1
|
Seo HD, Lee JY, Park SH, Lee E, Hahm JH, Ahn J, Jang AR, An SH, Ha JH, No KT, Jung CH. Identification of novel anti-obesity saponins from the ovary of sea cucumber ( Stichopus japonicus). Heliyon 2024; 10:e36943. [PMID: 39281516 PMCID: PMC11401225 DOI: 10.1016/j.heliyon.2024.e36943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
The potential anti-obesity effects of sea cucumber extract have been reported. However, the individual saponins responsible for these effects are yet to be isolated and characterized. This study aimed to identify the most effective sea cucumber body part for inhibiting lipid accumulation in adipocytes and to elucidate the compounds responsible for this effect using nuclear magnetic resonance (NMR) techniques. Sea cucumber ovary 80 % ethanol extract (SCOE) demonstrated remarkable efficacy in inhibiting adipocyte differentiation compared to other sea cucumber body parts with 50 % or 80 % ethanol extracts. SCOE anti-obesity effect was evaluated in C57BL/6 mice fed a high-fat diet, which revealed significant reductions in body weight, serum lipids, adipose tissue, and liver weight. Using column chromatography, eight saponins were isolated from the SCOE, four of which exhibited potent inhibitory effects on adipocyte differentiation. Of these, three active saponins, holotoxins A, B, and D1, were newly identified. These findings highlight the potential of SCOE and its saponins as effective anti-obesity agents.
Collapse
Affiliation(s)
- Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ji-Young Lee
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| | - Eunyoung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| | - A Ra Jang
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee An
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jang Ho Ha
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| |
Collapse
|
2
|
Dayarathne LA, Jasmadi, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Lee DS, Jung WK, Lee SJ, Je JY. Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells. J Microbiol Biotechnol 2024; 34:1688-1697. [PMID: 39086228 PMCID: PMC11380521 DOI: 10.4014/jmb.2404.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.
Collapse
Affiliation(s)
- Lakshi A Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jasmadi
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- National Research and Innovation Agency, Research Center for Food Technology and Processing, Gunungkidul, 55861, Indonesia
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | | | | |
Collapse
|
3
|
Geetha V, Mayookha VP, Das M, Kumar GS. Bioactive carbohydrate polymers from marine sources as potent nutraceuticals in modulating obesity: a review. Food Sci Biotechnol 2024; 33:1517-1528. [PMID: 38623423 PMCID: PMC11016051 DOI: 10.1007/s10068-024-01525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
The majority of bioactive polysaccharides are present in some marine creatures. These polysaccharides are considered as promising anti-obesity agents, their anti-obesity properties involve a number of mechanisms, including suppression of lipid metabolism and absorption, impact on satiety, and prevention of adipocyte differentiation. Obesity is linked to type 2 diabetes, cardiovascular disease, and other metabolic syndromes. In this review various bioactive polysaccharides like chitin, chitosan, fucosylated chondroitin sulphate, chitooligosaccharides and glycosaminoglycans have been discussed for their anti-obesity effects through various pathways. Critical evaluation of observational studies and intervention trials on obesity, lipid hypertrophy, dyslipidemia, and type 2 diabetes was done with a primary focus on specific marine fauna polysaccharide as a source of seafood that is consumed all over the world. It has been observed that consumption of individual seafood constituents was effective in reducing obesity. Thus, marine derived novel bioactive polysaccharides have potential applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- V. Geetha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
| | - V. P. Mayookha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - G. Suresh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, Karnataka 574199 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
4
|
Summat T, Wangtueai S, You S, Rod-in W, Park WJ, Karnjanapratum S, Seesuriyachan P, Surayot U. In Vitro Anti-Inflammatory Activity and Structural Characteristics of Polysaccharides Extracted from Lobonema smithii Jellyfish. Mar Drugs 2023; 21:559. [PMID: 37999383 PMCID: PMC10672681 DOI: 10.3390/md21110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1β, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.
Collapse
Affiliation(s)
- Thitikan Summat
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - SangGuan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | | | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| |
Collapse
|
5
|
Magwaza SN, Islam MS. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar Drugs 2023; 21:md21040258. [PMID: 37103396 PMCID: PMC10142144 DOI: 10.3390/md21040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity and diabetes are matters of serious concern in the health sector due to their rapid increase in prevalence over the last three decades. Obesity is a severe metabolic problem that results in energy imbalance that is persistent over a long period of time, and it is characterized by insulin resistance, suggesting a strong association with type 2 diabetes (T2D). The available therapies for these diseases have side effects and some still need to be approved by the Food and Drug Administration (FDA), and they are expensive for underdeveloped countries. Hence, the need for natural anti-obesity and anti-diabetic drugs has increased in recent years due to their lower costs and having virtually no or negligible side effects. This review thoroughly examined the anti-obesity and anti-diabetic effects of various marine macroalgae or seaweeds and their bioactive compounds in different experimental settings. According to the findings of this review, seaweeds and their bioactive compounds have been shown to have strong potential to alleviate obesity and diabetes in both in vitro and in vivo or animal-model studies. However, the number of clinical trials in this regard is limited. Hence, further studies investigating the effects of marine algal extracts and their bioactive compounds in clinical settings are required for developing anti-obesity and anti-diabetic medicines with better efficacy but lower or no side effects.
Collapse
Affiliation(s)
- S'thandiwe Nozibusiso Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
6
|
Ebrahimi B, Baroutian S, Li J, Zhang B, Ying T, Lu J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front Nutr 2023; 9:1047026. [PMID: 36712534 PMCID: PMC9879610 DOI: 10.3389/fnut.2022.1047026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Background In recent years, marine-based functional foods and combination therapy are receiving greater recognition for their roles in healthy lifestyle applications and are being investigated as viable and effective strategies for disease treatment or prevention. Aim of the review This review article presents and discusses the relevant scientific publications that have studied the synergistic and additive effects of natural marine bioactive compounds and extract combinations with anti-obesity, anti-inflammatory, antioxidant, and chemopreventive activities in the last two decades. The paper presents the mechanism of action and health benefits of developed combinations and discusses the limitation of the studies. Furthermore, it recommends alternatives and directions for future studies. Finally, it highlights the factors for developing novel combinations of marine bioactive compounds. Key scientific concepts of review Combination of marine bioactive compounds or extracts affords synergistic or additive effects by multiple means, such as multi-target effects, enhancing the bioavailability, boosting the bioactivity, and neutralizing adverse effects of compounds in the mixture. For the development of marine-based combinations, there are key points for consideration and issues to address: knowledge of the mechanism of action of individual compounds and their combinations, optimum ratio and dosing of compounds, and experimental models must all be taken into account. Strategies to increase the number and diversity of marine combinations, and further development of marine-based functional foods, are available. However, only a small number of natural marine bioactive combinations have been assessed, and most research has been focused on fish oil and carotenoid synergy. Therefore, more research and resources should be spent on developing novel marine bioactive combinations as functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Belgheis Ebrahimi
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,Institute of Biomedical Technology, Auckland University of Technology, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Discovery, Auckland, New Zealand,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China,College of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China,College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Jun Lu ✉
| |
Collapse
|
7
|
Prabhakar L, Davis G DJ. Computational study of potential inhibitors for fat mass and obesity-associated protein from seaweed and plant compounds. PeerJ 2022; 10:e14256. [PMID: 36299509 PMCID: PMC9590420 DOI: 10.7717/peerj.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Background Over the past three decades, with substantial changes in lifestyle, the tendency to gain weight has increased, which is resulting in significant consequences affecting an individual's well-being. The fat mass and obesity-associated (FTO) gene is involved in food intake and energy expenditure and plays a crucial role in regulating homeostasis and controlling energy expenditure by hindering signals that generate from the brain. Edible seaweeds have been shown to enhance satiety owing to their health benefits. Methods Extensive screening of plant-derived anti-obesity compounds and seaweed compounds was conducted and validated for ADME properties and toxicity prediction. Further, the top ranked compounds were docked against the FTO protein to identify potential inhibitors and were subjected to molecular dynamic simulation studies to understand the binding stability of ligand protein complex. Finally, MM/PBSA studies were performed to calculate the binding free energy of the protein-ligand complexes. Results Through the virtual screening of 1,210 compounds, 443 compounds showed good docking scores less than -7.00 kcal/mol. Drug likeness screenings of 443 compounds showed that only 369 compounds were in accordance with these properties. Further toxicity prediction resulted in 30 non-toxic compounds. Molecular docking studies revealed four top ranked marine compounds. Finally, RL074 (2-hydroxyluzofuranone B) and RL442 (10-acetoxyangasiol) from marine red alga Laurencia sp showed good stability from molecular dynamic simulation studies. MM/PBSA results revealed that BT012 (24ε-hydroperoxy-6β-hydroxy-24-ethylcholesta-4,-28(29)-dien-3-one), an oxygenated fucosterol from brown alga Turbinaria conoides, possessed higher binding energy. Hence, with all the data obtained it could be concluded that three seaweed compounds, BT012, RL074 and RL442, may act as a potential anti-obesity lead compound in targeting FTO.
Collapse
|
8
|
Khan F, Jeong GJ, Khan MSA, Tabassum N, Kim YM. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms. Mar Drugs 2022; 20:384. [PMID: 35736187 PMCID: PMC9227776 DOI: 10.3390/md20060384] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/31/2022] Open
Abstract
Phlorotannins are a group of phenolic secondary metabolites isolated from a variety of brown algal species belonging to the Fucaceae, Sargassaceae, and Alariaceae families. The isolation of phlorotannins from various algal species has received a lot of interest owing to the fact that they have a range of biological features and are very biocompatible in their applications. Phlorotannins have a wide range of therapeutic biological actions, including antimicrobial, antidiabetic, antioxidant, anticancer, anti-inflammatory, anti-adipogenesis, and numerous other biomedical applications. The current review has extensively addressed the application of phlorotannins, which have been extensively investigated for the above-mentioned biological action and the underlying mechanism of action. Furthermore, the current review offers many ways to use phlorotannins to avoid certain downsides, such as low stability. This review article will assist the scientific community in investigating the greater biological significance of phlorotannins and developing innovative techniques for treating both infectious and non-infectious diseases in humans.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia;
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea;
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea;
| |
Collapse
|
9
|
Anti-Obesity Activities of Standardized Ecklonia stolonifera Extract in 3T3-L1 Preadipocytes and High-Fat-Diet-Fed ICR Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to prepare a clinical trial test material (ESETM, test material of Ecklonia stolonifera extract) to develop a health functional food based on its anti-obesity effect. The anti-obesity effect of ESETM was evaluated in 3T3-L1 adipocytes and obese mice fed a high-fat diet (HFD) to confirm its nonclinical trial effect before application in clinical trial. Adipogenesis is a process of preadipocyte differentiation that causes an increase in the production of reactive oxygen species (ROS) and lipid accumulation. In vitro study results indicated that ESETM outstandingly inhibits the production of ROS and lipid accumulation during adipogenesis and lipogenesis. In vivo, ESETM-treated ICR mice had reduced HFD-induced weight change, food efficiency ratio, adipose tissue weight, liver weight and showed improved serum lipid profiles. Our results show that ESETM inhibits weight change by regulating the adipogenesis, lipogenesis, lipolysis, and thermogenesis pathways.
Collapse
|
10
|
Prabhakar L, Dicky John DG, Singh SR, Murali A. Computational analysis of marine algal compounds for obesity management against pancreatic lipase. J Biomol Struct Dyn 2022:1-10. [PMID: 35575483 DOI: 10.1080/07391102.2022.2074139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity is considered a global crisis because of its increased risk factors triggered by lifestyle changes. The prevalence of this condition is increasing at an alarming rate, giving rise to development of novel drugs. Pancreatic lipase possesses higher efficacy in inhibiting this condition among the other drug targets. In this study, virtual screening of 126 plant-derived anti-obesity compounds and 1110 marine algal compounds from seaweed metabolite database were screened and targeted against pancreatic lipase and ranked based on their binding affinity values. A total of 530 compounds that possessed best docked scores of less than -6 kcal/mol were checked for Lipinski's properties through Swiss ADME. Furthermore, these compounds were subjected to toxicity prediction using PROTOX II server. As much as 38 compounds were found to be non-toxic and were subjected to molecular docking analysis. Based on the binding energy, the following compounds RG012 (-10.15 kcal/mol), LIG42 (-9.7 kcal/mol), BC010 (-8.47 kcal/mol), RL073 (-8.2 kcal/mol), and LIG46 (-8.03 kcal/mol) were selected exhibiting higher binding affinity when compared to the standard drug (Orlistat) and hence these compounds were subjected to molecular dynamics simulation using GROMACS. BC010 complex revealed a stable interaction within the binding pocket and the binding free energy is -158.208 kJ/mol which is higher when compared to other complexes in 100 ns simulation. BC010 ((7S,11S,12S,14R)-4',14-dimethoxyamentol) from brown algae Cystophora fibrosa could be considered as a potential drug candidate to suppress obesity by inhibiting pancreatic lipase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lavanya Prabhakar
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Davis G Dicky John
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | | | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
11
|
González-Noriega JA, Valenzuela-Melendres M, Hernández-Mendoza A, Astiazarán-García H, Mazorra-Manzano MÁ, Peña-Ramos EA. Hydrolysates and peptide fractions from pork and chicken skin collagen as pancreatic lipase inhibitors. Food Chem X 2022; 13:100247. [PMID: 35499029 PMCID: PMC9040008 DOI: 10.1016/j.fochx.2022.100247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022] Open
Abstract
Pork and chicken skin collagen hydrolysates were able to inactivate pancreatic lipase. Hydrolysates had a similar or higher inhibition ability than ultrafiltrated fractions. Fractions >5 and <1 kDa had the highest pancreatic lipase inhibition activity. First report of skin collagen hydrolysates’ ability to inhibit lipase activity. Skin collagen hydrolysates and fractions may act as a novel anti-obesogenic coadjuvant.
The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.
Collapse
Affiliation(s)
- Julio Alfonso González-Noriega
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Humberto Astiazarán-García
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Miguel Ángel Mazorra-Manzano
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Etna Aída Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| |
Collapse
|
12
|
Dinda B, Dinda M. Natural Products, a Potential Source of New Drugs Discovery to Combat Obesity and Diabetes: Their Efficacy and Multi-targets Actions in Treatment of These Diseases. NATURAL PRODUCTS IN OBESITY AND DIABETES 2022:101-275. [DOI: 10.1007/978-3-030-92196-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Lee HG, Kim HS, Je JG, Hwang J, Sanjeewa KKA, Lee DS, Song KM, Choi YS, Kang MC, Jeon YJ. Lipid Inhibitory Effect of (-)-loliolide Isolated from Sargassum horneri in 3T3-L1 Adipocytes: Inhibitory Mechanism of Adipose-Specific Proteins. Mar Drugs 2021; 19:96. [PMID: 33567534 PMCID: PMC7915803 DOI: 10.3390/md19020096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed worldwide. Several biological activities of S. horneri have been reported. However, its effects on lipid metabolism and the underlying mechanisms remain elusive. In the present study, we examined the inhibitory effect of the active compound "(-)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))" from S. horneri extract on lipid accumulation in differentiated adipocytes. MTT assays demonstrated that (-)-loliolide is not toxic to 3T3-L1 adipocytes in a range of concentrations. (-)-loliolide significantly reduced intracellular lipid accumulation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot analysis revealed that (-)-loliolide increased the expression of lipolytic protein phospho-hormone-sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1). Additionally, (-)-loliolide decreased expression of adipogenic and lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (-)-loliolide from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (-)-loliolide, it can be useful as a lipid-lowering agent in the management of patients who suffer from obesity.
Collapse
Affiliation(s)
- Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (J.-G.J.); (J.H.); (K.K.A.S.)
| | - Hyun-Soo Kim
- Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (H.-S.K.); (D.-S.L.)
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (J.-G.J.); (J.H.); (K.K.A.S.)
| | - Jin Hwang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (J.-G.J.); (J.H.); (K.K.A.S.)
| | - K. K. Asanka Sanjeewa
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (J.-G.J.); (J.H.); (K.K.A.S.)
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (H.-S.K.); (D.-S.L.)
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Korea; (K.-M.S.); (Y.-S.C.)
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Korea; (K.-M.S.); (Y.-S.C.)
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Korea; (K.-M.S.); (Y.-S.C.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (J.-G.J.); (J.H.); (K.K.A.S.)
| |
Collapse
|
14
|
Lee HG, Lu YA, Je JG, Jayawardena TU, Kang MC, Lee SH, Kim TH, Lee DS, Lee JM, Yim MJ, Kim HS, Jeon YJ. Effects of Ethanol Extracts from Grateloupia elliptica, a Red Seaweed, and Its Chlorophyll Derivative on 3T3-L1 Adipocytes: Suppression of Lipid Accumulation through Downregulation of Adipogenic Protein Expression. Mar Drugs 2021; 19:91. [PMID: 33557339 PMCID: PMC7916037 DOI: 10.3390/md19020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/06/2023] Open
Abstract
Grateloupia elliptica (G. elliptica) is a red seaweed with antioxidant, antidiabetic, anticancer, anti-inflammatory, and anticoagulant activities. However, the anti-obesity activity of G. elliptica has not been fully investigated. Therefore, the effect of G. elliptica ethanol extract on the suppression of intracellular lipid accumulation in 3T3-L1 cells by Oil Red O staining (ORO) was evaluated. Among the eight red seaweeds tested, G. elliptica 60% ethanol extract (GEE) exhibited the highest inhibition of lipid accumulation. GEE was the only extract to successfully suppress lipid accumulation among ethanol extracts from eight red seaweeds. In this study, we successfully isolated chlorophyll derivative (CD) from the ethyl acetate fraction (EA) of GEE by high-performance liquid chromatography and evaluated their inhibitory effect on intracellular lipid accumulation in 3T3-L1 adipocytes. CD significantly suppressed intracellular lipid accumulation. In addition, CD suppressed adipogenic protein expression such as sterol regulatory element-binding protein-1 (SREBP-1), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and fatty acid binding protein 4 (FABP4). Taken together, our results indicate that CD from GEE inhibits lipid accumulation by suppressing adipogenesis via the downregulation of adipogenic protein expressions in the differentiated adipocytes. Therefore, chlorophyll from G. elliptica has a beneficial effect on lipid metabolism and it could be utilized as a potential therapeutic agent for preventing obesity.
Collapse
Affiliation(s)
- Hyo-Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (Y.-A.L.); (J.-G.J.); (T.U.J.)
| | - Yu-An Lu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (Y.-A.L.); (J.-G.J.); (T.U.J.)
| | - Jun-Geon Je
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (Y.-A.L.); (J.-G.J.); (T.U.J.)
| | - Thilina U. Jayawardena
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (Y.-A.L.); (J.-G.J.); (T.U.J.)
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju 55365, Korea;
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea;
| | - Tae-Hee Kim
- Naturetech Co., 29-8, Yongjeong-gil, Chopyeong-myeon, Jincheon 27858, Korea;
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Jeong-Min Lee
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33362, Korea; (D.-S.L.); (J.-M.L.); (M.-J.Y.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (H.-G.L.); (Y.-A.L.); (J.-G.J.); (T.U.J.)
| |
Collapse
|
15
|
Zhang T, Wu S, Ai C, Wen C, Liu Z, Wang L, Jiang L, Shen P, Zhang G, Song S. Galactofucan from Laminaria japonica is not degraded by the human digestive system but inhibits pancreatic lipase and modifies the intestinal microbiota. Int J Biol Macromol 2021; 166:611-620. [PMID: 33130265 DOI: 10.1016/j.ijbiomac.2020.10.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
The effects of galactofucan from Laminaria japonica on the digestion and intestinal microbiota of human were investigated in the present study. Crude fraction of the sulfated polysaccharide from L. japonica (CF) and its molecular-weight homogeneous fraction (CGF-3) were prepared and characterized. In the simulated digestion model for the human saliva and gastrointestinal tract, no obvious changes in the molecular weight or the reducing sugar content of CGF-3 were observed, indicating CGF-3 is resistant to the human digestive system. Then CGF-3 did not affect the α-amylase activity while it dose-dependently inhibited the activity of pancreatic lipase partly depending on its sulfate groups. In the in vitro fermentation with the human fecal microbiota, CF did not change the total carbohydrate, reducing sugar and short chain fatty acids contents, which indicated CF was not utilized by the microbiota. However, the microbiota composition was modulated greatly by CF intervention. These findings shed a light on the better understanding of the impacts of dietary galactofucan on the digestion and intestinal microbiota.
Collapse
Affiliation(s)
- Tongtong Zhang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Sufeng Wu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Chunqing Ai
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Chengrong Wen
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Zhengqi Liu
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Linlin Wang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Long Jiang
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Peili Shen
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, China, State Key Laboratory of Bioactive Seaweed Substances, 266400, China
| | - Guofang Zhang
- Qingdao Brightmoon Seaweed Group Co Ltd, Qingdao, China, State Key Laboratory of Bioactive Seaweed Substances, 266400, China
| | - Shuang Song
- Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
16
|
Gherrak F, Hadjsadok A, Lefnaoui S. Implementation and in vitro characterization of calcium-free in situ gelling oral reconstituted suspension for potential overweight treatment. Drug Dev Ind Pharm 2020; 47:36-50. [PMID: 33191791 DOI: 10.1080/03639045.2020.1851242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, oral granules that were easily dissolved in aqueous dispersion, were prepared. These oral suspensions were formulated with sodium alginate (AlgNa), chitosan (CHI) and sodium carboxymethylcellulose (CMC Na). The gels were formulated by pouring the suspensions into 150 ml of simulated gastric fluid (SGF) pH 1.2 at 37° C. The in-situ gelling mechanism was based on the ionization states of the three biopolymers as a function of the pH of the medium. Fourier transform infrared analysis of gels confirmed the interactions between alginate and chitosan. According to the scanning electron microscopy analysis, the gels were characterized by a firm and homogeneous structure. The obtained values of the elastic storage modulus, G', varied between 10 1 and 10 7 Pa. The eliminated volume of the unabsorbed liquid by the gels fluctuated between 25% and 55% of the total liquid volume. The quality of the gels was improved when a maximum concentration of alginate ( 4 g / 100 ml ) , a minimum concentration of chitosan ( 0.5 g / 100 ml ) and a maximum amount of carboxymethylcellulose ( 4 g / 100 ml ) were used. The value of their elastic modulus, G' was around 10 5 Pa and the residual unabsorbed volume of the liquid was 25% of the total liquid volume. According to the obtained results, the prepared gels could induce a feeling of fullness by stimulating the gastric distension and they could potentially be applied as anti-obesity medication.
Collapse
Affiliation(s)
- Fouzia Gherrak
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques (LAFPC), University of Blida1, Blida, Algeria
| | - Abdelkader Hadjsadok
- Laboratoire de l'Analyse Fonctionnelle des Procédés Chimiques (LAFPC), University of Blida1, Blida, Algeria
| | - Sonia Lefnaoui
- Faculty of Sciences, University Dr. Yahia Fares of Medea, Medea, Algeria
| |
Collapse
|
17
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
18
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
19
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
20
|
Jang YS, Kim HY, Zuo G, Lee EH, Kang SK, Lim SS. Constituents from Solidago virgaurea var. gigantea and their inhibitory effect on lipid accumulation. Fitoterapia 2020; 146:104683. [PMID: 32634454 DOI: 10.1016/j.fitote.2020.104683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
In this study, the anti-adipogenic activities of compounds isolated from Solidago viraurea var. gigantea (SG) extracts were investigated using Oil Red O staining in the 3T3-L1 cell line. Four known compounds including 3,5-di-O-caffeoylquinic acid (5), protocatechuic acid (6), chlorogenic acid (7), and kaempferol-3-O-rutinoside (8), and four undescribed compounds including (1R,2S,3S,5R,7S)-methyl 7-((cinnamoyloxy)methyl)-2,3-dihydroxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate (1), (1R,2S,3S,5R,7S)-methyl 2,3-dihydroxy-7-((((Z)-3-phenylacryloyl)oxy)methyl)-6,8-dioxabicyclo[3.2.1]octane-5-carboxylate (2), (1R,2S,3S,5R,7S)-2,3-dihydroxy-7-((((Z)-3-phenylacryloyl)oxy)methyl)-6,8-dioxabicyclo[3.2.1]octane-5-carboxylic acid (3), and (1R,2S,3S,5R,7S)-7-((cinnamoyloxy)methyl)-2,3-dihydroxy-6,8-dioxabicyclo[3.2.1]octane-5-carboxylic acid (4) were isolated from S. viraurea var. gigantea. The structures of the compounds were first identified by comparing their 1H NMR spectra with spectral data from the literature and a more detailed identification was then performed using 2D NMR (Correlated spectroscopy (COSY), heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and nuclear overhauser spectroscopy (NOESY)), and X-ray crystallography analyses. The anti-adipogenic activities of all compounds were evaluated by MTT assay and Oil Red O staining in 3T3-L1 cells. 3,5-di-O-caffeoylquinic acid was found to inhibit lipid accumulation more potently than the other tested compounds.
Collapse
Affiliation(s)
- Young Soo Jang
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Hyun-Yong Kim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 339-700, Republic of Korea
| | - Sung Kwon Kang
- Department of Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-746, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; Institute of Natural Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
21
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Bioactive significance of fucoxanthin and its effective extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Long H, Gu X, Zhou N, Zhu Z, Wang C, Liu X, Zhao M. Physicochemical characterization and bile acid-binding capacity of water-extract polysaccharides fractionated by stepwise ethanol precipitation from Caulerpa lentillifera. Int J Biol Macromol 2020; 150:654-661. [DOI: 10.1016/j.ijbiomac.2020.02.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/29/2022]
|
23
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch Biochem Biophys 2020; 686:108364. [PMID: 32315653 DOI: 10.1016/j.abb.2020.108364] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a unique and wide variety of biological activities. Upon absorption, Fx is metabolized to fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is also reported to show anti-cancer activity through the regulation of several biomolecules and signaling pathways that are involved in either cell cycle arrest, apoptosis, or metastasis suppression. Among the biological activities of Fx, anti-obesity is the most well-studied and most promising effect. This effect is primarily based on the upregulation of thermogenesis by uncoupling protein 1 expression and the increase in the metabolic rate induced by mitochondrial activation. In addition, Fx shows anti-diabetic effects by improving insulin resistance and promoting glucose utilization in skeletal muscle.
Collapse
Affiliation(s)
- Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| | - Shuzhou Wang
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| |
Collapse
|
24
|
Jin H, Lee K, Chei S, Oh HJ, Lee KP, Lee BY. Ecklonia stolonifera Extract Suppresses Lipid Accumulation by Promoting Lipolysis and Adipose Browning in High-Fat Diet-Induced Obese Male Mice. Cells 2020; 9:E871. [PMID: 32252474 PMCID: PMC7226821 DOI: 10.3390/cells9040871] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity develops due to an energy imbalance and manifests as the storage of excess triglyceride (TG) in white adipose tissue (WAT). Recent studies have determined that edible natural materials can reduce lipid accumulation and promote browning in WAT. We aimed to determine whether Ecklonia stolonifera extract (ESE) would increase the energy expenditure in high-fat diet (HFD)-induced obese mice and 3T3-L1 cells by upregulating lipolysis and browning. ESE is an edible brown marine alga that belongs to the family Laminariaceae and contains dieckol, a phlorotannin. We report that ESE inhibits body mass gain by regulating the expression of proteins involved in adipogenesis and lipogenesis. In addition, ESE activates protein kinase A (PKA) and increases the expression of lipolytic enzymes including adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and monoacylglycerol lipase (MGL) and also thermogenic genes, such as carnitine palmitoyltransferase 1 (CPT1), PR domain-containing 16 (PRDM16), and uncoupling protein 1 (UCP1). These findings indicate that ESE may represent a promising natural means of preventing obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Kippeum Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Sungwoo Chei
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| | | | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Korea; (H.J.); (K.L.); (S.C.); (H.-J.O.)
| |
Collapse
|
25
|
New Aromatic Bisabolane Derivatives with Lipid-Reducing Activity from the Marine Sponge Myrmekioderma sp. Mar Drugs 2019; 17:md17060375. [PMID: 31234542 PMCID: PMC6627430 DOI: 10.3390/md17060375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The previously reported 1-(2,4-dihydroxy-5-methylphenyl)ethan-1-one (1), (1’Z)-2-(1’,5’-dimethylhexa-1’,4’-dieny1)-5-methylbenzene-1,4-diol (2), and 1,8-epoxy-1(6),2,4,7,10-bisaborapentaen-4-ol (5) together with four new structures of aromatic bisabolane-related compounds (3, 4, 6, 7) were isolated from the marine sponge Myrmekioderma sp. Compounds 1, 2, and 5 were identified based on spectral data available in the literature. The structures of the four new compounds were experimentally established by 1D and 2D-NMR and (−)-HRESIMS spectral analysis. Cytotoxic and lipid-reducing activities of the isolated compounds were evaluated. None of the isolated compounds were active against the tested cancer cell lines; however, lipid-reducing activity was found for compounds 2–5 and 7 in the zebrafish Nile red fat metabolism assay. This class of compounds should be further explored for their suitability as possible agents for the treatment of lipid metabolic disorders and obesity.
Collapse
|
26
|
Koo SY, Hwang JH, Yang SH, Um JI, Hong KW, Kang K, Pan CH, Hwang KT, Kim SM. Anti-Obesity Effect of Standardized Extract of Microalga Phaeodactylum tricornutum Containing Fucoxanthin. Mar Drugs 2019; 17:md17050311. [PMID: 31137922 PMCID: PMC6562887 DOI: 10.3390/md17050311] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Fucoxanthin (FX), a marine carotenoid found in macroalgae and microalgae, exhibits several beneficial effects to health. The anti-obesity activity of FX is well documented, but FX has not been mass-produced or applied extensively or commercially because of limited availability of raw materials and complex extraction techniques. In this study, we investigated the anti-obesity effect of standardized FX powder (Phaeodactylum extract (PE)) developed from microalga Phaeodactylum tricornutum as a commercial functional food. The effects of PE on adipogenesis inhibition in 3T3-L1 adipocytes and anti-obesity in high-fat diet (HFD)-fed C57BL/6J mice were evaluated. PE and FX dose-dependently decreased intracellular lipid contents in adipocytes without cytotoxicity. In HFD-fed obese mice, PE supplementation for six weeks decreased body weight, organ weight, and adipocyte size. In the serum parameter analysis, the PE-treated groups showed attenuation of lipid metabolism dysfunction and liver damage induced by HFD. In the liver, uncoupling protein-1 (UCP1) upregulation and peroxisome proliferator activated receptor γ (PPARγ) downregulation were detected in the PE-treated groups. Additionally, micro computed tomography revealed lower fat accumulation in PE-treated groups compared to that in the HFD group. These results indicate that PE exerts anti-obesity effects by inhibiting adipocytic lipogenesis, inducing fat mass reduction and decreasing intracellular lipid content, adipocyte size, and adipose weight.
Collapse
Affiliation(s)
- Song Yi Koo
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Ji-Hyun Hwang
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Korea.
| | - Jae-In Um
- R&D Department, AlgaeTech Co. Ltd., Gangneung 25457, Korea.
| | - Kwang Won Hong
- R&D Department, AlgaeTech Co. Ltd., Gangneung 25457, Korea.
| | - Kyungsu Kang
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| | - Cheol-Ho Pan
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| | - Sang Min Kim
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
- Division of Bio-Medical Science & Technology, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
27
|
Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Fucoxanthin and Polyunsaturated Fatty Acids Co-Extraction by a Green Process. Molecules 2018; 23:molecules23040874. [PMID: 29641444 PMCID: PMC6017215 DOI: 10.3390/molecules23040874] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023] Open
Abstract
By their autotrophic nature and their molecular richness, microalgae are serious assets in the context of current environmental and societal challenges. Some species produce both omega-3 long chain polyunsaturated fatty acids (PUFAs) and xanthophylls, two molecular families widely studied for their bioactivities in the fields of nutrition and cosmetics. Whereas most studies separately deal with the two families, synergies could be exploited with extracts containing both PUFAs and xanthophylls. The purpose of our work was to determine cost effective and eco-friendly parameters for their co-extraction. The effect of several parameters (solvent, solvent/biomass ratio, temperature, duration) were studied, using two microalgal species, the non-calcifying Haptophyta Tisochrysis lutea, and the diatom Phaeodactylum tricornutum, that presents a silicified frustule. Analyses of PUFAs and fucoxanthin (Fx), the main xanthophyll, allowed to compare kinetics and extraction yields between experimental protocols. Co-extraction yields achieved using 96% ethanol as solvent were 100% for Fx and docosahexaenoic acid (DHA) in one hour from T. lutea biomass, and respectively 95% and 89% for Fx and eicosapentaenoic acid (EPA) in eight hours from P. tricornutum. These conditions are compatible with industrial applications.
Collapse
|
29
|
Austin C, Stewart D, Allwood JW, McDougall GJ. Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Food Funct 2018; 9:502-510. [PMID: 29243753 DOI: 10.1039/c7fo01690e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyphenol-rich extract (PRE) from the edible seaweed, Ascophyllum nodosum, inhibited pancreatic lipase activity in an oil-based turbidimetric assay with an IC50 of 200 μg gallic acid equivalents (GAE) perassay) [∼230 μg DW] whereas the known inhibitor, Orlistat, gave an IC50 at 0.4 μg per assay. A phlorotannin-enriched fraction (TRF) purified from the PRE was more potent with an IC50 = 60 μg GAE per assay (∼65 μg DW). When the assay was started by the addition of lipase, both Orlistat and TRF were much less effective which suggests that pre-incubation of enzyme and inhibitor improved inhibition. Based on phenol content, water extracts from Ascophyllum were more potent lipase inhibitors than PRE (IC50 ∼ 150 μg GAE per assay). However, this was equivalent to ∼580 μg DW and these extracts contained polysaccharides (e.g. alginate content = 110 μg mL-1) which may also contribute to inhibition. Indeed, a polysaccharide-enriched fraction obtained by ethanol precipitation gave an IC50 of 1000 μg DW which was equivalent to 130 μg GAE and 420 μg alginate per assay. Therefore a >3 fold increase in alginate content did not markedly improve inhibition. Re-precipitation increased alginate content and reduced polyphenol content but lipase inhibition was markedly reduced (i.e. IC50 at ∼1100 μg DW per assay, 700 μg alginate and 25 μg GAE). Purifying the polysaccharide fraction by ion exchange removed all phenolics but the IC50 increased to >2500 μg DW, equivalent to >1970 μg alginate per assay. In conclusion, polysaccharides and phlorotannins may inhibit lipase in an additive fashion, with phlorotannins apparently more effective in vitro. However, interactions between these components may be important when food products containing this edible seaweed are consumed.
Collapse
Affiliation(s)
- Ceri Austin
- Environmental and Biochemical Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | |
Collapse
|
30
|
Yatmaz AH, Kinoshita T, Miyazato A, Takagi M, Tsujino Y, Beppu F, Gotoh N. Quantification of Fraglide-1, a New Functional Ingredient, in Vinegars. J Oleo Sci 2017; 66:1381-1386. [PMID: 29129902 DOI: 10.5650/jos.ess17147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vinegar is a widely used condiment in the world, and is produced from ethanol by acetic acid fermentation. Different fruits, vegetables, cereals, and wines can be used as ingredients for vinegar production. It is known that vinegar has many nutrient components such as organic acids, polyphenols, and aromatic compounds. Because of these bioactive components, it has many health benefits. China has a long history of producing vinegar and has been using it for health products and as medicine. Chinese aromatic Zhenjiang vinegar (Kozu) is produced from sticky rice. It is famous for its special flavor and health benefits. 5-Hydroxy-4-phenyl-butenolide (Fraglide-1) is a functional compound discovered in Kozu and has anti-fungal and anti-obesity effects. In this study, the Fraglide-1 content of different kinds of vinegars and ingredients, including Kozu samples and ingredients, was investigated. Fraglide-1 analysis was carried out via LC-MS/MS in multiple reaction monitoring mode. It was found that all the Kozu samples, as well as brown rice vinegar (Kurosu) samples, and the Chinese sticky rice husk used for the production of Kozu, contained Fraglide-1. Kozu production requires a 6-month- to 8-year-long aging process for its special flavor and aroma. Because of this long aging process, Fraglide-1 is thought to move from the sticky rice husk to Kozu.
Collapse
Affiliation(s)
- Aydan H Yatmaz
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology.,Food Safety and Agricultural Research Center, Akdeniz University
| | - Tetsuaki Kinoshita
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Akio Miyazato
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Yoshio Tsujino
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
31
|
Cheong KL, Xia LX, Liu Y. Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System. Mar Drugs 2017; 15:md15110338. [PMID: 29104211 PMCID: PMC5706028 DOI: 10.3390/md15110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
In this study, a simple aqueous two-phase system (ATPS) was employed for concurrent purification of oyster polysaccharides. The chemical structure and anti-tumor activities of purified oyster polysaccharides (OP-1) were also investigated. Under optimal ATPS conditions, oyster polysaccharides can be partitioned in the bottom phase with 67.02% extraction efficiency. The molecular weight of OP-1 was determined as 3480 Da. OP-1 is a (1→4)-α-d-glucosyl backbone and branching points located at O-3 of glucose with a terminal-d-Glcp. The anti-tumor activity assay showed that OP-1 exhibited good activities, including promotion of splenocyte proliferation, IL-2 release, and inhibition of HepG2 cell proliferation. Additionally, OP-1 had no in vivo toxicity. This finding suggests that ATPS is a much simpler and greener system, and it opens up new possibilities in the large-scale separation of active polysaccharides from oysters. OP-1 could be used by the health food and pharmaceutical therapies as potential anti-cancer adjuvants.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Li-Xuan Xia
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
32
|
Miyashita K, Hosokawa M. Fucoxanthin in the management of obesity and its related disorders. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
33
|
Atef M, Mahdi Ojagh S. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Wang X, Yu H, Xing R, Li P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9746720. [PMID: 28761878 PMCID: PMC5518491 DOI: 10.1155/2017/9746720] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides.
Collapse
Affiliation(s)
- Xueqin Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huahua Yu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
35
|
Jin Q, Yu H, Wang X, Li K, Li P. Effect of the molecular weight of water-soluble chitosan on its fat-/cholesterol-binding capacities and inhibitory activities to pancreatic lipase. PeerJ 2017; 5:e3279. [PMID: 28480147 PMCID: PMC5419207 DOI: 10.7717/peerj.3279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity has become a worldwide burden to public health in recent decades. Given that obesity is caused by an imbalance between caloric intake and expenditure, and that dietary fat is the most important energy source of all macronutrients (by providing the most calories), a valuable strategy for obesity treatment and prevention is to block fat absorption via the gastrointestinal pathway. In this study, the fat- and cholesterol-binding capacities and the inhibition of pancreatic lipase by water-soluble chitosan (WSC) with different weight-average molecular weight (Mw) were tested and compared in vitro, in order to determine the anti-obesity effects of WSC and the influence of its Mw. METHODS In this study, WSC with different Mw (∼1,000, ∼3,000, ∼5,000, ∼7,000 and ∼9,000 Da) were prepared by oxidative degradation assisted with microwave irradiation. A biopharmaceutical model of the digestive tract was used to determine the fat- and cholesterol-binding capacity of WSC samples. The pancreatic lipase assays were based on p-nitrophenyl derivatives. RESULTS The results showed that all of the WSC samples exhibit great fat- and cholesterol-binding capacities. Within the testing range, 1 g of WSC sample could absorb 2-8 g of peanut oil or 50-65 mg of cholesterol, which are both significantly higher than the ability of cellulose to do the same. Meanwhile, all the WSC samples were proven to be able to inhibit pancreatic lipase activity to some extent. DISCUSSION Based on the results, we suggest that there is a significant correlation between the binding capacity of WSC and its Mw, as WSC2 (∼3,000 Da) shows the highest fat- and cholesterol-binding capacities (7.08 g g-1 and 63.48 mg g-1, respectively), and the binding ability of WSC declines as its Mw increases or decreases from 3,000 Da. We also suggest WSC as an excellent resource in the development of functional foods against obesity for its adsorption, electrostatic binding and entrapment of cholesterol, fat, sterols and triglycerides in the diet.
Collapse
Affiliation(s)
- Qiu Jin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xueqin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
36
|
Kang MC, Ding Y, Kim EA, Choi YK, de Araujo T, Heo SJ, Lee SH. Indole Derivatives Isolated from Brown Alga Sargassum thunbergii Inhibit Adipogenesis through AMPK Activation in 3T3-L1 Preadipocytes. Mar Drugs 2017; 15:E119. [PMID: 28417922 PMCID: PMC5408265 DOI: 10.3390/md15040119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 11/23/2022] Open
Abstract
Seaweed, a popular and abundant food ingredient mainly consumed in Asian countries, is a good source of bioactive compounds with anti-obesity effects. However, the anti-obesity effects of Sargassum thunbergii have not yet been established. In this study, we isolated six indole derivatives (STCs)-indole-2-carboxaldehyde (STC-1), indole-3-carboxaldehyde (STC-2), indole-4-carboxaldehyde (STC-3), indole-5-carboxaldehyde (STC-4), indole-6-carboxaldehyde (STC-5), and indole-7-carboxaldehyde (STC-6)-from S. thunbergii and evaluated their inhibitory effects on adipocyte differentiation in 3T3-L1 cells. We found that STC-1 and STC-5 resulted in non-toxic inhibition of the differentiation of 3T3-L1 adipocytes and thus selected these compounds for further study. STC-1 and STC-5 significantly inhibited lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1c (SREBP-1c) in a dose-dependent manner. The specific mechanism mediating the effects of STC-1 and STC-5 was shown to be AMP-activated protein kinase (AMPK) activation. Our results demonstrated the inhibitory effect of STC-1 and STC-5 on adipogenesis through the activation of the AMPK signal pathway. Together, these findings suggested that STC-1 and STC-5 may be effective candidates for the prevention of obesity or obesity-related diseases.
Collapse
Affiliation(s)
- Min-Cheol Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea.
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02445, USA.
| | - Yuling Ding
- Department of Animal Bio and Applied Chemistry, Konkuk University, Chungju 27478, Korea.
| | - Eun-A Kim
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science &Technology (KIOST), Jeju 63349, Korea.
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science &Technology (KIOST), Jeju 63349, Korea.
| | - Thiago de Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas-UNICAMP, Campinas 02134, Brazil.
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science &Technology (KIOST), Jeju 63349, Korea.
| | - Seung-Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
37
|
Xie CL, Hwang CE, Oh CK, Yoon NA, Ryu JH, Jeong JY, Roh GS, Kim HJ, Cho GJ, Choi WS, Kang SS, Cho KM, Lee DH. Fermented soy-powder milk withLactobacillus plantarumP1201 protects against high-fat diet-induced obesity. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Cheng-liang Xie
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Chung Eun Hwang
- Department of Food Science; Gyeongnam National University of Science and Technology; Jinju 52729 Korea
| | - Cheol Kyu Oh
- Department of Urology; Haeundae Paik Hospital; Inje University College of Medicine; Busan 48108 Korea
| | - Nal Ae Yoon
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Jin Hyun Ryu
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Joo Yeon Jeong
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| | - Kye Man Cho
- Department of Food Science; Gyeongnam National University of Science and Technology; Jinju 52729 Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science; Institute of Health Sciences; College of Medicine; Gyeongsang National University; Jinju 52727 Korea
| |
Collapse
|
38
|
Wan-Loy C, Siew-Moi P. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar Drugs 2016; 14:md14120222. [PMID: 27941599 PMCID: PMC5192459 DOI: 10.3390/md14120222] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.
Collapse
Affiliation(s)
- Chu Wan-Loy
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Phang Siew-Moi
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Institute of Ocean & Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
39
|
Xu X, Xue C, Chang Y, Chen F, Wang J. Conformational and physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Apostichopus japonicus. Carbohydr Polym 2016; 152:26-32. [DOI: 10.1016/j.carbpol.2016.06.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/04/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
40
|
Shang Q, Shan X, Cai C, Hao J, Li G, Yu G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance ofLactobacillusandRuminococcaceae. Food Funct 2016; 7:3224-32. [DOI: 10.1039/c6fo00309e] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study provides a new insight into the well-recognized beneficial effects of dietary fucoidan by demonstrating its positive modulations on gut microbiota.
Collapse
Affiliation(s)
- Qingsen Shang
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Xindi Shan
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Chao Cai
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Jiejie Hao
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guoyun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| | - Guangli Yu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
| |
Collapse
|