1
|
Rodrigues EL, Santana LF, do Nascimento VA, Arakaki MA, Cardoso CAL, Filiú WFDO, Guimarães RDCA, Hiane PA, Freitas KDC. Use of Guazuma ulmifolia Lam. Stem Bark Extracts to Prevent High-Fat Diet Induced Metabolic Disorders in Mice. Int J Mol Sci 2024; 25:8889. [PMID: 39201576 PMCID: PMC11354271 DOI: 10.3390/ijms25168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to evaluate the effects of supplementation with ethanolic and aqueous extracts from the bark of the stem of Guazuma ulmifolia in mice submitted to a high-fat diet as well as to evaluate the chemical composition of these extracts. The chemical composition and antioxidant potential was evaluated in aqueous and ethanolic extracts of the stem bark. The in vivo test consisted of evaluating the effects of the aqueous and ethanolic extracts of the stem bark on C57BL/6 mice receiving a high-fat diet. The animals were evaluated for weight gain, feed consumption, visceral adiposity, serum, and inflammatory and hormonal parameters. The results of the chemical analyses corroborate those obtained by the literature, which reported gallocatechin, epigallocatechin and epigallocatechin gallate. Compared with the ethanolic extract, the aqueous extract showed greater antioxidant capacity. Both extracts resulted in lower feed consumption in the animals, but they did not influence weight gain or visceral adiposity and resulted in varied changes in the lipid profile. In addition, they did not influence glucose tolerance, insulin sensitivity, or fasting blood glucose. Furthermore, the leptin levels increased, which may have contributed to satiety, but this was shown to have a negative impact on other inflammatory and hormonal parameters. Therefore, under the conditions of this study, the biologically active compounds present in the plant species Guazuma ulmifolia were not able to contribute to the treatment of metabolic changes related to the consumption of a high-fat diet.
Collapse
Affiliation(s)
- Elisana Lima Rodrigues
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Marcel Asato Arakaki
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil;
| | | | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79079-900, MS, Brazil;
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79070-900, MS, Brazil; (E.L.R.); (V.A.d.N.); (R.d.C.A.G.); (P.A.H.); (K.d.C.F.)
| |
Collapse
|
2
|
Arce-Ortiz A, Jiménez-Martínez C, Gutiérrez-Rebolledo GA, Corzo-Ríos LJ, Olivo-Vidal ZE, Mora-Escobedo R, Cruz-Narváez Y, Sánchez-Chino XM. Evaluation of the Antioxidant and Anti-Inflammatory Activities and Acute Toxicity of Caco Seed ( Chrysobalanus icaco L.) in Murine Models. Molecules 2024; 29:3243. [PMID: 39064822 PMCID: PMC11279230 DOI: 10.3390/molecules29143243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Chysobalanus icaco L. (C. icaco) is a plant that is native to tropical America and Africa. It is also found in the southeast region of Mexico, where it is used as food and to treat certain diseases. This study aimed to carry out a phytochemical analysis of an aqueous extract of C. icaco seed (AECS), including its total phenol content (TPC), total flavonoid content (TFC), and condensed tannins (CT). It also aimed to examine the antioxidant and metal-ion-reducing potential of the AECS in vitro, as well as its toxicity and anti-inflammatory effect in mice. Antioxidant and metal-ion-reducing potential was examined by inhibiting DPPH, ABTS, and FRAP. The acute toxicity test involved a single administration of different doses of the AECS (0.5, 1, and 2 g/kg body weight). Finally, a single administration at doses of 150, 300, and 600 mg/kg of the AECS was used in the carrageenan-induced model of subplantar acute edema. The results showed that the AECS contained 124.14 ± 0.32 mg GAE, 1.65 ± 0.02 mg EQ, and 0.910 ± 0.01 mg of catechin equivalents/g dried extract (mg EC/g de extract) for TPC, TFC and CT, respectively. In the antioxidant potential assays, the values of the median inhibition concentration (IC50) of the AECS were determined with DPPH (0.050 mg/mL), ABTS (0.074 mg/mL), and FRAP (0.49 mg/mL). Acute toxicity testing of the AECS revealed no lethality, with a median lethal dose (LD50) value of >2 g/kg by the intragastric route. Finally, for inhibition of acute edema, the AECS decreased inflammation by 55%, similar to indomethacin (59%, p > 0.05). These results demonstrated that C. icaco seed could be considered a source of bioactive molecules for therapeutic purposes due to its antioxidant potential and anti-inflammatory activity derived from TPC, with no lethal effect from a single intragastric administration in mice.
Collapse
Affiliation(s)
- Abel Arce-Ortiz
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico; (A.A.-O.); (Z.E.O.-V.)
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Gabriel Alfonso Gutiérrez-Rebolledo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Luis Jorge Corzo-Ríos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticomán, Alcaldía Gustavo A. Madero, Mexico City 07340, Mexico;
| | - Zendy Evelyn Olivo-Vidal
- Departamento de Salud, El Colegio de la Frontera Sur Unidad Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico; (A.A.-O.); (Z.E.O.-V.)
| | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico; (G.A.G.-R.); (R.M.-E.)
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Zacatenco, Unidad Profesional Adolfo López Mateos, Col. Lindavista, Mexico City 07738, Mexico;
| | - Xariss M. Sánchez-Chino
- Catedra-CONAHCYT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carretera Federal Villahermosa-Reforma Km 15.5, Ra. Guineo Segunda Sección, C.P., Villahermosa 86280, Tabasco, Mexico
| |
Collapse
|
3
|
Rodrigues NER, Oliveira ARDS, Lima SMDA, Nunes DM, de Albuquerque PBS, da Cunha MDGC, Wanderley AG, Júnior FMRDS, Silva JBNF, Teixeira ÁAC, da Silva TG. Effect of the Aqueous Extract of Chrysobalanus icaco Leaves on Maternal Reproductive Outcomes and Fetal Development in Wistar Rats. Curr Issues Mol Biol 2023; 45:7617-7629. [PMID: 37754263 PMCID: PMC10529352 DOI: 10.3390/cimb45090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Toxicological studies on medicinal plants are essential to ensure their safety and effectiveness in treating various diseases. Despite the species Chrysobalanus icaco L. being popularly used in the treatment of several diseases due to the pharmacological properties of its bioactive compounds, there are few studies in the literature regarding its toxicity regarding reproduction. Therefore, the purpose of this study was to assess the potential embryotoxic and teratogenic effects of the aqueous extract of C. icaco leaves (AECi) on Wistar rats. Animals were given AECi at doses of 100, 200, and 400 mg/kg during the pre-implantation and organogenesis periods. Data were analyzed using ANOVA followed by Tukey's test and Kruskal-Wallis. Pregnant rats treated during the pre-implantation period showed no signs of reproductive toxicity. Rats that received AECi at 100, 200, and 400 mg/kg during organogenesis did not exhibit any signs of maternal systemic toxicity or significant differences in gestational and embryotoxic parameters. Some skeletal changes were observed in the treated groups. Therefore, it can be suggested that AECi at doses of 100, 200, and 400 mg/kg is safe for treated animals and does not induce reproductive toxicity under the experimental conditions applied, but it also caused low systemic toxicity.
Collapse
Affiliation(s)
- Natalie Emanuelle Ribeiro Rodrigues
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
- Department of Medicine, University of Pernambuco (UPE), Garanhuns 53294-902, Pernambuco, Brazil; (D.M.N.); (P.B.S.d.A.)
| | - Alisson Rodrigo da Silva Oliveira
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| | - Sandrine Maria de Arruda Lima
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| | - Daniel Medeiros Nunes
- Department of Medicine, University of Pernambuco (UPE), Garanhuns 53294-902, Pernambuco, Brazil; (D.M.N.); (P.B.S.d.A.)
| | | | | | - Almir Gonçalves Wanderley
- Department of Physiology and Pharmacology, Federal University of Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil;
- Department of Pharmaceutical Sciences, Federal Univesity of São Paulo, São Paulo 09913-030, Brazil
| | | | - José Bruno Nunes Ferreira Silva
- Laboratory of Biotechnology, Immunology and Health Studies, Medicine Course, Federal University of Tocantins (UFT), Palmas 77001-923, Tocantins, Brazil;
| | - Álvaro Aguiar Coelho Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco (UFPE), Recife 52171-900, Pernambuco, Brazil;
| | - Teresinha Gonçalves da Silva
- Laboratory of Farmatoxicological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 54740-520, Pernambuco, Brazil; (A.R.d.S.O.); (S.M.d.A.L.)
| |
Collapse
|
4
|
SILVA LPRD, RODRIGUES EL, HIANE PA, NUNES ÂA, FILIÚ WF, CAVALHEIRO LF, NAZÁRIO CED, ASATO MA, FREITAS KDC, BOGO D, NASCIMENTO VAD, GUIMARÃES RDCA. Bocaiuva (Acrocomia aculeata) nut oil: composition and metabolic impact in an experimental study. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.43522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Elebeedy D, Ghanem A, Saleh A, Ibrahim MH, Kamaly OA, Abourehab MAS, Ali MA, Abd El Maksoud AI, El Hassab MA, Eldehna WM. In Vivo and In Silico Investigation of the Anti-Obesity Effects of Lactiplantibacillus plantarum Combined with Chia Seeds, Green Tea, and Chitosan in Alleviating Hyperlipidemia and Inflammation. Int J Mol Sci 2022; 23:12200. [PMID: 36293055 PMCID: PMC9602495 DOI: 10.3390/ijms232012200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague-Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.
Collapse
Affiliation(s)
- Dalia Elebeedy
- Pharmaceutical Biotechnology Department, College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City 12573, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11754, Egypt
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, P.O. Box 21961, Makkah 24382, Saudi Arabia
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Wagdy M. Eldehna
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| |
Collapse
|
6
|
da Silva Pérez EM, de Alencar NMN, de Figueiredo IST, Aragão KS, Gaban SVF. Effect of safflower oil ( Carthamus tinctorius L.) supplementation in the abdominal adipose tissues and body weight of male Wistar rats undergoing exercise training. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100083. [PMID: 35415687 PMCID: PMC8991724 DOI: 10.1016/j.fochms.2022.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 10/27/2022]
Abstract
This study aimed to evaluate the effects of safflower oil supplementation on the metabolic parameters, body weight, and abdominal adiposity in male Wistar rats fed with a high-fat diet (HFD) while undergoing exercise training. The rats were assigned to four groups: standard diet and sedentary (SDS), high-fat diet and sedentary (HFDS), high-fat diet and training (HFDT), and high-fat diet, training, and safflower oil (HFDTSO) groups. HFD significantly increased the abdominal adiposity in male Wistar rats. The safflower oil had no effect on the body weight and levels of blood glucose, TG, and TC, but it significantly reduced abdominal adiposity in male Wistar rats fed with an HFD while undergoing exercise training. Safflower oil supplementation reduced the abdominal fat in rats undergoing swimming training.
Collapse
Key Words
- Abdominal adiposity
- Body weight
- HFD, High-fat diet
- HFDS, High-fat diet and sedentary
- HFDT, High-fat diet and training
- HFDTSO, High-fat diet, training and safflower oil
- L, lard-based diet
- LA, Linoleic acid
- LDL, Low-density lipoprotein
- MUFAs, Monounsaturated fatty acids
- Obesity
- PUFAs, Polyunsaturated fatty acids
- S, safflower-linseed oil-based diet
- SD, Standard diet
- SDS, Standard diet and sedentary
- Safflower oil
- TC, Total cholesterol
- TG, Triglycerides
Collapse
|
7
|
A pharmaceutical formulation containing Cecropia pachystachya alleviates metabolic alterations in a hypercaloric diet obesity model in Swiss mice. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Nijhawan P, Behl T, Chigurupati S, Sehgal A, Singh S, Sharma N, Sharma A, Ahmed AS, Das S, Palnimuthu VR, Bhatia S, Al-Harrasi A, Rahman MS, Arora S, Bungau S. Exploring the effect of Crinum latifolia in obesity: possible role of oxidative, angiogenic, and inflammatory pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29130-29140. [PMID: 34997511 DOI: 10.1007/s11356-022-18531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Obesity is a multifaceted disease encompassing deposition of an unnecessary amount of fat which upsurges the possibility of other complications, viz., hypertension and certain type of cancers. Although obesity results from combination of genetic factors, improper diet and inadequate physical exercise also play a major role in its onset. The present study aims at exploring the anti-obesity activity of Crinum latifolia leaf extract in obese rats. The leaves were extracted using hydroalcoholic extraction which was later diluted with water and given to obese rats. The dosing was started from the 4th week (by oral administration of extract of Crinum latifolia (100 mg/kg and 200 mg/kg) and combination of Crinum latifolia leaf extract 200 mg/kg and orlistat 30 mg/kg) till the 10th week. Various angiogenic, antioxidant, biochemical, and inflammatory biomarkers were assessed at the end of the study. The obese symptoms were progressively reduced in treatment groups when compared to disease control groups. The angiogenic parameters and inflammatory parameters were consequently reduced in treatment groups. The oxidative parameters superoxide dismutase (SOD) and catalase were gradually increased, while levels of TBARS were reduced in treatment groups showing antioxidant nature of leaf hydroalcoholic extract. The Crinum latifolia leaf extract possesses anti-obesity properties and therefore can be used as a therapeutic option in the management of obesity.
Collapse
Affiliation(s)
- Priya Nijhawan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sridevi Chigurupati
- Department of Medicine Chemistry and Pharmacognosy, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Suprava Das
- Department of Pharmacology, Faculty of Medicine, AIMST University, Semeling, Kedah, Malaysia
| | - Vasanth Raj Palnimuthu
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamilnadu, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Md Sohanur Rahman
- Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
11
|
Evaluation of bioactive compounds, phytochemicals profile and antioxidant potential of the aqueous and ethanolic extracts of some traditional fruit tree leaves used in Brazilian folk medicine. Food Res Int 2021; 143:110282. [PMID: 33992382 DOI: 10.1016/j.foodres.2021.110282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
The aim of this study was to analyze eight selected species of leaves, used in the traditional medicine of the Northeast region of Brazil obtained from several fruit trees (grageru, soursop, jambolanum, passion fruit, insulin, nogueira, pedra ume kaá and stévia), regarding their polyphenols contents and antioxidant activity. Condensed and hydrolysable tannins, phenolics and flavonoids contents were determined and the antioxidant activities measured by ABTS, FRAP and ORAC assays. Organic acids were analyzed by HPLC-DAD system. Phenolic compounds of aqueous and ethanolic extracts were determined by UHPLC-DAD-MS. The results revealed high contents of total phenolics (13.34 ± 0.19 - 127.65 ± 0.21 mg.g-1 of GAE:QE (2:1) of sample) and flavonoids (12.30 ± 0.42 - 71.79 ± 0.00 mg.g-1 QE of sample). The ABTS results exhibited extraordinary activity in the extracts (74.48 ± 6.23 - 1487.33 ± 2.67 µmol Trolox.g-1 of sample). Acids quinic, tartaric, citric, gallic, chlorogenic, p-coumaric, ferulic and vanillic along with naringenin, rutin, vanillin, catechin, epicatechin, kaempferol were the most important compounds. Thus, these leaves extracts may be considered as sources of phenolics compounds having a high potential as natural antioxidants. In addition, the polyphenols present in these leaves have many beneficial effects and can also be used in medicinal and nutraceuticals products with enhanced bioactivities.
Collapse
|
12
|
Inada AC, Silva GT, da Silva LPR, Alves FM, Filiú WFDO, Asato MA, Junior WHK, Corsino J, Figueiredo PDO, Garcez FR, Garcez WS, da Silva RDNO, dos Santos-Eichler RA, Guimarães RDCA, Freitas KDC, Hiane PA. Therapeutic Effects of Morinda citrifolia Linn. (Noni) Aqueous Fruit Extract on the Glucose and Lipid Metabolism in High-Fat/High-Fructose-Fed Swiss Mice. Nutrients 2020; 12:nu12113439. [PMID: 33182564 PMCID: PMC7696076 DOI: 10.3390/nu12113439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to evaluate the therapeutic effects of two different doses (250 and 500 mg/kg) of Morinda citrifolia fruit aqueous extract (AE) in high-fat/high-fructose-fed Swiss mice. The food intake, body weight, serum biochemical, oral glucose tolerance test (OGTT), and enzyme-linked immunosorbent assay (ELISA), as well as histological analyses of the liver, pancreatic, and epididymal adipose tissue, were used to determine the biochemical and histological parameters. The chemical profile of the extract was determined by ultra-fast liquid chromatography–diode array detector–tandem mass spectrometry (UFLC–DAD–MS), and quantitative real-time PCR (qRT-PCR) was used to evaluate the gene expressions involved in the lipid and glucose metabolism, such as peroxisome proliferative-activated receptors-γ (PPAR-γ), -α (PPAR-α), fatty acid synthase (FAS), glucose-6-phosphatase (G6P), sterol regulatory binding protein-1c (SREBP-1c), carbohydrate-responsive element-binding protein (ChREBP), and fetuin-A. Seventeen compounds were tentatively identified, including iridoids, noniosides, and the flavonoid rutin. The higher dose of AE (AE 500 mg/kg) was demonstrated to improve the glucose tolerance; however, both doses did not have effects on the other metabolic and histological parameters. AE at 500 mg/kg downregulated the PPAR-γ, SREBP-1c, and fetuin-A mRNA in the liver and upregulated the PPAR-α mRNA in white adipose tissue, suggesting that the hypoglycemic effects could be associated with the expression of genes involved in de novo lipogenesis.
Collapse
Affiliation(s)
- Aline Carla Inada
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
- Correspondence: ; Tel.: +55-(67)-3345-7410
| | - Gabriela Torres Silva
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Laleska Pâmela Rodrigues da Silva
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Flávio Macedo Alves
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Science, Food and Nutrition, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Marcel Arakaki Asato
- Faculty of Medicine, Federal University of Mato Grosso do Sul—UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Wilson Hino Kato Junior
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Joaquim Corsino
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Patrícia de Oliveira Figueiredo
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Fernanda Rodrigues Garcez
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Walmir Silva Garcez
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Renée de Nazaré Oliveira da Silva
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-900, Brazil; (R.d.N.O.d.S.); (R.A.d.S.-E.)
| | | | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Karine de Cássia Freitas
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| |
Collapse
|
13
|
Onilude HA, Kazeem MI, Adu OB. Chrysobalanus icaco: A review of its phytochemistry and pharmacology. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:13-19. [PMID: 33097429 DOI: 10.1016/j.joim.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
The genus Chrysobalanus is one of the classes of medicinal plants used in the treatment and management of several diseases. This study is aimed at providing up-to-date information on the phytochemical composition and pharmacological uses of Chrysobalanus icaco. Current literature on the Chrysobalanus species was obtained by searching electronic databases such as PubMed, Google Scholar and Web of Science. Of the species in this genus, four have been reported in the literature, but only one (C. icaco) has been extensively studied. C. icaco is rich in several minerals, including potassium, magnesium, calcium and sodium. The plant also contains a host of phytochemicals, such as flavonoids, diterpenes and triterpenes, which have been shown to have pharmacological activity. It can be concluded that C. icaco is a good source of phytochemicals that contribute to its therapeutic uses. However, bioassay-guided isolation of its bioactive compounds is necessary for promoting the development of drugs from this medicinal plant.
Collapse
Affiliation(s)
- Hammed Ayantola Onilude
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos 102101, Nigeria
| | - Mutiu Idowu Kazeem
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos 102101, Nigeria.
| | - Oluwatosin Benedict Adu
- Department of Biochemistry, Faculty of Science, Lagos State University, Ojo, Lagos 102101, Nigeria
| |
Collapse
|
14
|
Torres Silva G, Di Pietro Fernandes C, Hiane PA, Freitas KDC, Figueiredo PS, Inada AC, Filiú WF, Maldonade IR, Nunes ÂA, de Oliveira LCS, Caires ARL, Michels F, Candido CJ, Cavalheiro LF, Arakaki Asato M, Rodrigues Donadon J, Bacelar de Faria B, Tatara MB, Rosa Croda JH, Pott A, Nazário CED, Guimarães RDCA. Caryocar brasiliense Cambess. Pulp Oil Supplementation Reduces Total Cholesterol, LDL-c, and Non-HDL-c in Animals. Molecules 2020; 25:molecules25194530. [PMID: 33022905 PMCID: PMC7582708 DOI: 10.3390/molecules25194530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
The fruit of Caryocar brasiliense Cambess. is a source of oil with active compounds that are protective to the organism. In our work, we analyzed the physicochemical characteristics and evaluated the effects of supplementation with C. brasiliense oil in an animal model. We characterized the oil by indices of quality and identity, optical techniques of absorption spectroscopy in the UV–Vis region and fluorescence, and thermogravimetry/derived thermogravimetry (TG/DTG). For the animal experiment, we utilized mice (Mus musculus) supplemented with lipidic source in different dosages. The results demonstrated that C. brasiliense oil is an alternative source for human consumption and presents excellent oxidative stability. Primarily, it exhibited oleic MFA (53.56%) and palmitic SFA (37.78%). The oil level of tocopherols and tocotrienols was superior to the carotenoids. The supplementation with C. brasiliense oil reduced the levels of total cholesterol, LDL-c, and non-HDL-c. Regarding visceral fats and adiposity index, the treatment synergically supplemented with olive oil and C. brasiliense oil (OO + CO) obtained the best result. Therefore, C. brasiliense oil is a high quality product for consumption. Its supplementation promotes beneficial effects mainly on the lipidic profile.
Collapse
Affiliation(s)
- Gabriela Torres Silva
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Carolina Di Pietro Fernandes
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, Brazil; (C.D.P.F.); (W.F.F.); (A.P.)
| | - Priscila Aiko Hiane
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Karine de Cássia Freitas
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Priscila Silva Figueiredo
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Aline Carla Inada
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Wander Fernando Filiú
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, Brazil; (C.D.P.F.); (W.F.F.); (A.P.)
| | - Iriani Rodrigues Maldonade
- Laboratory of Food Science and Technology, Brazilian Agricultural Research Corporation (Embrapa Hortaliças), Brasília 70275-970, Brazil;
| | | | - Lincoln Carlos Silva de Oliveira
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Anderson Rodrigues Lima Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.M.)
| | - Flavio Michels
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (A.R.L.C.); (F.M.)
| | - Camila Jordão Candido
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | - Leandro Fontoura Cavalheiro
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Juliana Rodrigues Donadon
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
| | | | - Mariana Bento Tatara
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados 79804-970, Brazil; (M.B.T.); (J.H.R.C.)
| | - Julio Henrique Rosa Croda
- Health Science Research Laboratory, Federal University of Grande Dourados, Dourados 79804-970, Brazil; (M.B.T.); (J.H.R.C.)
- School of Medicine Federal University of Mato Grosso do Sul, Oswaldo Cruz Foundation—Fiocruz, Campo Grande 79074-460, Brazil
| | - Arnildo Pott
- Pharmaceutical Science, Food and Nutrition Faculty, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, Brazil; (C.D.P.F.); (W.F.F.); (A.P.)
| | - Carlos Eduardo Domingues Nazário
- Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (L.C.S.d.O.); (L.F.C.); (C.E.D.N.)
| | - Rita de Cássia Avellaneda Guimarães
- Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (G.T.S.); (P.A.H.); (K.d.C.F.); (P.S.F.); (A.C.I.); (C.J.C.); (J.R.D.)
- Correspondence: ; Tel.: +55-67-3345-7416
| |
Collapse
|
15
|
Effect of an aqueous extract of Chrysobalanus icaco on the adiposity of Wistar rats fed a high-fat diet. NUTR HOSP 2020; 37:763-769. [PMID: 32686442 DOI: 10.20960/nh.03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Objective: the purpose of this study was to investigate the effects of Chrysobalanus icaco on adiposity and its mechanism of action in the gene and protein expression of acetyl-CoA carboxylase (ACC), a key enzyme in lipogenesis. Method: Wistar rats were divided into a regular or control group (CG) and a high-fat diet (HFD) group. HFD was treated with saline or aqueous extract of Chrysobalanus icaco (AECI) for four weeks. Body weight and food intake were assessed. Subcutaneous, retroperitoneal and periepididymal adipose tissue samples were collected and weighed. Adipocytes from periepididymal tissue were isolated and analyzed. The gene and protein expression of ACC in subcutaneous tissue was determined. Results: AECI showed no effect on intake or body weight. However, the weight of the fat pads and the gene and protein expression of ACC were lower, and glucose tolerance was improved. Conclusion: the aqueous extract of Chrysobalanus icaco proved beneficial for the treatment of obesity, preventing fat storage and improving glycemic homeostasis.
Collapse
|
16
|
Effect of Supplementation with Hydroethanolic Extract of Campomanesia xanthocarpa (Berg.) Leaves and Two Isolated Substances from the Extract on Metabolic Parameters of Mice Fed a High-Fat Diet. Molecules 2020; 25:molecules25112693. [PMID: 32531999 PMCID: PMC7321075 DOI: 10.3390/molecules25112693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
There are still controversies regarding the correlation between the beneficial effects for health and the administration of isolated compounds or crude extracts in therapeutic applications. Campomanesia xanthocarpa, found in the Brazilian Cerrado, demonstrated beneficial effects in metabolic disorders associated with obesity. We investigated the effects of Campomanesia xanthocarpa hydroethanolic extract and two isolated substances from the extract (S1 and S2) in a diet-induced obesity (DIO) model. Male Swiss mice were divided into five groups: (1) American Institute of Nutrition (AIN-93M) diet, (2) high-fat diet (HF), (3) HF supplemented with C. xanthocarpa hydroethanolic leaf extract at 100 mg/kg (HFE), (4) HF supplemented with S1 at 1 mg/kg (HFS1) and (5) HF supplemented with S2 at 1 mg/kg (HFS2). The HFS1, HFS2 and HFE groups did not present decreasing body weight or visceral adiposity gain. No differences in glycemic and lipid parameters, or in the expression of protein content in two cytokines, interleukin-6 (IL-6) and anti-inflammatory (IL-10), were observed. Only the HFS1 group displayed decreased food intake. Even though substantial effects such as an improvement in obesity features or the metabolic and histological parameters promoted by S1, S2 and the extract were not observed, further investigations are necessary to evaluate the principal genes and protein expressions involved in regulating food behavior promoted by S1.
Collapse
|
17
|
Ribeiro NE, Pereira PS, de Oliveira TB, de Arruda Lima SM, Silva TMS, Santana ALBD, do Nascimento MS, Santisteban RM, Teixeira ÁAC, da Silva TG. Acute and repeated dose 28-day oral toxicity of Chrysobalanusicaco L. leaf aqueous extract. Regul Toxicol Pharmacol 2020; 113:104643. [PMID: 32199870 DOI: 10.1016/j.yrtph.2020.104643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
Abstract
Chrysobalanus icaco L. is a native plant of Brazil used as a food source and traditionally for the treatment of various diseases. The aim of study was performed the phytochemical analysis by UPLC-DAD-ESI-QTOF-MS/MS, and evaluated acute and repeated dose oral toxicities of the C. icaco L. leaf aqueous extract (AECi). The acute toxicity study was performed using a dose of AECi 2000 mg/kg, while the repeated dose toxicity study, the AECi was administered daily at doses of 100, 200 and 400 mg/kg, for 28 days. Behavior and mortality of animals were observed during the test period and body weight, as well water and eating consumption. Hematological, biochemical parameters and histopathological examinations were carried out. Phytochemical analysis of the AECi revealed the presence of flavonoids and tannins. Oral single dose of 2000 mg/kg of AECi resulted in no mortalities or abnormal clinical signs. Studies of repeated dose toxicity promoted a reduction in the body weight of treated animals and an increase of hepatic enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in both, males and females. Histopathological analyzes showed alterations in the livers of animals treated with AECi. Thus, this study recommends the population take care when using this species, especially during prolonged periods.
Collapse
Affiliation(s)
- Natalie Emanuelle Ribeiro
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Silvino Pereira
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Tatiane Bezerra de Oliveira
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sandrine Maria de Arruda Lima
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Tania Maria Sarmento Silva
- Department of Chemistry, Rural Federal University of Pernambuco, Av. Manuel de Medeiros, 96, Dois Irmãos, 52171-900, Recife, PE, Brazil
| | - Andréa Lopes Bandeira Delmiro Santana
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Márcia Silva do Nascimento
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Rogelio Moreno Santisteban
- Department of Chemistry, Rural Federal University of Pernambuco, Av. Manuel de Medeiros, 96, Dois Irmãos, 52171-900, Recife, PE, Brazil
| | | | - Teresinha Gonçalves da Silva
- Laboratory of Pharmacological Prospecting of Bioactive Products (BIOFARMATOX), Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
18
|
Pedrete TA, Hauser-Davis RA, Moreira JC. Proteomic characterization of medicinal plants used in the treatment of diabetes. Int J Biol Macromol 2019; 140:294-302. [DOI: 10.1016/j.ijbiomac.2019.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
|
19
|
Kim YJ, Kim SR, Kim DY, Woo JT, Kwon EY, Han Y, Choi MS, Jung UJ. Supplementation of the Flavonoid Myricitrin Attenuates the Adverse Metabolic Effects of Long-Term Consumption of a High-Fat Diet in Mice. J Med Food 2019; 22:1151-1158. [DOI: 10.1089/jmf.2018.4341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Young-Je Kim
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Do Yeon Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Je Tae Woo
- Okinawa Research Center Co. Ltd., Okinawa Health Biotechnology Research and Development Center, Uruma, Japan
- Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
20
|
Sasso S, Sampaio E Souza PC, Santana LF, Cardoso CAL, Alves FM, Portugal LC, de Faria BB, da Silva AF, Motta-Castro ARC, Soares LS, Bandeira LM, Guimarães RDCA, Freitas KDC. Use of an Extract of Annona muricata Linn to Prevent High-Fat Diet Induced Metabolic Disorders in C57BL/6 Mice. Nutrients 2019; 11:nu11071509. [PMID: 31269728 PMCID: PMC6682994 DOI: 10.3390/nu11071509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/30/2019] [Indexed: 12/27/2022] Open
Abstract
Annona muricata Linn, commonly known as graviola, is one of the most popular plants used in Brazil for weight loss. The aim of this study is to evaluate the therapeutic effects of three different doses (50 mg/kg, 100 mg/kg, and 150 mg/kg) of aqueous graviola leaf extract (AGE) supplemented by oral gavage, on obese C57BL/6 mice. Food intake, body weight, an oral glucose tolerance test (OGTT), an insulin sensitivity test, quantification of adipose tissue cytokines, weight of fat pads, and serum biochemical and histological analyses of the liver, pancreas, and epididymal adipose tissue were measured. AGE had an anti-inflammatory effect by increasing IL-10 at doses of 50 and 100 mg/kg. Regarding the cholesterol profile, there was a significant decrease in LDL-cholesterol levels in the AGE 150 group, and VLDL-cholesterol and triglycerides in the AGE 100 and 150 groups. There was an increase in HDL cholesterol in the AGE 150 group. The extract was able to reduce the adipocyte area of the epididymal adipose tissue in the AGE 100 and 150 groups. According to the histological analysis of the liver and pancreas, no significant difference was found among the groups. There were no significant effects of AGE on OGTT and serum fasting glucose concentration. However, the extract was effective in improving glucose tolerance in the AGE 150 group.
Collapse
Affiliation(s)
- Sandramara Sasso
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Priscilla Cristovam Sampaio E Souza
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Lidiani Figueiredo Santana
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | | | - Flávio Macedo Alves
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Luciane Candeloro Portugal
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | | | - Anderson Fernandes da Silva
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Ana Rita Coimbra Motta-Castro
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
- Oswaldo Cruz Foundation, Campo Grande, 79074-460 Mato Grosso do Sul, Brazil
| | - Luana Silva Soares
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Larissa Melo Bandeira
- Laboratory of Clinical Immunology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas
- Posgraduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, 79070-900 Mato Grosso do Sul, Brazil.
| |
Collapse
|
21
|
Kim BM, Cho BO, Jang SI. Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. Int J Mol Med 2018; 43:603-613. [PMID: 30365061 DOI: 10.3892/ijmm.2018.3941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/27/2018] [Indexed: 11/06/2022] Open
Abstract
Diospyros (D.) lotus has been demonstrated to have antioxidant and anti‑inflammatory properties. The purpose of the present study was to evaluate the effect of D. lotus leaf water extract (DLE) on high‑fat diet (HFD)‑induced obesity in C57BL/6 mice. The present study first investigated the effect of DLE on the lipid accumulation and triglyceride (TG) contents in 3T3‑L1 cells, and the results revealed that treatment with DLE suppressed the lipid accumulation and TG level. Subsequently, the anti‑obesity effects of DLE were investigated in vivo. Oral administration of DLE reduced the body weight gain, food efficiency ratio, and liver and visceral fat weight in mice fed with a HFD. DLE administration in these mice also reduced TG, total cholesterol, low‑density lipoprotein cholesterol, glucose, insulin and leptin levels, as well as the atherogenic index. Furthermore, DLE administration decreased hepatic steatosis, as well as serum aspartate transaminase, alanine transaminase and alkaline phosphatase levels in mice fed with HFD. It was further observed that treatment of the HFD‑fed mice with DLE prevented lipid peroxidation, while it recovered glutathione depletion and the activities of superoxide dismutase, catalase and glutathione peroxidase. In conclusion, the current study suggests that the anti‑obesity effect of DLE may provide positive insights as a potential functional food ingredient for the prevention of obesity.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byoung Ok Cho
- Research Institute, Ato Q&A Co., Ltd., Jeonju, Jeonbuk 54840, Republic of Korea
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., Ltd., Jeonju, Jeonbuk 54840, Republic of Korea
| |
Collapse
|
22
|
Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, Song BJ, Kim DK, Lee YM. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med 2018; 15:5070-5076. [PMID: 29844801 DOI: 10.3892/etm.2018.6042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The present study was undertaken to investigate the mechanism behind the anti-obesity effect of the 50% ethanol extract of Chrysanthemum indicum L. flowers (CIEE) in a mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (six mice in each group) were administered CIEE (8, 40 and 200 mg/kg) for 6 weeks while being fed with a HFD. Garcinia cambogia (GC) was used as the positive control and was administered in the same manner as CIEE. Results demonstrated that oral administration of CIEE significantly reduced body weight, epididymal white adipose tissue (EWAT), liver weight and serum levels of total cholesterol and triglyceride (P<0.05). In addition, CIEE reduced serum leptin and increased adiponectin levels. CIEE significantly downregulated peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein-α and fatty acid synthase expression levels in EWAT, and upregulated the protein expression of PPARα in liver tissue of HFD-fed obese mice (P<0.05). These results suggested that Chrysanthemum indicum L. flowers may be a potentially effective therapeutic agent for obesity and its associated complications.
Collapse
Affiliation(s)
- Ji-Yun Cha
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sarmila Nepali
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hoon-Yeon Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Woo Hwang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sang-Yong Choi
- Wonkwang Pharmaceutical Co., Ltd., Iksan, Jeonbuk 54588, Republic of Korea
| | - Jeong-Mo Yeon
- Wonkwang Pharmaceutical Co., Ltd., Iksan, Jeonbuk 54588, Republic of Korea
| | - Bong-Joon Song
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology and Institute of Medical Sciences, Medical School, Chonbuk National University, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
23
|
Paracampo NENP, Prance GT, Poppi RJ, da Silva JAF. Chemotaxonomic study ofChrysobalanus icacoLinnaeus (Chrysobalanaceae) using ultra-high performance liquid chromatography coupled with diode array detection fingerprint in combination with multivariate analysis. J Sep Sci 2017; 40:2161-2169. [DOI: 10.1002/jssc.201601444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Ronei Jesus Poppi
- Chemistry Institute; State University of Campinas; Campinas SP Brazil
| | | |
Collapse
|
24
|
Silva JPB, Peres ARMN, Paixão TP, Silva ASB, Baetas AC, Barbosa WLR, Monteiro MC, Andrade MA. Antifungal Activity of Hydroalcoholic Extract of Chrysobalanus icaco Against Oral Clinical Isolates of Candida Species. Pharmacognosy Res 2017; 9:96-100. [PMID: 28250661 PMCID: PMC5330111 DOI: 10.4103/0974-8490.199772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Chrysobalanus icaco is a medicinal plant commonly used to treat fungal infections in Brazilian Amazonian region. Objective: This work aimed to evaluate the antifungal activity of the hydroalcoholic extract of C. icaco (HECi) against oral clinical isolates of Candida spp. and to determine the pharmacognostic parameters of the herbal drug and the phytochemical characteristics of HECi. Materials and Methods: The pharmacognostic characterization was performed using pharmacopoeial techniques. Phytochemical screening, total flavonoid content, and high-performance liquid chromatography (HPLC) analysis were used to investigate the chemical composition of the HECi. A broth microdilution method was used to determine the antifungal activity of the extract against 11 oral clinical isolates of Candida spp. Results: Herbal drug presented parameters which were within the limits set forth in current Brazilian legislation. A high amount of flavonoid content (132,959.33 ± 12,598.23 μg quercetin equivalent/g of extract) was found in HECi. Flavonoids such as myricetin and rutin were detected in the extract by HPLC analyses. HECi showed antifungal activity against oral isolates of Candida albicans and Candida parapsilosis (minimum inhibitory concentrations [MIC] 3.12 and 6.25 mg/mL, respectively), and C. albicans American American Type Culture Collection (MIC <1.56 mg/mL). Conclusion: HECi was shown to possess antifungal activity against Candida species with clinical importance in the development of oral candidiasis, and these activities may be related to its chemical composition. The antifungal activity detected for C. icaco against Candida species with clinical importance in the development of oral candidiasis can be attributed to the presence of flavonoids in HECi, characterized by chromatographic and spectroscopic techniques. SUMMARY Chrysobalanus icaco presents a high amount of flavonoids in its constitution LC analysis was able to identify the flavonoids myricetin and rutin in C. icaco hydroalcoholic extract The C. icaco hydroalcoholic extract inhibits the growth of oral clinical isolates of Candida spp. and Candida albicans American Type Culture Collection.
Abbreviations Used: HECi: Hydroalcoholic extract of C. icaco; HPLC: High performance liquid chromatography; AlCl3: Aluminum chloride; DMSO: Dimethyl sulfoxide; CH3NOONa: Sodium acetate; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ATCC: American Type Culture Collection; EMBRAPA: Brazilian Agricultural Research Corporation – Eastern Amazon; v/v: Volume per volume; SD: Standard deviation; TFC: Total flavonoid content; w/v: Weight per volume; ELSD: Evaporative light scattering detector; DAD: Diode-arrange detector; UFPA: Federal University of Pará; IEC: Evandro Chagas Institute; INCQS-FIOCRUZ: National Institute of Quality Control in Health – Fundação Oswaldo Cruz; SDA: Sabouraud Dextrose Agar; CFU: Colony-forming units; MIC: Minimum inhibitory concentrations; MFC: Minimum fungicidal concentrations
Collapse
Affiliation(s)
- João Paulo Bastos Silva
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ana Regina Maués Noronha Peres
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Thiago Portal Paixão
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Andressa Santa Brígida Silva
- Pharmaceutical Innovation Graduate Program, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Ana Cristina Baetas
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Wagner Luiz Ramos Barbosa
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil; Pharmaceutical Innovation Graduate Program, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marcieni Ataíde Andrade
- Graduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
25
|
Araújo-Filho HG, Dias JDS, Quintans-Júnior LJ, Santos MRV, White PAS, Barreto RSS, Barreto AS, Estevam CS, Araujo SS, Almeida JRGS, Menezes IRA, Coutinho HDM, Quintans JSS. Phytochemical screening and analgesic profile of the lyophilized aqueous extract obtained from Chrysobalanus icaco leaves in experimental protocols. PHARMACEUTICAL BIOLOGY 2016; 54:3055-3062. [PMID: 27892848 DOI: 10.1080/13880209.2016.1204618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Chrysobalanus icaco L. (Chrysobalanaceae) has been used for the treatment of abdominal pain and cramps. OBJECTIVE Assess the chemical and pharmacological profile of the lyophilized aqueous extract from C. icaco leaves (AEC). MATERIALS AND METHODS Chromatographic methods were used to assess compounds from AEC. Mice were treated with vehicle (control group) or AEC (100, 200 or 400 mg/kg, p.o.) (group with 7-8 mice) and the analgesic profile was assessed employing the acetic acid-induced writhing, formalin, hot plate tests and hyperalgesia induced by carrageenan (CG) or tumour necrosis factor-alpha. The animal motor performance was assessed using rota-rod and grip strength tests. RESULTS The chromatographic profile of AEC demonstrated the presence of terpenoid compounds. The acute pretreatment with AEC, at all doses, produced a significant (p < 0.01) inhibition of painful bahaviour (11.4 ± 3.6; 10.3 ± 2.8; 11.3 ± 2.2) when compared to the control group (24.7 ± 4.7) in acetic acid-induced writhing test. In the formalin test, AEC were effective in the second phase (p < 0.01) (57.2 ± 10.3; 56.3 ± 9.2; 54.7 ± 8.9) when compared to control group (121.9 ± 18.5). No response was observed in the hot plate test. The higher dose of AEC produced a significant (p < 0.01 or p < 0.05) inhibitory effect on the mechanical hyperalgesia test. AEC did not affect the motor performance of the mice. DISCUSSION The terpenoids from AEC are known for its analgesic and anti-inflammatory properties. So, these results corroborate the experiments using the AEC in inflammatory pain protocols. CONCLUSION Our results suggest that AEC act against inflammatory pain.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | | | | | - Márcio R V Santos
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - Pollyanna A S White
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - Rosana S S Barreto
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - André S Barreto
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - Charles S Estevam
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - Silvan S Araujo
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| | - Jackson R G S Almeida
- b Department of Pharmaceutical Sciences , Federal University of Vale do São Francisco , Petrolina , PE , Brazil
| | - Irwin R A Menezes
- c Department of Biological Chemistry , Regional University of Cariri , Crato , CE , Brazil
| | - Henrique D M Coutinho
- c Department of Biological Chemistry , Regional University of Cariri , Crato , CE , Brazil
| | - Jullyana S S Quintans
- a Department of Physiology , Federal University of Sergipe , São Cristóvão , SE , Brazil
| |
Collapse
|