1
|
Shan X, Li L, Liu Y, Wang Z, Wei B, Zhang Z. Untargeted metabolomics analysis using UPLC-QTOF/MS and GC-MS to unravel changes in antioxidant activity and compounds of almonds before and after roasting. Food Res Int 2024; 194:114870. [PMID: 39232510 DOI: 10.1016/j.foodres.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Almonds are a commonly consumed nut. They possess significantof nutritional and health benefitsand are commonly processed by roasting. This study aimed to investigatthe effects of roasting on the compound composition and antioxidant activity of almonds. Metabolomics analysis, performed via UPLC-QTOF/MS, and fatty acid analysis, conducted via GC-MS, employed, and the results demonstrated a significant increase in antioxidant activity of post-roasting and in vitro digestion, ranging from 1.16 to 3.44 times. Untargeted metabolomics identified a total of 172 compounds, with notable differences observed in organic oxides, fatty acids, and their derivatives. Correlation analysis identified fatty acids as the primary influencers of changes in antioxidant activity following roasting. Taken together, these findings suggest that roasting enhances the antioxidant activity of almonds, primarily due to alterations in fatty acid analogs, thereby providing valuable insights into optimizing almond consumption for health benefits.
Collapse
Affiliation(s)
- Xiao Shan
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Lin Li
- Developing Pediatric Department of Shengjing Hospital, China Medical University, No. 36 Sanhao Street, Shenyang 110000, China
| | - Yu Liu
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Ziwei Wang
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China.
| | - Zhongbo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang 110001, China.
| |
Collapse
|
2
|
Zhao S, Shi J, Cai S, Xiong T, Cai F, Li S, Chen X, Fan C, Mei X, Sui Y. Impact of rice variety, cooking equipment and pretreatment method on the quality of lightly milled rice. Food Chem 2024; 451:139271. [PMID: 38663245 DOI: 10.1016/j.foodchem.2024.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 05/26/2024]
Abstract
Lightly milled rice is a healthier choice compared to refined white rice. In this study, the effects of variety, cooking equipment and pretreatment method on the quality of six varieties of lightly milled rice from China after cooking was investigated through physics, chemistry and instrumental analysis method. Nanjing-No.5055 has the best eating quality, Xiadao-No.1 has higher appearance score, and Fengliangyouxiang-No.1 has the lowest glycemic index. Compared with microwave oven and electric cooker, steamer has a more significant positive impact on component retention, eating quality and sensory quality, but the former has lower cooking time and higher glycemic index. Soaking can effectively improve the water absorption rate, thus reducing hardness. Cleaning affects component retention but is beneficial for sensory quality. The most obvious variation in organizational structure can be observed in the steamer and soaking processes. These findings could serve as a valuable reference for the processing of lightly milled rice.
Collapse
Affiliation(s)
- Shishan Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jianbin Shi
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Sha Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Tian Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fang Cai
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shaobin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xueling Chen
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chuanhui Fan
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Mei
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Yong Sui
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
3
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
4
|
Fernández-Fernández AM, Dellacassa E, Curbelo R, Nardin T, Larcher R, Medrano-Fernandez A, del Castillo MD. Health-Promoting Potential of Mandarin Pomace Extracts Enriched with Phenolic Compounds. Nutrients 2024; 16:2370. [PMID: 39064813 PMCID: PMC11280356 DOI: 10.3390/nu16142370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this work was to assess the effect of in vitro human digestion on the chemical composition (carbohydrates and phenolic compounds) and bioactivity of hydro-alcoholic-acid pomace extracts from two mandarin varieties (Clemenule and Ortanique) by measuring their antioxidant, antidiabetic, anti-glycative, hypolipidemic, and anti-inflammatory properties. The phenolic compound profile showed that nobiletin was the main flavonoid found in the extracts and digests of Clemenule pomace and extract, while isosinensetin/sinensetin/tangeretin were the ones in the Ortanique samples. The digests of Clemenule and Ortanique extracts showed Folin reaction values of 9.74 and 9.20 mg gallic acid equivalents (GAE)/g of sample, ABTS values of 83.2 and 91.7 µmol Trolox equivalents (TE)/g of sample, and ORAC-FL values of 142.8 and 891.6 µmol TE/g of sample, respectively. Extracts (50-500 µg/mL) inhibited intracellular reactive oxygen species (ROS) formation in CCD-18Co cells under physiological and oxidative-induced conditions. Clemenule and Ortanique extract digests showed IC50 values of 13.50 and 11.07 mg/mL for α-glucosidase, 28.79 and 69.64 mg/mL for α-amylase, and 16.50 and 12.77 mg/mL for AGEs, and 2.259 ± 0.267 and 0.713 ± 0.065 mg/mL for pancreatic lipase inhibition, respectively. Ortanique extract (250-1000 µg/mL) inhibited the production of nitric oxide in RAW264.7 macrophages under inflammation-induced conditions, and intracellular ROS formation. In conclusion, altogether, the results supported the potential of mandarin extracts to be used as health promoters by reducing the risk of non-communicable chronic diseases.
Collapse
Affiliation(s)
- Adriana Maite Fernández-Fernández
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay
| | - Eduardo Dellacassa
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (E.D.); (R.C.)
| | - Romina Curbelo
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (E.D.); (R.C.)
| | - Tiziana Nardin
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 Trento, Italy; (T.N.); (R.L.)
| | - Roberto Larcher
- Dipartimento Alimenti e Trasformazione, Centro Trasferimento Tecnologico, Fondazione Edmund Mach di San Michele all’Adige, Via E. Mach, 1 38010 Trento, Italy; (T.N.); (R.L.)
| | - Alejandra Medrano-Fernandez
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, General Flores 2124, Montevideo 11800, Uruguay; (A.M.F.-F.); (A.M.-F.)
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Chen L, Wang L, Cai J, Yang T, Li J, Shu G. Characterization of fermented pomegranate juice: ACE inhibitory activity under in vitro digestion, antioxidant capacity, phenolics composition, chemical properties and sensory evaluation. Food Sci Biotechnol 2024; 33:981-990. [PMID: 38371677 PMCID: PMC10866828 DOI: 10.1007/s10068-023-01388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Consuming pomegranate juice (PJ) is beneficial for hypertensive regulation because of the phenolic compounds in PJ and their inhibitory activity on angiotensin-I-converting enzyme (ACE). To better utilize bioactive function of food, microorganism fermentation has been adopted to alter phenolic metabolism. This study confirms that even under in vitro digestion, fermented PJ (FPJ) maintains higher ACE inhibitory activity than that of PJ. The main phenolic compounds in PJ were compared either under fermentation or in vitro digestion. This study finds that fermentation promotes antioxidant capacity of PJ. The chemical properties of FPJ are evaluated and the corresponding relationship with bioactivities is analyzed. A sensory evaluation comparison is conducted between FPJ and PJ, furnishing interesting information for consumers. This study highlights the relationship between ACE inhibitory activity of PJ and phenolic composition under fermentation and in vitro digestion, providing novel insights for diet regulation of phenolic-rich FPJ in ACE inhibition therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01388-w.
Collapse
Affiliation(s)
- Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Linlin Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
| | - Jingwei Cai
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
| | - Ting Yang
- College of Foreign Language, Shaanxi University of Chinese Medicine, Xianyang, 712046 People’s Republic of China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, 710119 People’s Republic of China
| | - Guowei Shu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| |
Collapse
|
6
|
Silva GS, Gomes MHG, de Carvalho LM, Abreu TL, Dos Santos Lima M, Madruga MS, Kurozawa LE, Bezerra TKA. Microencapsulation of organic coffee husk polyphenols: Effects on release, bioaccessibility, and antioxidant capacity of phenolics in a simulated gastrointestinal tract. Food Chem 2024; 434:137435. [PMID: 37713755 DOI: 10.1016/j.foodchem.2023.137435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Whey protein concentrate (WPC) and maltodextrin were used to microencapsulate polyphenols extract from organic coffee husks by spray drying. The microparticles were characterized and evaluated for their influence on the release, bioaccessibility, and antioxidant capacity of polyphenols in the simulated gastrointestinal tract. WPC as a single encapsulating agent promoted better yield (54.8%) of microparticles. The microparticles showed solubility above 92%, and lower hygroscopicity when encapsulated with maltodextrin alone (7.4%). Smaller diameter (6.78 µm), better encapsulation efficiency (89.1%) and retention of compounds (74.4%) were observed in microparticles with WPC in the composition. Polyphenols were completely released from the microparticles during simulated gastric digestion. The microparticles influenced the bioaccessibility of over 70% of the polyphenols in the intestinal phase. The microparticles showed rapid gastrointestinal release effect but favored the increase of bioaccessibility and preservation of the antioxidant capacity of polyphenols, especially those from the microparticles with WPC compared to the free extract.
Collapse
Affiliation(s)
- Gezaildo Santos Silva
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Matheus Henrique Gouveia Gomes
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Leila Moreira de Carvalho
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Thaianaly Leite Abreu
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Marcos Dos Santos Lima
- Federal Institute of Educational Science and Technology Sertão Pernambucano, Department of Food Technology, Campus Petrolina, Rod. BR 407 Km 08, S/N, Jardim São Paulo, Petrolina, Pernambuco 56314-520, Brazil.
| | - Marta Suely Madruga
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| | - Louise Emy Kurozawa
- Department of Food Engineering and Technology, Faculty of Food Engineering, State University of Campinas, 13083-862 Campinas, São Paulo, Brazil.
| | - Taliana Kênia Alencar Bezerra
- Department of Food Engineering, Technology Centre of the Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
7
|
Zeng F, Chen M, Yang S, Li R, Lu X, Zhang L, Chen T, Peng S, Zhou W, Li J. Distribution profiles of phenolic compounds in a cultivar of wampee (Clausena lansium (Lour.) Skeels) fruits and in vitro anti-inflammatory activity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117168. [PMID: 37704117 DOI: 10.1016/j.jep.2023.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of wampee (Clausena lansium (Lour.) Skeels), which contain significant amounts of phenolics, are frequently applied as traditional medications to prevent or relieve inflammatory symptoms. Green honey wampee (GHW) is a local cultivar specially cultivated in Lianjiang City, Guangdong Province. AIM OF THE STUDY This study aimed to investigate phenolic distribution profiles in the peels, seeds and pulp of GHW as well as elucidate the underlying molecular mechanisms of the effective compounds for anti-inflammatory activity. MATERIALS AND METHOD Phenolic compounds in the extract were identified through UPLC-MS/MS and their ability to alleviate inflammation was assessed using RAW 264.7 macrophages exposed to lipopolysaccharide. RESULTS Among the three parts of GHW fruits, the total phenolic contents followed a descending order of peels > pulp > seeds. Additionally, eighty-six phenols were tentatively determined from the three parts, of which flavonoids accounted for the highest proportion. Furthermore, the phenolic extract of peels, seeds and pulp exhibited potential anti-inflammatory activity through the suppression effect on different pro-inflammatory mediators (NO, IL-6 and TNF-α). Among the three principal phenolic compounds (rutin, quercitrin, isorhamnetin-3-O-neohesperidoside) detected in GHW fruits, quercitrin was proved to be a more important anti-inflammatory compound inhibiting the iNOS and TNF-α mRNA expressions through the suppression effect on the phosphorylation of IκBα and ERK, belonging to the NF-κB and MAPK signaling pathway respectively. CONCLUSIONS Not only wampee pulp but also its by-products like peels and seeds are able to be comprehensively utilized as immunomodulatory supplements for daily diets due to their rich phenolic contents.
Collapse
Affiliation(s)
- Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Shengtao Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China.
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Li Zhang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Tinghui Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Shaodan Peng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
8
|
Varzaru I, Oancea AG, Vlaicu PA, Saracila M, Untea AE. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:2125. [PMID: 38136244 PMCID: PMC10740815 DOI: 10.3390/antiox12122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•-), while raspberry leaves registered the highest inhibition of hydroxyl radicals (•OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| | | | | | | | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| |
Collapse
|
9
|
Mosele J, da Costa BS, Bobadilla S, Motilva MJ. Phenolic Composition of Red and White Wine Byproducts from Different Grapevine Cultivars from La Rioja (Spain) and How This Is Affected by the Winemaking Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18746-18757. [PMID: 37983717 PMCID: PMC10730009 DOI: 10.1021/acs.jafc.3c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
The recovery of raw materials offers an opportunity for applying the principles of circular bioeconomy. The phenolic composition of three underused wine byproducts (skin, seed, and bunch stem) was analyzed through UHPLC-QqQ-MS/MS to evaluate the intercultivar variability comparing red and white grape cultivars from La Rioja (Spain) and the influence of the winemaking, comparing conventional fermentation and carbonic maceration. We observed that the red skin, especially from Graciano, is rich in anthocyanins, whereas the white skin contains mainly phenolic acids, flavonols, and flavan-3-ols, with Maturana Blanca being the richest variety. Seeds are rich in flavan-3-ols and lignans with Maturana Blanca and Viura, respectively, the richest cultivars. Stems contain high amounts of flavan-3-ols, lignans, and stilbenes, with the red cultivars of Garnacha and Tempranillo being the richest samples. Carbonic maceration has a negative effect on the phenolic amount compared to conventional fermentation. In synthesis, we observed that each type of byproduct from red or white grape cultivars has a particular phenolic composition that can result in obtaining different ingredients with particular phenolic composition for target applications.
Collapse
Affiliation(s)
- Juana Mosele
- Fisicoquímica,
Facultad de Farmacia y Bioquímica-IBIMOL, Universidad de Buenos Aries-CONICET, Buenos Aires C1053ABH, Argentina
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Bianca Souza da Costa
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Silvia Bobadilla
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Maria-Jose Motilva
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| |
Collapse
|
10
|
Chen H, Shi Y, Wang L, Hu X, Lin X. Phenolic profile and α-glucosidase inhibitory potential of wampee (Clausena lansium (Lour.) Skeels) peel and pulp: In vitro digestion/in silico evaluations. Food Res Int 2023; 173:113274. [PMID: 37803586 DOI: 10.1016/j.foodres.2023.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
To investigate the changes in phenolics, flavonoids, and their bio-activities of wampee (Clausena lansium (Lour.) Skeels) during digestion, the peel and pulp were subjected to simulated in vitro digestion, encompassing oral, gastric, small intestine, and large intestine digestion stages. The peel exhibited a total release of 91.93 mg GAE/g DW of phenolics and 61.86 mg RE/g DW of flavonoids, whereas the pulp displayed a release of 27.83 mg GAE/g DW of phenolics and 8.94 mg RE/g DW of flavonoids. Notably, the phenolics and flavonoids were mostly released during the oral digestion stage for peel, while they were mostly released during the small intestine digestion stage for pulp. The results of the targeted flavonoids analysis indicated that rutin and l-epicatechin were the two most widely released compounds in each digestion step. Moreover, myricetin has been identified as the best inhibitor against α-glucosidase, probably because it formed the most H-bonds, 8, with 6 catalytic residues, which was the highest number. Furthermore, the soluble substances released from the peel exhibited significantly higher antioxidant activities and inhibitory activity against α-glucosidase (p < 0.05) compared to those from the pulp. Positive correlations were observed between the total phenolic content or total flavonoid content and the antioxidant activities (r > 0.73 (peel), > 0.61 (pulp)), as well as α-glucosidase inhibitory activity (r < - 0.48 (peel), < -0.64 (pulp)) of peel and pulp. In conclusion, these findings provide valuable insights into the digestive characteristics and health benefits of both wampee peel and pulp.
Collapse
Affiliation(s)
- Hua Chen
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Yousheng Shi
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xiaoping Hu
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Dantas AM, Fernandes FG, Magnani M, da Silva Campelo Borges G. Gastrointestinal digestion assays for evaluating the bioaccessibility of phenolic compounds in fruits and their derivates: an overview. Food Res Int 2023; 170:112920. [PMID: 37316040 DOI: 10.1016/j.foodres.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Fruits and their derivatives are sources of phenolic compounds, which contribute to the maintenance of health benefits. In order to exert such properties, these compounds must be exposed to gastrointestinal conditions during digestion. In vitro methods of gastrointestinal digestion have been developed to simulate and evaluate the changes that compounds undergo after being exposed to various conditions. We present, in this review, the major in vitro methods for evaluating the effects of gastrointestinal digestion of phenolic compounds in fruits and their derivatives. We discuss the concept of bioaccessibility, bioactivity, and bioavailability, as well as the conceptual differences and calculations among studies. Finally, the main changes caused by in vitro gastrointestinal digestion in phenolic compounds are also discussed. The significant variation of parameters and concepts observed hinders a better evaluation of the real effects on the antioxidant activity of phenolic compounds, thus, the use of standardized methods in research would contribute for a better understanding of these changes.
Collapse
Affiliation(s)
- Aline Macedo Dantas
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, 58051-900 João Pessoa, Paraíba, Brazil
| | - Graciele da Silva Campelo Borges
- Department of Food Technology, Federal University of Paraiba, João Pessoa, PB, Brazil; Center of Chemistry, Pharmaceutical and Foods Sciences, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Mellado-Negrete A, Peña-Vázquez GI, Urías-Orona V, De La Garza AL. Polyphenol Bioaccessibility and Antioxidant Activity of Pomegranate ( Punica granatum) Peel Supplementation in Diet-Induced Obese Rats. J Med Food 2023; 26:570-579. [PMID: 37498320 DOI: 10.1089/jmf.2023.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Fruit by-products are a source of biocompounds with antioxidant properties and potential role in the obesity treatment. This study aimed to assess the effect of pomegranate (Punica granatum) peel (PP) supplementation on the total antioxidant capacity (TAC) in diet-induced obese rats. Thus, an in vitro gastrointestinal digestion was performed to evaluate the total phenolic content (TPC) and the antioxidant capacity of PP. Moreover, 15 male Wistar rats were randomized into three groups: control diet (CTL; 3.35 kcal/g), cafeteria (CAF) diet (3.72 kcal/g), and CAF diet supplemented with PP (CAF + PP; 200 mg/kg body weight; 3.72 kcal/g). Serum TAC was analyzed by ferric reducing antioxidant power and 2,2-Diphenil-1-picrylhydrazil assay. TPC in PP accounted for 8.82 ± 0.14 mg GAE/g in undigested samples. However, an in vitro digestion process was decreased by 94% the bioaccessibility of PP phenolic compounds in the intestinal phase, while PP supplementation increased serum TAC in diet-induced obese rats. Therefore, although PP phenolic compounds diminished after an in vitro digestion process, antioxidant effect was found in obese rats supplemented with PP.
Collapse
Affiliation(s)
- Anael Mellado-Negrete
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
| | - Gloria Itzel Peña-Vázquez
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Vania Urías-Orona
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
| | - Ana Laura De La Garza
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| |
Collapse
|
13
|
Li ZR, Jia RB, Cai X, Luo D, Chen C, Zhao M. Characterizations of food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion and its benefits on solubility, dispersity and biotransformation of ellagic acid. Food Chem 2023; 413:135530. [PMID: 36758386 DOI: 10.1016/j.foodchem.2023.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
The current study was aimed to enhance the solubility, dispersibility and biotransformation efficacy of ellagic acid (EA) by preparing food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion (EA/UPP SD). The results demonstrated that the solubility of EA/UPP SD was improved from 0.014 mg/mL to 0.383 mg/mL, and the enhancement was related to converting to a more amorphous state and restraining its self-aggregation during the mechanochemical process. The structure of EA/UPP SDs was mostly maintained by hydrogen bonds and hydrophobic interactions between EA and UPP. Moreover, the result of in vitro anaerobic incubations showed the biotransformation process was improved with EA/UPP SD addition to substrate due to the advance of microbial accessibility in EA dispersion. Altogether, these results indicated that the EA/UPP SDs expanded the application of EA by increasing the solubility and dispersity, and provided a theoretical basis for bioconversion efficiency enhancement.
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xueyuan Cai
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
14
|
Silva V, Silva A, Ribeiro J, Aires A, Carvalho R, Amaral JS, Barros L, Igrejas G, Poeta P. Screening of Chemical Composition, Antimicrobial and Antioxidant Activities in Pomegranate, Quince, and Persimmon Leaf, Peel, and Seed: Valorization of Autumn Fruits By-Products for a One Health Perspective. Antibiotics (Basel) 2023; 12:1086. [PMID: 37508182 PMCID: PMC10376090 DOI: 10.3390/antibiotics12071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance is increasing globally and is now one of the major public health problems. Therefore, there is a need to search for new antimicrobial agents. The food industry generates large amounts of by-products that are rich in bioactive compounds, such as phenolic compounds, which are known to have several health benefits, including antioxidant and antimicrobial properties. Thus, we aimed to characterize the phenolic compounds present in pomegranate, quince, and persimmon by-products, as well as their antioxidant and antimicrobial activities. Phenolic compounds were extracted from pomegranate, quince, and persimmon leaves, seeds, and peels using a mixture of ethanol/water (80/20). The polyphenol profile of the extracts was determined by high-performance liquid chromatography. The antioxidant activity of the extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) methods. Antimicrobial susceptibility was evaluated using the Kirby-Bauer disk diffusion method. In general, leaves showed higher concentrations of phenolics than the peel and seeds of fruits. In total, 23 phenolic compounds were identified and quantified, with sanguiin and apigenin-3-O-galactoside being present in the highest concentrations. Leaf extracts of pomegranate showed higher antioxidant activities than the other components in all methods used. In general, all extracts had a greater antimicrobial activity against Gram-positive bacteria. Persimmon leaf and seed extracts inhibited a greater number of bacteria, both Gram-positive and -negative. The lowest minimum inhibitory concentration (MIC) detected among Gram-positive and -negative bacteria was 10 mg/mL for pomegranate peel and leaf extracts against Staphylococcus aureus and S. pseudintermedius and for pomegranate leaf extract against Escherichia coli. Our results reinforce the need to value food industry by-products that could be used as food preservatives and antibiotic adjuvants against multiresistant bacteria.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Rosa Carvalho
- Department of Agronomy, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Caparica, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
15
|
Exploring the Potential of Pomegranate Peel Extract as a Natural Food Additive: A Review. Curr Nutr Rep 2023:10.1007/s13668-023-00466-z. [PMID: 36920686 DOI: 10.1007/s13668-023-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE OF THE REVIEW Pomegranate is one of the super fruit and a storehouse of several antioxidants and health-promoting compounds which can act as a natural food additive. The pomegranate processing industry generates huge quantities of by-products, particularly peels (50% of fresh fruit weight), that cause environmental pollution due to improper disposal. In this perspective, the present review article focuses on the chemical composition of pomegranate peel and its application as a natural food additive in different food products such as bakery, dairy, meat/meat products, fish/fish products, edible oils, and packaging materials. RECENT FINDINGS There is a continuous demand for processed foods exhibiting natural food additives over foods containing synthetic additives/colorants, which can cause serious health implications such as cancer with regular consumption. The food industry is looking for an alternative to synthetic/artificial food additives. To overcome these problems, pomegranate peel or its extract can be used as a natural biopreservative in food products that are prone to fat oxidation and microbial growth. Pomegranate peel contains bioactive compounds, especially tannins, phenolic acids, and flavonoids, which have nutraceutical value and possess higher antioxidant activity and antimicrobial properties. Due to these properties, pomegranate peel prevents lipid oxidation in fatty foods and can also retard the microbial growth.
Collapse
|
16
|
Xie C, Huang M, Ying R, Wu X, Hayat K, Shaughnessy LK, Tan C. Olive pectin-chitosan nanocomplexes for improving stability and bioavailability of blueberry anthocyanins. Food Chem 2023; 417:135798. [PMID: 36924718 DOI: 10.1016/j.foodchem.2023.135798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Blueberry anthocyanins (ANCs) are natural dietary bioactive colorants, but are unstable and easily degraded. To improve their stability, we constructed the nanocarriers for ANCs through an electrostatic self-assembly method, using chitosan (CS) and olive pectin (PC). Results showed that the CS-ANCs-PC nanocomplexes had nanoscale particle size (81.22 ± 0.44 nm), and an encapsulation efficiency of 91.97 ± 0.33% at pH 3.0, 1:1:5 ratio (m/v) of CS: ANCs: PC. Fourier transform infrared and UV-visible spectra demonstrated that ANCs can be embedded into the CS-PC carrier through electrostatic interaction. CS-ANCs-PC with stacked spherical particle structure had good thermal stability by scanning electron microscope and thermogravimetric analysis. Compared with free anthocyanins, CS-ANCs-PC possessed better DPPH· and ·OH scavenging activities, stronger environmental stability, and better targeted release in vitro digestion. This study may provide an important fundamental basis for improving the stability of anthocyanins in the blueberry industry.
Collapse
Affiliation(s)
- Chenjing Xie
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Meigui Huang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Ruifeng Ying
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xian Wu
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Khizar Hayat
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Lily K Shaughnessy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
17
|
Li K, Duan X, Zhou L, Hill DRA, Martin GJO, Suleria HAR. Bioaccessibility and bioactivities of phenolic compounds from microalgae during in vitro digestion and colonic fermentation. Food Funct 2023; 14:899-910. [PMID: 36537586 DOI: 10.1039/d2fo02980d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are a developing novel source of carbohydrates, phenolic compounds, carotenoids and proteins. In this study, in vitro digestion and colonic fermentation were conducted to examine the total phenolic content and potential antioxidant activity of four microalgal species (Chlorella sp., Spirulina sp., Dunaliella sp., and Isochrysis sp.). The bioaccessibility of targeted phenolic compounds and the short-chain fatty acid (SCFA) production were also estimated. Particularly, Spirulina sp. exhibited the highest total phenolic content (TPC) and free radical scavenging (2,2'-diphenyl-1-picrylhydrazyl, DPPH) capacity after gastrointestinal digestion of 7.93 mg gallic acid equivalents (GAE) per g and 2.35 mg Trolox equivalents (TE) per g. Meanwhile, it had the highest total flavonoid content (TFC) of 1.07 quercetin equivalents (QE) per g after 8 h of colonic fermentation. Dunaliella sp. and Isochrysis sp. showed comparable ferric reducing antioxidant power (FRAP) of 4.96 and 4.45 mg QE per g after 4 h of faecal reaction, respectively. p-hydroxybenzoic and caffeic acid almost completely decomposed after the intestine and fermented in the colon with the gut microflora. In Dunaliella sp. and Isochrysis sp., these phenolic acids were found in the colonic fermented residual, probably due to the presence of dietary fibre and the interactions with other components. All four species reached the highest values of SCFA production after 16 h, except Spirulina sp., which displayed the most increased total SCFA production after 8 h of fermentation. It is proposed that Spirulina sp. could be more beneficial to gut health.
Collapse
Affiliation(s)
- Kunning Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Xinyu Duan
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Linhui Zhou
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - David R A Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Gregory J O Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
18
|
Cheung M, Robinson JA, Phillip G, Pegg RB. Evaluating the phenolic composition and antioxidant properties of Georgia pecans after in vitro digestion. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Cuvas-Limon RB, Ferreira-Santos P, Cruz M, Teixeira JA, Belmares R, Nobre C. Effect of Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds and Antioxidant Activity of Fermented Aloe vera Juices. Antioxidants (Basel) 2022; 11:antiox11122479. [PMID: 36552686 PMCID: PMC9774616 DOI: 10.3390/antiox11122479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-based beverages are enriched by the fermentation process. However, their biocompounds are transformed during gastrointestinal digestion, improving their bioaccessibility, which is of primary importance when considering the associated health benefits. This study aimed to evaluate the effect of in vitro gastrointestinal digestion on phenolic compound bioaccessibility and antioxidant activity of novel Aloe vera juices fermented by probiotic Enterococcus faecium and Lactococcus lactis. Aloe vera juices were digested using the standardized static INFOGEST protocol. During digestion, phenolic compounds and antioxidant activity (DPPH, ABTS, and FRAP) were accessed. The digestion process was seen to significantly increase the total phenolic content of the fermented Aloe vera juices. The fermentation of Aloe vera increased the bioaccessibility of juice biocompounds, particularly for kaempferol, ellagic acid, resveratrol, hesperidin, ferulic acid, and aloin. The phenolics released during digestion were able to reduce the oxidative radicals assessed by ABTS and FRAP tests, increasing the antioxidant action in the intestine, where they are absorbed. The fermentation of Aloe vera by probiotics is an excellent process to increase the bioavailability of beverages, resulting in natural added-value functional products.
Collapse
Affiliation(s)
- Ruth B. Cuvas-Limon
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo 25280, Coahuila, Mexico
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.N.); Tel.: +351-253-604-400 (P.F.-S.)
| | - Mario Cruz
- Department of Food Science and Technology, Antonio Narro Autonomous Agricultural University, Calzada Antonio Narro, No. 1923 Col. Buena Vista C.P., Saltillo 25315, Coahuila, Mexico
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ruth Belmares
- Food Research Department, School of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo 25280, Coahuila, Mexico
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.N.); Tel.: +351-253-604-400 (P.F.-S.)
| |
Collapse
|
20
|
Stability and antioxidant activity of chitosan/β-Lactoglobulin on anthocyanins from Aronia melanocarpa. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Marinea M, Ellis A, Golding M, Loveday SM. Delivering Phenolic Acids in Soy Protein Gels: Noncovalent Interactions Control Gastrointestinal Bioaccessibility. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractThis study aimed to explore how the delivery of added phenolic acids was affected by the soy protein gel matrix using the INFOGEST static in vitro digestion protocol. Gels were prepared by two consecutive heating steps and by adding glucono–$$\delta$$
δ
–lactone (GDL) as an acidifier or magnesium sulphate (MgSO$$_{4}$$
4
) as a salt coagulant. The addition of phenolic acids in GDL gels doubled their elastic modulus (G’) (p<0.05), without showing the same effect on MgSO$$_{4}$$
4
gels. Nevertheless, the bioaccessibility of phenolic acids was not significantly different between the gel matrices (p>0.05). The release of all phenolics was almost complete (>80%) at the oral phase (pH 7) and significantly lower at gastric phase (pH 3), then at intestinal phase, the release was either increased or significantly reduced depending on the phenolic acid structure. The results of this study suggest that the bioaccessibility of the added phenolic acids is controlled by their interactions with the soy protein gels rather than the protein digestion kinetics of the gels.
Collapse
|
22
|
Khalid W, Arshad MS, Ranjha MMAN, Różańska MB, Irfan S, Shafique B, Rahim MA, Khalid MZ, Abdi G, Kowalczewski PŁ. Functional constituents of plant-based foods boost immunity against acute and chronic disorders. Open Life Sci 2022; 17:1075-1093. [PMID: 36133422 PMCID: PMC9462539 DOI: 10.1515/biol-2022-0104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Plant-based foods are becoming an increasingly frequent topic of discussion, both scientific and social, due to the dissemination of information and exchange of experiences in the media. Plant-based diets are considered beneficial for human health due to the supply of many valuable nutrients, including health-promoting compounds. Replacing meat-based foods with plant-based products will provide many valuable compounds, including antioxidants, phenolic compounds, fibers, vitamins, minerals, and some ω3 fatty acids. Due to their high nutritional and functional composition, plant-based foods are beneficial in acute and chronic diseases. This article attempts to review the literature to present the most important data on nutrients of plant-based foods that can then help in the prevention of many diseases, such as different infections, such as coronavirus disease, pneumonia, common cold and flu, asthma, and bacterial diseases, such as bronchitis. A properly structured plant-based diet not only provides the necessary nutrients but also can help in the prevention of many diseases.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Maria Barbara Różańska
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 60-624 Poznań, Poland
| | - Shafeeqa Irfan
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Abdul Rahim
- Department of Food Science, Government College University, Faisalabad, 38000, Pakistan
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | | |
Collapse
|
23
|
Leonard W, Liang A, Ranadheera CS, Fang Z, Zhang P. Fruit juices as a carrier of probiotics to modulate gut phenolics and microbiota. Food Funct 2022; 13:10333-10346. [PMID: 36134438 DOI: 10.1039/d2fo01851a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we attempted to deliver probiotics to the human gut using fruit juices as a carrier, which is less common despite the newest trend to incorporate probiotics into non-dairy food. Phenolic-rich fruit juices, including blueberry, black cherry, concord grape and pomegranate were fortified with Lactobacillus casei, and then compared and comprehensively assessed to develop novel non-fermented probiotic juices. In black cherry juice, probiotics had the most significant retention of viability after 14 days of storage at 4 °C, the least reduction in phenolics (14.59%) after in vitro gastrointestinal digestion, the highest concentration of phenolic metabolites and a significant increase in anaerobic bacteria after faecal fermentation (48 h). 16s rRNA gene sequencing showed that probiotic-enriched juice treatments were associated with highly distinctive Bacteroidota and Bacteroides vulgatus population. Overall, black cherry juice has the highest potential to be developed as a probiotic carrier with benefits in modulating the gut microbiota.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anqi Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
24
|
Changes in phytochemical content, bioaccesibility and antioxidant capacity of corn tortillas during simulated in vitro gastrointestinal digestion. Food Chem 2022; 405:134223. [DOI: 10.1016/j.foodchem.2022.134223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 01/24/2023]
|
25
|
Singh V, Son H, Lee G, Lee S, Unno T, Shin JH. Role, Relevance, and Possibilities of In vitro fermentation models in human dietary, and gut-microbial studies. Biotechnol Bioeng 2022; 119:3044-3061. [PMID: 35941765 DOI: 10.1002/bit.28206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Dietary studies play a crucial role in determining the health-benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short-chain fatty acids (SCFA). These diet-induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M-SHIME, CoMiniGut, and Dynamic Gastrointestinal Simulator (SIMGI) make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, i.e., proximal, transverse, and distal colon, making the findings physiologically more significant. Further, post-fermentation samples can be analyzed using metagenomic, metabolomic, qPCR and flow cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sunwoo Lee
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Tatsuya Unno
- Department of Biotechnology,, School of Life Sciences, SARI, Jeju National University, Jeju, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
26
|
Scrob T, Covaci E, Hosu A, Tanaselia C, Casoni D, Torok AI, Frentiu T, Cimpoiu C. Effect of in vitro simulated gastrointestinal digestion on some nutritional characteristics of several dried fruits. Food Chem 2022; 385:132713. [DOI: 10.1016/j.foodchem.2022.132713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/18/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022]
|
27
|
Karboune S, Davis EJ, Fliss I, Spadoni Andreani E. In-vitro digestion and fermentation of cranberry extracts rich in cell wall oligo/polysaccharides. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
28
|
Moreno-Ortega A, Di Pede G, Mena P, Calani L, Del Rio D, Moreno-Rojas JM, Pereira-Caro G. Effects of colonic fermentation on the stability of fresh and black onion bioactives. Food Funct 2022; 13:4432-4444. [PMID: 35302133 DOI: 10.1039/d1fo04240h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The health properties related to onion intake are attributed mainly to the presence of bioactive compounds, particularly phenolic and organosulfur compounds (OSCs). The aim of this study was to investigate, for the first time, the effect of an in vitro colonic fermentation on the stability of phenolic and OSCs of fresh and black onion by ultra-high-performance liquid chromatography coupled with mass spectrometry with a linear ion trap (UHPLC-LIT-MS). Throughout colonic fermentation, fresh onion showed an increase in the total phenolic content of 45%, mainly due to an increase in the content of the flavonoid family, while the OSCs remained stable along the fermentation. Black onion presented a different behaviour, showing significant decreases in total (poly)phenol and OSC content, 22 and 48%, respectively. The main compounds found after the in vitro colonic fermentation of fresh onion were isorhamnetin (141 μmol L-1), quercetin (95 μmol L-1), 3,4-dihydroxybenzoic acid (53 μmol L-1), methionine sulfoxide (100 μmol L-1) and S-allylcysteine (SAC) (21.7 μmol L-1), whereas 3,4-dihydroxybenzoic acid (70 μmol L-1), 4-hydroxyphenylacetic acid (68 μmol L-1), methionine sulfoxide (82 μmol L-1) and S-propylmercapto-L-cysteine (SPMC) (10.1 μmol L-1) accounted for the highest concentrations of phenolics and OSCs in fermented black onion. These compounds, presumably present for their absorption and action at the colonic level, could be related to the health benefits of regular consumption of fresh and black onion.
Collapse
Affiliation(s)
- Alicia Moreno-Ortega
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo Universidad de Córdoba, 14071 Córdoba, Spain.,Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.
| | - Giuseppe Di Pede
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy.,Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Luca Calani
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy.,Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - José Manuel Moreno-Rojas
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. .,Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. .,Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, 14004 Córdoba, Spain
| |
Collapse
|
29
|
Dou ZM, Chen C, Fu X, Liu RH. A dynamic view on the chemical composition and bioactive properties of mulberry fruit using an in vitro digestion and fermentation model. Food Funct 2022; 13:4142-4157. [PMID: 35316313 DOI: 10.1039/d1fo03505c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry is a kind of fruit rich in nutrients, however, the beneficial effects of mulberry fruits are related not only to the amount consumed, but also to the bioavailability of these nutrients in the organism. Hence, the aim of this study was to evaluate the bioaccessibility of main bioactive compounds from mulberry fruit using an in vitro digestion model, the changes in bioactivities as well as intestinal flora were also investigated. The results showed that the particle size of the mulberry fruit was gradually reduced (from 196.87 to 60.85 μm), as well as the phenolics and carbohydrates were significantly released during the digestion and maximized in the first 15 min in the intestinal phase (1752 ± 2.80 mg GAE per 100 g, DW; 277.402 ± 2.80 mg GE per 100 g, DW, respectively). Meanwhile, the bioaccessibility indices for phenolic compounds and carbohydrates were 55.49% and 84.62%. The antioxidant activity and α-glucosidase inhibitory effect of the mulberry fruit were positively correlated with their total content of released phenolic compounds. And the phenolic compounds (2,4,6-trihydroxybenzoic acid, cyanidin-3-O-glucoside, 3,4-dihydroxybenzoic acid and gallic acid) were the main compounds that inhibit the α-glucosidase activity by binding to its active cavity through hydrogen bonds. In addition, the mulberry fruit undigested fractions could be further fermented by intestinal microorganisms to produce short-chain fatty acids (SCFAs), which decreased the colon pH value (from 5.93 to 4.79) and the Firmicutes/Bacteroidetes ratio which was beneficial for obesity. Our results indicated that the mulberry fruit exhibited good bioactivity during digestion and fermentation, and could be a promising candidate as a dietary source of functional foods.
Collapse
Affiliation(s)
- Zu-Man Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Rui-Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
30
|
Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. NANOMATERIALS 2022; 12:nano12071099. [PMID: 35407216 PMCID: PMC9000219 DOI: 10.3390/nano12071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022]
Abstract
Inorganic or organic nanoparticles are often incorporated into foods to enhance their quality, stability, nutrition, or safety. When they pass through the gastrointestinal environment, the properties of these nanoparticles are altered, which impacts their biological effects and potential toxicity. Consequently, there is a need to understand how different kinds of nanoparticles behave within the gastrointestinal tract. In this article, the current understanding of the gastrointestinal fate of nanoparticles in foods is reviewed. Initially, the fundamental physicochemical and structural properties of nanoparticles are discussed, including their compositions, sizes, shapes, and surface chemistries. Then, the impact of food matrix effects and gastrointestinal environments on the fate of ingested nanoparticles is discussed. In particular, the influence of nanoparticle properties on food digestion and nutraceutical bioavailability is highlighted. Finally, future research directions are highlighted that will enable the successful utilization of nanotechnology in foods while also ensuring they are safe.
Collapse
|
31
|
Guo F, Tsao R, Li C, Wang X, Zhang H, Jiang L, Sun Y, Xiong H. Polyphenol Content of Green Pea ( Pisum sativum L.) Hull under In Vitro Digestion and Effects of Digestive Products on Anti-Inflammatory Activity and Intestinal Barrier in the Caco-2/Raw264.7 Coculture Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3477-3488. [PMID: 35262351 DOI: 10.1021/acs.jafc.2c00102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green pea hulls are a byproduct of the processing of green pea and are rich in phenolic substances. In the present study, in vitro digestion, human colonic adenocarcinoma cell line (Caco-2) monolayer, and the Caco-2/macrophage cell lines of the murine origin (Raw264.7) coculture model were established to investigate the release of polyphenols, absorption, and transport of digestive products and their effects on inflammation and intestinal barrier. During the digestive process, polyphenols were constantly released from the pea hulls, reaching the maximum amount in the small intestine (total phenolic content (TPC): 5.41 ± 0.04 mg gallic acid (GAE)/g dry weight (DW)), and the digestive products (800 μg/mL) could reduce the secretion of NO (50.9%), IL-6 (50.6%), and TNF-α (24.6%) and inhibit the mRNA expression of cyclooxygenase-2 (COX-2) (37.2%) and inducible nitric oxide synthase (iNOS) (91.1%) compared with the lipopolysaccharide (LPS) group. A total of 12 phenolic components were quantified by ultraperformance liquid chromatography-linear ion trap orbitrap tandem mass spectrometry (UHPLC-LTQ-OrbiTrap-MS) technology. Kaempferol trihexoside in digestive products could be absorbed and transported (1.25 ± 0.13 ng quercetin/mL). The digestive products could promote the expression of claudin-1 (210.8%), occludin (64.9%), and zonulin occludin-1 (ZO-1) (52.0%) compared with the LPS group and exert anti-inflammatory effects after being absorbed. The results indicated that pea hull polyphenols could be continuously released and absorbed to play a positive role in protecting the intestinal barrier and anti-inflammatory activity.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Chuyao Li
- Nanchang Inspection and Testing Center, Nanchang 330029, Jiangxi, China
| | - Xiaoya Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
32
|
In vitro gastrointestinal digestion of Lentinus squarrosulus powder and impact on human fecal microbiota. Sci Rep 2022; 12:2655. [PMID: 35173256 PMCID: PMC8850567 DOI: 10.1038/s41598-022-06648-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/31/2022] [Indexed: 01/07/2023] Open
Abstract
Humans have long-used mushrooms as food and medicine, but digestion and colonic fermentation of most mushrooms, including Lentinus squarrosulus is markedly unknown. Here, nutritional profile, digestion and colonic fermentation of L. squarrosulus powder (LP) were determined. The powder contained mainly carbohydrate and protein. SEM and F-TIR analysis of the resistant hydrolysate (RH) revealed that the structure and ratio of carbohydrate and protein components were altered, and released known immunomodulation agents; beta-glucans and mannose. Both LP and RH promoted selected probiotic bacteria, especially Bifidobacterium strains. Using fecal microbiota of five volunteers (V1, V2, V3, V4 and V5), RH stimulated the microbiota of all used volunteers, via decreasing the ratio of Firmicutes/Bacteroidetes ranging from 1.3 to 8.2 times. Also, RH increased the relative abundance of vital immunomodulators; Bacteroides, Bifidobacterium, Clostridium cluster XIVa and IV, and Sutterella. Additionally, RH fermentation enriched the content of branch-chain fatty acids (BCFA) and short-chain fatty acids (SCFA), indicating protein and carbohydrate usage. Notably, propionic and butyric acids were abundant in V1, V2 and V3, while in V4 and V5, acetic and butyric acids were most enriched. Suggesting L. squarrosulus as functional mushroom to improve health and prevent diseases by enhancing gut health.
Collapse
|
33
|
Dou Z, Chen C, Huang Q, Fu X. In vitro digestion of the whole blackberry fruit: bioaccessibility, bioactive variation of active ingredients and impacts on human gut microbiota. Food Chem 2022; 370:131001. [PMID: 34509148 DOI: 10.1016/j.foodchem.2021.131001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 01/22/2023]
Abstract
In vitro digestion and fermentation of blackberry fruit was investigated, and results showed that the phenolics were mainly released in gastric phase while carbohydrates in small intestinal phase. The bioaccessibility for phenolics and carbohydrates were 42.80% and 69.30%, indicating most of phenolics still remain in colon and available for intestinal flora. The total phenolics released during the digestion account for the improvement of antioxidant and hypoglycemic activities. Especially, cyanidin-3-O-glucoside with higher released amount and bioaccessibility index (63.21%), exhibited the strongest α-glucosidase inhibitory activity. After fermentation, the non-digestible fractions of blackberry affected the ecosystem of the intestinal tract by decreasing the colonic pH (△pH = 1.10), enhancing the production of SCFAs and modulating gut microbiota composition (the ratio of Firmicute/Bacteroidetes decreased from13.18 to 0.87). The results provided insights into the digestive properties and health benefits of blackberry fruit after consumption.
Collapse
Affiliation(s)
- Zuman Dou
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Inst Modern Ind Technol, Nansha 511458, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| |
Collapse
|
34
|
Rocchetti G, Gregorio RP, Lorenzo JM, Barba FJ, Oliveira PG, Prieto MA, Simal-Gandara J, Mosele JI, Motilva MJ, Tomas M, Patrone V, Capanoglu E, Lucini L. Functional implications of bound phenolic compounds and phenolics-food interaction: A review. Compr Rev Food Sci Food Saf 2022; 21:811-842. [PMID: 35150191 DOI: 10.1111/1541-4337.12921] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Sizeable scientific evidence indicates the health benefits related to phenolic compounds and dietary fiber. Various phenolic compounds-rich foods or ingredients are also rich in dietary fiber, and these two health components may interrelate via noncovalent (reversible) and covalent (mostly irreversible) interactions. Notwithstanding, these interactions are responsible for the carrier effect ascribed to fiber toward the digestive system and can modulate the bioaccessibility of phenolics, thus shaping health-promoting effects in vivo. On this basis, the present review focuses on the nature, occurrence, and implications of the interactions between phenolics and food components. Covalent and noncovalent interactions are presented, their occurrence discussed, and the effect of food processing introduced. Once reaching the large intestine, fiber-bound phenolics undergo an intense transformation by the microbial community therein, encompassing reactions such as deglycosylation, dehydroxylation, α- and β-oxidation, dehydrogenation, demethylation, decarboxylation, C-ring fission, and cleavage to lower molecular weight phenolics. Comparatively less information is still available on the consequences on gut microbiota. So far, the very most of the information on the ability of bound phenolics to modulate gut microbiota relates to in vitro models and single strains in culture medium. Despite offering promising information, such models provide limited information about the effect on gut microbes, and future research is deemed in this field.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Rosa Perez Gregorio
- REQUIMTE/LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia 4, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Paula García Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Juana I Mosele
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires (IBIMOL), Buenos Aires, Argentina
| | - Maria-Jose Motilva
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkali, Turkey
| | - Vania Patrone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Turkey
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
35
|
Xiang Q, Li M, Wen J, Ren F, Yang Z, Jiang X, Chen Y. The bioactivity and applications of pomegranate peel extract: A review. J Food Biochem 2022; 46:e14105. [PMID: 35128669 DOI: 10.1111/jfbc.14105] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Pomegranate peel (PP) is a by-product in the processing of pomegranate products, which is usually discarded as a waste. However, a large number of researches have shown that pomegranate peel extract (PPE) is rich in a variety of phenolic substances, among which ellagic acid (EA), as one of the main active components, has significant biological activities, such as anti-oxidation, anti-tumor, anti-inflammatory, neuroprotection, anti-viral, and anti-bacterial. We analyzed the mechanism of EA's biological activity, and discussed its application in the food industry, for instance, food preservation, food additives, and functional foods. Combined with the research status of PPE, we discussed the limitations and development potential of PPE, in order to provide theoretical reference and scientific basis for the development and utilization of pomegranate by-products. PRACTICAL APPLICATIONS: Pomegranate peel (PP), the inedible part of the fruit, is usually treated as waste. In recent years, researchers have been committed to exploring various bioactive ingredients in PP and exploring its potential benefits to human health, which has far-reaching significance. In this paper, the chemical constituents of polyphenols in PP were reviewed, mainly focusing on the biological activity and mechanism of ellagic acid (EA). We reviewed the applications and invention patents of pomegranate peel extract (PPE) in food field, including food preservation, food additive, and functional foods, providing reference for the recycling and reuse of PP.
Collapse
Affiliation(s)
- Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meifeng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Alemán A, Marín-Peñalver D, de Palencia PF, Gómez-Guillén MDC, Montero P. Anti-Inflammatory Properties, Bioaccessibility and Intestinal Absorption of Sea Fennel ( Crithmum maritimum) Extract Encapsulated in Soy Phosphatidylcholine Liposomes. Nutrients 2022; 14:210. [PMID: 35011085 PMCID: PMC8747172 DOI: 10.3390/nu14010210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/04/2022] Open
Abstract
A sea fennel (Crithmum maritimum) aqueous extract was prepared and loaded into soybean phosphatidylcholine liposomes. Both the free extract (FE), and the empty (L) and loaded (L-FE) liposomes were shown to be non-cytotoxic to THP-1 and Caco-2 cells. The anti-inflammatory effect was tested on THP-1 cells differentiated into macrophages. FE showed anti-inflammatory activity, revealed by the induced secretion of IL-10 cytokines in macrophages that were subsequently stimulated with LPS. Also, a decrease in TNF-α production by L was observed, evidencing that liposomes reduced the pro-inflammatory mediators' secretion. The liposomes (L) showed protective anti-inflammatory activity and also were able to downregulate the inflammation. Furthermore, L-FE were also found to downregulate the inflammation response, as they were able to decrease TNF-α secretion in macrophages previously exposed to LPS. The simulated in vitro gastrointestinal digestion (GID) of FE diminished the chlorogenic acid content (the main polyphenolic compound of the extract) by 40%, while in L-FE, the amount of this phenolic compound increased with respect to the undigested liposomes. The amount of bioaccessible chlorogenic, however, was similar for FE and L-FE. The percentage of chlorogenic acid absorbed through a Caco-2 cell monolayer after 3 h of incubation, was significantly similar for the extract and the liposomes (~1.5%), without finding significant differences once the extract and liposomes were digested.
Collapse
Affiliation(s)
- Ailén Alemán
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, 28040 Madrid, Spain; (D.M.-P.); (P.F.d.P.); (M.d.C.G.-G.)
| | | | | | | | - Pilar Montero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Ciudad Universitaria, 28040 Madrid, Spain; (D.M.-P.); (P.F.d.P.); (M.d.C.G.-G.)
| |
Collapse
|
37
|
Co-Ingestion of Natal Plums ( Carissa macrocarpa) and Marula Nuts ( Sclerocarya birrea) in a Snack Bar and Its Effect on Phenolic Compounds and Bioactivities. Molecules 2022; 27:molecules27010310. [PMID: 35011541 PMCID: PMC8746984 DOI: 10.3390/molecules27010310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
This study investigated the effect of co-ingesting Natal plums (Carissa macrocarpa) and Marula nuts (Sclerocarya birrea) on the bioaccessibility and uptake of anthocyanins, antioxidant capacity, and the ability to inhibit α-glucosidase. A Natal plum-Marula nut bar was made by mixing the raw nuts and the fruit pulp in a ratio 1:1 (v/v). The cyanidin-3-O-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside content (Cy-3-G) were quantified using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Inclusion of Natal plum in the Marula nut bar increased the Cy-3-Sa, Cy-3-G content, antioxidants capacity and α-glucosidase inhibition compared to ingesting Marula nut separately at the internal phase. Adding Natal plum to the Marula nut bar increased bioaccessibility of Cy-3-Sa, Cy-3-G, quercetin, coumaric acid, syringic acid and ferulic acid to 80.2% and 71.9%, 98.7%, 95.2%, 51.9% and 89.3%, respectively, compared to ingesting the Natal plum fruit or nut separately.
Collapse
|
38
|
Santana Andrade JK, Chagas Barros RG, Pereira UC, Nogueira JP, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
OZAY-ARANCIOGLU I, BEKIROGLU H, KARADAG A, SAROGLU O, TEKIN-ÇAKMAK ZH, KARASU S. Effect of different drying methods on the bioactive, microstructural, and in-vitro bioaccessibility of bioactive compounds of the pomegranate arils. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.06221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Irem OZAY-ARANCIOGLU
- Halic University, Turkey; University Faculty of Chemical and Metallurgical Engineering, Turkey
| | - Hatice BEKIROGLU
- University Faculty of Chemical and Metallurgical Engineering, Turkey
| | - Ayse KARADAG
- University Faculty of Chemical and Metallurgical Engineering, Turkey
| | - Oznur SAROGLU
- University Faculty of Chemical and Metallurgical Engineering, Turkey
| | | | - Salih KARASU
- University Faculty of Chemical and Metallurgical Engineering, Turkey
| |
Collapse
|
40
|
Santana Andrade JK, Chagas Barros RG, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E. In vitro gastrointestinal bioaccessibility and colonic fermentation of lignans from fresh, fermented, and germinated flaxseed. Food Funct 2022; 13:10737-10747. [DOI: 10.1039/d2fo02559k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fermented flaxseed improves lignan (SECO) bioaccessibility in the gastrointestinal phase, release and conversion to enterolactone during colon fermentation.
Collapse
Affiliation(s)
- Umi Kalsum Hussain Zaki
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Selangor, Malaysia
| | - Christos Fryganas
- Food Quality & Design Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura Trijsburg
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Edoardo Capuano
- Food Quality & Design Department, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
42
|
Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients 2021; 14:nu14010137. [PMID: 35011012 PMCID: PMC8747136 DOI: 10.3390/nu14010137] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
The present review summarizes the studies carried out on this topic in the last five years. According to the new definitions, among all the compounds included in the group of prebiotics, polyphenols are probably the most important secondary metabolites produced by the plant kingdom. Many of these types of polyphenols have low bioavailability, therefore reaching the colon in unaltered form. Once in the colon, these compounds interact with the intestinal microbes bidirectionally by modulating them and, consequently, releasing metabolites. Despite much research on various metabolites, little is known about the chemistry of the metabolic routes used by different bacteria species. In this context, this review aims to investigate the prebiotic effect of polyphenols in preclinical and clinical studies, highlighting that the consumption of polyphenols leads to an increase in beneficial bacteria, as well as an increase in the production of valuable metabolites. In conclusion, there is much evidence in preclinical studies supporting the prebiotic effect of polyphenols, but further clinical studies are needed to investigate this effect in humans.
Collapse
|
43
|
Hernalsteens S, Huang S, Cong HH, Chen XD. The final fate of food: On the establishment of in vitro colon models. Food Res Int 2021; 150:110743. [PMID: 34865762 DOI: 10.1016/j.foodres.2021.110743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
The search for life/health quality has driven the search for a better understanding of food components on the overall individual health, which turns to be intrinsically related to the digestive system. In vitro digestion models are considered an alternative for the in vivo studies for a variety of practical reasons, but further research is still needed concerning the colon model establishment. An effective in vitro colon model should consider all unit operations and transport phenomena, together with chemical and biochemical reactions, material handling and reactor design. Due to the different techniques and dependence on the donor microbiota, it is difficult to obtain a standard protocol with results reproductible in time and space. Furthermore, the colon model should be fed with a representative substrate, thus what happens in upper digestion tract and absorption prior to colon is also of crucial importance. Essentially, there are two ways to think about how to achieve a good and useful in vitro colon model: a complex biomimetic system that provides results comparable with the in vivo studies or a simple system, that despite the fact it could not give physiologically relevant data, it is sufficient to understand the fate of some specific components.
Collapse
Affiliation(s)
- Saartje Hernalsteens
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| | | | - Hai Hua Cong
- College of Food Science and Engineering - Dalian Ocean University, China
| | - Xiao Dong Chen
- College of Chemistry, Chemical Engineering and Materials Science - Soochow University, China.
| |
Collapse
|
44
|
De Simone G, Balducci C, Forloni G, Pastorelli R, Brunelli L. Hippuric acid: Could became a barometer for frailty and geriatric syndromes? Ageing Res Rev 2021; 72:101466. [PMID: 34560280 DOI: 10.1016/j.arr.2021.101466] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
Aging is a natural biological event that has some downsides such as increased frailty, decline in cognitive and physical functions leading to chronical diseases, and lower quality of life. There is therefore a pressing need of reliable biomarkers to identify populations at risk of developing age-associated syndromes in order to improve their quality of life, promote healthy ageing and a more appropriate clinical management, when needed. Here we discuss the importance of hippuric acid, an endogenous co-metabolite, as a possible hallmark of human aging and age-related diseases, summarizing the scientific literature over the last years. Hippuric acid, the glycine conjugate of benzoic acid, derives from the catabolism by means of intestinal microflora of dietary polyphenols found in plant-based foods (e.g. fruits, vegetables, tea and coffee). In healthy conditions hippuric acid levels in blood and/or urine rise significantly during aging while its excretion drops in conditions related with aging, including cognitive impairments, rheumatic diseases, sarcopenia and hypomobility. This literature highlights the utility of hippuric acid in urine and plasma as a plausible hallmark of frailty, related to low fruit and vegetable intake and changes in gut microflora.
Collapse
Affiliation(s)
- Giulia De Simone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Claudia Balducci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Laura Brunelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
45
|
Mashitoa FM, Manhivi VE, Akinola SA, Garcia C, Remize F, Shoko T, Sivakumar D. Changes in phenolics and antioxidant capacity during fermentation and simulated in vitro digestion of mango puree fermented with different lactic acid bacteria. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Florence M. Mashitoa
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Vimbainashe E. Manhivi
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Stephen A. Akinola
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Cyrielle Garcia
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Fabienne Remize
- Qualisud Univ MontpellierCIRAD, Institut AgroAvignon UniversitéUniv de La RéunionESIROI Montpellier France
| | - Tinotenda Shoko
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| | - Dharini Sivakumar
- Phytochemical Food Network Group Department of Crop Sciences Tshwane University of Technology Pretoria West South Africa
| |
Collapse
|
46
|
Andrade JKS, Barros RGC, Pereira UC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem 2021; 373:131494. [PMID: 34753077 DOI: 10.1016/j.foodchem.2021.131494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the bioaccessibility, cytotoxicity, antioxidant and antidiabetic potential of peel and seeds of cupuassu (Theobroma grandiflorum). Thus, the extracts of cupuassu were evaluated for inhibition of α-amylase, cytotoxicity, and bioaccessibility after gastrointestinal digestion and probiotic fermentation (Lactobacillus delbrueckii, Lactobacillus jhonsoni, Lactobacillus rhamus and Bifidobacterium longum). Digestion increased concentrations of phenolics, showing bioaccessibility of up to 274.13% (total phenolics) and 1105.15% (ORAC). β-carotene, quinic, tartaric, malic, citric, epicatechin, ethyl gallate, epigallocatechin gallate, gallic acid, pyrocatechol, vanillin, ramnetine were the main compounds while the epicatechin, ethyl gallate, gallic acid and pyrocatechol were the major effective phenolic compounds. The extracts did not show toxic effects and the cupuassu seeds showed 97% inhibition of α-amylase and 47.91% bioaccessibility of pyrocatechol. This study suggests that cupuassu extracts are sources of natural antioxidants with promising antidiabetic potential, and probiotics are able to increase phenolic compounds, responsible for health benefits.
Collapse
Affiliation(s)
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
47
|
Metabolism of Phenolics of Tetrastigma hemsleyanum Roots under In Vitro Digestion and Colonic Fermentation as Well as Their In Vivo Antioxidant Activity in Rats. Foods 2021; 10:foods10092123. [PMID: 34574234 PMCID: PMC8470164 DOI: 10.3390/foods10092123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a herbaceous perennial species distributed mainly in southern China. The Tetrastigma hemsleyanum root (THR) has been prevalently consumed as a functional tea or dietary supplement. In vitro digestion models, including colonic fermentation, were built to evaluate the release and stability of THR phenolics with the method of HPLC-QqQ-MS/MS and UPLC-Qtof-MS/MS. From the oral cavity, the contents of total phenolic and flavonoid began to degrade. Quercetin-3-rutinoside, quercetin-3-glucoside, kaempferol-3-rutinoside, and kaempferol-3-glucoside were metabolized as major components and they were absorbed in the form of glycosides for hepatic metabolism. On the other hand, the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH) content were significantly increased, while malondialdehyde (MDA) content was decreased in plasma and tissues of rats treated with THR extract in the oxidative stress model. These results indicated that the THR extract is a good antioxidant substance and has good bioavailability, which can effectively prevent some chronic diseases caused by oxidative stress. It also provides a basis for the effectiveness of THR as a traditional functional food.
Collapse
|
48
|
Vázquez-Rodríguez B, Santos-Zea L, Heredia-Olea E, Acevedo-Pacheco L, Santacruz A, Gutiérrez-Uribe JA, Cruz-Suárez LE. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
49
|
Phenol Biological Metabolites as Food Intake Biomarkers, a Pending Signature for a Complete Understanding of the Beneficial Effects of the Mediterranean Diet. Nutrients 2021; 13:nu13093051. [PMID: 34578929 PMCID: PMC8471182 DOI: 10.3390/nu13093051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
The Mediterranean diet (MD) has become a dietary pattern of reference due to its preventive effects against chronic diseases, especially relevant in cardiovascular diseases (CVD). Establishing an objective tool to determine the degree of adherence to the MD is a pending task and deserves consideration. The central axis that distinguishes the MD from other dietary patterns is the choice and modality of food consumption. Identification of intake biomarkers of commonly consumed foods is a key strategy for estimating the degree of adherence to the MD and understanding the protective mechanisms that lead to a positive impact on health. Throughout this review we propose potential candidates to be validated as MD adherence biomarkers, with particular focus on the metabolites derived from the phenolic compounds that are associated with the consumption of typical Mediterranean plant foods. Certain phenolic metabolites are good indicators of the intake of specific foods, but others denote the intake of a wide-range of foods. For this, it is important to emphasise the need to increase the number of dietary interventions with specific foods in order to validate the biomarkers of MD adherence. Moreover, the identification and quantification of food phenolic intake biomarkers encouraging scientific research focuses on the study of the biological mechanisms in which polyphenols are involved.
Collapse
|
50
|
Xue B, Wang Y, Tian J, Zhang W, Zang Z, Cui H, Zhang Y, Jiang Q, Li B, Hai Liu R. Effects of chitooligosaccharide-functionalized graphene oxide on stability, simulated digestion, and antioxidant activity of blueberry anthocyanins. Food Chem 2021; 368:130684. [PMID: 34391099 DOI: 10.1016/j.foodchem.2021.130684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
In this study, we tested the in vitro efficacy of a graphene oxide-chitooligosaccharide (GO-COS) complex developed to protect blueberry anthocyanins (An) from degradation by various physicochemical factors and the digestive process. We prepared a GO-COS complex to adsorb An and protect them from the destructive effects of their ambient environment. The complex protected the An under various temperature, pH, light, oxidant, and reductant conditions. We evaluated An content and composition in a simulated digestive system using the pH differential method and the high performance liquid chromatography-mass spectrometry (HPLC-MS). The GO-COS carrier stabilized An in the intestine and protected their peroxyl radical-scavenging capacity. Additionally, we observed a dose-response relationship between An content and cellular antioxidant activity, and simultaneous improvement of An bioavailability when the An were encapsulated in the complex. The complex inhibited HepG2 cell proliferation at the tested dose range. This study provides valuable information for stability of An-rich products.
Collapse
Affiliation(s)
- Bo Xue
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Rui Hai Liu
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Department of Food Science, Cornell University, Ithaca, NY 14850-7201, United States.
| |
Collapse
|