1
|
Ghane A, Malhotra PK, Sanghera GS, Verma SK, Jamwal NS, Kashyap L, Wani SH. CRISPR/Cas technology: fueling the future of Biofuel production with sugarcane. Funct Integr Genomics 2024; 24:205. [PMID: 39495322 DOI: 10.1007/s10142-024-01487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The objective of present review is to provide a scientific overview of sugarcane as a potential feedstock for biofuel and use of genome editing approach for improvement of industrial and agronomical traits in sugarcane. Sugarcane, a perennial tropical grass with a high biomass index, is a promising feedstock for bioethanol production, and its bagasse, rich in lignocellulosic material, serves as an ideal feedstock for producing second-generation bioethanol. To improve the conversion of sugarcane biomass into biofuels, developing varieties with improved biomass degradability and high biomass and sucrose content is essential. The complex genome architecture and earlier lack of sequence data hindered biotechnological advancements in sugarcane, but recent genome sequence updates offer new opportunities for sugarcane improvement. The first genetically modified sugarcane was developed in 1992 by Bower and Birch using microprojectile bombardment of embryogenic callus. Since then, transgenic techniques have rapidly evolved, leading to the advancement of genome editing technologies. Application of genome editing tools particularly CRISPR/Cas system has been successfully used in sugarcane for editing. Recently, multiple alleles of the magnesium chelatase and acetolactate synthase genes in sugarcane have been successfully edited through multiplexing. Additionally, CRISPR-edited sugarcane varieties with modified cell wall components and increased sucrose content for enhanced bioethanol production have been developed. At the end, the future of CRISPR-edited crops will depend on how well regulatory frameworks adapt to the rapidly evolving technology.
Collapse
Affiliation(s)
- A Ghane
- School of Agricultural Biotechnology, PAU, Ludhiana, India
| | - P K Malhotra
- School of Agricultural Biotechnology, PAU, Ludhiana, India.
| | - G S Sanghera
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - S K Verma
- Institute of Biological Science, SAGE University, Indore, India
| | - N S Jamwal
- Regional., Research Station, Punjab Agricultural University, Kapurthala, India
| | - L Kashyap
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - S H Wani
- Mountain Research Center for Field Crop, SKUAST Srinagar, Jammu and Kashmir, Khudwani, India
| |
Collapse
|
2
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
3
|
Ahmed RI, Ren A, Alshaya DS, Fiaz S, Kong Y, Liaqat S, Ali N, Saddique MAB, Attia KA, Taga MUH. Identification, charectrization and genetic transformation of lignin and pectin polysaccharides through CRISPR/Cas9 in Nicotiana tobacum. Funct Integr Genomics 2024; 24:188. [PMID: 39400746 DOI: 10.1007/s10142-024-01472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
CRISPR/Cas9 system has been successfully implemented in animals and plants is a second-generation genome editing tool. We are able to optimize a Cas9 system to edited Ntab06050 and Ntab0857410 genes in HD and K326 tobacco cultivars respectively. The gene Ntab06050 is related to lignin synthesis while the gene Ntab0857410 belongs to pectin synthesis by utilizing Agrobacterium-mediated leaf disc method. We have constructed total eight different constructs for the lignin related gene family CCoAMT, out of which three constructs have been selected from Ntab0184090, two constructs from Ntab0392460 while one construct from each Ntab0540120, Ntab0857410 and Ntab0135940 gene. To study the Cas9 system in pectin related genes, total five constructs have been utilized under Cas9 system and multiple target sites were selected by identifying PAM sequences. Out of which three constructs were targeted from NtabGAE1and NtabGAE6 homologous while two were targeted from NtabGAUT4 homologous. Where as, UDP-D-glucuronate 4-epimerase gene family is a Golgi localized, might have a role in the interconvertion of UDP-D-GlcA and UDP-D-GalA in pectin synthesis. We have succeeded in the mutation of pectin related NtabGAUT4 and lignin related NtabCCoAMT genes with 6.2% and 9.4% mutation frequency.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Regional Agricultural Research Institute, Bahawalpur, 63100, Pakistan
| | - Angyan Ren
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266108, China
| | | | - Naushad Ali
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan
| | | | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
4
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
8
|
Teper D, White FF, Wang N. The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. PHYTOPATHOLOGY 2023; 113:651-666. [PMID: 36449529 DOI: 10.1094/phyto-10-22-0365-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.
Collapse
Affiliation(s)
- Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Frank F White
- Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
9
|
Kambis TN, Mishra PK. Genome Editing and Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:103-114. [PMID: 36454462 PMCID: PMC10155862 DOI: 10.1007/978-981-19-5642-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Differential gene expression is associated with diabetic cardiomyopathy (DMCM) and culminates in adverse remodeling in the diabetic heart. Genome editing is a technology utilized to alter endogenous genes. Genome editing also provides an option to induce cardioprotective genes or inhibit genes linked to adverse cardiac remodeling and thus has promise in ameliorating DMCM. Non-coding genes have emerged as novel regulators of cellular signaling and may serve as potential therapeutic targets for DMCM. Specifically, there is a widespread change in the gene expression of fetal cardiac genes and microRNAs, termed genetic reprogramming, that promotes pathological remodeling and contributes to heart failure in diabetes. This genetic reprogramming of both coding and non-coding genes varies with the progression and severity of DMCM. Thus, genetic editing provides a promising option to investigate the role of specific genes/non-coding RNAs in DMCM initiation and progression as well as developing therapeutics to mitigate cardiac remodeling and ameliorate DMCM. This chapter will summarize the research progress in genome editing and DMCM and provide future directions for utilizing genome editing as an approach to prevent and/or treat DMCM.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Villalobos-López MA, Arroyo-Becerra A, Quintero-Jiménez A, Iturriaga G. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Int J Mol Sci 2022; 23:12053. [PMID: 36233352 PMCID: PMC9570234 DOI: 10.3390/ijms231912053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.
Collapse
Affiliation(s)
- Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico
| | - Anareli Quintero-Jiménez
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| | - Gabriel Iturriaga
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Roque, Km. 8 Carretera Celaya-Juventino Rosas, Roque, Celaya 38110, Guanajato, Mexico
| |
Collapse
|
11
|
Recent Advances in Molecular Improvement for Potato Tuber Traits. Int J Mol Sci 2022; 23:ijms23179982. [PMID: 36077378 PMCID: PMC9456189 DOI: 10.3390/ijms23179982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.
Collapse
|
12
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
13
|
Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress. Saudi J Biol Sci 2021; 28:5800-5807. [PMID: 34588894 PMCID: PMC8459076 DOI: 10.1016/j.sjbs.2021.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
Cyclic nucleotide gated ion channels (CNGCs) in plants have very important role in signaling and development. The study reports role of CNGC19 and CNGC20 in salt stress in A. thaliana. In-silico, genome wide analysis showed that CNGC19 and CNGC20 are related to salt stress with maximum expression after 6 h in A. thaliana. The position of inserted T-DNA was determined (in-vivo) through TAIL-PCR for activation tagged mutants of CNGC19 and CNGC20 under salt stress. The expression of AtCNGC19 and AtCNGC20 after cloning under 35S promoter of expression vectors pBCH1 and pEarleyGate100 was determined in A. thaliana by real-time PCR analysis. Genome wide analysis showed that AtCNGC11 had lowest and AtCNGC20 highest molecular weight as well as number of amino acid residues. In-vivo expression of AtCNGC19 and AtCNGC20 was enhanced through T-DNA insertion and 35S promoter in over-expressed plants under high salt concentration. AtCNGC19 was activated twice in control and about five times under 150 mM NaCl stress level, and expression value was also higher than AtCNGC20. Phenotypically, over-expressed plants and calli were healthier while knock-out plants and calli showed retarded growth under salinity stress. The study provides new insight for the role of AtCNGC19 and AtCNGC20 under salt stress regulation in A. thaliana and will be helpful for improvement of crop plants for salt stress to combat food shortage and security.
Collapse
|
14
|
Rai N, Kumari Keshri P, Verma A, Kamble SC, Mishra P, Barik S, Kumar Singh S, Gautam V. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 2021; 12:139-159. [PMID: 34552808 PMCID: PMC8451683 DOI: 10.1080/21501203.2020.1870579] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Endophytes are a potent source of bioactive compounds that mimic plant-based metabolites. The relationship of host plant and endophyte is significantly associated with alteration in fungal colonisation and the extraction of endophyte-derived bioactive compounds. Screening of fungal endophytes and their relationship with host plants is essential for the isolation of bioactive compounds. Numerous bioactive compounds with antioxidant, antimicrobial, anticancer, and immunomodulatory properties are known to be derived from fungal endophytes. Bioinformatics tools along with the latest techniques such as metabolomics, next-generation sequencing, and metagenomics multilocus sequence typing can potentially fill the gaps in fungal endophyte research. The current review article focuses on bioactive compounds derived from plant-associated fungal endophytes and their pharmacological importance. We conclude with the challenges and opportunities in the research area of fungal endophytes.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyanka Kumari Keshri
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swapnil C Kamble
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pradeep Mishra
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Suvakanta Barik
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Biswas S, Zhang D, Shi J. CRISPR/Cas systems: opportunities and challenges for crop breeding. PLANT CELL REPORTS 2021; 40:979-998. [PMID: 33977326 DOI: 10.1007/s00299-021-02708-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Increasing crop production to meet the demands of a growing population depends largely on crop improvement through new plant-breeding techniques (NPBT) such as genome editing. CRISPR/Cas systems are NPBTs that enable efficient target-specific gene editing in crops, which is supposed to accelerate crop breeding in a way that is different from genetically modified (GM) technology. Herein, we review the applications of CRISPR/Cas systems in crop breeding focusing on crop domestication, heterosis, haploid induction, and synthetic biology, and summarize the screening methods of CRISPR/Cas-induced mutations in crops. We highlight the importance of molecular characterization of CRISPR/Cas-edited crops, and pay special attentions to emerging highly specific genome-editing tools such as base editors and prime editors. We also discuss future improvements of CRISPR/Cas systems for crop improvement.
Collapse
Affiliation(s)
- Sukumar Biswas
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Kim D, Hager M, Brant E, Budak H. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Funct Integr Genomics 2021; 21:355-366. [PMID: 33710467 DOI: 10.1007/s10142-021-00782-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Genome editing can be used to create new wheat varieties with enhanced performance. Clustered regularly interspaced short palindromic repeat (CRISPR) is a powerful tool for knockout generation, precise modification, multiplex engineering, and the activation and repression of target genes. Targeted mutagenesis via RNA-guided genome editing using type II CRISPR-Cas9 is highly efficient in some plant species, but not in others. One possible solution is to use newly discovered variants of genome editing enzymes such as the class 2 system component Cpf1 (CRISPR from Prevotella and Francisella 1) in place of the more commonly used Cas9. We compared the editing efficiency of Cas9 and two Cpf1 orthologs, AsCpf1 (Acidaminococcus spp. BV3L6) and LbCpf1 (Lachnospiraceae bacterium ND2006) in wheat (Triticum aestivum). LbCpf1 had a higher editing efficiency for the target gene TaPDS than AsCpf1 and Cas9, and Cas9 induced more off-target mutations than AsCpf1 and LbCpf1, suggesting that CRISPR-LbCpf1 is a powerful genome editing tool for polyploid plants such as wheat.
Collapse
Affiliation(s)
- Dongjin Kim
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Megan Hager
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Eleanor Brant
- Department of Agronomy, University of Florida, Gainsville, FL, USA
| | | |
Collapse
|
17
|
Ramkumar TR, Lenka SK, Arya SS, Bansal KC. A Short History and Perspectives on Plant Genetic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2124:39-68. [PMID: 32277448 DOI: 10.1007/978-1-0716-0356-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.
Collapse
Affiliation(s)
- Thakku R Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
| | - Sangram K Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Sagar S Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Kailash C Bansal
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
| |
Collapse
|
18
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
19
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Schiermeyer A, Schneider K, Kirchhoff J, Schmelter T, Koch N, Jiang K, Herwartz D, Blue R, Marri P, Samuel P, Corbin DR, Webb SR, Gonzalez DO, Folkerts O, Fischer R, Schinkel H, Ainley WM, Schillberg S. Targeted insertion of large DNA sequences by homology-directed repair or non-homologous end joining in engineered tobacco BY-2 cells using designed zinc finger nucleases. PLANT DIRECT 2019; 3:e00153. [PMID: 31360827 PMCID: PMC6639735 DOI: 10.1002/pld3.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 05/13/2023]
Abstract
Targeted integration of recombinant DNA fragments into plant genomes by DNA double-strand break (DSB) repair mechanisms has become a powerful tool for precision engineering of crops. However, many targeting platforms require the screening of many transgenic events to identify a low number of targeted events among many more random insertion events. We developed an engineered transgene integration platform (ETIP) that uses incomplete marker genes at the insertion site to enable rapid phenotypic screening and recovery of targeted events upon functional reconstitution of the marker genes. The two marker genes, encoding neomycin phosphotransferase II (nptII) and Discosoma sp. red fluorescent protein (DsRed) enable event selection on kanamycin-containing selective medium and subsequent screening for red fluorescent clones. The ETIP design allows targeted integration of donor DNA molecules either by homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated mechanisms. Targeted donor DNA integration is facilitated by zinc finger nucleases (ZFN). The ETIP cassette was introduced into Nicotiana tabacum BY-2 suspension cells to generate target cell lines containing a single copy locus of the transgene construct. The utility of the ETIP platform has been demonstrated by targeting DNA constructs containing up to 25-kb payload. The success rate for clean targeted DNA integration was up to 21% for HDR and up to 41% for NHEJ based on the total number of calli analyzed by next-generation sequencing (NGS). The rapid generation of targeted events with large DNA constructs expands the utility of the nuclease-mediated gene addition platform both for academia and the commercial sector.
Collapse
Affiliation(s)
- Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Katja Schneider
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Janina Kirchhoff
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Thomas Schmelter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Natalie Koch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ke Jiang
- Corteva AgriscienceIndianapolisINUSA
| | - Denise Herwartz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | - Ryan Blue
- Corteva AgriscienceIndianapolisINUSA
| | | | | | | | | | | | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Indiana Biosciences Research InstituteIndianapolisINUSA
| | - Helga Schinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| | | | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
| |
Collapse
|
21
|
Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Javed MR, Sadaf M, Ahmed T, Jamil A, Nawaz M, Abbas H, Ijaz A. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Curr Microbiol 2018; 75:1675-1683. [PMID: 30078067 DOI: 10.1007/s00284-018-1547-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/01/2018] [Indexed: 12/26/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR or more precisely CRISPR-Cas) system has proven to be a highly efficient and simple tool for achieving site-specific genome modifications in comparison to Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs). The discovery of bacterial defense system that uses RNA-guided DNA cleaving enzymes for producing double-strand breaks along CRISPR has provided an exciting alternative to ZFNs and TALENs for gene editing & regulation, as the CRISPR-associated (Cas) proteins remain the same for different gene targets and only the short sequence of the guide RNA needs to be changed to redirect the site-specific cleavage. Therefore, in recent years the CRISPR-Cas system has emerged as a revolutionary engineering tool for carrying out precise and controlled genetic modifications in many microbes such as Escherichia coli, Staphylococcus aureus, Lactobacillus reuteri, Clostridium beijerinckii, Streptococcus pneumonia, and Saccharomyces cerevisiae. Though, concerns about CRISPR-Cas effectiveness in interlinked gene modifications and off-target effects need to be addressed. Nevertheless, it holds a great potential to speed up the pace of gene function discovery by interacting with previously intractable organisms and by raising the extent of genetic screens. Therefore, the potential applications of this system in microbial adaptive immune system, genome editing, gene regulations, functional genomics & biosynthesis along ethical issues, and possible harmful effects have been reviewed.
Collapse
Affiliation(s)
- Muhammad R Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| | - Maria Sadaf
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Amna Jamil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Marium Nawaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Hira Abbas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| | - Anam Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan
| |
Collapse
|
23
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018; 9:985. [PMID: 30065734 PMCID: PMC6056666 DOI: 10.3389/fpls.2018.00985] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/18/2018] [Indexed: 05/06/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | | | | | | | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
24
|
Fritsche S, Poovaiah C, MacRae E, Thorlby G. A New Zealand Perspective on the Application and Regulation of Gene Editing. FRONTIERS IN PLANT SCIENCE 2018; 9:1323. [PMID: 30258454 PMCID: PMC6144285 DOI: 10.3389/fpls.2018.01323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/22/2018] [Indexed: 05/18/2023]
Abstract
New Zealand (NZ) is a small country with an export-led economy with above 90% of primary production exported. Plant-based primary commodities derived from the pastoral, horticultural and forestry sectors account for around half of the export earnings. Productivity is characterized by a history of innovation and the early adoption of advanced technologies. Gene editing has the potential to revolutionize breeding programmes, particularly in NZ. Here, perennials such as tree crops and forestry species are key components of the primary production value chain but are challenging for conventional breeding and only recently domesticated. Uncertainty over the global regulatory status of gene editing products is a barrier to invest in and apply editing techniques in plant breeding. NZs major trading partners including Europe, Asia and Australia are currently evaluating the regulatory status of these technologies and have not made definitive decisions. NZ is one of the few countries where the regulatory status of gene editing has been clarified. In 2014, the NZ Environmental Protection Authority ruled that plants produced via gene editing methods, where no foreign DNA remained in the edited plant, would not be regulated as GMOs. However, following a challenge in the High Court, this decision was overturned such that NZ currently controls all products of gene editing as GMOs. Here, we illustrate the potential benefits of integrating gene editing into plant breeding programmes using targets and traits with application in NZ. The regulatory process which led to gene editing's current GMO classification in NZ is described and the importance of globally harmonized regulations, particularly to small export-driven nations is discussed.
Collapse
|
25
|
Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. CRISPR for Crop Improvement: An Update Review. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30065734 DOI: 10.3389/fpls.2018.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences for several crops and advances in genome editing approaches has opened up possibilities to breed for almost any given desirable trait. Advancements in genome editing technologies such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) has made it possible for molecular biologists to more precisely target any gene of interest. However, these methodologies are expensive and time-consuming as they involve complicated steps that require protein engineering. Unlike first-generation genome editing tools, CRISPR/Cas9 genome editing involves simple designing and cloning methods, with the same Cas9 being potentially available for use with different guide RNAs targeting multiple sites in the genome. After proof-of-concept demonstrations in crop plants involving the primary CRISPR-Cas9 module, several modified Cas9 cassettes have been utilized in crop plants for improving target specificity and reducing off-target cleavage (e.g., Nmcas9, Sacas9, and Stcas9). Further, the availability of Cas9 enzymes from additional bacterial species has made available options to enhance specificity and efficiency of gene editing methodologies. This review summarizes the options available to plant biotechnologists to bring about crop improvement using CRISPR/Cas9 based genome editing tools and also presents studies where CRISPR/Cas9 has been used for enhancing biotic and abiotic stress tolerance. Application of these techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Karthikeyan Ramasamy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
26
|
Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017; 18:649-670. [PMID: 28815315 PMCID: PMC5612923 DOI: 10.1007/s10162-017-0634-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.
Collapse
Affiliation(s)
- Hena Ahmed
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, Chater C, Lin HC, Coe RA, Kretzschmar T, Gray JE, Quick PW, Bandyopadhyay A. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. PLANT CELL REPORTS 2017; 36:745-757. [PMID: 28349358 DOI: 10.1007/s00299-017-2118-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
CRISPR-Cas9/Cpf1 system with its unique gene targeting efficiency, could be an important tool for functional study of early developmental genes through the generation of successful knockout plants. The introduction and utilization of systems biology approaches have identified several genes that are involved in early development of a plant and with such knowledge a robust tool is required for the functional validation of putative candidate genes thus obtained. The development of the CRISPR-Cas9/Cpf1 genome editing system has provided a convenient tool for creating loss of function mutants for genes of interest. The present study utilized CRISPR/Cas9 and CRISPR-Cpf1 technology to knock out an early developmental gene EPFL9 (Epidermal Patterning Factor like-9, a positive regulator of stomatal development in Arabidopsis) orthologue in rice. Germ-line mutants that were generated showed edits that were carried forward into the T2 generation when Cas9-free homozygous mutants were obtained. The homozygous mutant plants showed more than an eightfold reduction in stomatal density on the abaxial leaf surface of the edited rice plants. Potential off-target analysis showed no significant off-target effects. This study also utilized the CRISPR-LbCpf1 (Lachnospiracae bacterium Cpf1) to target the same OsEPFL9 gene to test the activity of this class-2 CRISPR system in rice and found that Cpf1 is also capable of genome editing and edits get transmitted through generations with similar phenotypic changes seen with CRISPR-Cas9. This study demonstrates the application of CRISPR-Cas9/Cpf1 to precisely target genomic locations and develop transgene-free homozygous heritable gene edits and confirms that the loss of function analysis of the candidate genes emerging from different systems biology based approaches, could be performed, and therefore, this system adds value in the validation of gene function studies.
Collapse
Affiliation(s)
- Xiaojia Yin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Akshaya K Biswal
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacqueline Dionora
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Kristel M Perdigon
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | | | - Shamik Mazumdar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Departamento de Biologıá Molecular de Plantas, Instituto de Biotecnologıá, Universidad Nacional Autónoma de Mexico Cuernavaca, Cuernavaca, Mexico
| | - Hsiang-Chun Lin
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Robert A Coe
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Tobias Kretzschmar
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul W Quick
- International Rice Research Institute, DAPO, 7777, Metro Manila, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | |
Collapse
|
28
|
Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. SCIENCE CHINA-LIFE SCIENCES 2017; 60:476-489. [PMID: 28527116 DOI: 10.1007/s11427-017-9029-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods, ethyl methane sulfonate (EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.
Collapse
Affiliation(s)
- Xingjie Ren
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kristof Holsteens
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyi Li
- French International School of Hong Kong, Hong Kong SAR, 999000, China
| | - Jin Sun
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yifan Zhang
- Department of Biology, University of California, San Diego, 92093, USA
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Blanvillain‐Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:306-317. [PMID: 27539813 PMCID: PMC5316920 DOI: 10.1111/pbi.12613] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 05/04/2023]
Abstract
As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv. oryzae (Xoo) injects into the plant cell DNA-binding proteins called transcription activator-like effectors (TALEs) that bind to effector-binding elements (EBEs) in a sequence-specific manner, resulting in host gene induction. TALEs AvrXa7, PthXo3, TalC and Tal5, found in geographically distant Xoo strains, all target OsSWEET14, thus considered as a pivotal TALE target acting as major susceptibility factor during rice-Xoo interactions. Here, we report the generation of an allele library of the OsSWEET14 promoter through stable expression of TALE-nuclease (TALEN) constructs in rice. The susceptibility level of lines carrying mutations in AvrXa7, Tal5 or TalC EBEs was assessed. Plants edited in AvrXa7 or Tal5 EBEs were resistant to bacterial strains relying on the corresponding TALE. Surprisingly, although indels within TalC EBE prevented OsSWEET14 induction in response to BAI3 wild-type bacteria relying on TalC, loss of TalC responsiveness failed to confer resistance to this strain. The TalC EBE mutant line was, however, resistant to a strain expressing an artificial SWEET14-inducing TALE whose EBE was also edited in this line. This work offers the first set of alleles edited in TalC EBE and uncovers a distinct, broader range of activities for TalC compared to AvrXa7 or Tal5. We propose the existence of additional targets for TalC beyond SWEET14, suggesting that TALE-mediated plant susceptibility may result from induction of several, genetically redundant, host susceptibility genes by a single effector.
Collapse
Affiliation(s)
- Servane Blanvillain‐Baufumé
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
- Present address: LabEx CeMEBUniversité de MontpellierMontpellierFrance
| | - Maik Reschke
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Montserrat Solé
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Sustainable Agro Solutions S.A.Almacelles (Lleida)Spain
| | - Florence Auguy
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Hinda Doucoure
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Boris Szurek
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Donaldo Meynard
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Murielle Portefaix
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Sébastien Cunnac
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Emmanuel Guiderdoni
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Jens Boch
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Ralf Koebnik
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| |
Collapse
|
30
|
Laxa M. Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? FRONTIERS IN PLANT SCIENCE 2017; 7:1977. [PMID: 28111580 PMCID: PMC5216049 DOI: 10.3389/fpls.2016.01977] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 05/03/2023]
Abstract
Many plant promoters were characterized and used for transgene expression in plants. Even though these promoters drive high levels of transgene expression in plants, the expression patterns are rarely constitutive but restricted to some tissues and developmental stages. In terms of crop improvement not only the enhancement of expression per se but, in particular, tissue-specific and spatial expression of genes plays an important role. Introns were used to boost expression in transgenic plants in the field of crop improvement for a long time. However, the mechanism behind this so called intron-mediated enhancement (IME) is still largely unknown. This review highlights the complexity of IME on the levels of its regulation and modes of action and gives an overview on IME methodology, examples in fundamental research and models of proposed mechanisms. In addition, the application of IME in heterologous gene expression is discussed.
Collapse
Affiliation(s)
- Miriam Laxa
- Institute of Botany, Leibniz University HannoverHannover, Germany
| |
Collapse
|
31
|
Sundin GW, Wang N, Charkowski AO, Castiblanco LF, Jia H, Zhao Y. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. PHYTOPATHOLOGY 2016; 106:1071-1082. [PMID: 27183301 DOI: 10.1094/phyto-03-16-0117-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Collapse
Affiliation(s)
- George W Sundin
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Nian Wang
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Amy O Charkowski
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Luisa F Castiblanco
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Hongge Jia
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Youfu Zhao
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
32
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
33
|
Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. PLANT CELL REPORTS 2016; 35:1535-44. [PMID: 26825596 DOI: 10.1007/s00299-016-1937-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/15/2016] [Indexed: 05/21/2023]
Abstract
Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system. The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3-17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.
Collapse
Affiliation(s)
- Saminathan Subburaj
- Department of Horticultural Science, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sung Jin Chung
- Department of Horticultural Science, Chungnam National University, Daejeon, 305-764, South Korea
| | - Choongil Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, South Korea
- Center for Genome Engineering, Institute for Basic Science, Seoul, 151-742, South Korea
| | - Seuk-Min Ryu
- Department of Chemistry, Seoul National University, Seoul, 151-742, South Korea
- Center for Genome Engineering, Institute for Basic Science, Seoul, 151-742, South Korea
| | - Duk Hyoung Kim
- Department of Chemistry, Hanyang University, Seoul, 133-791, South Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, South Korea
- Center for Genome Engineering, Institute for Basic Science, Seoul, 151-742, South Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 133-791, South Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 133-791, South Korea.
| | - Geung-Joo Lee
- Department of Horticultural Science, Chungnam National University, Daejeon, 305-764, South Korea.
| |
Collapse
|
34
|
Shen Y, Pan G, Lübberstedt T. Haploid Strategies for Functional Validation of Plant Genes. Trends Biotechnol 2016; 33:611-620. [PMID: 26409779 DOI: 10.1016/j.tibtech.2015.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/11/2023]
Abstract
Increasing knowledge of plant genome sequences requires the development of more reliable and efficient genetic approaches for genotype-phenotype validation. Functional identification of plant genes is generally achieved by a combination of creating genetic modifications and observing the according phenotype, which begins with forward-genetic methods represented by random physical and chemical mutagenesis and move towards reverse-genetic tools as targeted genome editing. A major bottleneck is time need to produce modified homozygous genotypes that can actually be used for phenotypic validation. Herein, we comprehensively address and compare available experimental approaches for functional validation of plant genes, and propose haploid strategies to reduce the time needed and cost consumed for establishing gene function.
Collapse
Affiliation(s)
- Yaou Shen
- Maize Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China; Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| |
Collapse
|
35
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Sci Rep 2016; 6:20657. [PMID: 26853907 PMCID: PMC4745098 DOI: 10.1038/srep20657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription- activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.
Collapse
|
37
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
38
|
Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R. Haploids: Constraints and opportunities in plant breeding. Biotechnol Adv 2015; 33:812-29. [PMID: 26165969 DOI: 10.1016/j.biotechadv.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/04/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to national programs or small-medium private seed for the exploitation of DH technology in plant breeding.
Collapse
Affiliation(s)
- Sangam L Dwivedi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Anne B Britt
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, P. O. Box 30709-00100, Kenya
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, 502324, India; Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; UWA Institute of Agriculture, University of Western Australia, Crawley WA 6009, Australia; Department of Biology, University of Louisiana at Lafayette, 300 E. St. Mary Blvd, 108 Billeaud Hall, Lafayette, LA 70504, USA
| | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences (SLU), Department of Plant Breeding, Sundsvagen 14 Box 101, 23053 Alnarp, Sweden.
| |
Collapse
|
39
|
Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB. Generation of inheritable and "transgene clean" targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 2015; 5:11491. [PMID: 26089199 PMCID: PMC5155577 DOI: 10.1038/srep11491] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022] Open
Abstract
The CRISPR/Cas9 system is becoming an important genome editing tool for crop breeding. Although it has been demonstrated that target mutations can be transmitted to the next generation, their inheritance pattern has not yet been fully elucidated. Here, we describe the CRISPR/Cas9-mediated genome editing of four different rice genes with the help of online target-design tools. High-frequency mutagenesis and a large percentage of putative biallelic mutations were observed in T0 generations. Nonetheless, our results also indicate that the progeny genotypes of biallelic T0 lines are frequently difficult to predict and that the transmission of mutations largely does not conform to classical genetic laws, which suggests that the mutations in T0 transgenic rice are mainly somatic mutations. Next, we followed the inheritance pattern of T1 plants. Regardless of the presence of the CRISPR/Cas9 transgene, the mutations in T1 lines were stably transmitted to later generations, indicating a standard germline transmission pattern. Off-target effects were also evaluated, and our results indicate that with careful target selection, off-target mutations are rare in CRISPR/Cas9-mediated rice gene editing. Taken together, our results indicate the promising production of inheritable and "transgene clean" targeted genome-modified rice in the T1 generation using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Rong-Fang Xu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hao Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Rui-Ying Qin
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Juan Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Chun-Hong Qiu
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ya-Chun Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Li Li
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Peng-Cheng Wei
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jian-Bo Yang
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| |
Collapse
|
40
|
Germline-transmitted genome editing in Arabidopsis thaliana Using TAL-effector-nucleases. PLoS One 2015; 10:e0121056. [PMID: 25822541 PMCID: PMC4378910 DOI: 10.1371/journal.pone.0121056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
Transcription activator-like effector nucleases (TALENs) are custom-made bi-partite endonucleases that have recently been developed and applied for genome engineering in a wide variety of organisms. However, they have been only scarcely used in plants, especially for germline-modification. Here we report the efficient creation of small, germline-transmitted deletions in Arabidopsis thaliana via TALENs that were delivered by stably integrated transgenes. Using meristem specific promoters to drive expression of two TALEN arms directed at the CLV3 coding sequence, we observed very high phenotype frequencies in the T2 generation. In some instances, full CLV3 loss-of-function was already observed in the T1 generation, suggesting that transgenic delivery of TALENs can cause highly efficient genome modification. In contrast, constitutive TALEN expression in the shoot apical meristem (SAM) did not cause additional phenotypes and genome re-sequencing confirmed little off-target effects, demonstrating exquisite target specificity.
Collapse
|
41
|
Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 2015; 8:12. [PMID: 25901185 PMCID: PMC4404288 DOI: 10.1186/s13072-015-0002-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/23/2023] Open
Abstract
Background DNA methylation and histone 3 lysine 9 (H3K9) methylation are considered as epigenetic marks that can be inherited through cell divisions. To explore the functional consequences and stability of these modifications, we employed targeted installment of DNA methylation and H3K9 methylation in the vascular endothelial growth factor A (VEGF-A) promoter using catalytic domains of DNA or H3K9 methyltransferases that are fused to a zinc finger protein which binds a site in the VEGF-A promoter. Results Expression of the targeted DNA and H3K9 methyltransferases caused dense deposition of DNA methylation or H3K9 di- and trimethylation in the promoter of VEGF-A and downregulation of VEGF-A gene expression. We did not observe positive feedback between DNA methylation and H3K9 methylation. Upon loss of the targeted methyltransferases from the cells, the epigenetic marks, chromatin environment, and gene expression levels returned to their original state, indicating that both methylation marks were not stably propagated after their installment. Conclusions The clear anti-correlation between DNA or H3K9 methylation and gene expression suggests a direct role of these marks in transcriptional control. The lack of maintenance of the transiently induced silenced chromatin state suggests that the stability of epigenetic signaling is based on an epigenetic network consisting of several molecular marks. Therefore, for stable reprogramming, either multivalent deposition of functionally related epigenetic marks or longer-lasting trigger stimuli might be necessary. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0002-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Goran Kungulovski
- Institute of Biochemistry, Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Suneetha Nunna
- Institute of Biochemistry, Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany.,University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany.,University of Tübingen, Geschwister-Scholl-Platz, 72074 Tübingen, Germany
| | - Richard Reinhardt
- Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | - Albert Jeltsch
- Institute of Biochemistry, Faculty of Chemistry, Stuttgart University, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
42
|
Nishizawa-Yokoi A, Endo M, Ohtsuki N, Saika H, Toki S. Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:160-8. [PMID: 25284193 PMCID: PMC4309413 DOI: 10.1111/tpj.12693] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Precise genome engineering via homologous recombination (HR)-mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR-mediated GT is an extremely rare event, positive-negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re-integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)-tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Namie Ohtsuki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, National Institute of Agrobiological Sciences2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University641-12, Maioka-cho, Yokohama, 244-0813, Japan
- *For correspondence (e-mail )
| |
Collapse
|
43
|
Scutt CP, Vandenbussche M. Current trends and future directions in flower development research. ANNALS OF BOTANY 2014; 114:1399-406. [PMID: 25335868 PMCID: PMC4204790 DOI: 10.1093/aob/mcu224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 05/05/2023]
Abstract
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.
Collapse
Affiliation(s)
- Charlie P Scutt
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
44
|
Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. PLANT PHYSIOLOGY 2014; 166:1288-91. [PMID: 25217528 PMCID: PMC4226374 DOI: 10.1104/pp.114.247593] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 05/18/2023]
Abstract
Transcription activator-like effector nucleases successfully generate a heritable tomato mutant.
Collapse
Affiliation(s)
- Vai S Lor
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108 (V.S.L., N.E.O.);Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (C.G.S., D.F.V.); andInstitute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (D.W.)
| | - Colby G Starker
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108 (V.S.L., N.E.O.);Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (C.G.S., D.F.V.); andInstitute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (D.W.)
| | - Daniel F Voytas
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108 (V.S.L., N.E.O.);Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (C.G.S., D.F.V.); andInstitute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (D.W.)
| | - David Weiss
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108 (V.S.L., N.E.O.);Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (C.G.S., D.F.V.); andInstitute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (D.W.)
| | - Neil E Olszewski
- Department of Plant Biology and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108 (V.S.L., N.E.O.);Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (C.G.S., D.F.V.); andInstitute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel (D.W.)
| |
Collapse
|
45
|
Abstract
Targeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes. The simplicity of the cloning strategy and the few limitations on potential target sites make the CRISPR/Cas system very appealing. Here we describe a stepwise protocol for the selection of target sites, as well as the design, construction, verification and use of sgRNAs for sequence-specific CRISPR/Cas-mediated mutagenesis and gene targeting in rice and wheat. The CRISPR/Cas system provides a straightforward method for rapid gene targeting within 1-2 weeks in protoplasts, and mutated rice plants can be generated within 13-17 weeks.
Collapse
|
46
|
Abstract
In humans, most of the genetic variation is rare and often population-specific. Whereas the role of rare genetic variants in familial monogenic diseases is firmly established, we are only now starting to explore the contribution of this class of genetic variation to human common diseases and other complex traits. Such large-scale experiments are possible due to the development of next-generation DNA sequencing. Early findings suggested that rare and low-frequency coding variation might have a large effect on human phenotypes (eg, PCSK9 missense variants on low-density lipoprotein-cholesterol and coronary heart diseases). This observation sparked excitement in prognostic and diagnostic medicine, as well as in genetics-driven strategies to develop new drugs. In this review, I describe results and present initial conclusions regarding some of the recent rare and low-frequency variant discoveries. We can already assume that most phenotype-associated rare and low-frequency variants have modest-to-weak phenotypical effect. Thus, we will need large cohorts to identify them, as for common variants in genome-wide association studies. As we expand the list of associated rare and low-frequency variants, we can also better recognise the current limitations: we need to develop better statistical methods to optimally test association with rare variants, including non-coding variation, and to account for potential confounders such as population stratification.
Collapse
Affiliation(s)
- Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada Faculty of Medicine, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Cornes E, Quéré CAL, Giordano-Santini R, Dupuy D. Applying antibiotic selection markers for nematode genetics. Methods 2014; 68:403-8. [PMID: 24821108 DOI: 10.1016/j.ymeth.2014.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/30/2023] Open
Abstract
Antibiotic selection markers have been recently developed in the multicellular model organism Caenorhabditis elegans and other related nematode species, opening great opportunities in the field of nematode transgenesis. Here we describe how these antibiotic selection systems can be easily combined with many well-established genetic approaches to study gene function, improving time- and cost-effectiveness of the nematode genetic toolbox.
Collapse
Affiliation(s)
- Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Cécile A L Quéré
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Rosina Giordano-Santini
- Molecular and Cellular Neurobiology Laboratory, The University of Queensland, Queensland Brain Institute, Qld 4072, Australia
| | - Denis Dupuy
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France.
| |
Collapse
|
48
|
Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3479-89. [PMID: 24958898 DOI: 10.1093/jxb/eru229] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels.
Collapse
Affiliation(s)
- John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Daryl Morishige
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Ryan McCormick
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Sandra Truong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Josie Hilley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Robert Anderson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - Sara N Olson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77845-2128, USA
| | - William Rooney
- Department of Soil and Crop Science, Texas A&M University, College Station, Texas 77845-2128, USA
| |
Collapse
|
49
|
Poloni A, Schirawski J. Red card for pathogens: phytoalexins in sorghum and maize. Molecules 2014; 19:9114-33. [PMID: 24983861 PMCID: PMC6271655 DOI: 10.3390/molecules19079114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/11/2022] Open
Abstract
Cereal crop plants such as maize and sorghum are constantly being attacked by a great variety of pathogens that cause large economic losses. Plants protect themselves against pathogens by synthesizing antimicrobial compounds, which include phytoalexins. In this review we summarize the current knowledge on phytoalexins produced by sorghum (luteolinidin, apigeninidin) and maize (zealexin, kauralexin, DIMBOA and HDMBOA). For these molecules, we highlight biosynthetic pathways, known intermediates, proposed enzymes, and mechanisms of elicitation. Finally, we discuss the involvement of phytoalexins in plant resistance and their possible application in technology, medicine and agriculture. For those whose world is round we tried to set the scene in the context of a hypothetical football game in which pathogens fight with phytoalexins on the different playing fields provided by maize and sorghum.
Collapse
Affiliation(s)
- Alana Poloni
- Department of Microbial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - Jan Schirawski
- Department of Microbial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
50
|
Del Prete S, Arpón J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res 2014; 143:28-50. [PMID: 24992956 DOI: 10.1159/000363724] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interphase cell nucleus is extraordinarily complex, ordered, and dynamic. In the last decade, remarkable progress has been made in deciphering the functional organisation of the cell nucleus, and intricate relationships between genome functions (transcription, DNA repair, or replication) and various nuclear compartments have been revealed. In this review, we describe the architecture of the Arabidopsis thaliana interphase cell nucleus and discuss the dynamic nature of its organisation. We underline the need for further developments in quantitative and modelling approaches to nuclear organization.
Collapse
Affiliation(s)
- Stefania Del Prete
- INRA, UMR1318-AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), INRA-Centre de Versailles-Grignon, Versailles, France
| | | | | | | | | |
Collapse
|