1
|
Xie Y, Wang J, Wang S, He R, Wang Z, Zhao L, Ge W. Preparation, characterization, and mechanism of DPP-IV inhibitory peptides derived from Bactrian camel milk. Int J Biol Macromol 2024; 277:134232. [PMID: 39098667 DOI: 10.1016/j.ijbiomac.2024.134232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
In this study, double enzyme hydrolysis significantly enhanced the DPP-IV inhibition rate compared to single enzyme. The α + K enzymes exhibited the highest inhibition rate. Ultrasonic pretreatment for 30 min improved the hydrolysis efficiency and DPP-IV inhibition rate, potentially due to the structural changes in hydrolysates, such as the increased surface hydrophobicity, and reduced particle size, α-helix and β-turn. Six peptides were screened and verified in vitro. QPY, WPEYL, and YPPQVM displayed competitive inhibition, while LPAAP and IPAPSFPRL displayed mixed competitive/non-competitive inhibition. The interactions between these six peptides and DPP-IV primarily occurred through hydrogen bonds, electrostatic and hydrophobic interactions. Network pharmacological analysis indicated that LPAAP might inhibit DPP-IV activity trough interactions with diabetes-related targets such as CASP3, HSP90AA1, MMP9, and MMP9. These results uncover the potential mechanism of regulating blood glucose by camel milk hydrolysates, establishing camel milk peptide as a source of DPP-IV inhibitory peptide.
Collapse
Affiliation(s)
- Yuxia Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangshuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
He B, Lian Y, Xue H, Zhou Y, Wei Y, Ma J, Tan Y, Wu Y. DPP-IV Inhibitory Peptide against In Vitro Gastrointestinal Digestion Derived from Goat's Milk Protein and Its Activity Enhancement via Amino Acid Substitution. Foods 2024; 13:2721. [PMID: 39272487 PMCID: PMC11395612 DOI: 10.3390/foods13172721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Goat milk protein can release a variety of bioactive peptides after digestion, while most of them are digested into free amino acids or dipeptides via the GI tract. We investigated the peptide profiles of goat milk protein following in vitro gastrointestinal digestion using LC-MS/MS and identified 683 bioactive peptides, including 105 DPP-IV inhibitory peptides. Among these peptides, ILDKVGINY (IL), derived from β-lactoglobulin, was found to be high in content and resistance to digestion. Herein, we explore the effect of amino acid residue substitution at the second N-terminus on its DPP-IV inhibitory activity. Three 9 polypeptide fragments (peptide IL, IP, and II) were synthesized and subjected to molecular docking and activity analysis. The peptide IL demonstrated the highest affinity for DPP-IV with a binding energy of -8.4 kcal/mol and a moderate IC50 value of 1.431 mg/mL determined based on the Caco-2 cell model. The replacement of specific amino acid residues by Pro and Leu led to an increase in the hydrophobic force interaction between the inhibitor peptide and DPP-IV. The inhibition rates of the three peptides were significantly different (p < 0.05). Peptide II containing an Ile residue instead of Leu resulted in a significant enhancement of DPP-IV inhibitory activity, with an IC50 value of 0.577 mg/mL. The GRAVY changes in the three peptides were consistent with the trend of the inhibitory rates. Therefore, the GRAVY of peptides and branch-chain amino acids should be considered in its activity improvement. The present study revealed the presence and activity of DPP-IV inhibitory peptides in goat milk, providing important insights for further investigation of their potential food functionality and health benefits.
Collapse
Affiliation(s)
- Baoyuan He
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanhui Lian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haiyan Xue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yi Wei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jun Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yalin Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yawen Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Chen Z, Su X, Cao W, Tan M, Zhu G, Gao J, Zhou L. The Discovery and Characterization of a Potent DPP-IV Inhibitory Peptide from Oysters for the Treatment of Type 2 Diabetes Based on Computational and Experimental Studies. Mar Drugs 2024; 22:361. [PMID: 39195477 PMCID: PMC11355449 DOI: 10.3390/md22080361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) is a promising approach for regulating the blood glucose levels in patients with type 2 diabetes (T2D). Oysters, rich in functional peptides, contain peptides capable of inhibiting DPP-IV activity. This study aims to identify the hypoglycemic peptides from oysters and investigate their potential anti-T2D targets and mechanisms. This research utilized virtual screening for the peptide selection, followed by in vitro DPP-IV activity assays to validate the chosen peptide. Network pharmacology was employed to identify the potential targets, GO terms, and KEGG pathways. Molecular docking and molecular dynamics simulations were used to provide virtual confirmation. The virtual screening identified LRGFGNPPT as the most promising peptide among the screened oyster peptides. The in vitro studies confirmed its inhibitory effect on DPP-IV activity. Network pharmacology revealed that LRGFGNPPT exerts an anti-T2D effect through multiple targets and signaling pathways. The key hub targets are AKT1, ACE, and REN. Additionally, the molecular docking results showed that LRGFGNPPT exhibited a strong binding affinity with targets like AKT1, ACE, and REN, which was further confirmed by the molecular dynamics simulations showcasing a stable peptide-target interaction. This study highlights the potential of LRGFGNPPT as a natural anti-T2D peptide, providing valuable insights for potential future pharmaceutical or dietary interventions in T2D management.
Collapse
Affiliation(s)
- Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaojie Su
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Guoping Zhu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jialong Gao
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Longjian Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; (Z.C.); (X.S.); (W.C.); (M.T.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.Z.); (J.G.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Hu YY, Xiao S, Zhou GC, Chen X, Wang B, Wang JH. Bioactive peptides in dry-cured ham: A comprehensive review of preparation methods, metabolic stability, safety, health benefits, and regulatory frameworks. Food Res Int 2024; 186:114367. [PMID: 38729727 DOI: 10.1016/j.foodres.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.
Collapse
Affiliation(s)
- Yao-Yao Hu
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Xiao
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Gui-Cheng Zhou
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Chen
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Bo Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| | - Ji-Hui Wang
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523808, China; College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; Regional Brand Innovation & Development Institute of Dongguan Prepared Dishes
| |
Collapse
|
5
|
Geraldi MV, de Souza ÁC, Norde MM, Berni PR, Reguengo LM, Geloneze B, Marostica MR. Jaboticaba peel improves postprandial glucose and inflammation: A randomized controlled trial in adults with metabolic syndrome. Nutr Res 2024; 125:36-49. [PMID: 38493538 DOI: 10.1016/j.nutres.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
The modulation of glucose metabolism through dietary sources has been recognized as 1 of the most sustainable approaches for preventing of cardiometabolic diseases. Although fibers and phenolic compounds derived from jaboticaba (Plinia jaboticaba) peel have demonstrated improvements in metabolic pathways in preclinical models, their beneficial effects in clinical trials remain to be fully determined. This study aimed to assess the impact of jaboticaba peel (JP) powder supplementation on glucose metabolism compared with a placebo in individuals with metabolic syndrome (MetS). A single-blind, parallel, randomized, placebo-controlled trial involving 49 individuals with MetS was conducted. Participants were assigned to receive either a JP supplement (15 g/day) or a matched placebo. Anthropometry measurements, body composition, blood pressure, metabolic and inflammatory parameters, and a mixed-meal tolerance test were assessed at weeks 0 and 5. Daily intake of JP improved the area under the curve of glucose (P = .025) and the interleukin-6 (IL-6) (P = .045). No significant time × treatment effects were observed for blood pressure, body weight, body composition, lipid metabolism, glucagon-like peptide-1, inflammatory cytokines (tumor necrosis factor-α, IL-1β), C-reactive protein, and insulin sensitivity and resistance indexes. JP supplementation may be a promising approach for managing MetS disorders, potentially by reducing the area under the curve for glucose and the proinflammatory cytokine IL-6. This research is registered at the Brazilian Registry of Clinical Trials (RBR-8wwq9t).
Collapse
Affiliation(s)
- Marina Vilar Geraldi
- Food Science and Nutrition Department, School of Food Engineering, The State University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Ágatta Caroline de Souza
- Food Science and Nutrition Department, School of Food Engineering, The State University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| | - Marina Maintinguer Norde
- Obesity and Comorbidities Research Center, State University of Campinas - UNICAMP, Campinas, Brazil
| | - Paulo Roberto Berni
- Food Science and Nutrition Department, School of Food Engineering, The State University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| | - Lívia Mateus Reguengo
- Food Science and Nutrition Department, School of Food Engineering, The State University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation on Metabolism and Diabetes, Gastrocentro, University of Campinas, 13083-878, Campinas, São Paulo, Brazil
| | - Mario Roberto Marostica
- Food Science and Nutrition Department, School of Food Engineering, The State University of Campinas, 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Wu Y, Zhang J, Zhu R, Zhang H, Li D, Li H, Tang H, Chen L, Peng X, Xu X, Zhao K. Mechanistic Study of Novel Dipeptidyl Peptidase IV Inhibitory Peptides from Goat's Milk Based on Peptidomics and In Silico Analysis. Foods 2024; 13:1194. [PMID: 38672866 PMCID: PMC11049645 DOI: 10.3390/foods13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Two novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (YPF and LLLP) were discovered from goat milk protein by peptidomics, in silico analysis, and in vitro assessment. A total of 698 peptides (<23 AA) were successfully identified by LC-MS/MS from goat milk hydrolysates (hydrolyzed by papaian plus proteinase K). Then, 105 potential DPP-IV inhibitory peptides were screened using PeptideRanker, the ToxinPred tool, Libdock, iDPPIV-SCM, and sequence characteristics. After ADME, physicochemical property evaluation, and a literature search, 12 candidates were efficiently selected and synthesized in vitro for functional validation. Two peptides (YPF and LLLP) were found to exert relatively high in vitro chemical system (IC50 = 368.54 ± 12.97 μM and 213.99 ± 0.64 μM) and in situ (IC50 = 159.46 ± 17.40 μM and 154.96 ± 8.41 μM) DPP-IV inhibitory capacities, and their inhibitory mechanisms were further explored by molecular docking. Our study showed that the formation of strong non-bonding interactions with the core residues from the pocket of DPP-IV (such as ARG358, PHE357, GLU205, TYR662, TYR547, and TYR666) might primarily account for the DPP-IV inhibitory activity of two identified peptides. Overall, the two novel DPP-IV inhibitory peptides rapidly identified in this study can be used as functional food ingredients for the control of diabetes.
Collapse
Affiliation(s)
- Yulong Wu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Ruikai Zhu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Hong Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710062, China
| | - Dapeng Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai 264005, China;
| | - Xianrong Xu
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (Y.W.); (R.Z.)
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.Z.); (H.Z.); (D.L.); (H.L.); (H.T.); (L.C.)
| |
Collapse
|
7
|
Bjerknes C, Wubshet SG, Rønning SB, Afseth NK, Currie C, Framroze B, Hermansen E. Glucoregulatory Properties of a Protein Hydrolysate from Atlantic Salmon ( Salmo salar): Preliminary Characterization and Evaluation of DPP-IV Inhibition and Direct Glucose Uptake In Vitro. Mar Drugs 2024; 22:151. [PMID: 38667768 PMCID: PMC11050766 DOI: 10.3390/md22040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).
Collapse
Affiliation(s)
- Christian Bjerknes
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | | | | | | | - Crawford Currie
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Bomi Framroze
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
| | - Erland Hermansen
- Hofseth Biocare ASA, Keiser Wilhelms Gate 24, 6003 Ålesund, Norway; (C.C.); (B.F.); (E.H.)
- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Larsgårdsvegen 2, 6009 Ålesund, Norway
| |
Collapse
|
8
|
Zhao R, Lu S, Li S, Shen H, Wang Y, Gao Y, Shen X, Wang F, Wu J, Liu W, Chen K, Yao X, Li J. Enzymatic Preparation and Processing Properties of DPP-IV Inhibitory Peptides Derived from Wheat Gluten: Effects of Pretreatment Methods and Protease Types. Foods 2024; 13:216. [PMID: 38254517 PMCID: PMC10814021 DOI: 10.3390/foods13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The choice of appropriate proteases and pretreatment methods significantly influences the preparation of bioactive peptides. This study aimed to investigate the effects of different pretreatment methods on the hydrolytic performance of diverse proteases during the production of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides derived from wheat and their foaming and emulsion properties. Dry heating, aqueous heating, and ultrasound treatment were employed as pretreatments for the protein prior to the enzymatic hydrolysis of wheat gluten. FTIR analysis results indicated that all pretreatment methods altered the secondary structure of the protein; however, the effects of dry heating treatment on the secondary structure content were opposite to those of aqueous heating and ultrasound treatment. Nevertheless, all three methods enhanced the protein solubility and surface hydrophobicity. By using pretreated proteins as substrates, five different types of proteases were employed for DPP-IV inhibitory peptide production. The analysis of the DPP-IV inhibitory activity, degree of hydrolysis, and TCA-soluble peptide content revealed that the specific pretreatments had a promoting or inhibiting effect on DPP-IV inhibitory peptide production depending on the protease used. Furthermore, the pretreatment method and the selected type of protease collectively influenced the foaming and emulsifying properties of the prepared peptides.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shaozhen Li
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yang Gao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Wenhui Liu
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Kaixin Chen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jian Li
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
| |
Collapse
|
9
|
López-Pedrouso M, Zaky AA, Lorenzo JM, Camiña M, Franco D. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci 2023; 204:109278. [PMID: 37442015 DOI: 10.1016/j.meatsci.2023.109278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Meat and its by-products offer a rich source of bioactive compounds which have potential applications in both the food and pharmaceutical industries. In this review, we present several extraction methods and report the identification and properties of bioactive peptides. We also examine the challenges and limitations associated with their use in food applications. Enzymatic hydrolysis and fermentation using starts cultures are common methods for generating bioactive peptides from meat proteins. Additionally, natural gastrointestinal digestion can also produce bioactive peptides. However, emerging technologies like high hydrostatic pressure, subcritical extraction and pulsed electric fields can improve hydrolysis and increase the yield of bioactive peptides. Online bioinformatics applications have emerged as an established method for identifying potentially bioactive peptides. These tools reduce the cost and time required for traditional methods of research. Finally, incorporating bioactive peptides into diets for specific purposes such as supporting vulnerable populations like children and the elderly ensures safety and efficacy.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Ahmed A Zaky
- Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mercedes Camiña
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
10
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023:1-21. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
11
|
Wu P, Chen L, Chen M, Chiou BS, Xu F, Liu F, Zhong F. Use of sodium alginate coatings to improve bioavailability of liposomes containing DPP-IV inhibitory collagen peptides. Food Chem 2023; 414:135685. [PMID: 36809726 DOI: 10.1016/j.foodchem.2023.135685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Sodium alginate (SA) was used to coat liposomes containing DPP-IV inhibitory collagen peptides to improve their stability and in vitro absorption for intra-oral delivery. The liposome structure as well as entrapment efficiency and DPP-IV inhibitory activity was characterized. The liposome stability was determined by measuring in vitro release rates and their gastrointestinal stability. Transcellular permeability of liposomes was further tested to characterize their permeability in small intestinal epithelial cells. The results showed that the 0.3% SA coating increased the diameter (166.7 nm to 249.9 nm), absolute value of zeta potential (30.2 mV to 40.1 mV) and entrapment efficiency (61.52% to 70.99%) of liposomes. The SA-coated liposomes containing collagen peptides showed enhanced storage stability within one month, gastrointestinal stability increased by 50% in bioavailability, transcellular permeability increased by 18% in transmission percentage, and in vitro release rates reduced by 34%, compared to uncoated liposomes. SA coating liposomes are promising carriers for transporting hydrophilic molecules, may be beneficial for improving nutrient absorption and can protect bioactive compounds from being inactivated in the gastrointestinal tract.
Collapse
Affiliation(s)
- Peihan Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ling Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, United States
| | - Feifei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Mu X, Wang R, Cheng C, Ma Y, Zhang Y, Lu W. Preparation, structural properties, and in vitro and in vivo activities of peptides against dipeptidyl peptidase IV (DPP-IV) and α-glucosidase: a general review. Crit Rev Food Sci Nutr 2023; 64:9844-9858. [PMID: 37310013 DOI: 10.1080/10408398.2023.2217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetes is one of the fastest-growing and most widespread diseases worldwide. Approximately 90% of diabetic patients have type 2 diabetes. In 2019, there were about 463 million diabetic patients worldwide. Inhibiting the dipeptidyl peptidase IV (DPP-IV) and α-glucosidase activity is an effective strategy for the treatment of type 2 diabetes. Currently, various anti-diabetic bioactive peptides have been isolated and identified. This review summarizes the preparation methods, structure-effect relationships, molecular binding sites, and effectiveness validation of DPP-IV and α-glucosidase inhibitory peptides in cellular and animal models. The analysis of peptides shows that the DPP-IV inhibitory peptides, containing 2-8 amino acids and having proline, leucine, and valine at their N-terminal and C-terminal, are the highly active peptides. The more active α-glucosidase inhibitory peptides contain 2-9 amino acids and have valine, isoleucine, and proline at the N-terminal and proline, alanine, and serine at the C-terminal.
Collapse
Affiliation(s)
- Xinxin Mu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Cuilin Cheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
| | - Ying Ma
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Yingchun Zhang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| | - Weihong Lu
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China
- Zhengzhou Institute, Harbin Institute of Technology, Zhengzhou, China
- Qiongqing Institute, Harbin Institute of Technology, Qiongqing, China
| |
Collapse
|
13
|
In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023; 12:foods12030631. [PMID: 36766167 PMCID: PMC9914741 DOI: 10.3390/foods12030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Almost 65% of the human protein supply in the world originates from plants, with legumes being one of the highest contributors, comprising between 20 and 40% of the protein supply. Bioactive peptides from various food sources including legumes have been reported to show efficacy in modulating starch digestion and glucose absorption. This paper will provide a comprehensive review on recent in vitro studies that have been performed on leguminous antidiabetic peptides, focusing on the α-amylase inhibitor, α-glucosidase inhibitor, and dipeptidyl peptidase-IV (DPP-IV) inhibitor. Variations in legume cultivars and methods affect the release of peptides. Different methods have been used, such as in sample preparation, including fermentation (t, T), germination (t), and pre-cooking; in protein extraction, alkaline extraction, isoelectric precipitation, phosphate buffer extraction, and water extraction; in protein hydrolysis enzyme types and combination, enzyme substrate ratio, pH, and time; and in enzyme inhibitory assays, positive control type and concentration, inhibitor or peptide concentration, and the unit of inhibitory activity. The categorization of the relative scale of inhibitory activities among legume samples becomes difficult because of these method differences. Peptide sequences in samples were identified by means of HPLC/MS. Software and online tools were used in bioactivity prediction and computational modelling. The identification of the types and locations of chemical interactions between the inhibitor peptides and enzymes and the type of enzyme inhibition were achieved through computational modelling and enzyme kinetic studies.
Collapse
|
14
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
15
|
Wang J, Xie Y, Luan Y, Guo T, Xiao S, Zeng X, Zhang S. Identification and dipeptidyl peptidase IV (DPP-IV) inhibitory activity verification of peptides from mouse lymphocytes. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Rodríguez-Arana N, Jiménez-Aliaga K, Intiquilla A, León JA, Flores E, Zavaleta AI, Izaguirre V, Solis-Calero C, Hernández-Ledesma B. Protection against Oxidative Stress and Metabolic Alterations by Synthetic Peptides Derived from Erythrina edulis Seed Protein. Antioxidants (Basel) 2022; 11:2101. [PMID: 36358473 PMCID: PMC9686657 DOI: 10.3390/antiox11112101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/21/2024] Open
Abstract
The ability of multifunctional food-derived peptides to act on different body targets make them promising alternatives in the prevention/management of chronic disorders. The potential of Erythrina edulis (pajuro) protein as a source of multifunctional peptides was proven. Fourteen selected synthetic peptides identified in an alcalase hydrolyzate from pajuro protein showed in vitro antioxidant, anti-hypertensive, anti-diabetic, and/or anti-obesity effects. The radical scavenging properties of the peptides could be responsible for the potent protective effects observed against the oxidative damage caused by FeSO4 in neuroblastoma cells. Moreover, their affinity towards the binding cavity of angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) were predicted by molecular modeling. The results demonstrated that some peptides such as YPSY exhibited promising binding at both enzymes, supporting the role of pajuro protein as a novel ingredient of functional foods or nutraceuticals for prevention/management of oxidative stress, hypertension, and metabolic-alteration-associated chronic diseases.
Collapse
Affiliation(s)
- Nathaly Rodríguez-Arana
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Karim Jiménez-Aliaga
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Arturo Intiquilla
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - José A. León
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Eduardo Flores
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Amparo Iris Zavaleta
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Víctor Izaguirre
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Christian Solis-Calero
- Laboratorio de Biología Molecular, Grupo de Investigación BIOMIAS, Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno N° 1002, Lima 4559, Peru
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
17
|
Wang S, Su G, Fan J, Xiao Z, Zheng L, Zhao M, Wu J. Arginine-Containing Peptides Derived from Walnut Protein Against Cognitive and Memory Impairment in Scopolamine-Induced Zebrafish: Design, Release, and Neuroprotection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11579-11590. [PMID: 36098553 DOI: 10.1021/acs.jafc.2c05104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to investigate the neuroprotective effect of Arg-containing peptides from walnut storage protein sequences in scopolamine-induced zebrafish and further to validate the potential neuroprotection of Arg-containing peptide enriched walnut hydrolysates prepared by in silico hydrolysis and controlled enzymatic release. Results showed that walnut derived Arg-containing peptides with high abundance and great bioactivity predicted by bioinformatics displayed potent neuroprotection in scopolamine-induced zebrafish, and regulation of neurotransmitter level and antioxidant enzyme activity might be the main target for Arg-containing peptides to exert neuroprotection. Notably, Arg-containing peptides (not free arginine) contributed greater neuroprotection, and the positive charge and cell-penetrating properties also affected their neuroprotection. Subsequently, Arg-containing peptides could be released efficiently from walnut protein following hydrolysis by trypsin, pepsin, papain, and thermolysin (bound arginine content: ranging from 110.43 ± 1.58 to 121.82 ± 1.02 mg/g). Among them, trypsin had excellent potential for releasing Arg-containing peptides in silico hydrolysis, and its hydrolysate was confirmed to have neuroprotective capacity, indicating that the combination of in silico hydrolysis and controlled enzymatic release might be an effective approach to obtain Arg-containing neuroprotective peptides.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
| |
Collapse
|
18
|
Munawaroh HSH, Gumilar GG, Berliana JD, Aisyah S, Nuraini VA, Ningrum A, Susanto E, Martha L, Kurniawan I, Hidayati NA, Koyande AK, Show PL. In silico proteolysis and molecular interaction of tilapia (Oreochromis niloticus) skin collagen-derived peptides for environmental remediation. ENVIRONMENTAL RESEARCH 2022; 212:113002. [PMID: 35305983 DOI: 10.1016/j.envres.2022.113002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Fish skin collagen hydrolyzate has demonstrated the potent inhibition of dipeptidyl peptidase-IV (DPP-IV), one of the treatments for type-2 diabetes mellitus (type-2 DM), but the precise mechanism is still unclear. This study used in silico method to evaluate the potential of the active peptides from tilapia skin collagen (Oreochromis niloticus) for DPP-IV inhibitor. The methodology includes collagen hydrolysis using BIOPEP, which is the database of bioactive peptides; active peptide selection; toxicity, allergenicity, sensory analysis of active peptides; and binding of active peptides to DPP-IV compared with linagliptin. The result indicated that in silico enzymatic hydrolysis of collagen produced active peptides with better prediction of biological activity than intact collagen. There are 13 active peptides were predicted as non-toxic and non-allergenic, some of which have a bitter, salty, and undetectable taste. Docking simulations showed all active peptides interacted with DPP-IV through hydrogen bonds, van der Waals force, hydrophobic interaction, electrostatic force, π-sulfur, and unfavorable interaction, where WF (Trp-Phe), VW (Val-Trp), WY (Trp-Tyr), and WG (Trp-Gly) displayed higher binding affinities of 0.8; 0.5; 0.4; and 0.3 kcal/mol compared with linagliptin. In this study, we successfully demonstrated antidiabetic type-2 DM potential of the active peptides from tilapia skin collagen. The obtained data provided preliminary data for further research in the utilization of fish skin waste as a functional compound to treat the type-2 DM patients. Alternatively, this treatment can be synergistically combined with the available antidiabetic drugs to improve the insulin secretion of the type-2 DM patients.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Gun Gun Gumilar
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Jerlita Dea Berliana
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Siti Aisyah
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Vidia Afina Nuraini
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Andriati Ningrum
- Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, 5528, Indonesia
| | - Eko Susanto
- Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang, Semarang, 50275, Indonesia
| | - Larasati Martha
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi City, Gunma, 371-8514, Japan
| | - Isman Kurniawan
- School of Computing, Telkom University, Jalan Terusan Buah Batu, Bandung, 40257, Indonesia
| | - Nur Akmalia Hidayati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, Indonesia
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Selangor, Malaysia.
| |
Collapse
|
19
|
Luhovyy BL, Kathirvel P. Food proteins in the regulation of blood glucose control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:181-231. [PMID: 36064293 DOI: 10.1016/bs.afnr.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food proteins, depending on their origin, possess unique characteristics that regulate blood glucose via multiple physiological mechanisms, including the insulinotropic effects of amino acids, the activation of incretins, and slowing gastric emptying rate. The strategies aimed at curbing high blood glucose are important in preventing impaired blood glucose control, including insulin resistance, prediabetes and diabetes. The effect of proteins on blood glucose control can be achieved with high-protein foods short-term, and high-protein diets long-term using foods that are naturally high in protein, such as dairy, meat, soy and pulses, or by formulating high-protein functional food products using protein concentrates and isolates, or blended mixtures of proteins from different sources. Commercial sources of protein powders are represented by proteins and hydrolysates of caseins, whey proteins and their fractions, egg whites, soy, yellow pea and hemp which will be reviewed in this chapter. The effective doses of food protein that are capable of reducing postprandial glycemia start from 7 to 10g and higher per serving; however, the origin of protein, and macronutrient composition of a meal will determine the magnitude and duration of their effect on glycemia. The theoretical and methodological framework to evaluate the effect of foods, including food proteins, on postprandial glycemia for substantiation of health claims on food has been proposed in Canada and is discussed in the context of global efforts to harmonize the international food regulation and labeling.
Collapse
Affiliation(s)
- Bohdan L Luhovyy
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada.
| | - Priya Kathirvel
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
20
|
Liao HJ, Tzen JTC. The Potential Role of Cyclopeptides from Pseudostellaria heterophylla, Linum usitatissimum and Drymaria diandra, and Peptides Derived from Heterophyllin B as Dipeptidyl Peptidase IV Inhibitors for the Treatment of Type 2 Diabetes: An In Silico Study. Metabolites 2022; 12:metabo12050387. [PMID: 35629891 PMCID: PMC9146144 DOI: 10.3390/metabo12050387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors can treat type 2 diabetes by slowing GLP-1 degradation to increase insulin secretion. Studies have reported that Pseudostellaria heterophylla, Linum usita-tissimum (flaxseed), and Drymaria diandra, plants rich in Caryophyllaceae-type cyclopeptides and commonly used as herbal or dietary supplements, are effective in controlling blood sugar. The active site of DPP4 is in a cavity large enough to accommodate their cyclopeptides. Molecular modeling by AutoDock Vina reveals that certain cyclopeptides in these plants have the potential for DPP4 inhibition. In particular, “Heterophyllin B” from P. heterophylla, “Cyclolinopeptide C” from flaxseed, and “Diandrine C” from D. diandra, with binding affinities of −10.4, −10.0, and −10.7 kcal/mol, are promising. Docking suggests that DPP4 inhibition may be one of the reasons why these three plants are beneficial for lowering blood sugar. Because many protein hydrolysates have shown the effect of DPP4 inhibition, a series of peptides derived from Heterophyllin B precursor “IFGGLPPP” were included in the study. It was observed that IFWPPP (−10.5 kcal/mol), IFGGWPPP (−11.4 kcal/mol), and IFGWPPP (−12.0 kcal/mol) showed good binding affinity and interaction for DPP4. Various IFGGLPPP derivatives have the potential to serve as scaffolds for the design of novel DPP4 inhibitors.
Collapse
|
21
|
Maleki S, Razavi SH, Yadav H. Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Crit Rev Food Sci Nutr 2022; 63:8457-8477. [PMID: 35442121 DOI: 10.1080/10408398.2022.2063793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes (T2D) is a complex and heterogeneous chronic metabolic disorder disease that is associated with high blood sugar. Because of the side effects of synthetic drugs on T2D patients and their economic burden, interest in plant-derived functional foods like grains with biological activities has developed. Based on scientific reports, whole grains are rich sources of energy, nutrients, and bioactive compounds and are assumed to have beneficial health effects on glucose enzymes regulation or hyperglycemia. Nowadays, different methods have been applied to enhance whole seed healthful properties and anti-diabetic compounds, and germination is one of them. Germination (sprouting) is a cost-effective method for boosting the activity of endogenous seed enzymes and modifying the structure of macromolecules. Some of these macromolecules like bioactive peptides, polyphenols, dietary fiber, and vitamins are related to diabetes management. Determining the best germination condition can help to promote these anti-diabetics properties of compounds. This study presents relevant information about diabetes, the effect of seed germination on releasing bioactive compounds, and optimizing environmental germination conditions to improve the anti-diabetic compounds in seeds for reaching functional food.
Collapse
Affiliation(s)
- Sima Maleki
- Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering and Natural Resources, University of Tehran, Karaj, Iran
| | - Seyed Hadi Razavi
- Department of Food Science, Engineering and Technology, Faculty of Agriculture Engineering and Natural Resources, University of Tehran, Karaj, Iran
| | - Hariom Yadav
- Center for Diabetes, Obesity, and Metabolism, Department of Internal Medicine-Molecular Medicine and Department of Microbiology and Immunology, Wake Forest School of Medicine, NC, USA
| |
Collapse
|
22
|
You H, Zhang Y, Wu T, Li J, Wang L, Yu Z, Liu J, Liu X, Ding L. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Jahandideh F, Bourque SL, Wu J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem X 2022; 13:100222. [PMID: 35498998 PMCID: PMC9039931 DOI: 10.1016/j.fochx.2022.100222] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/03/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with antidiabetic properties. Notable examples include AGFAGDDAPR, a black tea-derived peptide, VRIRLLQRFNKRS, a β-conglycinin-derived peptide, and milk-derived peptide VPP, which have shown antidiabetic effects in diabetic rodent models through variety of pathways including improving beta-cells function, suppression of alpha-cells proliferation, inhibiting food intake, increasing portal cholecystokinin concentration, enhancing insulin signaling and glucose uptake, and ameliorating adipose tissue inflammation. Despite the immense research on glucoregulatory properties of bioactive peptides, incorporation of these bioactive peptides in functional foods or nutraceuticals is widely limited due to the existence of several challenges in the field of peptide research and commercialization. Ongoing research in this field, however, is fundamental to pave the road for this purpose.
Collapse
Key Words
- AMPK, AMP-activated protein kinase
- Akt, Protein kinase B
- Bioactive peptides
- C/EBP-α, CCAAT/ enhancer binding protein alpha
- CCK, Cholecystokinin
- CCK-1R, CCK type 1 receptor
- DPP-IV, Dipeptidyl peptidase IV
- Diabetes mellitus
- ERK1/2, Extracellular signal regulated kinase 1/2
- GIP, Glucose-dependent insulinotropic polypeptide
- GLP-1, Glucagon-like peptide 1
- GLUT, Glucose transporter
- Glucose homeostasis
- IRS-1, Insulin receptor substrate-1
- Insulin resistance
- MAPK, Mitogen activated protein kinase
- PI3K, Phosphatidylinositol 3-kinase
- PPARγ, Peroxisome proliferator associated receptor gamma
- Reproductive dysfunction
- TZD, Thiazolidinedione
- cGMP, cyclic guanosine-monophosphate
Collapse
Affiliation(s)
- Forough Jahandideh
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.,Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jianping Wu
- Cardiovascular Research Centre, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
24
|
Iram D, Sansi MS, Zanab S, Vij S, Ashutosh, Meena S. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins-a molecular docking study. J Food Biochem 2022; 46:e14137. [PMID: 35352361 DOI: 10.1111/jfbc.14137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
An in silico approach was used for hydrolysis of sheep milk proteins (α-s1, α-s2, β-casein, κ-Cn, α-lactalbumin, and β-lactoglobulin) by gastrointestinal enzymes in order to generate bioactive peptides (BAPs) that can inhibit ACE and DPP-IV. Sheep milk proteins showed higher similarity with goat milk proteins. These data were acquired via the Clustal Omega tool to perform sequence alignment analysis. The BIOPEP-UWM database was used to examine the ability of sheep milk protein sequences to generate BAPs, which included a description of their potential bioactivity as well as the frequency of fragments with specified activities. Using the "Enzyme(s) action" tool (BIOPEP-UWM), digestive enzymes pepsin, trypsin, and chymotrypsin, and three enzyme combinations were selected to computationally hydrolyze milk proteins for obtaining information about ACE and DPP-IV inhibitory peptides. Other online programs were used to test potential peptides for bioactivity, toxicity, and physicochemical properties. BAPs produced from PTC-hydrolyzed proteins were analyzed using a peptide ranker, and their inhibitory effects on ACE and DPP-IV were determined using molecular docking. Consequently, the results of molecular docking analysis show that the peptide PSGAW (αS1-Cn f155-159) binds to DPP-IV with binding energy (-8.9 kcal/mol). But in the case of ACE, two potential BAPs were selected: QPPQPL (β-Cn f161-166) and PSGAW. These two BAPs revealed a higher binding affinity for ACE with a binding energy of -9.8 kcal/mol. Thus, the results showed that sheep milk proteins were a promising source of antidiabetic and hypotensive peptides. However, experimental and pre-clinical studies are necessary to assay their therapeutic effects. PRACTICAL APPLICATIONS: Sheep milk proteins are known as a high-quality milk protein resource. Effective enzymatic hydrolysis of sheep milk proteins can release bioactive peptides and also release potential ACE and DPP-IV inhibitory peptides. This in silico study specifies a theoretical root for sheep milk proteins as a novel source of potential bioactive peptides and may offer guidance for invitro hydrolysis of proteins for the production of bioactive peptides valuable for human consumption.
Collapse
Affiliation(s)
- Daraksha Iram
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Ashutosh
- Animal Physiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sunita Meena
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
25
|
López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022; 27:1343. [PMID: 35209132 PMCID: PMC8878547 DOI: 10.3390/molecules27041343] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life-bacteria, fungi, plants, amphibians, insects, birds and mammals-and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.
Collapse
Affiliation(s)
- Guadalupe López-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Octavio Dublan-García
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| | - Daniel Arizmendi-Cotero
- Department of Industrial Engineering, Engineering Faculty, Campus Toluca, Universidad Tecnológica de México (UNITEC), Estado de México, Toluca 50160, Mexico;
| | - Leobardo Manuel Gómez Oliván
- Food and Environmental Toxicology Laboratory, Chemistry Faculty, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col. Residencial Colón, Toluca 50120, Mexico; (G.L.-G.); (L.M.G.O.)
| |
Collapse
|
26
|
Kęska P, Stadnik J. Dipeptidyl Peptidase IV Inhibitory Peptides Generated in Dry-Cured Pork Loin during Aging and Gastrointestinal Digestion. Nutrients 2022; 14:nu14040770. [PMID: 35215420 PMCID: PMC8878428 DOI: 10.3390/nu14040770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
The ability of peptides from an aqueous and salt-soluble protein extract of dry-cured pork loins to inhibit the action of dipeptidyl peptidase IV was determined. This activity was assessed at different times of the production process, i.e., 28, 90, 180, 270 and 360 days. The resistance of the biological property during the simulated digestive process was also assessed. For this, the extracts were hydrolyzed with pepsin and pancreatin as a simulated digestion step of the gastrointestinal tract and fractionated (>7 kDa) as an intestinal absorption step. The results indicate that dried-pork-loin peptides may have potential as functional food ingredients in the prevention and treatment of type 2 diabetes mellitus. In particular, the APPPPAEV, APPPPAEVH, KLPPLPL, RLPLLP, VATPPPPPPK, VPIPVPLPM and VPLPVPVPI sequences show promise as natural food compounds helpful in maintaining good health.
Collapse
|
27
|
How Healthy Are Non-Traditional Dietary Proteins? The Effect of Diverse Protein Foods on Biomarkers of Human Health. Foods 2022; 11:foods11040528. [PMID: 35206005 PMCID: PMC8871094 DOI: 10.3390/foods11040528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Future food security for healthy populations requires the development of safe, sustainably-produced protein foods to complement traditional dietary protein sources. To meet this need, a broad range of non-traditional protein foods are under active investigation. The aim of this review was to evaluate their potential effects on human health and to identify knowledge gaps, potential risks, and research opportunities. Non-traditional protein sources included are algae, cereals/grains, fresh fruit and vegetables, insects, mycoprotein, nuts, oil seeds, and legumes. Human, animal, and in vitro data suggest that non-traditional protein foods have compelling beneficial effects on human health, complementing traditional proteins (meat/poultry, soy, eggs, dairy). Improvements in cardiovascular health, lipid metabolism, muscle synthesis, and glycaemic control were the most frequently reported improvements in health-related endpoints. The mechanisms of benefit may arise from their diverse range of minerals, macro- and micronutrients, dietary fibre, and bioactive factors. Many were also reported to have anti-inflammatory, antihypertensive, and antioxidant activity. Across all protein sources examined, there is a strong need for quality human data from randomized controlled intervention studies. Opportunity lies in further understanding the potential effects of non-traditional proteins on the gut microbiome, immunity, inflammatory conditions, DNA damage, cognition, and cellular ageing. Safety, sustainability, and evidence-based health research will be vital to the development of high-quality complementary protein foods that enhance human health at all life stages.
Collapse
|
28
|
JI W, ZHANG C, SONG C, JI H. Three DPP-IV inhibitory peptides from Antarctic krill protein hydrolysate improve glucose levels in the zebrafish model of diabetes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.58920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei JI
- Guangdong University of Education, China
| | - Chaohua ZHANG
- Guangdong Ocean University, China; Guangdong Ocean University, China
| | - Cai SONG
- Guangdong Ocean University, China
| | - Hongwu JI
- Guangdong Ocean University, China; Guangdong Ocean University, China
| |
Collapse
|
29
|
Mirzapour-Kouhdasht A, Lee CW, Yun H, Eun JB. Structure-function relationship of fermented skate skin gelatin-derived bioactive peptides: a peptidomics approach. Food Sci Biotechnol 2021; 30:1685-1693. [PMID: 34925943 DOI: 10.1007/s10068-021-00998-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the multi-functionality of bioactive peptides derived from fermented skate (Raja kenojei) skin gelatin hydrolysates. The extracted gelatin was hydrolyzed using a combination of food grade subtilisin and actinidin. The hydrolysates were then fractionated via ultrafiltration, and the fractions with the highest dipeptidyl peptidase-IV (DPP-IV) inhibitory, angiotensin-converting enzyme (ACE) inhibitory, and antibacterial proprieties were further purified via ion exchange, solid phase extraction, and reverse phase high performance liquid chromatography. Analysis of the obtained extract revealed a direct relationship between hydrolysis time, degree of hydrolysis, and biological activities. The peptides GRPGNRGE (P1) and AKDYEVDAT (P2), with a molecular weight of 841.42 and 1010.46 Da, respectively, were identified through tandem mass spectrometry. P1 had a lower ACE and DPP-IV inhibitory activity, with a half maximal inhibitory concentration [IC50] of 0.74 and 0.69 mg.mL-1, respectively, than P2 (0.52 and 0.58 mg.mL-1, respectively). Antibacterial analysis showed similar results, with a minimum inhibitory concentration of 0.52 and 0.46 mg.mL-1 against Staphylococcus aureus (highest activity) and 1.75 and 1.44 mg.mL-1 against Klebsiella pneumonia (lowest activity) for P1 and P2, respectively. Overall, this study revealed two fish gelatin-derived multifunctional peptides, exhibiting ACE inhibitory, DPP-IV inhibitory, and antibacterial activities, as natural nutraceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00998-6.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea.,School of Agriculture and Food Science, University College Dublin, Belfield 4 Dublin, Ireland
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186 South Korea
| | - Jong-Bang Eun
- Department of Food Science and Biotechnology, Graduate School of Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
30
|
Bioactivities of In Vitro Transepithelial Transported Peptides from Cooked Chicken Breast. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Geraldi MV, Cazarin CBB, Cristianini M, Vasques AC, Geloneze B, Maróstica Júnior MR. Jabuticaba juice improves postprandial glucagon-like peptide-1 and antioxidant status in healthy adults: a randomized crossover trial. Br J Nutr 2021; 128:1-29. [PMID: 34776021 DOI: 10.1017/s0007114521004530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Jabuticaba is a Brazilian berry rich in polyphenols, which may exert beneficial effects on metabolic diseases. This randomized crossover study aimed to determine the effects of jabuticaba juice (250 ml in a portion) on postprandial response. Sixteen healthy subjects (11 women; 5 men; 28.4 ± 3.8 years old; body mass index (BMI) 21.7 ± 2.3 kg m-2) consumed two test products after fasting overnight in a randomized controlled crossover design. Each test product portion had a similar composition of sugar components: 250 mL water with glucose, fructose, colored with artificial non-caloric food colorings (placebo); and 250 mL of jabuticaba juice. Beverages were administered immediately before a carbohydrate meal. Blood samples were collected at 0, 15, 30, 45, 60, 90, and 120 min after each test product to analyze the concentrations of glucose, insulin, C-peptide, antioxidant capacity, plasma glucagon-like peptide-1 (GLP-1), and appetite sensations. Compared to the placebo, the intake of jabuticaba juice resulted in a higher GLP-1 response as the area under the curve (AUC) and peaking at 60 min. Jabuticaba juice also resulted in higher antioxidant capacity. Postprandial glucose, insulin, C-peptide levels, and appetite sensations were not significantly different between tests. In conclusion, 250 mL of jabuticaba juice before a carbohydrate meal was able to improve the antioxidant status and GLP-1 concentrations in healthy subjects.
Collapse
Affiliation(s)
- Marina V Geraldi
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato., 80, Campinas, SP, 13083-862, Brazil
| | - Cínthia B B Cazarin
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato., 80, Campinas, SP, 13083-862, Brazil
| | - Marcelo Cristianini
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato., 80, Campinas, SP, 13083-862, Brazil
| | - Ana C Vasques
- Laboratory of Investigation on Metabolism and Diabetes, Gastrocentro, University of Campinas, Rua Carlos Chagas., 420, Campinas, SP, 13083-878, Brazil
| | - Bruno Geloneze
- Laboratory of Investigation on Metabolism and Diabetes, Gastrocentro, University of Campinas, Rua Carlos Chagas., 420, Campinas, SP, 13083-878, Brazil
| | - Mário R Maróstica Júnior
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato., 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
32
|
In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi J Biol Sci 2021; 28:5480-5489. [PMID: 34588858 PMCID: PMC8459155 DOI: 10.1016/j.sjbs.2021.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022] Open
Abstract
Flaxseed (Linum usitatissimum), commonly known as linseed is an oilseed crop, emerging as an important and functional ingredient of food and has been paid more attention due to its nutritional value as well as beneficial effects. It is mainly rich in is α-linolenic acid (ALA, omega-3 fatty acid), fibres and lignans that have potential health benefits in reducing cardiovascular diseases, diabetes, osteoporosis, atherosclerosis, cancer, arthritis, neurological and autoimmune disorders. Due to its richness in omega-3 fatty acid, a group of enzymes known as fatty acid desaturases (FADs) mainly introduce double bonds into fatty acids’ (FAs) hydrocarbon chains that produce unsaturated fatty acids. Fatty acid desaturase 3 (FAD3), the commonest microsomal enzyme of omega-3 fatty acid, synthesizes linolenic acid (C18:3) from linoleic acid located in endoplasmic reticulum (ER) facing towards the cytosol. The emerging field of bioinformatics and large number of databases of bioactive peptides, helps in providing time-saving and efficient method for identification of potential bioactivities of any protein. In this study, 10 unique sequences of FAD3 from flaxseed protein have been used for in silico proteolysis and releasing of various bioactive peptides using three plant proteases, namely ficin, papain and stem bromelain, that are evaluated with the help of BIOPEP database. Overall, 20 biological activities were identified from these proteins. The results showed that FAD3 protein is a potential source of peptides with angiotensin-I-converting enzyme (ACE) inhibitory and dipeptidyl peptidase-IV (DPP-IV) activities, and also various parameters such as ∑A, ∑B, AE, W, BE, V and DHt were also calculated. Furthermore, PeptideRanker have been used for screening of novel promising bioactive peptides. Various bioinformatics tools also used to study protein’s physicochemical properties, peptide’s score, toxicity, allergenicity aggregation, water solubility, and drug likeliness. The present work suggests that flaxseed protein can be a good source of bioactive peptides for the synthesis of good quality and quantity of oil, and in silico method helps in investigating and production of functional peptides.
Collapse
|
33
|
Chen J, Yu X, Chen Q, Wu Q, He Q. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem 2021; 370:131070. [PMID: 34537424 DOI: 10.1016/j.foodchem.2021.131070] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive peptides derived from food proteins have various physiological roles and have attracted increasing attention in recent years. In this study, two novel ACE inhibitory peptides (EACF and CDF), screened from rabbit meat proteins using in silico methods, exhibited strong inhibitory effects in vitro. EACF and CDF were competitive and non-competitive inhibitors with half-maximal inhibitory concentrations of 41.06 ± 0.82 µM and 192.17 ± 2.46 µM, respectively. Molecular docking experiments revealed that EACF established eight H-bond interactions in the S1 and S2 pockets, and a metal-acceptor interaction with Zn 701. CDF shared four H-bond interactions in the S1 pocket of ACE. The results suggested that rabbit meat proteins could be a suitable material for the preparation of ACE inhibitory peptides, and that virtual screening is an effective, accurate and promising method for the discovery of novel active peptides.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyun Wu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
34
|
Borawska-Dziadkiewicz J, Darewicz M, Tarczyńska AS. Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS One 2021; 16:e0255969. [PMID: 34375367 PMCID: PMC8354434 DOI: 10.1371/journal.pone.0255969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Apart from the classical (experimental) methods, biologically active peptides can be studied via bioinformatics approach, also known as in silico analysis. This study aimed to verify the following research hypothesis: ACE inhibitors and antioxidant peptides can be released from salmon and carp proteins during simulated in silico human-like gastrointestinal digestion. The potential to release biopeptides was evaluated using the BIOPEP-UWM quantitative criteria including the profile of biological activity, frequency of the occurrence (A)/release (AE) of fragments with an ACE inhibitory or antioxidant activity by selected enzymes, and relative frequency of release of bioactive fragments with a given activity by selected enzymes (W). Salmon collagen and myofibrillar proteins of carp turned out to be the best potential source of the searched peptides-ACE inhibitors and antioxidant peptides. Nonetheless, after digestion, the highest numbers of ACE inhibitors and antioxidant peptides were potentially released from the myofibrillar proteins of salmon and carp. Peptide Ranker Score, Pepsite2, and ADMETlab platform were applied to evaluate peptides' bioactivity potential, their safety and drug-like properties. Among the 63 sequences obtained after the simulated digestion of salmon and carp proteins, 30 were considered potential biopeptides. The amino acid sequences of ACE-inhibiting and antioxidant peptides were predominated by P, G, F, W, R, and L. The predicted high probability of absorption of most analyzed peptides and their low toxicity should be considered as their advantage.
Collapse
Affiliation(s)
- Justyna Borawska-Dziadkiewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Małgorzata Darewicz
- Faculty of Food Science, Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Sylwia Tarczyńska
- Faculty of Food Science, Department of Dairy Science and Quality Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
35
|
Wang B, Yu Z, Yokoyama W, Chiou BS, Chen M, Liu F, Zhong F. Collagen peptides with DPP-IV inhibitory activity from sheep skin and their stability to in vitro gastrointestinal digestion. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
T. C. S, Ghosh BC. Bio‐functional attributes in Cheddar cheese made from the milk of indigenous and crossbred cows. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Soumyashree T. C.
- Dairy Technology Division ICAR‐National Dairy Research Institute Bengaluru India
| | - Bikash C. Ghosh
- Dairy Technology Division ICAR‐National Dairy Research Institute Bengaluru India
| |
Collapse
|
37
|
Chen M, Pan D, Zhou T, Gao X, Dang Y. Novel Umami Peptide IPIPATKT with Dual Dipeptidyl Peptidase-IV and Angiotensin I-Converting Enzyme Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5463-5470. [PMID: 33949854 DOI: 10.1021/acs.jafc.0c07138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel umami peptide, IPIPATKT, showed excellent dual dipeptidyl peptidase-IV (DPP-IV) and angiotensin I-converting enzyme (ACE) inhibitory activities, the IC50 values were 64 and 265 μM, respectively. Molecular docking displayed that IPIPATKT was docked into the S1 and S2 pockets of ACE, and it was close to the active site pocket of DPP-IV. The insulin-resistant-HepG2 (IR-HepG2) cell model and human umbilical vein endothelial cell (HUVEC) model showed that the peptide significantly increased the content of glucose, the activities of hexokinase, pyruvate kinase, and the concentration of nitric oxide (p < 0.01), while it reduced the content of endothelin-1 (ET-1). IPIPATKT exhibited a hypotensive effect (-23.5 ± 2.2 mmHg) and attenuated the increase in glucose levels in vivo, as demonstrated using spontaneous hypertensive rats (SHRs) and C57BL/6N mice. We reported the in vivo activities of the umami peptide with dual hypertensive and hypoglycemic effects for the first time.
Collapse
Affiliation(s)
- Mengdi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tianqiong Zhou
- Hangzhou Huajin Pharmaceutical Co., Ltd., Hangzhou 310000, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
38
|
Silva do Nascimento E, Anaya K, de Oliveira JMC, de Lacerda JTJG, Miller ME, Dias M, Mendes MA, de Azevedo Lima Pallone J, Weis Arns C, Juliano MA, Santi Gadelha T, Bertoldo Pacheco MT, de Almeida Gadelha CA. Identification of bioactive peptides released from in vitro gastrointestinal digestion of yam proteins (Dioscorea cayennensis). Food Res Int 2021; 143:110286. [PMID: 33992386 DOI: 10.1016/j.foodres.2021.110286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Bioactive peptides have been broadly studied for their contribution to human health. This study aimed to identify bioactive peptides generated by in vitro gastrointestinal digestion of yam proteins. Yam protein concentrate (YPC) was submitted to simulated digestion. Gastric phase hydrolysate (GPH) and total gastrointestinal phase hydrolysate (GIPH) had their peptides identified by nanoLC-ESI-MS/MS. Peptide sequences were subjected to a database-driven (BIOPEP) bioactivity search. In vitro tests included: Antioxidant activity, DNA damage protection, ACE-inhibitory activity and antibacterial activity against the bacteria Escherichia coli, Salmonella sp. and Lysteria monocytogenes. Simulated digestion generated small peptides (mostly MW < 3500 Da), several of them with potential bioactive sequences predicted in silico. In both GPH and GIPH biological activities were detected, although GIPH displayed stronger DNA damage protection and antibacterial activity against Escherichia coli. The digestion of yam proteins releases promising biologically active peptides which can contribute to the prevention of bacterial infection and chronic degenerative diseases, with beneficial effects to human health.
Collapse
Affiliation(s)
- Edilza Silva do Nascimento
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | - Katya Anaya
- Faculty of Health Sciences of Trari, Federal University of Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Julia Mariano Caju de Oliveira
- Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Michael Edward Miller
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | - Meriellen Dias
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | - Maria Anita Mendes
- Department of Chemical Engineering, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Clarice Weis Arns
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
| | | | - Tatiane Santi Gadelha
- Department of Molecular Biology, Laboratory of Genetic Biochemistry and Radiology, Federal University of Paraíba, João Pessoa, PB, Brazil.
| | | | - Carlos Alberto de Almeida Gadelha
- Department of Food Engineering, Post-Graduate Program in Food Science and Technology, Technology Center, Federal University of Paraiba, João Pessoa, PB, Brazil; Department of Molecular Biology, Laboratory of Structural Proteomics, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|
39
|
Rivero-Pino F, Guadix A, Guadix EM. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food Funct 2021; 12:873-880. [PMID: 33410437 DOI: 10.1039/d0fo02696d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The exponential increase in world population is leading to a need for new sustainable protein sources that could supply the high demands without resulting in an enormous environmental impact. Bioactive peptides from food proteins are currently seen as capable of modulating physiological processes, such as diabetes. The potential of insects as a cheap source of antidiabetic peptides is a recent research topic. In this work, fractionation and identification of dipeptidyl peptidase IV (DPP-IV) and α-glucosidase inhibitory peptides from mealworm (Tenebrio molitor) was carried out. Peptides from 500 to 1600 Da showed the highest level of DPP-IV inhibition (IC50 value of 0.91 mg ml-1) and peptides below 500 Da showed the highest level of α-glucosidase inhibition (IC50 value of 2.58 mg ml-1). Numerous novel peptides were identified from the most bioactive fractions, and based on the molecular features usually described for these peptides, some of them are suggested to be the bioactive peptides responsible for the inhibition observed (e.g. APVAH for DPP-IV inhibition and CSR for α-glucosidase inhibition). Hence, these insect protein hydrolysates or their purified fractions could be used as ingredients for regulation of the glycaemic index.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain.
| | | | | |
Collapse
|
40
|
Famuwagun A, Alashi A, Gbadamosi S, Taiwo K, Oyedele J, Adebooye O, Aluko R. In Vitro Characterization of Fluted Pumpkin Leaf Protein Hydrolysates and Ultrafiltration of Peptide Fractions: Antioxidant and Enzyme-Inhibitory Properties. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/130401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Tyagi A, Daliri EBM, Kwami Ofosu F, Yeon SJ, Oh DH. Food-Derived Opioid Peptides in Human Health: A Review. Int J Mol Sci 2020; 21:E8825. [PMID: 33233481 PMCID: PMC7700510 DOI: 10.3390/ijms21228825] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
World Health Organization data suggest that stress, depression, and anxiety have a noticeable prevalence and are becoming some of the most common causes of disability in the Western world. Stress-related disorders are considered to be a challenge for the healthcare system with their great economic and social impact. The knowledge on these conditions is not very clear among many people, as a high proportion of patients do not respond to the currently available medications for targeting the monoaminergic system. In addition, the use of clinical drugs is also associated with various side effects such as vomiting, dizziness, sedation, nausea, constipation, and many more, which prevents their effective use. Therefore, opioid peptides derived from food sources are becoming one of the safe and natural alternatives because of their production from natural sources such as animals and plant proteins. The requirement for screening and considering dietary proteins as a source of bioactive peptides is highlighted to understand their potential roles in stress-related disorders as a part of a diet or as a drug complementing therapeutic prescription. In this review, we discussed current knowledge on opioid endogenous and exogenous peptides concentrating on their production, purification, and related studies. To fully understand their potential in stress-related conditions, either as a drug or as a therapeutic part of a diet prescription, the need to screen more dietary proteins as a source of novel opioid peptides is emphasized.
Collapse
Affiliation(s)
| | | | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (A.T.); (E.B.-M.D.); (F.K.O.); (S.-J.Y.)
| |
Collapse
|
42
|
Sharkey SJ, Harnedy-Rothwell PA, Allsopp PJ, Hollywood LE, FitzGerald RJ, O'Harte FPM. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol Nutr Food Res 2020; 64:e2000403. [PMID: 32939966 DOI: 10.1002/mnfr.202000403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prevalence of type 2 diabetes and overweight/obesity are increasing globally. Food supplementation as a preventative option has become an attractive option in comparison to increased pharmacotherapy dependency. Hydrolysates of fish processing waste and by-products have become particularly interesting in a climate of increased food wastage awareness and are rapidly gaining traction in food research. This review summarizes the available research so far on the potential effect of these hydrolysates on diabetes and appetite suppression. Scopus and Web of Science are searched using eight keywords (fish, hydrolysate, peptides, satiating, insulinotropic, incretin, anti-obesity, DPP-4 [dipeptidylpeptidase-4/IV]) returning a total of 2549 results. Following exclusion criteria (repeated appearances, non-fish marine sources [e.g., macroalgae], and irrelevant bioactivities [e.g., immunomodulatory, anti-thrombotic]), 44 relevant publications are included in this review. Stimulation of hormone secretion, regulation of glucose uptake, anorexigenic potential, identified mechanisms of action, and research conducted on the most potent bioactive peptides identified within these hydrolysates are all specifically addressed. Results of this review conclude that despite wide methodological variation between studies, there is significant potential for the application of fish protein hydrolysates in the management of bodyweight and hyperglycemia.
Collapse
Affiliation(s)
- Shaun J Sharkey
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | | | - Philip J Allsopp
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Lynsey E Hollywood
- Department of Hospitality and Tourism Management, Ulster University Business School, Ulster University, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| | - Richard J FitzGerald
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Finbarr P M O'Harte
- School of Biomedical Sciences, Ulster University, Cromore Road, Co. Derry, Northern Ireland, Coleraine, BT52 1SA, UK
| |
Collapse
|
43
|
Charoenkwan P, Kanthawong S, Nantasenamat C, Hasan MM, Shoombuatong W. iDPPIV-SCM: A Sequence-Based Predictor for Identifying and Analyzing Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides Using a Scoring Card Method. J Proteome Res 2020; 19:4125-4136. [PMID: 32897718 DOI: 10.1021/acs.jproteome.0c00590] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inhibition of dipeptidyl peptidase IV (DPP-IV, E.C.3.4.14.5) is well recognized as a new avenue for the treatment of Type 2 diabetes (T2D). Until now, peptide-like DDP-IV inhibitors have been shown to normalize the blood glucose concentration in T2D subjects. To the best of our knowledge, there is yet no computational model for predicting and analyzing DPP-IV inhibitory peptides using sequence information. In this study, we present for the first time a simple and easily interpretable sequence-based predictor using the scoring card method (SCM) for modeling the bioactivity of DPP-IV inhibitory peptides (iDPPIV-SCM). Particularly, the iDPPIV-SCM was developed by employing the SCM method together with the propensity scores of amino acids. Rigorous independent test results demonstrated that the proposed iDPPIV-SCM was found to be superior to those of well-known machine learning (ML) classifiers (e.g., k-nearest neighbor, logistic regression, and decision tree) with demonstrated improvements of 2-11, 4-22, and 7-10% for accuracy, MCC, and AUC, respectively, while also achieving comparable results to that of the support vector machine. Furthermore, the analysis of estimated propensity scores of amino acids as derived from the iDPPIV-SCM was performed so as to provide a more in-depth understanding on the molecular basis for enhancing the DPP-IV inhibitory potency. Taken together, these results revealed that iDPPIV-SCM was superior to those of other well-known ML classifiers owing to its simplicity, interpretability, and validity. For the convenience of biologists, the predictive model is deployed as a publicly accessible web server at http://camt.pythonanywhere.com/iDPPIV-SCM. It is anticipated that iDPPIV-SCM can serve as an important tool for the rapid screening of promising DPP-IV inhibitory peptides prior to their synthesis.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
44
|
Toldrá F, Gallego M, Reig M, Aristoy MC, Mora L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem 2020; 321:126689. [DOI: 10.1016/j.foodchem.2020.126689] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
|
45
|
Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020; 9:E983. [PMID: 32718070 PMCID: PMC7466190 DOI: 10.3390/foods9080983] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides. In this review, we aimed to summarize the whole process that must be considered when talking about including these molecules as a bioactive ingredient. In this regard, at first, the production, purification and identification of bioactive peptides is summed up. The detailed metabolic pathways described included carbohydrate hydrolases (glucosidase and amylase) and dipeptidyl-peptidase IV inhibition, due to their importance in the food-derived peptides research field. Then, their characterization, concerning bioavailability in vitro and in situ, stability and functionality in food matrices, and ultimately, the in vivo evidence (from invertebrate animals to humans), was described. The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
Collapse
Affiliation(s)
- Fernando Rivero-Pino
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain; (F.J.E.-C.); (E.M.G.)
| | | | | |
Collapse
|
46
|
Gao J, Gong H, Mao X. Dipeptidyl Peptidase-IV Inhibitory Activity and Related Molecular Mechanism of Bovine α-Lactalbumin-Derived Peptides. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25133009. [PMID: 32630113 PMCID: PMC7412263 DOI: 10.3390/molecules25133009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022]
Abstract
Identifying DPP-IV inhibitory peptides from dietary protein has attracted increased attention. In the present study, bovine α-lactalbumin hydrolysates were generated by alcalase for various hydrolysis times, and DPP-IV inhibitory activity of these hydrolysates was determined. The 4 h hydrolysates displayed the most potent DPP-IV inhibitory activity, with DPP-IV inhibition rate of 82.30 ± 1.39% at concentration of 1.0 mg/mL. DPP-IV inhibitory peptides were isolated from the 4 h-hydrolysates with gel filtration chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS), two DPP-IV inhibitory peptides were identified, and their amino acid sequences were Glu-Leu-Lys-Asp-Leu-Lys-Gly-Tyr (ELKDLKGY) and Ile-Leu-Asp-Lys-Val-Gly-Ile-Asn-Tyr (ILDKVGINY), respectively. Furthermore, molecular docking analysis showed that peptides ELKDLKGY and ILDKVGINY could form hydrogen bonds, pi-cation interactions, and salt bridges with DPP-IV. These findings indicated that bovine α-lactalbumin may be a potential source of natural DPP-IV inhibitor.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Han Gong
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-62738684
| |
Collapse
|
47
|
Kartal C, Kaplan Türköz B, Otles S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00434-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Phytopharmacological Strategies in the Management of Type 2 Diabetes Mellitus. Foods 2020; 9:foods9030271. [PMID: 32131470 PMCID: PMC7143818 DOI: 10.3390/foods9030271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic disease which corresponds to 90% of the worldwide cases of diabetes, mainly due to epigenetic factors such as unhealthy lifestyles. First line therapeutic approaches are based on lifestyle changes, most of the time complemented with medication mostly associated with several side effects and high costs. As a result, the scientific community is constantly working for the discovery and development of natural therapeutic strategies that provide lower financial impact and minimize side effects. This review focus on these nature-based therapeutic strategies for prevention and control of T2DM, with a special emphasis on natural compounds that present pharmacological activity as dipeptidyl peptidase-4 (DPP4), alpha-amylase, alpha-glucosidase, lipase, and protein tyrosine phosphatase 1B (PTP1B) inhibitors.
Collapse
|
49
|
Guo H, Richel A, Hao Y, Fan X, Everaert N, Yang X, Ren G. Novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides released from quinoa protein by in silico proteolysis. Food Sci Nutr 2020; 8:1415-1422. [PMID: 32180951 PMCID: PMC7063354 DOI: 10.1002/fsn3.1423] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023] Open
Abstract
Quinoa protein has been paid more and more attention because of its nutritional properties and beneficial effects. With the development of bioinformatics, bioactive peptide database and computer-assisted simulation provide an efficient and time-saving method for the theoretical estimation of potential bioactivities of protein. Therefore, the potential of quinoa protein sequences for releasing bioactive peptides was evaluated using the BIOPEP database, which revealed that quinoa protein, especially globulin, is a potential source of peptides with dipeptidyl peptidase-IV (DPP-IV) and angiotensin-I-converting enzyme (ACE) inhibitory activities. Three plant proteases, namely papain, ficin, and stem bromelain, were employed for the in silico proteolysis of quinoa protein. Furthermore, four tripeptides (MAF, NMF, HPF, and MCG) were screened as novel promising bioactive peptides by PeptideRanker. The bioactivities of selected peptides were confirmed using chemical synthesis and in vitro assay. The present work suggests that quinoa protein can serve as a good source of bioactive peptides, and in silico approach can provide theoretical assistance for investigation and production of functional peptides.
Collapse
Affiliation(s)
- Huimin Guo
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Aurore Richel
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Yuqiong Hao
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Fan
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Nadia Everaert
- Gembloux Agro‐Bio TechUniversity of LiègeGemblouxBelgium
| | - Xiushi Yang
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guixing Ren
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
50
|
Anti-Hyperglycemic Effects of Green Crab Hydrolysates Derived by Commercially Available Enzymes. Foods 2020; 9:foods9030258. [PMID: 32121110 PMCID: PMC7143835 DOI: 10.3390/foods9030258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022] Open
Abstract
The predation and burrowing activity of invasive green crabs have had detrimental effects on important marine resources and habitats. Our objective is to develop bioactive hydrolysates by enzymatic proteolysis of underutilized green crab. Mechanically separated mince was hydrolyzed with Alcalase, Protamex, Flavourzyme, and Papain (1%) for 60 min. Subsequently, the hydrolysates were introduced to a simulated gastrointestinal digestion model. Selected samples were fractionated by ultrafiltration, and their anti-hyperglycemic effects including α-glucosidase, α-amylase, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities and glucagon-like 1 (GLP-1) secretory activity were evaluated. The Protamex treatment showed the highest α-glucosidase inhibitory activity (IC50 1.38 ± 0.19 mg/mL) compared to other enzyme treatments and the crab mince control, and its α-amylase inhibitory activity (IC50 11.02 ± 0.69 mg/mL) was lower than its α-glucosidase inhibitory activity. Its GLP-1 secretory activity was approximately four times higher than the positive control (10 mM glutamine). The <3 kD fraction contributed significantly to the anti-hyperglycemic activity of Protamex-derived hydrolysates, and this activity was stable after simulated digestion. Our results suggest that green crab hydrolysates obtained by Protamex treatment have the potential for type 2 diabetes management and could be incorporated in food products as a health-promoting ingredient.
Collapse
|