1
|
Vinayashree S, Hemakumar C, Veeranna RP, Kumar R, Pavithra V, Mahendra VP, Vasu P. In Vitro Studies of Pumpkin (Cucurbita moschata var. Kashi Harit) Seed Protein Fraction(s) to Evaluate Anticancer and Antidiabetic Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:632-640. [PMID: 38951376 DOI: 10.1007/s11130-024-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Chronic diseases like cancer and diabetes are the major public health concerns of India and worldwide. Nowadays, plant-derived products are in great demand for the treatment of these diseases. Pumpkin seeds are traditionally implicated for their pharmacological properties, as exemplified by benign prostatic hyperplasia. Earlier, pumpkin seed proteins were extracted by the Osborne method, and their functional and nutritional qualities were evaluated. Here, the aim is to assess in vitro, the anticancer and antidiabetic properties of seed protein fractions. HepG2, MDA-MB-231, and MCF-7 cell lines were treated with water-soluble (WF) and alkali-soluble fractions (AF) to assess cytotoxicity, while pancreatic β-cells and insulin resistance (IR) - HepG2 cell lines were treated with WF to evaluate the antidiabetic potential. WF and AF showed cytotoxic effects towards HepG2 and MDA-MB-231 cell lines, suggesting apoptosis-mediated anticancerous activity. WF potentiates glucose-stimulated insulin secretion in pancreatic β-cells, in a dose-dependent manner. In IR-HepG2 cell line studies, control, metformin, and WF-treated groups showed uptake of glucose, when compared to the diabetic group, which is well-correlated with the upregulated expressions of GLUT2 and GLUT4 transporters in these groups. These results indicate that proteins from WF and AF may have anticancerous and antidiabetic properties and thus have the potential to utilize pumpkin proteins in the management of cancer and diabetes.
Collapse
Affiliation(s)
- S Vinayashree
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - C Hemakumar
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, KS Layout, Bengaluru, Karnataka, India
| | - Ravindra P Veeranna
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Xavier University School of Medicine, Xavier University School of Veterinary Medicine, Santa Helenastraat #23, Oranjestad, Aruba
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - V Pavithra
- Department of Biochemistry, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - V P Mahendra
- Department of Molecular Nutrition, CSIR-CFTRI, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Prasanna Vasu
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Matsinkou Soh R, Ngaha Damndja W, Njintang Yanou N. Functional foods of sub-Saharan Africa and their implications in the management of type 2 diabetes: A review. Food Sci Nutr 2024; 12:24-34. [PMID: 38268906 PMCID: PMC10804129 DOI: 10.1002/fsn3.3764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 01/26/2024] Open
Abstract
Throughout the world, the prevalence of metabolic diseases in general and type 2 diabetes (T2DM) in particular is constantly growing, and sub-Saharan Africa (SSA) is not spared. The use of functional foods is a more practical option among the different approaches used in the management of T2DM owing to the fact that they are relatively less costly, safer, and more accessible. In addition to their low glycemic index just like foods currently used to manage diabetes, functional foods contain bioactive compounds such as polyphenols, dietary fibers, saponins, and peptides. They are so named because they have additional health advantages beyond their basic nutritional worth. Bioactive compounds can be found in a variety of SSA plant-based foods, such as spices, fruits, vegetables, legumes, starchy foods, prepared foods, mixed foods, and prepared dishes. The goal of this review is to highlight some of the investigations into the effectiveness of local food and their antidiabetic mechanisms that have been studied in various SSA regions. Using the literature review as a basis, the authors state that SSA foods are rich in various bioactive compounds capable of regulating blood sugar through enhanced glucose tolerance, antioxidant effects, insulin sensitivity, and inhibition or activation of some key enzymes of the glucose metabolism that are linked to the prevention and management of T2DM. Many of the cited findings are preliminary, obtained from cell and preclinical studies, and therefore other studies need to be done to demonstrate the full potential of these foods to serve as bases for dietary guidelines.
Collapse
Affiliation(s)
- Rosane Matsinkou Soh
- Department of Food Science and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundereNgaoundereCameroon
| | - Wilfred Ngaha Damndja
- Department of Food Science and Nutrition, National School of Agro‐Industrial SciencesUniversity of NgaoundereNgaoundereCameroon
| | | |
Collapse
|
3
|
Mohsin SN, Saleem F, Humayun A, Tanweer A, Muddassir A. Prospective Nutraceutical Effects of Cinnamon Derivatives Against Insulin Resistance in Type II Diabetes Mellitus-Evidence From the Literature. Dose Response 2023; 21:15593258231200527. [PMID: 37701673 PMCID: PMC10494518 DOI: 10.1177/15593258231200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Apart from advances in pharmaceutical antidiabetic agents, efforts are being made toward hypoglycemic agents derived from natural sources. Cinnamon has been reported to have significant benefits for human health, particularly as an anti-inflammatory, antidiabetic, and anti-hypertriglyceridemic agent. The phytochemicals in cinnamon can be extracted from different parts of plant by distillation and solvent extraction. These chemicals help in decreasing insulin resistance and can act against hyperglycemia and dyslipidemia, inflammation and oxidative stress, obesity, overweight, and abnormal glycation of proteins. Cinnamon has shown to improve all of these conditions in in vitro, animal, and/or human studies. However, the mechanism of action of active ingredients found in cinnamon remains unclear. The current review presents the outstanding ability of cinnamon derivatives to control diabetes by various pathways modulating insulin release and insulin receptor signaling. It was also found that the type and dosage of cinnamon as well as subject characteristics including drug interactions are likely to affect the response to cinnamon. Future research directions based on this review include the synergistic usage of various cinnamon derivatives in managing and/or preventing diabetes and possible other relevant chronic diseases.
Collapse
Affiliation(s)
- Saima Naz Mohsin
- NIH, HRI, Research Center NHRC, Shaikh Zayed Post Graduate Medical Institute, Lahore, Pakistan
| | - Faiza Saleem
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ayesha Humayun
- Department of Public Health and Community Medicine, Shaikh Zayed Postgraduate Medical Institute, Lahore, Pakistan
| | - Afifa Tanweer
- Department of Nutrition & Dietetics, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Ambreen Muddassir
- Department of Medicine, Shaikh Zayed Post Graduate Medical Institute, Lahore, Pakistan
| |
Collapse
|
4
|
Uddin S, Brooks PR, Tran TD. Chemical Characterization, α-Glucosidase, α-Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods 2022; 11:1964. [PMID: 35804780 PMCID: PMC9266216 DOI: 10.3390/foods11131964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
The use of functional foods and nutraceuticals as a complementary therapy for the prevention and management of type 2 diabetes and obesity has steadily increased over the past few decades. With the aim of exploring the therapeutic potentials of Australian propolis, this study reports the chemical and biological investigation of a propolis sample collected in the Queensland state of Australia which exhibited a potent activity in an in vitro α-glucosidase inhibitory screening. The chemical investigation of the propolis resulted in the identification of six known prenylated flavonoids including propolins C, D, F, G, H, and solophenol D. These compounds potently inhibited the α-glucosidase and two other enzymes associated with diabetes and obesity, α-amylase, and lipase on in vitro and in silico assays. These findings suggest that this propolis is a potential source for the development of a functional food to prevent type 2 diabetes and obesity. The chemical analysis revealed that this propolis possessed a chemical fingerprint relatively similar to the Pacific propolis found in Okinawa (South of Japan), Taiwan, and the Solomon Islands. This is the first time the Pacific propolis has been identified in Australia.
Collapse
Affiliation(s)
- Sabah Uddin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
| | - Peter R. Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Trong D. Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (S.U.); (P.R.B.)
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| |
Collapse
|
5
|
Phytochemical profile and antidiabetic effect of the bioactive fraction of Cirsium setidens in streptozotocin-induced type 2 diabetic mice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Tonelli CA, de Oliveira SQ, Silva Vieira AAD, Biavatti MW, Ritter C, Reginatto FH, Campos AMD, Dal-Pizzol F. Clinical efficacy of capsules containing standardized extract of Bauhinia forficata Link (pata-de-vaca) as adjuvant treatment in type 2 diabetes patients: A randomized, double blind clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114616. [PMID: 34506937 DOI: 10.1016/j.jep.2021.114616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bauhinia forficata Link, is a Brazilian native plant and popularly known as pata-de-vaca ("paw-of-cow"). The tea prepared with their leaves has been extensively used in the Brazilian traditional practices for the diabetes treatment. The aim of the present study was to investigate the effect of capsules containing granules of a standardized extract of B. forficata leaves as adjuvant treatment on the glycemic control of patients with type-2 diabetes melitus. MATERIALS AND METHODS A double-blind, randomized clinical trial using capsules containing granules prepared by wet granulation of a standardized extract from B. forficata leaves as adjuvant treatment, was conducted. 92 patients aged 18-75 years from an outpatient clinic with type-2 diabetes were randomly assigned by a simple randomization scheme, in a 1:1 ratio to receive capsules of B. forficata or placebo for four months. The capsules used contain 300 mg of standardized extract from B. forficata leaves, yielding 2% of total flavonoid content per capsule. Primary outcome was glycated hemoglobin levels and fasting plasma glucose at 4 months. Possible harms were also determined. RESULTS The findings showed that at 4 months, the mean fasting plasma glucose levels and glycated hemoglobin were both significantly lower in the B. forficata group than in the placebo group. CONCLUSION The present study suggests that the adjunctive use of capsules containing standardized extract of B. forficata can add to regular oral anti-diabetics in the metabolic and inflammatory control of type-2 diabetes patients.
Collapse
Affiliation(s)
- Carlos André Tonelli
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Simone Quintana de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Andriele Aparecida da Silva Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Flávio Henrique Reginatto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
7
|
Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic Phytochemicals From Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front Endocrinol (Lausanne) 2022; 13:800714. [PMID: 35282429 PMCID: PMC8907382 DOI: 10.3389/fendo.2022.800714] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes, a chronic physiological dysfunction affecting people of different age groups and severely impairs the harmony of peoples' normal life worldwide. Despite the availability of insulin preparations and several synthetic oral antidiabetic drugs, there is a crucial need for the discovery and development of novel antidiabetic drugs because of the development of resistance and side effects of those drugs in long-term use. On the contrary, plants or herbal sources are getting popular day by day to the scientists, researchers, and pharmaceutical companies all over the world to search for potential bioactive compound(s) for the discovery and development of targeted novel antidiabetic drugs that may control diabetes with the least unwanted effects of conventional antidiabetic drugs. In this review, we have presented the prospective candidates comprised of either isolated phytochemical(s) and/or extract(s) containing bioactive phytoconstituents which have been reported in several in vitro, in vivo, and clinical studies possessing noteworthy antidiabetic potential. The mode of actions, attributed to antidiabetic activities of the reported phytochemicals and/or plant extracts have also been described to focus on the prospective phytochemicals and phytosources for further studies in the discovery and development of novel antidiabetic therapeutics.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
- *Correspondence: Md. Moklesur Rahman Sarker, ; ; orcid.org/0000-0001-9795-0608; Isa Naina Mohamed, ; orcid.org/0000-0001-8891-2423
| | | | | | - Mohammad A. Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, ALCRI (Arid Lands Cultivation Research Institute), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shah Alam Khan
- College of Pharmacy, National University of Science & Technology, Muscat, Oman
| | - Isa Naina Mohamed
- Pharmacology Department, Medicine Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
- *Correspondence: Md. Moklesur Rahman Sarker, ; ; orcid.org/0000-0001-9795-0608; Isa Naina Mohamed, ; orcid.org/0000-0001-8891-2423
| |
Collapse
|
8
|
K. S. G, John JA. Functional beverages: Special focus on anti‐diabetic potential. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gayathry K. S.
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Kochi India
| | - Jenny Ann John
- Department of Food Science and Technology Faculty of Ocean Science and Technology Kerala University of Fisheries and Ocean Studies Kochi India
| |
Collapse
|
9
|
Uuh-Narvaez JJ, Segura-Campos MR. Cabbage (Brassica oleracea var. capitata): A food with functional properties aimed to type 2 diabetes prevention and management. J Food Sci 2021; 86:4775-4798. [PMID: 34658044 DOI: 10.1111/1750-3841.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is increasing the prevalence worldwide at an alarming rate, becoming a serious public health problem that mainly affects developing countries. Functional food research is currently of great interest because it contributes to developing nutritional therapy strategies for T2DM prevention and treatment. Bioactive compounds identified in some plant foods contribute to human health by mechanisms of action that exert biological effects on metabolic pathways involved in the development of T2DM. Hence, vegetables with high bioactive compounds content may be a source of functional value for the control of T2DM. Cabbages varieties (Brassica oleracea var. capitata) such as green (GCB), white (WCB), and red (RCB) are foods consumed (raw or cooked) and cultivated in different regions of the world. Scientific evidence shows that cabbage has multi-target effects on glucose homeostatic regulation due to its high content of bioactive compounds. It has also been shown to decrease damage to organs affected by T2DM complications, such as the liver and kidney. Additionally, it could contribute as a preventive by attenuating problems underlying the development of T2DM as oxidative stress and obesity. This review highlights the functional properties of cabbage varieties involved in glucose regulation and the main mechanisms of the action exerted by their bioactive compounds. In conclusion, cabbage is a valuable food that can be employed as part of nutritional therapy or functional ingredient aimed at the prevention and treatment of T2DM.
Collapse
|
10
|
Song X, Dong H, Zang Z, Wu W, Zhu W, Zhang H, Guan Y. Kudzu Resistant Starch: An Effective Regulator of Type 2 Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4448048. [PMID: 34691353 PMCID: PMC8528595 DOI: 10.1155/2021/4448048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Kudzu is a traditional medicinal dietary supplement, and recent research has shown its significant benefits in the prevention/treatment of type 2 diabetes mellitus (T2DM). Starch is one of the main substances in Kudzu that contribute decisively to the treatment of T2DM. However, the underlying mechanism of the hypoglycemic activity is not clear. In this study, the effect of Kudzu resistant starch supplementation on the insulin resistance, gut physical barrier, and gut microbiota was investigated in T2DM mice. The result showed that Kudzu resistant starch could significantly decrease the value of fasting blood glucose and the levels of total cholesterol, total triglyceride, and high-density lipoprotein, as well as low-density lipoprotein, in the blood of T2DM mice. The insulin signaling sensitivity in liver tissue was analyzed; the result indicated that intake of different doses of Kudzu resistant starch can help restore the expression of IRS-1, p-PI3K, p-Akt, and Glut4 and thus enhance the efficiency of insulin synthesis. Furthermore, the intestinal microorganism changes before and after ingestion of Kudzu resistant starch were also analyzed; the result revealed that supplementation of KRS helps to alleviate and improve the dysbiosis of the gut microbiota caused by T2DM. These results validated that Kudzu resistant starch could improve the glucose sensitivity of T2DM mice by modulating IRS-1/PI3K/AKT/Glut4 signaling transduction. Kudzu resistant starch can be used as a promising prebiotic, and it also has beneficial effects on the gut microbiota structure of T2DM mice.
Collapse
Affiliation(s)
- Xinqi Song
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Huanhuan Dong
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Zhenzhong Zang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Wenting Wu
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, 330004 Nanchang, China
| |
Collapse
|
11
|
Uuh-Narvaez JJ, Negrete-León E, Acevedo-Fernández JJ, Segura-Campos MR. Antihyperglycemic and hypoglycemic activity of Mayan plant foods in rodent models. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4193-4200. [PMID: 33420740 DOI: 10.1002/jsfa.11057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/10/2020] [Accepted: 01/08/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND Postprandial hyperglycemia and decreased insulin secretion are relevant to risk factors in the development of type 2 diabetes and its complications. Plant foods with antidiabetic properties could be an affordable alternative in the prevention and treatment of this disease. In the present study, the antihyperglycemic and hypoglycemic activity of Bixa orellana, Psidium guajava L., Cucurbita moschata, Raphanus sativus L. and Brassica oleracea var. capitata - Mayan plant foods - were evaluated at doses of 5 and 10 mg kg-1 . Antihyperglycemic activity was measured in healthy Wistar rats and those with obesity induced by high-sucrose diet (group HSD) (20%). The hypoglycemic activity was measure in healthy CD1 mice. RESULTS Fasting glucose, Lee index and the body weight of HSD rats increased significantly (P ≤ 0.05) after 12 weeks of induction compared to healthy rats. In healthy rats, P. guajava and Bixa orellana (10 mg kg-1 ) demonstrated higher and statistically different (P ≤ 0.05) antihyperglycemic activity compared to control acarbose (0.5 mg kg-1 ). In the HSD rat group, all Mayan plant foods (10 mg kg-1 ) demonstrated antihyperglycemic activity statistically equal (P ≤ 0.05) to control acarbose. However, Brassica oleracea and R. sativus registered the highest antihyperglycemic activity. Bixa orellana and P. guajava (5 mg kg-1 ) showed similar hypoglycemic activity (P ≤ 0.05) to glibenclamide (0.5 mg kg-1 ) but was not significant (P ≤ 0.05) compared to insulin (5 UI kg-1 ). CONCLUSION The present study provides valuable evidence on the possible health benefits of Mayan plant foods. These foods could contribute to the development of therapeutic diet strategies for the prevention and treatment of diabetes. © 2021 Society of Chemical Industry.
Collapse
|
12
|
Xia X, Wang X, Wang H, Lin Z, Shao K, Xu J, Zhao Y. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113919. [PMID: 33577915 DOI: 10.1016/j.jep.2021.113919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney damage (DKD) is one of the most common complications of diabetes, which is known as a chronic inflammatory kidney disease caused by persistent hyperglycemia. White tea was originally used as a folk medicine to treat measles in ancient China. What arouses our interest is that there is a traditional method to treat diabetes with white tea taken from over 30-year-old tree of Camellia sinensis L. However, there are few reports on the renal protection of white tea. AIM OF THE STUDY This present study was designed to study the potential protective effects of white tea (WT) and old tree white tea (OTWT) on high-fat-diet (HFD) combined with streptozotocin (STZ)-induced type 2 diabetic mice to explore the possible mechanism of WT/OTWT against DKD. MATERIALS AND METHODS C57BL/6 mice were randomly divided into four groups: NC, T2D, WT (400 mg/kg·b.w, p.o.), OTWT (400 mg/kg·b.w, p.o.). Diabetes was established in all groups except NC group, by six weeks of HFD feeding combined with STZ (50 mg/kg, i.p.) for 3 times, treatments were administered for six weeks and then all the animals were decapitated; kidney tissues and blood samples were collected for the further analysis, including: levels of insulin, lipid metabolism (TG, TC, HDL, LDL, FFA), antioxidative enzymes (catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPx)), blood urea nitrogen (BUN) and creatine, inflammatory cytokines (TNF-α, IL-1β, COX-2, iNOS, MCP-1), advanced glycation end products (AGE), receptor of AGE (RAGE), Nrf2, AMPK, SIRT1, and PGC-1α. H&E, PAS and Masson staining were performed to examine the histopathological alterations of the kidneys. RESULTS Our data showed that WT and OTWT reversed the abnormal serum lipids (TG, TC, HDL, LDL, FFA) in T2D mice, upregulated antioxidative enzymes levels (CAT, SOD, GPx) and inhibit the excessive production of proinflammatory mediators (including MCP-1, TNF-α, IL1β, COX-2 and iNOS) by varying degrees, and OTWT was more effective. In histopathology, OTWT could significantly alleviate the accumulation of renal AGE in T2D mice, thereby improving the structural changes of the kidneys, such as glomerular hypertrophy, glomerular basement membrane thickening and kidney FIbrosis. CONCLUSIONS Both WT and OTWT could alleviate the diabetic changes in T2D mice via hypoglycemic, hypolipidemic, anti-oxidative and anti-inflammatory effects, while OTWT was more evident. OTWT could prominently alleviate the accumulation of AGE in the kidneys of T2D mice, thereby ameliorating the renal oxidative stress and inflammatory damage, which was associated with the activation of SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Xiaoyan Xia
- School of Traditional Chinese Medicine, Shanxi Datong University, Datong, 037009, China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhenchuan Lin
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Keping Shao
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Ye Z, Chen X, He Y, Jin M, Ye M. Antidiabetic effects of fermented milk contained with
Gardenia jasminoides
water extracts on streptozotocin‐induced mice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ziyang Ye
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Xue Chen
- Department of Chemical Engineering and Food Processing Hefei University of Technology Xuancheng P.R. China
| | - Yaling He
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Mingzhi Jin
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| | - Ming Ye
- Microbial Resources and Application Laboratory School of Food and Biological Engineering Hefei University of Technology Hefei P.R. China
| |
Collapse
|
14
|
Zhai FH, Chen YF, Zhang Y, Zhao WJ, Han JR. Phenolic compounds and antioxidant properties of wheat fermented with Agaricus brasiliensis and Agaricus bisporus. FEMS Microbiol Lett 2020; 368:6041716. [PMID: 33338214 DOI: 10.1093/femsle/fnaa213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023] Open
Abstract
Solid-state fermentation with Agaricus brasiliensis and Agaricus bisporus on whole grain wheat was carried out. Phenolic compounds and antioxidant properties of fermented wheat were determined. The results showed that the maximum values of polyphenols contents in wheat fermented with A. brasiliensis and A. bisporus reached, respectively (3.16 ± 0.21) and (3.93 ± 0.23) mg GAE/g, which were 2.90 and 3.61 times of unfermented control. By employing ultra performance liquid chromatography coupled to mass spectrometry (UPLC-MS), 18 kinds of phenolic compounds were identified from fermented wheat. Compared with control, only 4-hydroxy-benzaldehyde was the same compound. It indicated that fermentation with the two fungi changed polyphenols contents and phenolic compounds composition in wheat to a great extent. Among these phenolic compounds, except for 4-hydroxy-benzaldehyde, 4-hydroxy-benzoic acid and β-N-(γ-glutamyl)-4-formylphenylhydrazine, other 15 kinds of phenolic compounds were first identified from mushroom samples (including fruit bodies, mycelia and fermentation products). DPPH radical scavenging capacity, reducing power, ferrous ion chelating ability and inhibition of lipid peroxidation of fermented wheat were significantly stronger than control (P < 0.05).
Collapse
Affiliation(s)
- Fei-Hong Zhai
- Taiyuan Normal University, Department of Biology, Daxue Street No. 319, Taiyuan 030619, China
| | - Yan-Fei Chen
- Taiyuan Normal University, Department of Biology, Daxue Street No. 319, Taiyuan 030619, China
| | - Yong Zhang
- Shanxi Functional Food Research Institute, Shanxi Agricultural University, Longcheng Street, Taiyuan 030031, China
| | - Wen-Jing Zhao
- Taiyuan Normal University, Department of Biology, Daxue Street No. 319, Taiyuan 030619, China
| | - Jian-Rong Han
- School of Life Science, Shanxi University, Wucheng Road No. 92, Taiyuan 030006, China
| |
Collapse
|
15
|
Laudadio V, Nasiri-Dehbaneh M, Bilal RM, Qotbi A, Javandel F, Ebrahimi A, Seidavi A, Slozhenkina M, Gorlov I, Dunne PG, Tufarelli V. Effects of different levels of dietary black cumin ( Nigella sativa L.) and fenugreek ( Trigonella foenum-graecum L.) and their combination on productive traits, selected blood constituents, microbiota and immunity of broilers. Anim Biotechnol 2020; 33:941-954. [PMID: 33325302 DOI: 10.1080/10495398.2020.1853138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effects of inclusion of powdered seeds of black cumin (B) (Nigella sativa L.) and fenugreek (F) (Trigonella foenum-graecum L.) on productive traits, selected blood constituents, microbiota and immunity of broilers were studied. A total of 648 day-old chicks were randomly assigned to nine treatments, with four pen replicates, each with 18 birds, including three levels of B seed powder (BSP; 0, 5 or 10 g/kg) and three levels of F seed powder (FSP; 0, 5 or 10 g/kg) in a 3 × 3 factorial arrangement. Neither powder affected feed intake. The FSP increased (p = 0.048) feed conversion ratio (FCR), but decreased daily BW gain (p = 0.02) between days 0 and 21, while BSP increased daily gain between days 22 and 42 and overall (both p = 0.005). Abdominal fat was decreased (p = 0.003) by BSP. Blood constituents were unaffected by either powder, but ileal Escherichia coli were decreased (p = 0.039) at day 42. The BSP increased a range of immunological titers, where BSP affected positively the measured variables. The interactions between BSP and FSP, specifically on broiler carcass cuts, suggested that where BSP is included at 10 g/kg, the inclusion of FSP at the same level may provide no additional benefit. Thus, while either powder could be included separately, the co-inclusion of both at 10 g/kg is not recommended.
Collapse
Affiliation(s)
- Vito Laudadio
- Department of DETO - Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | | | - Rana Muhammad Bilal
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Qotbi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Faramin Javandel
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Abbas Ebrahimi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Seidavi
- Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Marina Slozhenkina
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Ivan Gorlov
- Volga Region Research Institute of Manufacture and Processing of Meat-and-Milk Production, Volgograd, Russia
| | - Peter G Dunne
- Department of Applied Sciences, Dundalk Institute of Technology, Dundalk, County Louth, Republic of Ireland
| | - Vincenzo Tufarelli
- Department of DETO - Section of Veterinary Science and Animal Production, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| |
Collapse
|
16
|
Moya-Hernández A, Bosquez-Molina E, Verde-Calvo JR, Blancas-Flores G, Trejo-Aguilar GM. Hypoglycemic effect and bioactive compounds associated with the ripening stages of the Cucurbita ficifolia Bouché fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5171-5181. [PMID: 32530046 DOI: 10.1002/jsfa.10566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The fruit of Cucurbita ficifolia Bouché is known in Mexico as 'chilacayote'. The scientific interest that C. ficifolia Bouché has acquired is due to its important hypoglycemic effect. The present research aimed (i) to discover whether this hypoglycemic property is present at different stages of development of this fruit, and (ii) to characterize some bioactive compounds with antioxidant or anti-inflammatory properties. Ethylene production, respiration rate, and maturity indices were determined during fruit development. The chemical characterization of the aqueous extracts of each stage of maturity studied was determined and their hypoglycemic effects were bioassayed using groups of normal mice with diabetes induced by streptozotocin at a dose of 500 mg-1 kg-1 body weight. RESULTS Respiration rate and ethylene production showed a typical pattern for non-climacteric fruit and the quality parameters did not show significant changes. Phenolic compounds such as gallic acid and chlorogenic acid were found to have the highest concentration at 15 days of development. Extracts at 15 days showed a hypoglycemic effect that was 11% greater than that of glibenclamide in diabetized mice. CONCLUSION All stages of development of C. ficifolia fruit had a hypoglycemic effect; however, the aqueous extract from the fruit at 15 days of development showed a better effect than glibenclamide. This finding highlights the potential of this maturity stage, and shows that it is appropriate for inclusion in treatments of type 2 diabetes mellitus. The results also indicate that phenolic compounds are mainly responsible for this effect and not d-chiro-inositol as previously thought. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Araceli Moya-Hernández
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Elsa Bosquez-Molina
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - José Ramón Verde-Calvo
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Gerardo Blancas-Flores
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | | |
Collapse
|
17
|
Qian K, Tan T, Ouyang H, Yang SL, Zhu WF, Liu RH, Wen Q, Feng YL. Structural characterization of a homopolysaccharide with hypoglycemic activity from the roots of Pueraria lobata. Food Funct 2020; 11:7104-7114. [PMID: 32744543 DOI: 10.1039/d0fo01234c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A water-soluble neutral homopolysaccharide (PLP-1) was obtained from the roots of Pueraria lobata by DEAE cellulose and Sephadex G-200 gel chromatography purification. The average molecular weight of PLP-1 was 16.2 kDa. Monosaccharide composition analysis showed that PLP-1 was composed of glucose as a glucan. The structure of PLP-1 was characterized on the basis of extensive physical and chemical analysis, which indicated that the backbone of PLP-1 was mainly composed of →3)-α-d-Glcp(1→ and →4)-β-d-Glcp(1→ with a molar ratio of 7.0 : 1.0. Moreover, the hypoglycemic activity of PLP-1 was investigated by palmitic acid and high glucose induced insulin resistant HepG2 cells. The results elucidated that PLP-1 could decrease the glucose concentration by up-regulating the expression of PI3K and AKT, and down-regulating the expression of FoxO1, PCK2, and G6Pase in insulin resistant cells. Therefore, PLP-1 could serve as a dietary supplement to ameliorate insulin resistance for diabetic patients.
Collapse
Affiliation(s)
- Kai Qian
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Uuh Narvaez JJ, Segura Campos MR. Foods from Mayan Communities of Yucatán as Nutritional Alternative for Diabetes Prevention. J Med Food 2020; 23:349-357. [DOI: 10.1089/jmf.2019.0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Jia RB, Li ZR, Wu J, Ou ZR, Zhu Q, Sun B, Lin L, Zhao M. Physicochemical properties of polysaccharide fractions from Sargassum fusiforme and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int J Biol Macromol 2020; 147:428-438. [PMID: 31899245 DOI: 10.1016/j.ijbiomac.2019.12.243] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Two polysaccharide fractions (SFPs, designated as respectively SFP-1 and SFP-2) were acquired from Sargassum fusiforme by ultrasound-assisted enzymatic extraction, and their physicochemical properties and hypoglycemic and hypolipidemic effects were investigated. Structural analysis indicated that SFPs were obvious different in the zeta potential, molecular weight distribution, characteristic organic group, microstructure and the contents of total sugar, uronic acid, sulfate and moisture. SFPs consisted of fucose, mannose, rhamnose, glucose, galactose and glucuronic acid with different molar ratios. Congo red test explained that SFPs had no triple-helix structure. SFP-1 exhibited lower viscosity due to its lower molecular weight. Regarding to hypoglycemic and hypolipidemic effects, oral administration of SFPs prominently restrained loss of body weight and increase of water intake, and also significantly controlled the increase of levels of fasting blood glucose, triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), uric acid (UA), urea nitrogen (BUN), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) of diabetic rats, and SFP-2 showed better effects in controlling fasting blood glucose, ALT, UA and BUN levels. Intervention of SFP-2 reduced the levels of insulin, FFA and TBA of diabetic rats. Histomorphological observation further demonstrated that SFPs could attenuate liver and kidney damage caused by hyperglycemia and hyperlipidemia. Data indicated that SFPs, especially SFP-2, significantly improved hyperglycemia, hyperlipidemia and liver and kidney function of diabetic rats.
Collapse
Affiliation(s)
- Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Juan Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Zhi-Rong Ou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiyuan Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| |
Collapse
|
20
|
Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease. Neurochem Int 2020; 135:104707. [PMID: 32092326 DOI: 10.1016/j.neuint.2020.104707] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Its major pathological hallmarks, neurofibrillary tangles (NFT), and amyloid-β plaques can result from dysfunctional insulin signaling. Insulin is an important growth factor that regulates cell growth, energy utilization, mitochondrial function, autophagy, oxidative stress, synaptic plasticity, and cognitive function. Insulin and its downstream signaling molecules are located majorly in the regions of cortex and hippocampus. The major molecules involved in impaired insulin signaling include IRS, PI3K, Akt, and GSK-3β. Activation or inactivation of these major molecules through increased or decreased phosphorylation plays a role in insulin signaling abnormalities or insulin resistance. Insulin resistance, therefore, is considered as a major culprit in generating the hallmarks of AD arising from neuroinflammation and oxidative stress, etc. Moreover, caspases, Nrf2, and NF-κB influence this pathway in an indirect way. Various studies also suggest a strong link between Diabetes Mellitus and AD due to the impairment of insulin signaling pathway. Moreover, studies also depict a strong correlation of other neurodegenerative diseases such as Parkinson's disease and Huntington's disease with insulin resistance. Hence this review will provide an insight into the role of insulin signaling pathway and related molecules as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
|
21
|
Xia X, Xu J, Wang X, Wang H, Lin Z, Shao K, Fang L, Zhang C, Zhao Y. Jiaogulan tea (Gpostemma pentaphyllum) potentiates the antidiabetic effect of white tea via the AMPK and PI3K pathways in C57BL/6 mice. Food Funct 2020; 11:4339-4355. [DOI: 10.1039/d0fo00395f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of plant-based beverages to interfere with the onset of diabetes may be a promising approach towards type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Xiaoyan Xia
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Jing Xu
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Xude Wang
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Hua Wang
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | | | | | - LinLin Fang
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | | | - Yuqing Zhao
- School of Functional Food and Wine
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education
| |
Collapse
|
22
|
Huang Z, Lin F, Zhu X, Zhang C, Jiang M, Lu Z. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway. Int J Biol Macromol 2020; 143:775-784. [DOI: 10.1016/j.ijbiomac.2019.09.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023]
|
23
|
Hayward NJ, McDougall GJ, Farag S, Allwood JW, Austin C, Campbell F, Horgan G, Ranawana V. Cinnamon Shows Antidiabetic Properties that Are Species-Specific: Effects on Enzyme Activity Inhibition and Starch Digestion. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:544-552. [PMID: 31372918 PMCID: PMC6900266 DOI: 10.1007/s11130-019-00760-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite considerable research the evidence around the antidiabetic properties of cinnamon remains equivocal, and this may be due to varietal differences which is an aspect that is understudied. This study systematically compared the anti-hyperglycaemic properties of the four major commercial cinnamon types used around the world (Chinese; Cinnamomum cassia [CC], Indonesian; C. burmanii [IC], Vietnamese; C. loureirii [VC], and Ceylon; C. zeylanicum [SC]). LC-MS analysis showed distinct diffrences in the phytochemical profiles of cinnamon with SC showing the lowest coumarin concentration. CC and IC had the highest polyphenol levels and antioxidant potential, and all four types differed significantly in their content (P < 0.001). All cinnamon types showed potent species-specific effects on starch digestion enzyme activity inhibition (P < 0.001), CC was most effective against α-amylase and all four strongly inhibited α-glucosidase compared to acarbose. Cinnamon significantly reduced starch breakdown during oral (P = 0.006) and gastric (P = 0.029) phases of gastro-intestinal digestion with IC and SC showing consistent effects. No effects of cinnamon were seen in the intestinal phase. IC, VC and SC showed the greatest potential to inhibit formation of advanced glycation endproducts (AGEs) during digestion. In conclusion, cinnamon demonstrates anti-hyperglycaemic properties, however effects are species-specific with best overall properties seen for Ceylon cinnamon.
Collapse
Affiliation(s)
- Nicholas J Hayward
- The University of Aberdeen, Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | | | - Sara Farag
- The University of Aberdeen, Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | | | - Ceri Austin
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland
| | - Fiona Campbell
- The University of Aberdeen, Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| | - Graham Horgan
- Biomathematics & Statistics Scotland, Aberdeen, AB25 2ZD, Scotland
| | - Viren Ranawana
- The University of Aberdeen, Rowett Institute, Foresterhill, Aberdeen, AB25 2ZD, Scotland.
| |
Collapse
|
24
|
Yang HW, Son M, Choi J, Oh S, Jeon YJ, Byun K, Ryu B. Effect of Ishophloroglucin A, A Component of Ishige okamurae, on Glucose Homeostasis in the Pancreas and Muscle of High Fat Diet-Fed Mice. Mar Drugs 2019; 17:E608. [PMID: 31731426 PMCID: PMC6891760 DOI: 10.3390/md17110608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Ishophloroglucin A (IPA), a component of Ishige okamurae (IO), was previously evaluated to standardize the antidiabetic potency of IO. However, the potential of IPA as a functional food for diabetes prevention has not yet been evaluated. Here, we investigated if 1.35 mg/kg IPA, which is the equivalent content of IPA in 75 mg/kg IO, improved glucose homeostasis in high-fat diet (HFD)-induced diabetes after 12 weeks of treatment. IPA significantly ameliorated glucose intolerance, reducing fasting glucose levels as well as 2 h glucose levels in HFD mice. In addition, IPA exerted a protective effect on the pancreatic function in HFD mice via pancreatic β-cells and C-peptide. The level of glucose transporter 4 (GLUT4) in the muscles of HFD mice was stimulated by IPA intake. Our results suggested that IPA, which is a component of IO, can improve glucose homeostasis via GLUT4 in the muscles of HFD mice. IO may be used as a functional food for the prevention of diabetes.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 1 Ara 1-dong, Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
| | - Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (M.S.); (J.C.)
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Junwon Choi
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (M.S.); (J.C.)
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 1 Ara 1-dong, Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (M.S.); (J.C.)
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - BoMi Ryu
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 1 Ara 1-dong, Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
25
|
Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Cione E, Plastina P, Pingitore A, Perri M, Caroleo MC, Fazio A, Witkamp R, Meijerink J. Capsaicin Analogues Derived from n-3 Polyunsaturated Fatty Acids (PUFAs) Reduce Inflammatory Activity of Macrophages and Stimulate Insulin Secretion by β-Cells In Vitro. Nutrients 2019; 11:E915. [PMID: 31022842 PMCID: PMC6520993 DOI: 10.3390/nu11040915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, two capsaicin analogues, N-eicosapentaenoyl vanillylamine (EPVA) and N-docosahexaenoyl vanillylamine (DHVA), were enzymatically synthesized from their corresponding n-3 long chain polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), both dietary relevant components. The compounds significantly reduced the production of some lipopolysaccharide (LPS)-induced inflammatory mediators, including nitric oxide (NO), macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1 or CCL2), by RAW264.7 macrophages. Next to this, only EPVA increased insulin secretion by pancreatic INS-1 832/13 β-cells, while raising intracellular Ca2+ and ATP concentrations. This suggests that the stimulation of insulin release occurs through an increase in the intracellular ATP/ADP ratio in the first phase, while is calcium-mediated in the second phase. Although it is not yet known whether EPVA is endogenously produced, its potential therapeutic value for diabetes treatment merits further investigation.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Attilio Pingitore
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Renger Witkamp
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
27
|
Zhang WN, Su RN, Gong LL, Yang WW, Chen J, Yang R, Wang Y, Pan WJ, Lu YM, Chen Y. Structural characterization and in vitro hypoglycemic activity of a glucan from Euryale ferox Salisb. seeds. Carbohydr Polym 2019; 209:363-371. [DOI: 10.1016/j.carbpol.2019.01.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
|
28
|
Chen Z, Li W, Guo Q, Xu L, Santhanam RK, Gao X, Chen Y, Wang C, Panichayupakaranant P, Chen H. Anthocyanins from dietary black soybean potentiate glucose uptake in L6 rat skeletal muscle cells via up-regulating phosphorylated Akt and GLUT4. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
29
|
Zhang Y, Xu W, Huang X, Zhao Y, Ren Q, Hong Z, Huang M, Xing X. Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Mohammed A, Islam MS. Spice-Derived Bioactive Ingredients: Potential Agents or Food Adjuvant in the Management of Diabetes Mellitus. Front Pharmacol 2018; 9:893. [PMID: 30186162 PMCID: PMC6113848 DOI: 10.3389/fphar.2018.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/23/2018] [Indexed: 01/31/2023] Open
Abstract
Spices possess tremendous therapeutic potential including hypoglycemic action, attributed to their bioactive ingredients. However, there is no study that critically reviewed the hypoglycemic potency, safety and the bioavailability of the spice-derived bioactive ingredients (SDBI). Therefore, the aim of the study was to comprehensively review all published studies regarding the hypoglycemic action of SDBI with the purpose to assess whether the ingredients are potential hypoglycemic agents or adjuvant. Factors considered were concentration/dosages used, the extent of blood glucose reduction, the IC50 values, and the safety concern of the SDBI. From the results, cinnamaldehyde, curcumin, diosgenin, thymoquinone (TQ), and trigonelline were showed the most promising effects and hold future potential as hypoglycemic agents. Conclusively, future studies should focus on improving the tissue and cellular bioavailability of the promising SDBI to achieve greater potency. Additionally, clinical trials and toxicity studies are with these SDBI are warranted.
Collapse
Affiliation(s)
- Aminu Mohammed
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Antidiabetic activities of polysaccharides from Anoectochilus roxburghii and Anoectochilus formosanus in STZ-induced diabetic mice. Int J Biol Macromol 2018; 112:882-888. [DOI: 10.1016/j.ijbiomac.2018.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 01/18/2023]
|
32
|
Characteristic Components, Biological Activities and Future Prospective of Fructus Mori: a Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Ou J, Huang J, Zhao D, Du B, Wang M. Protective effect of rosmarinic acid and carnosic acid against streptozotocin-induced oxidation, glycation, inflammation and microbiota imbalance in diabetic rats. Food Funct 2018; 9:851-860. [PMID: 29372208 DOI: 10.1039/c7fo01508a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
This study evaluated the protective effects of two rosemary components, rosmarinic acid (RA) and carnosic acid (CA), against hypoglycemia, hyperlipidemia, oxidative stress and an imbalanced gut microbiota architecture in diabetic rats. Treatment with RA and CA (30 mg kg-1) decreased the levels of fasting plasma glucose (23.7%, 15.6%), total cholesterol (30.4%, 14.1%) and triglyceride (65.7%, 47.8%) at 15 weeks. RA and CA also exhibited an anti-oxidative and anti-glycative effect by lowering the formation of malondialdehyde and advanced glycation end products. In addition, they showed protective effects against tissue damage and inflammation in the abdominal aorta, based on microscopic observations and the analysis of protein expression. Finally, the prebiotic effects of RA and CA on gut microbiota were demonstrated by increasing the population of diabetes-resistant bacteria and decreasing the amounts of diabetes-sensitive bacteria. Overall, RA showed a stronger protective effect than CA in mitigating diabetic symptoms in rats.
Collapse
Affiliation(s)
- Juanying Ou
- School of Biological Sciences, the University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
34
|
Savran A, Zengin G, Aktumsek A, Mocan A, Glamoćlija J, Ćirić A, Soković M. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits. Food Funct 2018; 7:3252-62. [PMID: 27364042 DOI: 10.1039/c6fo00695g] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present study outlines a chemical characterization and further effects beneficial to health of edible Rumex scutatus and Pseudosempervivum sempervivum, in addition to presenting the antioxidant, enzyme inhibitory effects and antimicrobial properties of different extracts. The phenolic compounds composition of the extracts was assessed by RP-HPLC-DAD, outlining benzoic acid and rutin as major constituents in P. sempervivum and rutin and hesperidin in R. scutatus. Moreover, further biological effects were tested on key enzymes involved in diabetes mellitus, Alzheimer's disease and skin melanogenesis revealing an important tyrosinase inhibitory effect of Pseudosempervivum water extract. Moreover, both species possessed antimicrobial properties towards bacteria and fungi relevant to public health. Accordingly, we find that R. scutatus and P. sempervivum can be considered as novel functional foods because they are rich sources of biologically active compounds that provide health benefits.
Collapse
Affiliation(s)
- Ahmet Savran
- Department of Biology, Faculty of Science and Arts, Nigde University, Nigde, Turkey
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey.
| | | | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8, V. Babes Street, Cluj-Napoca, Romania
| | - Jasmina Glamoćlija
- Institute for Biological Research "Siniša Stanković" University of Belgrade, Belgrade, Serbia.
| | - Ana Ćirić
- Institute for Biological Research "Siniša Stanković" University of Belgrade, Belgrade, Serbia.
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković" University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
35
|
Kasprzak K, Oniszczuk T, Wójtowicz A, Waksmundzka-Hajnos M, Olech M, Nowak R, Polak R, Oniszczuk A. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:7830546. [PMID: 29507816 PMCID: PMC5817325 DOI: 10.1155/2018/7830546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/31/2017] [Indexed: 06/08/2023]
Abstract
Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.
Collapse
Affiliation(s)
- Kamila Kasprzak
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44, 20-280 Lublin, Poland
| | - Agnieszka Wójtowicz
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44, 20-280 Lublin, Poland
| | | | - Marta Olech
- Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Renata Polak
- Department of Thermal Technology, University of Life Sciences in Lublin, Doświadczalna 44, 20-280 Lublin, Poland
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
36
|
Huang PC, Wang GJ, Fan MJ, Asokan Shibu M, Liu YT, Padma Viswanadha V, Lin YL, Lai CH, Chen YF, Liao HE, Huang CY. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. ENVIRONMENTAL TOXICOLOGY 2017; 32:2471-2480. [PMID: 28856781 DOI: 10.1002/tox.22460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Anthocyanins are known cyto-protective agents against various stress conditions. In this study cardio-protective effect of anthocyanins from black rice against diabetic mellitus (DM) was evaluated using a streptozotocin (STZ)-induced DM rat model. Five-week-old male Wistar rats were administered with STZ (55 mg kg-1 , IP) to induce DM; rats in the treatment group received 250 mg oral anthocyanin/kg/day during the 4-week treatment period. DM and the control rats received normal saline through oral gavage. The results reveal that STZ-induced DM elevates myocardial apoptosis and associated proapoptotic proteins but down-regulates the proteins of IGF1R mediated survival signaling mechanism. Furthermore, the functional parameters such as the ejection-fraction and fraction-shortening in the DM rat hearts declined considerably. However, the rats treated with anthocyanins significantly reduced apoptosis and the associated proapoptotic proteins and further increased the survival signals to restore the cardiac functions in DM rats. Anthocyanin supplementation enhances cardiomyocyte survival and restores cardiac function.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | - Yin-Tso Liu
- Department of cardiology, Asia University and Asia University Hospital, Taichung, Taiwan
| | | | - Yi-Lin Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Hung-En Liao
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
37
|
β-ecdysterone from Cyanotis arachnoidea exerts hypoglycemic effects through activating IRS-1/Akt/GLUT4 and IRS-1/Akt/GLUT2 signal pathways in KK-Ay mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
38
|
Lahmass I, Lamkami T, Delporte C, Sikdar S, Van Antwerpen P, Saalaoui E, Megalizzi V. The waste of saffron crop, a cheap source of bioactive compounds. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
39
|
Li F, Zhang B, Chen G, Fu X. The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Res Int 2017; 100:873-884. [PMID: 28873762 DOI: 10.1016/j.foodres.2017.06.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
To explore the comprehensive phenolic profile of mulberry (Morus alba L.) fruit and reveal the novel anti-diabetic constituents, mulberry polyphenols (MP) were fractionated through gradient ethanol elution and subjected to composition and bioactivity analysis. Forty-seven phenolic compounds were identified and quantified through UHPLC-HR-ESI-TOF-MS/MS, including twenty-one newly identified compounds such as delphinidin 3-rutinoside-5-glucoside and cyanidin 3-rutinoside dimer. The antioxidant activity and anti-diabetic potential of fractionated MP were analyzed in vitro and ex vivo with HepG2 and pancreatic β-cell RIN-m5F. Hierarchical cluster analysis and Pearson correlation coefficients revealed compounds such as syringic acid and galloylcyanidin-glycoside contributed most to inhibit α-glucosidase activity. Quercetin and cyanidin-glycosides were essential for cellular antioxidant activity. Dihydroquercetin and 1,5-dicaffeoylquinic acid were newly identified and validated as the main contributors after rutin to protect RIN-m5F cells against glucotoxicity. Such findings suggest the promising role of MP for type II diabetics and lay the foundation of further utilization and investigation.
Collapse
Affiliation(s)
- Fuhua Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gu Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
40
|
High-sucrose diet induces diabetic-like phenotypes and oxidative stress in Drosophila melanogaster : Protective role of Syzygium cumini and Bauhinia forficata. Biomed Pharmacother 2017; 89:605-616. [DOI: 10.1016/j.biopha.2017.02.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
|
41
|
Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 2016; 36:68-80. [PMID: 27580020 DOI: 10.1016/j.jnutbio.2016.07.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
This study evaluated the capacity of mulberry anthocyanin extract (MAE) on insulin resistance amelioration in HepG2 cells induced by high glucose and palmitic acid and diabetes-related metabolic changes in type 2 diabetic mice. In vitro, MAE alleviated insulin resistance in HepG2 cells and increased glucose consumption, glucose uptake and glycogen content. Enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Furthermore, phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in model cells was recovered after treated with MAE, leading to an up-regulation of glycogen synthase 2 (GYS2), and this effect was blocked by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In vivo, MAE supplementation (50 and 125 mg/kg body weight per day) markedly decreased fasting blood glucose, serum insulin, leptin, triglyceride and cholesterol levels and increased adiponectin levels in db/db mice. The improvement of related metabolic parameters was in part associated with the impact of MAE on activating AKT and downstream targets in liver, skeletal muscle and adipose tissues. In summary, these findings suggest that MAEs have potential benefits on improving dysfunction in diabetic mice and mitigating insulin resistance in HepG2 cells via activation of PI3K/AKT pathways.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guanhai Dai
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
42
|
Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A. Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
43
|
Kapoor MP, Ishihara N, Okubo T. Soluble dietary fibre partially hydrolysed guar gum markedly impacts on postprandial hyperglycaemia, hyperlipidaemia and incretins metabolic hormones over time in healthy and glucose intolerant subjects. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
44
|
Effect of cooking on the contents of glucosinolates and their degradation products in selected Brassica vegetables. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
45
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|