipid-lowering, anti-oxidative, anti-inflammatory, and vascular endothelial protection, thus providing a theoretical basis for further utilization of hawthorn.
Collapse
Affiliation(s)
- Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Liu F, Zhang X, Ji Y. Total Flavonoid Extract from Hawthorn (Crataegus pinnatifida) Improves Inflammatory Cytokines-Evoked Epithelial Barrier Deficit. Med Sci Monit 2020; 26:e920170. [PMID: 32065826 PMCID: PMC7041422 DOI: 10.12659/msm.920170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Intestinal epithelial barrier dysfunction is involved in the development and pathogenesis of intestinal diseases, such as irritable bowel syndrome, inflammatory bowel disease, and celiac disease. This study was performed to evaluate the ability of total flavonoid extract from hawthorn (TFH) to improve TNF-α-evoked intestinal epithelial barrier deficit. Material/Methods Caco-2 cells monolayers were exposed to TNF-α in different concentrations of TFH. Intestinal epithelial barrier function was evaluated using epithelial permeability and transepithelial electrical resistance (TER). Results Our findings showed that TFH alleviated the increase of paracellular permeability and the decline of transepithelial electrical resistance (TER) evoked by TNF-α. Additionally, 24-h pre-incubation with TFH inhibited TNF-α-evoked secretion of pro-inflammatory factors (IL-6, IL-8, MCP-1, and IL-1β). Furthermore, TFH inhibited TNF-α-evoked overexpression of pMLC and MLCK and alleviated breakdown of TJs protein (ZO-1 and occludin). The activations of Elk-1 and NFκBp65 were inhibited by TFH pre-incubation. Conclusions TFH can alleviate TNF-α-evoked intestinal epithelial barrier deficit via the NFκBp65-mediated MLCK-MLC signaling pathway.
Collapse
Affiliation(s)
- Feng Liu
- Department of General Anorectal Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| | - Xuesong Zhang
- Central Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China (mainland)
| |
Collapse
|
28
|
The Spectrum–Effect Relationship Between HPLC Fingerprint and the Invigorating Blood and Dissolving Stasis Effect of Hawthorn Leaves. Chromatographia 2020. [DOI: 10.1007/s10337-020-03861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Hou X, Lin H, Zhou X, Cheng Z, Li Y, Liu X, Zhao F, Zhu Y, Zhang P, Chen D. Novel dual ROS-sensitive and CD44 receptor targeting nanomicelles based on oligomeric hyaluronic acid for the efficient therapy of atherosclerosis. Carbohydr Polym 2019; 232:115787. [PMID: 31952595 DOI: 10.1016/j.carbpol.2019.115787] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Although the clinical usage of drugs administration was raising, the application of nanoparticles encapsulating the hydrophobic drugs with plummy efficiency was very scarce for atherosclerosis (AS) treatment. In this work, a novel dual ROS-sensitive and CD44 receptors targeting amphiphilic carrier material, oligomeric hyaluronic acid-2'-[propane-2,2-diyllbls (thio)] diacetic acl-hydroxymethylferrocene (oHA-TKL-Fc), named HASF, was synthesized and characterized by 1H-NMR spectra. Then, we combined curcumin (Cur) with HASF into nano-micelles (HASF@Cur micelles) by self-assembling method. The resulting HASF@Cur micelles had the average size of 150.8 nm and zeta potential of -35.04 mV to maintain the will-defined spheroidal structure and stability. Importantly, the HASF@Cur micelles had ultrahigh entrapment efficiency (about 51.41 %). Moreover, in vitro release study, Cur release from HASF@Cur micelles was effective in the reactive oxygen species (ROS) condition, and the release rate was interrelated with the concentration of hydrogen peroxide (H2O2). Further, fluorescence imaging showed that the HASF@Cur micelles could more selective access to Raw 264.7 cells than free Cur via oHA-receptor mediated endocytosis. The MTT assay attested the safety of amphiphilic carrier material HASF. Additionally, the results of in vivo Oil red O lipid staining studies showed that the lesion area of the aorta was reduced to 47.3±3.4 % with HASF@Cur micelles, compared with the lesion area of Cur group (63.2±2.7 %), HASF@Cur micelles had the more remarkable effect in reducing lesion area (*P < 0.05). Consequently, the novel dual ROS-sensitive and CD44 receptors targeting drug delivery system would become a promising strategy for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoya Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hua Lin
- Medical Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Xiudi Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China; Binzhou People's Hospital, Binzhou, Shandong, 256600, PR China
| | - Ziting Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yi Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Xue Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
30
|
Optimizing Water-Based Extraction of Bioactive Principles of Hawthorn: From Experimental Laboratory Research to Homemade Preparations. Molecules 2019; 24:molecules24234420. [PMID: 31816956 PMCID: PMC6930565 DOI: 10.3390/molecules24234420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hawthorn (Crataegus) is used for its cardiotonic, hypotensive, vasodilative, sedative, antiatherosclerotic, and antihyperlipidemic properties. One of the main goals of this work was to find a well-defined optimized extraction protocol usable by each of us that would lead to repeatable, controlled, and quantified daily uptake of active components from hawthorn at a drinkable temperature (below 60 °C). A thorough investigation of the extraction mode in water (infusion, maceration, percolation, ultrasounds, microwaves) on the yield of extraction and the amount of phenolic compounds, flavonoids, and proanthocyanidin oligomers as well as on the Ultra High Performance Liquid Chromatography (UHPLC) profiles of the extracted compounds was carried out. High-resolution Fourier transform ion cyclotron resonance mass spectrometry was also implemented to discriminate the different samples and conditions of extraction. The quantitative and qualitative aspects of the extraction as well as the kinetics of extraction were studied, not only according to the part (flowers or leaves), the state (fresh or dried), and the granulometry of the dry plant, but also the stirring speed, the temperature, the extraction time, the volume of the container (cup, mug or bowl) and the use of infusion bags.
Collapse
|
31
|
Wu H, Gao T, Cao Y, Diao J, Chang F, Qi J, Wang C. Protective and therapeutic effects of Trianthema portulacastrum against atherosclerosis in male albino rats via G-protein-coupled receptor 124. AMB Express 2019; 9:178. [PMID: 31673813 PMCID: PMC6823334 DOI: 10.1186/s13568-019-0901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a severe cardiovascular disease characterized by narrowing of the lumen, plaque formation, and blood flow turbulence as a result of cholesterol and lipid accumulation in the inner lining of arteries. Bishkhapra (Trianthema portulacastrum Linn.) is a well-known common weed belonging to the family Aizoaceae. Several bioactive compounds have been isolated from this weed and widely used against several diseases. The present study evaluated the protective and therapeutic efficacies of T. portulacastrum against atherosclerosis in a rat model. The animals were divided into the sham, control (diabetes- + atherosclerosis-inducing diet), 100 mg/kg T. portulacastrum treatment, 200 mg/kg T. portulacastrum treatment, and positive control groups. Blood glucose, cholesterol, triglyceride, and other lipid parameters, as well as the expression of G-protein-coupled receptor 124 (GPR124), were measured. Glucose, cholesterol, and triglycerides were significantly reduced to near normal levels. The serum levels of fibrinogen, sVCAM-1, and oxidized low density lipoproteins were substantially increased in control rats. Treatment with the T. portulacastrum extract reversed these levels to near normal levels. The mRNA expression of GPR124 was increased by 150% in the control group. However, treatment with T. portulacastrum extract decreased the mRNA expression up to 40% compared with the control group. Rats treated with 100 and 200 mg/kg T. portulacastrum extract showed a decrease in GPR124 protein expression by 9.5% and 33.3%, respectively. Taken together, the results suggest that an extract of T. portulacastrum is effective against atherosclerosis in streptozotocin-induced diabetic rats.
Collapse
|
32
|
Lee J, Cho E, Kwon H, Jeon J, Jung CJ, Moon M, Jun M, Lee YC, Kim DH, Jung JW. The fruit of Crataegus pinnatifida ameliorates memory deficits in β-amyloid protein-induced Alzheimer's disease mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112107. [PMID: 31349027 DOI: 10.1016/j.jep.2019.112107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Crataegus pinnatifida is a traditional medicine widely used as digestive drug in East Asia. Although Chinese herbal medicine used it for mental health, scientific evidence does not exist, yet. AIMS OF STUDY The aim of this study is to show that the ethanol extract of the fruit of Crataegus pinnatifida (CPE) has neuroprotective effect on Alzheimer' disease model mice. MATERIALS AND METHODS Intracerebroventricular injection of Aβ was used to induce Alzheimer's disease-like pathology. Passive avoidance and Y-maze tasks were used to examine the effect of CPE on memory impairments by Aβ. Immunohistochemistry was used to examine the effect of CPE on glial activation. ThT assay was used to observe the effect of CPE on Aβ aggregation. MTT and LDH release assays were utilized to examine effects of CPE on Aβ-induced cytotoxicity. RESULTS CPE prevented memory deficit in Aβ-induced memory impairment model. Moreover, CPE prevented glial activation in the hippocampus of Aβ-injected model. In in vitro test, CPE inhibited Aβ fibril formation in a concentration-dependent manner. CPE also caused disaggregation of Aβ fibrils. Along with this, CPE blocked neuronal cell death induced by Aβ. CONCLUSIONS Collectively, these experimental findings demonstrated that CPE could be a candidate for development of AD therapy.
Collapse
Affiliation(s)
- Jihye Lee
- Division of Endocrinology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Eunbi Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| | - Huiyoung Kwon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| | - Jieun Jeon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| | - Chul Jong Jung
- Okchundang Corporation, 142 Yulam-ro, Dong-gu, Dae-gu, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, South Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan, 49315, South Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea.
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea; Institute of Convergence Bio-Health, Dong-A University, Busan, 49315, Republic of Korea.
| | - Ji Wook Jung
- Division of Bio-technology and Convergence, College of Bio-industry, Daegu Haany University, Kyungsan, 38578, Republic of Korea.
| |
Collapse
|
33
|
Ho C, Gao Y, Zheng D, Liu Y, Shan S, Fang B, Zhao Y, Song D, Zhang Y, Li Q. Alisol A attenuates high-fat-diet-induced obesity and metabolic disorders via the AMPK/ACC/SREBP-1c pathway. J Cell Mol Med 2019; 23:5108-5118. [PMID: 31144451 PMCID: PMC6653754 DOI: 10.1111/jcmm.14380] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 04/22/2019] [Indexed: 01/09/2023] Open
Abstract
Obesity and its associated metabolic disorders such as diabetes, hepatic steatosis and chronic heart diseases are affecting billions of individuals. However there is no satisfactory drug to treat such diseases. In this study, we found that alisol A, a major active triterpene isolated from the Chinese traditional medicine Rhizoma Alismatis, could significantly attenuate high-fat-diet-induced obesity. Our biochemical detection demonstrated that alisol A remarkably decreased lipid levels, alleviated glucose metabolism disorders and insulin resistance in high-fat-diet-induced obese mice. We also found that alisol A reduced hepatic steatosis and improved liver function in the obese mice model.In addition, protein expression investigation revealed that alisol A had an active effect on AMPK/ACC/SREBP-1c pathway. As suggested by the molecular docking study, such bioactivity of alisol A may result from its selective binding to the catalytic region of AMPK.Therefore, we believe that Alisol A could serve as a promising agent for treatment of obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Chiakang Ho
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ya Gao
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danning Zheng
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanjun Liu
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shengzhou Shan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Fang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Zhao
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dingzhong Song
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering Research CenterShanghaiChina
| | - Yifan Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingfeng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
34
|
Hu C, Zhang Y, Liu G, Liu Y, Wang J, Sun B. Untargeted Metabolite Profiling of Adipose Tissue in Hyperlipidemia Rats Exposed to Hawthorn Ethanol Extracts. J Food Sci 2019; 84:717-725. [PMID: 30977920 DOI: 10.1111/1750-3841.14491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 02/07/2019] [Indexed: 12/13/2022]
Abstract
The study aimed to explore the metabolic changes of adipose tissue of hyperlipidemia rats with hawthorn ethanol extracts (HEE) consumption by a high-throughput metabolomics approach. HEE were mainly composed of chlorogenic acid, hyperoside, isoquercitrin, rutin, vitexin, quercetin, and apigenin by HPLC analysis. HEE administration significantly lowered levels of the total cholesterols, triglyceride and low-density lipoprotein cholesterol as compared to the high-fat diet model. Gas chromatography-mass spectrometry was used to identify adipose metabolite profiles. Numerous endogenous molecules were altered by high-fat diet and restored following intervention of HEE. Metabolites elevated in adipose, including l-threonine, aspartic acid, glutamine, mannose, inositol and oleic acid, were detected after HEE consumption. Fifteen metabolites were identified as potential biomarkers of hyperlipidemia. Pathway analysis showed that most of the discriminant metabolites were included in fatty acid biosynthesis, galactose metabolism, biosynthesis of unsaturated fatty acids, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, glycerolipid metabolism and steroid biosynthesis. These metabolites and metabolic networks we found offer new insights into exploring the molecular mechanisms of lipid-lowering of hawthorn ethanol extracts on adipose tissue of rats. PRACTICAL APPLICATION: There was a very high proportion of hyperlipidemia in China. Hawthorn is attracting increasing attention owing to their health benefits, low toxicity, effectiveness and might be suitable for long-term use.
Collapse
Affiliation(s)
- Chuanqin Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Guorong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), 11Fucheng Road, Beijing, 100048, China.,Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ. (BTBU), Beijing.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
35
|
Coto E, Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Sierra M. Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model. Molecules 2019; 24:molecules24112049. [PMID: 31146427 PMCID: PMC6600331 DOI: 10.3390/molecules24112049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023] Open
Abstract
Many publications have described the potential cardioprotective action of different medicinal plants, relating this effect with blood lipid levels. However, these publications do not justify the right amount of plant administered, which can vary greatly. Sideritis hyssopifolia is a little woody plant endemic to western and southwestern Europe. We have quantified its antioxidant activity, which can be used as an indicator of its cardioprotective action. This study evaluates the antioxidant capacity of Sideritis hyssopifolia to design a feed whose hypolipidemic effects are proven in cholesterol-fed New Zealand rabbits. Antioxidant action was assessed in infusions, which were prepared with 1 or 3 g of plant in 200 mL of water by using an ABTS assay and expressed as Ascorbic acid Equivalent Antioxidant Capacity (AEAC). Aqueous infusions with infusion times of 10 min and prepared with 3 g plant exhibited the strongest antioxidant activity. Sideritis hyssopifolia showed an intermediate antioxidant capacity for the concentrations and times of the infusion tested. According to our results, we suggest incorporating 2.36 g of S. hyssopifolia every 150 g of rabbit feeding stuff (15.73 g/kg). This chow decreased cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides levels in cholesterol-fed rabbits, as well as the atherogenic index. This reduction was similar to that obtained with simvastatin.
Collapse
Affiliation(s)
- Esther Coto
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| | - Nelida Fernandez
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| | - Juan Jose Garcia
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| | - M Jose Diez
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| | - Ana Maria Sahagun
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| | - Matilde Sierra
- Pharmacology, Institute of Biomedicine (IBIOMED), University of Leon, 24071 Leon, Spain.
| |
Collapse
|
36
|
Zhang J, Liang R, Wang L, Yang B. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:104-114. [PMID: 30312741 DOI: 10.1016/j.jep.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The danshen (the root of Salvia miltiorrhiza Bge.)-shanzha (the fruit of Crataegus pinnatifida Bge. var. major N.E.Br.) (DS) herb combination is a commonly used traditional Chinese medicine with cardiovascular disease (CVD) treatment potential. MATERIALS AND METHODS In this study, we investigated the anti-atherosclerotic effects and mechanisms of DS by the integration of network pharmacology and polypharmacology. Eight main components were selected for target fishing by PharmMapper. RESULTS The network pharmacological study indicated that DS may target 41 proteins and 16 pathways associated with inflammation, lipid metabolism and endothelial protection, which indicates that DS probably adjusts these processes as part of its anti-atherosclerotic activities. Furthermore, this hypothesis was verified by polypharmacology using an atherosclerotic model. Histopathological examination showed that DS inhibited pathological changes in the arteries of atherosclerotic rats and reduced the intima-media thickness (IMT). DS significantly reduced the levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) and increased the high-density lipoprotein-cholesterol (HDL-C) level in the blood. DS also decreased the concentrations of interleukin (IL)-1β and IL-18, indicating anti-inflammation activity. In addition, DS increased the serum levels of nitric oxide (NO) and 6-keto-prostaglandin F1α (6-keto-PGF1α) and decreased the serum levels of endothelin (ET) and thromboxane B2 (TXB2), indicating an endothelial protective effect. CONCLUSIONS In conclusion, DS has an anti-atherosclerotic ability to lower lipid concentrations and to protect endothelial function, and it also has anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianyong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, Dong X. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:171-180. [PMID: 30466614 DOI: 10.1016/j.phymed.2018.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rhodiola rosea has been used as a traditional medicine for a long history. Previous studies on oligomeric proanthocyanidins from Rhodiola rosea (OPCRR) have showed that it exhibited significant free radical-scavenging activities, antioxidant activities in aging mice and lipid lowering effects. HYPOTHESIS/PURPOSE We hypothesized that OPCRR can improve the atherosclerosis pathological in rats. In the present study, we investigated the effects of OPCRR on the serum lipid profiles, oxidant stress status, inflammatory cytokines and atherosclerotic mediators, and endothelial dysfunction as well as changes in abdominal aorta of atherosclerosis rats. METHODS The major components of OPCRR were analyzed by using infrared spectrum and HPLC-ESI-MS. The atherosclerosis rat model was induced by high fat and vitamin D3 feeding for 9 weeks and two OPCRR doses (60 and 120 mg/kg b.w.) were orally administered daily for 9 weeks. The rats were then sacrificed and the blood was collected via abdominal aorta and serum was separated by centrifugated for biochemical analysis. Part of the aorta tissues were excised immediately for histopathological examination and western blotting. RESULTS Compared to model group, OPCRR treatments significantly decreased the serum lipid profiles including total cholesterol, total triglycerides, low-density lipoprotein cholesterol (LDL-C) and ox-LDL and increased the high-density lipoprotein cholesterol (HDL-C); significant increased serum antioxidant enzymes (SOD and GSH-Px) and decrease of MDA content as a product of lipid peroxidation; lowered serum levels of TNF-α, IL-1β, IL-6, ICAM-1 and VCAM-1 and enhanced IL-10 level; increased the serum release of nitric oxide and expression of iNOS in aortic, whereas decreased the expression of eNOS. CONCLUSION OPCRR can improve the progress of atherosclerosis by regulation of lipid metabolism, restoring of the antioxidant capacities, and attenuation of pro-inflammatory cytokines and chemcytokines release, and improving the endothelial dysfunction indicated by nitric oxide system.
Collapse
Affiliation(s)
- Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China
| | - Xue Han
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Rongbin Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China.
| | - Bingyao Bai
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Chenjing Yan
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Xiaohan Dong
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| |
Collapse
|
38
|
Chen X, Cao J, Sun Y, Dai Y, Zhu J, Zhang X, Zhao X, Wang L, Zhao T, Li Y, Liu Y, Wei G, Zhang T, Yan Z. Ethanol extract of Schisandrae chinensis fructus ameliorates the extent of experimentally induced atherosclerosis in rats by increasing antioxidant capacity and improving endothelial dysfunction. PHARMACEUTICAL BIOLOGY 2018; 56:612-619. [PMID: 31070526 PMCID: PMC6282463 DOI: 10.1080/13880209.2018.1523933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Schisandrae chinensis fructus, the dried ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been used for thousands of years as a traditional Chinese herb, which can attenuate and prevent the development of cardiovascular events. OBJECTIVE To evaluate the effects of the ethanol extracts from Schisandrae chinensis fructus fruit (EESC) on experimental atherosclerosis (AS) in rats. MATERIALS AND METHODS Treatment with EESC (0.35, 0.7, 1.4 g/kg/d, i.g.) and simvastatin (4 mg/kg/d, i.g.) on AS rats for 3 weeks. Sprague-Dawley rats on normal chow and under water treatment were used as control. The content of schisandrin, schisandrin A and schisandrin B in EESC was detected by HPLC. Aortic pathology changes, serum biochemical indices and nuclear factor E2-related factor 2 (Nrf-2) and heame oxygenase-1 (HO-1) expressions were measured. RESULTS Schisandrin, schisandrin A and schisandrin B contents were 291.8, 81.46 and 279.1 mg/g of dry weight, respectively. EESC significantly reduced the aortic plaque area (76.5, 90.5 and 73.9% reduction), regulated the levels of serum lipid (p < 0.05), enhanced the antioxidant enzyme activities (p < 0.01), reduced the malondialdehyde levels (72.5, 69.3, 67.3%), and up-regulated the Nrf-2 and HO-1 expression (p < 0.05). Furthermore, EESC reduced the levels of oxidized-LDL and endothelin-1 and thromboxane B2 but increased that of 6-keto prostaglandin F1α (p < 0.05). Acute toxicity was calculated on mice to be LD50 > 20 g/kg. CONCLUSIONS EESC positively affects the treatment of AS in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Xiu Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Jiahong Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yong Sun
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yaolan Dai
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Jiali Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xuemei Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yongbiao Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Youping Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tiane Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
- CONTACT Zhiyong Yan School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Tiane Zhang School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
- CONTACT Zhiyong Yan School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China; Tiane Zhang School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| |
Collapse
|
39
|
Phenolic-Rich Baccaurea angulata Modulates Inflammatory Biomarkers of Atherosclerosis. J Nutr Metab 2018; 2018:8406193. [PMID: 30524759 PMCID: PMC6247429 DOI: 10.1155/2018/8406193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose Cardiovascular disease (CVD) is the leading and the most critical type of chronic disease. Atherosclerosis is the most common cause of CVD. Inflammation has been progressively acknowledged as a vital and central player in the pathophysiology of atherosclerosis. Baccaurea angulata is an underutilized fruit of the island of Borneo. It was obtained from Bau, Sarawak, Malaysia. In our previous studies, B. angulata did not only increase antioxidant enzyme activities, but also slowed the lipid peroxidation process in high-cholesterol-fed rabbits. It was hypothesized that B. angulata fruit would exert an anti-inflammatory effect. This study, therefore, aimed at evaluating and comparing the effects of three different B. angulata whole fruit (WF) juice doses on 11 serum inflammatory biomarkers of atherosclerosis. Methods Thirty-five male New Zealand white rabbits were divided into seven groups (n=5). Group CH was fed 1% cholesterol diet only, group C1 was fed 1% cholesterol diet and 0.5 ml/kg/day B. angulata WF juice, group C2 was fed 1% cholesterol diet and 1.0 ml/kg/day B. angulata WF juice, group C3 was fed 1% cholesterol diet and 1.5 ml/kg/day B. angulata WF juice, group N was fed standard pellet only, group N1 was fed standard pellet and 0.5 ml/kg/day B. angulata WF juice, and group N2 was fed standard pellet and 1.0 ml/kg/day B. angulata WF juice for 12 weeks. Results The administration of the various juices reduced the concentrations of induced serum inflammatory biomarkers. Conclusion This protective effect of B. angulata fruit against cardiovascular risk might be due to its polyphenol content.
Collapse
|
40
|
Fan H, Li M, Yu L, Jin W, Yang J, Zhang Y, Wan H. Effects of Danhong Injection on platelet aggregation in hyperlipidemia rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 212:67-73. [PMID: 29066405 DOI: 10.1016/j.jep.2017.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong Injection (DHI), a Chinese medical product extracted from Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Labiatae, Danshen in Chinese) and Flos Carthami (Carthamus tinctorius L., Compositae, Honghua in Chinese), has been reported to have effects on inflammatory, anti-fibrinolytic properties, antithrombotic and decrease blood-lipid. It is extensively used for the clinical treatment of cardiovascular disease. This study aimed to investigate the effects of DHI on blood-lipid levels and platelet aggregation rate in hyperlipidemia rats. MATERIALS AND METHODS Rats were randomly divided into 6 groups: normal control (NC), model control (MC), DHI-treated control at doses of 1.0mL/kg, 2.0mL/kg, 4.0mL/kg, respectively, and Simvastatin positive control at dose of 2.0mg/kg. All DHI treated groups were intraperitoneally injected for 7 days. The effects of DHI on serum triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) were evaluated. And platelet activating factor (PAF), platelet membrane glycoprotein IIb/IIIa (GP IIb/IIIa) and 6-keto-prostaglandin F1а (6-K-PGF1а) were determined by enzyme-linked immunosorbent assay (ELISA). Moreover, the expression of prostaglandin I-2 (PGI2), prostaglandin E-2 (PGE2) and thromboxane A2 (TXA2) in liver was determined by real-time PCR. RESULTS Compared with the MC group, the rats treated with DHI had significantly reduced TC, TG, LDL-C, FIB, GP IIb/IIIa and platelet aggregation. Meanwhile, the thrombin time (TT), activated partial thrombin time (APTT), prothrombin time (PT), 6-K-PGF1а was significantly increased. Expression of PGI2 and PGE2 mRNA was significantly increased, whereas the TXA2 was significantly reduced. CONCLUSIONS This study demonstrated that the blood lipid and platelet aggregation has a regulatory effect after DHI treatment. The insights gained from this study will improve understanding of the mechanisms involved in the effect of DHI on hyperlipidemia and the pharmacological rationale for the use of DHI in diseases caused by formation of thrombosis and lipid metabolic disorders.
Collapse
Affiliation(s)
- Hongjing Fan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Min Li
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Weifeng Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yuyan Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
41
|
Zhu Y, Feng B, He S, Su Z, Zheng G. Resveratrol combined with total flavones of hawthorn alleviate the endothelial cells injury after coronary bypass graft surgery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:20-26. [PMID: 29496171 DOI: 10.1016/j.phymed.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the preventive and therapeutic effects of Resveratrol combined with total flavones of hawthorn, compatibility of traditional Chinese medicines, on the endothelial cells injury after artery bypass graft surgery. METHODS The animal model of coronary artery bypass grafting (CABG) was prepared by transplanting a segment of autologous jugular vein onto the transected common carotid artery in rabbits. After CABG surgery, the rabbits were administrated with saline (model group), aspirin (Aspirin group), resveratrol (Res group), total flavones of hawthorn (Haw group) and resveratrol combined with total flavones of hawthorn (Res+Haw group) once a day for eight weeks, respectively. Eight weeks later, the grafting arteries from all group were obtained for the pathomorphism observation, peripheral blood was collected to detect circulating endothelial cells (CECs) by flow cytometry. And the concentration of albumen and mRNA of ICAM-1 in the serum were measured by western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS Compared with the model group, the level of CECs density and the expressions of albumen and mRNA of ICAM-1 were significantly decreased in the aspirin,resveratrol,total flavones of hawthorn and resveratrol combined with total flavones of hawthorn groups (P < .05). Of note, above all parameters were lower in Res group than aspirin group. CONCLUSION The Resveratrol combined with total flavones of hawthorn could protect the endothelial cells after coronary artery bypass graft.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Songmin He
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
42
|
Fei C, Dai H, Wu X, Li L, Lu T, Li W, Cai B, Yin W, Yin F. Quality evaluation of raw and processed Crataegi Fructus by color measurement and fingerprint analysis. J Sep Sci 2017; 41:582-589. [PMID: 29098787 DOI: 10.1002/jssc.201700575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022]
Abstract
Crataegi Fructus and its processed products have been used as a traditional medicine for a long time, and numerous active components are responsible for their curative effects. However, a comprehensive and fast method for the quality control of its processed products is still lacking. In this study, two analytical methods based on color measurements and fingerprint analysis are established. In the color measurements, the color values of the peel and flesh of Crataegi Fructus were evaluated spectrophotometrically. Based on the results, a color reference range was established using percentiles, and the standard color difference value was established using the median color values. Then, the color values of Crataegi Fructus and its processed products were analyzed using Bayes linear discriminant analysis and mathematical functions were built in order to predict the degree of processing. Moreover, high-performance liquid chromatography fingerprint analysis was performed on a Hibar C18 column, and a high-performance liquid chromatography fingerprint pattern was obtained, from which nine peaks were identified. Chemometric methods were successfully applied to differentiate raw and processed Crataegi Fructus.
Collapse
Affiliation(s)
- Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Hui Dai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Xiaoyan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Baochang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Wu Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, P.R. China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
43
|
Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, Li HB. Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017; 9:E598. [PMID: 28608832 PMCID: PMC5490577 DOI: 10.3390/nu9060598] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are leading global health problems. Accumulating epidemiological studies have indicated that consuming fruits was inversely related to the risk of CVDs. Moreover, substantial experimental studies have supported the protective role of fruits against CVDs, and several fruits (grape, blueberry, pomegranate, apple, hawthorn, and avocado) have been widely studied and have shown potent cardiovascular protective action. Fruits can prevent CVDs or facilitate the restoration of morphology and functions of heart and vessels after injury. The involved mechanisms included protecting vascular endothelial function, regulating lipids metabolism, modulating blood pressure, inhibiting platelets function, alleviating ischemia/reperfusion injury, suppressing thrombosis, reducing oxidative stress, and attenuating inflammation. The present review summarizes recent discoveries about the effects of fruits on CVDs and discusses potential mechanisms of actions based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Dong P, Pan L, Zhang X, Zhang W, Wang X, Jiang M, Chen Y, Duan Y, Wu H, Xu Y, Zhang P, Zhu Y. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:479-488. [PMID: 28119096 DOI: 10.1016/j.jep.2017.01.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. MATERIALS AND METHODS High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. RESULTS HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (P<0.05). In mice fed with 20mg/kg HLF, Total cholesterol (TC) level was decreased by 18.6% and very low density lipoprotein cholesterol plus low density lipoprotein cholesterol (VLDLc+LDLc) level were decreased by 23.1% whereas high density lipoprotein cholesterol (HDLc) and triglyceride (TG) levels were similar compared to that of the control group. Peroxisome proliferator activated receptor alpha (PPARα) mRNA was increased by 31.2% (P<0.05) and 60.9% (P<0.05) in mice fed with 5mg/kg and 20mg/kg HLF respectively. Sterol regulatory element binding protein-1c (SREBP-1c) was decreased by 59.3% in the group of 20mg/kg. Carnitine palmitoyl transferase 1 (CPT-1) mRNA level of 20mg/kg group was induced 66.7% (P<0.05). Superoxide dismutase 1 and 2 (SOD1 and SOD2) mRNA were induced 25.4% (P<0.05) and 71.4% (P<0.05) while induced by 36.3% (P<0.05) and 73.2% (P<0.05) in group of 20mg/kg. Glutathione peroxidase 3 (Gpx3) mRNA in the group of 20mg/kg was induced by 96.7% (P<0.05). Hepatic hydroxymethylglutaryl CoA reductase (HMG-CoAR) expression was as same level as the control group while LDL receptor (LDLR) mRNA and protein were induced by 84.2% (P<0.05) and 98.8% (P<0.05) in group of 20mg/kg. HLF inhibit the formation of foam cell by 27.9% (P<0.05) in the dosage of 25μg/ml, and 33.3% (P<0.05) in the dosage of 50μg/ml. HLF increased the reverse cholesterol transport (RCT) in vivo. DISCUSSION AND CONCLUSION Hawthorn leave flavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Pengzhi Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Lanlan Pan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Xiting Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Wenwen Zhang
- The College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xue Wang
- The Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150080, China.
| | - Meixiu Jiang
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Yuanli Chen
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yajun Duan
- The College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Honghua Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Yantong Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| |
Collapse
|
45
|
Lee MS, Lee SO, Kim KR, Lee HJ. Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1α by Chlorogenic Acid in Hypoxic DU145 Cells. Int J Mol Sci 2017; 18:ijms18020325. [PMID: 28165392 PMCID: PMC5343861 DOI: 10.3390/ijms18020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 12/15/2022] Open
Abstract
Hypoxia enhances cancer development in a solid tumor. Hypoxia-inducible factor-1 α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor that regulates tumor. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, anti-apoptosis and cell proliferation as well as imparts resistance to cancer treatment. In this study, we assessed Crataegus Pinnatifida Bunge var. typical Schneider ethanol extract (CPE) for its anti-cancer effects in hypoxia-induced DU145 human prostate cancer cell line. CPE decreased the abundance of HIF-1α and sphingosine kinase-1 (SPHK-1) in hypoxia-induced prostate cancer DU145 cells. CPE decreased HIF-1α and SPHK-1 as well as SPHK-1 activity. Chlorogenic acid (CA) is one of four major compounds of CPE. Compared to CPE, CA significantly decreased the expression of HIF-1α and SPHK-1 as well as SPHK-1 activity in hypoxia-induced DU145 cells. Furthermore, CA decreased phosphorylation AKT and GSK-3β, which are associated with HIF-1α stabilization and affected SPHK-1 in a concentration-dependent manner. We confirmed the mechanism of CA-induced inhibition of HIF-1α by SPHK-1 signaling pathway using SPHK-1 siRNA and SPHK inhibitor (SKI). CA decreased the secretion and cellular expression of VEGF, thus inhibiting hypoxia-induced angiogenesis. Treatment of DU145cells with SPHK1 siRNA and CA for 48 h decreased cancer cell growth, and the inhibitory action of SPHK siRNA and CA on cell growth was confirmed by decrease in the abundance of Proliferating cell nuclear antigen (PCNA).
Collapse
Affiliation(s)
- Myoung-Sun Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Seon-Ok Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Kyu-Ri Kim
- Graduate School of East-West Medical Science, Kyung Hee University; 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyo-Jeong Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
46
|
Wen L, Guo R, You L, Abbasi AM, Li T, Fu X, Liu RH. Major triterpenoids in Chinese hawthorn "Crataegus pinnatifida" and their effects on cell proliferation and apoptosis induction in MDA-MB-231 cancer cells. Food Chem Toxicol 2016; 100:149-160. [PMID: 28025124 DOI: 10.1016/j.fct.2016.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
The cytotoxicity and antiproliferative effect of phytochemicals presenting in the fruits of Chinese hawthorn (Crataegus pinnatifida) were evaluated. Shanlihong (Crataegus pinnatifida Bge. var. major N.E.Br.) variety possessed significant levels of flavonoids and triterpenoids, and showed potent antiproliferative effect against HepG2, MCF-7 and MDA-MB- 231 human cancer cells lines. Triterpenoids-enriched fraction (S9) prepared by Semi-preparative HPLC, and its predominant ingredient ursolic acid (UA) demonstrated remarkably antiproliferative activities for all the tested cancer cell lines. DNA flow cytometric analysis showed that S9 fraction and UA significantly induced G1 arrest in MDA-MB-231 cells in a dose-dependent manner. Western blotting analysis revealed that S9 fraction and UA significantly induced PCNA, CDK4, and Cyclin D1 downregulation in MDA-MB-231 cells, followed by p21Waf1/Cip1 up-regulation. Additionally, flow cytometer and DNA ladder assays indicated that S9 fraction and UA significantly induced MDA-MB-231 cells apoptosis. Mitochondrial death pathway was involved in this apoptosis as significantly induced caspase-9 and caspase-3 activation. These results suggested that triterpenoids-enriched fraction and UA exhibited antiproliferative activity through the cell cycle arrest and apoptosis induction, and was majorly responsible for the potent anticancer activity of Chinese hawthorn.
Collapse
Affiliation(s)
- Lingrong Wen
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Center of Guangdong Food Green Processing and Nutrition Regulation Engineering Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640, China
| | - Ruixue Guo
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Center of Guangdong Food Green Processing and Nutrition Regulation Engineering Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640, China
| | - Lijun You
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Center of Guangdong Food Green Processing and Nutrition Regulation Engineering Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640, China.
| | - Arshad Mehmood Abbasi
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Tong Li
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Xiong Fu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Center of Guangdong Food Green Processing and Nutrition Regulation Engineering Technology, South China University of Technology, Guangzhou, Guangdong Province, 510640, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
47
|
Liu C, Huang Y. Chinese Herbal Medicine on Cardiovascular Diseases and the Mechanisms of Action. Front Pharmacol 2016; 7:469. [PMID: 27990122 PMCID: PMC5130975 DOI: 10.3389/fphar.2016.00469] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases are the principal cause of death worldwide. The potentially serious adverse effects of therapeutic drugs lead to growing awareness of the role of Chinese herbal medicine in the treatment of cardiovascular diseases. Chinese herbal medicine has been widely used in many countries especially in China from antiquity; however, the mechanisms by which herbal medicine acts in the prevention and treatment of cardiovascular diseases are far from clear. In this review, we briefly describe the characteristics of Chinese herbal medicine by comparing with western medicine. Then we summarize the formulae and herbs/natural products applied in the clinic and animal studies being sorted according to the specific cardiovascular diseases. Most importantly, we elaborate the existing investigations into mechanisms by which herbal compounds act at the cellular levels, including vascular smooth muscle cells, endothelial cells, cardiomyocytes and immune cells. Future research should focus on well-designed clinic trial, in-depth mechanic study, investigations on side effects of herbs and drug interactions. Studies on developing new agents with effectiveness and safety from traditional Chinese medicine is a promising way for prevention and treatment of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Cuiqing Liu
- Department of Preventive Medicine, Basic Medical College, Zhejiang Chinese Medical University Hangzhou, China
| | - Yu Huang
- School of Biomedical Sciences, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
48
|
Oliveira TKD, Almeida FDA, Falcão MPM, Lemos-Jordão AJJD, Ramos KRDL, Silva JFD. Análise do extrato aquoso de Arachis hipoagea L. no combate à dislipidemia e ao ganho ponderal de ratos Wistar submetidos à dieta hiperlipídica1. PESQUISA VETERINÁRIA BRASILEIRA 2016; 36:1121-1126. [DOI: 10.1590/s0100-736x2016001100011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
RESUMO: O objetivo desse estudo foi avaliar os efeitos do Extrato Aquoso de Amendoim (EAA) no peso, bioquímica sérica e na histologia hepática de ratos Wistar submetidos a dietas normo e hiperlipídicas. A pesquisa foi realizada utilizando 40 ratos Wistar machos, divididos em quatro grupos (n=10): GA (dieta hiperlipídica), GB (dieta hiperlipídica +EAA), GC (dieta normolipídica) e GD (dieta normolipídica +EAA). Após 8 semanas, os animais foram eutanasiados e foram coletadas amostras sanguíneas para a avaliação de dados bioquímicos (Colesterol total e suas frações, triglicerídeos, uréia, creatinina, AST, ALT e glicemia) e fragmentos do fígado para análise histológica. Os animais do grupo GB tiveram um ganho de peso inferior quando comparados ao GA (XGB= versus XGA= p<0,05), já os grupos GC e GD não obtiveram diferenças estatísticas. Os animais que receberam o EAA tiveram uma redução nos níveis de colesterol (XGB= versus XGA= p<0,05 e XGD= versus XGA= p<0,01), dos triglicerídeos (XGB= versus XGA e XGD= versus XGA= p<0,001) e mais discretamente dos níveis de ALT. A glicemia, uréia e creatina permaneceram dentro dos valores de referência. As amostras hepáticas analisadas, dos ratos dos diferentes grupos, não apresentaram alterações histopatológicas. Conclui-se que O EAA apresentou efeitos preventivos sobre o ganho ponderal e dislipidemia.
Collapse
|
49
|
Öztürk T, Vural K, Tuğlu İ, Var A, Kurdal T, Aydemir I. Acute and Chronic Pretreatment With Atenolol Attenuates Intestinal Ischemia and Reperfusion Injury in Hypercholesterolemic Rats. J Cardiothorac Vasc Anesth 2016; 30:985-92. [PMID: 27521968 DOI: 10.1053/j.jvca.2016.03.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the protective effects of preinjury atenolol (acute v chronic) on apoptosis, contractility, oxidative stress, and inflammatory markers in hypercholesterolemic rats undergoing intestinal ischemia-reperfusion (I/R) injury. DESIGN Prospective, experimental animal study. SETTING University laboratory. PARTICIPANTS Male Wistar rats (n = 32). INTERVENTIONS Rats were divided into the following 4 groups: 1 group was fed a normal diet (ND) (group ND+NoAT [no atenolol]), and the other 3 groups were fed a high-cholesterol diet (HCD)-group HCD+NoAT, group HCD+ChAT (chronic atenolol, 3 mg/kg/day for 8 weeks), and group HCD+AcAT (acute atenolol, 1.5 mg/kg, given 5 minutes before intestinal clamping). All rats underwent I/R injury. The superior mesenteric artery was clamped for 60 minutes, then opened for 120 minutes (reperfusion). Apoptotic cells and stimulated contractions of ileal segments were examined. Tissue markers of intestinal I/R injury were examined. Intestinal malondialdehyde, superoxide dismutase, and nitrate/nitrite levels were measured. MEASUREMENTS AND MAIN RESULTS The chronic atenolol group had fewer apoptotic cells and higher superoxide dismutase activity compared with the other groups. Intestinal contraction was higher in both atenolol pretreatment groups compared with the NoAT groups. Chronic and acute atenolol resulted in lower ileal levels of malondialdehyde and immunolabeling-positive cells (intestinal inducible nitric oxide synthase, endothelial nitric oxide synthase, interleukin-1, and interleukin-8) after I/R injury compared with the no atenolol groups. CONCLUSIONS Both chronic and acute pre-I/R injury treatment with atenolol attenuated I/R injury in this hypercholesterolemic rat model. These findings should encourage future studies of atenolol in hypercholesterolemic patients undergoing procedures with a high risk of intestinal ischemia.
Collapse
Affiliation(s)
- Tülün Öztürk
- Departments of Anaesthesiology and Reanimation, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey.
| | - Kamil Vural
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - İbrahim Tuğlu
- Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Ahmet Var
- Biochemistry, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Taner Kurdal
- Cardiovascular Surgery, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Işıl Aydemir
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey; Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| |
Collapse
|
50
|
Hu Y, Zhao Y, Yuan L, Yang X. Protective effects of tartary buckwheat flavonoids on high TMAO diet-induced vascular dysfunction and liver injury in mice. Food Funct 2016; 6:3359-72. [PMID: 26267818 DOI: 10.1039/c5fo00581g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study was performed to investigate the liver and vascular changes in high trimethylamine-N-oxide (TMAO) diet-fed mice, and the possible vasoprotective and hepatoprotective effects of purified tartary buckwheat flavonoid fraction (TBF). HPLC analysis revealed that the content of rutin and quercetin presented in TBF was 53.6% and 37.2%, respectively, accounting for 90.8% of TBF. Mice fed 1.5% TMAO in drinking water for 8 weeks significantly displayed vascular dysfunction and liver damage (p < 0.01). The administration of TBF at 400 and 800 mg per kg bw significantly elevated plasma NO and eNOS concentrations, and serum HDL-C and PGI2 levels, and lowered serum TC, TG, LDL-C, ET-1 and TX-A2 levels of TMAO-fed mice. TBF also reduced serum AST and ALT activities, and hepatic NEFA and MDA levels, and increased the hepatic GSH-Px and SOD activities in TMAO-fed mice, which were consistent with the observations of the histological alterations of the liver. This report firstly showed that dietary TMAO might cause liver damage and TBF prevented TMAO-induced vascular dysfunction and hepatic injury.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | |
Collapse
|