1
|
Parlayıcı Ş, Pehlivan E. Methylene blue removal using nano-TiO 2/MWCNT/Chitosan hydrogel composite beads in aqueous medium. CHEMOSPHERE 2024; 365:143244. [PMID: 39251160 DOI: 10.1016/j.chemosphere.2024.143244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024]
Abstract
Dyestuff, one of the most hazardous compounds in terms of threats to people and the environment, is found in wastewater from industrial usage. The removal of Methylene Blue (MB) from a water-based medium has been studied by numerous researchers using a variety of adsorbents. To remove MB from aqueous solution, nano-TiO2/MWCNT/Chitosan hydrogel composite beads (n-TiO2/MWCNT/Cht) were developed in this study using a sol-gel method. This research discusses the characterisation of a new adsorbent substance using Infrared Spectroscopy (FT-IR) analysis and scanning electron microscopy (SEM). The optimal pH, adsorbent dosage, duration, and starting concentration were ascertained by analyzing the removal efficiencies of MB using the batch adsorption method. Adsorption behaviour at the equilibrium state has been investigated using a variety of adsorption isotherms, including Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir adsorption isotherm has been useful to clarify adsorption behaviors. nTiO2-Cht/MWCNT had an adsorption capacity of 80.65 mg/g for MB. The pseudo-second-order kinetic model offered the best agreement to the experimental data for the adsorption of MB. Kinetic models of pseudo-first-order and pseudo-second-order were employed to explore the adsorption processes of MB on the n-TiO2/MWCNT/Cht. This study demonstrated the efficiency of n-TiO2/MWCNT/Cht for the removal of MB from a water-based solution.
Collapse
Affiliation(s)
- Şerife Parlayıcı
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| | - Erol Pehlivan
- Department of Chemical Engineering, Konya Technical University, Campus, 42250, Konya, Turkey.
| |
Collapse
|
2
|
Nowicki P, Kaźmierczak M, Wiśniewska M. Adsorption of Organic Pollutants on Carbonaceous Adsorbents Prepared by Direct Activation of Sweet Cherry Stones. Chemphyschem 2024; 25:e202300859. [PMID: 38100718 DOI: 10.1002/cphc.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/17/2023]
Abstract
The main objective of this study was to assess the usefulness of the sweet cherry stones for the production of carbonaceous adsorbents by means of direct physical activation method, using conventional and microwave variant of heating. The adsorbents were characterized in terms of textural parameters, acidic-basic character of the surface, electrokinetic properties and their suitability for drinking water purification. Adsorption tests were carried out against three organic compounds - Triton X-100 (surfactant), bovine serum albumin (protein) and methylene blue (synthetic dye). Depending on the variant of heating applied during activation procedure, the obtained activated biochars differed significantly in terms of the elemental composition, acidic-basic properties as well as degree of specific surface development and the type of porous structure generated. Adsorption tests have showed that the efficiency of organic pollutants removal from aqueous solutions depends significantly not only on the type of the adsorbent and adsorbate applied, but also on the temperature and pH of the system. The sample prepared by microwave-assisted direct activation proved to be very effective in terms of all tested organic pollutants adsorption. The maximum sorption capacity toward Triton X-100, bovine serum albumin and methylene blue reached the level of 86.5, 23.4 and 81.1 mg/g, respectively.
Collapse
Affiliation(s)
- Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Magdalena Kaźmierczak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
3
|
Majumder S, Dhara B, Mitra AK, Dey S. Applications and implications of carbon nanotubes for the sequestration of organic and inorganic pollutants from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124934-124949. [PMID: 36719577 DOI: 10.1007/s11356-023-25431-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The rapid growth in the population, industrial developments, and climate change over the century have contributed to a significant rise in aquatic pollution leading to a scarcity of clean, reliable, and sustainable water sources and supply. Exposure through ingestion, inhalation, and dermal absorption of organic/inorganic compounds such as heavy metals, pharmaceuticals, dyes, and persistent organic pollutants (POPs) discharged from municipalities, hospitals, textile industries, food, and agricultural sectors has caused adverse health outcomes in aquatic and terrestrial organisms. Owing to the high surface area, photocatalytic activity, antimicrobial, antifouling, optical, electronic, and magnetic properties, the application of nanotechnology offers unique opportunities in advanced wastewater management strategies over traditional approaches. Carbon nanomaterials and associated composites such as single-walled carbon nanotubes (SWCNT), multiwalled carbon nanotubes (MWCNT), and carbon nanotubes (CNT) buckypaper membranes have demonstrated efficiency in adsorption, photocatalytic activity, and filtration of contaminants and thus show immense potentiality in wastewater management. This review focuses on the application of CNTs in the sequestration of organic and inorganic contaminants from the aquatic environment. It also sheds light on the aquatic pollutant desorption processes, current safety regulations, and toxic responses associated with CNTs. Critical knowledge gaps involving CNT synthesis, surface modification processes, CNT-environment interactions, and risk assessments are further identified and discussed.
Collapse
Affiliation(s)
- Satwik Majumder
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21111 Lakeshore, Sainte Anne de Bellevue, H9X 3V9, Quebec, Canada
| | - Bikram Dhara
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Arup Kumar Mitra
- Department of Microbiology, St. Xavier's College (Autonomous), Kolkata, 30 Park St., Mullick Bazar, Park Street Area, West Bengal, 700016, Kolkata, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Ajodhya, Howrah, West Bengal, 711312, India.
| |
Collapse
|
4
|
Rawat A, Singh RK, Joshi P, Khatri OP, Mohanty P. A sustainable management of polycyclic aromatic hydrocarbons to synthesize microporous organic polymers for adsorptive desulphurization of fuels. CHEMOSPHERE 2023; 337:139318. [PMID: 37392797 DOI: 10.1016/j.chemosphere.2023.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
A sustainable management of carcinogenic polycyclic aromatic hydrocarbons (PAHs) to synthesize a series of high surface area (SABET of 563-1553 m2 g-1) microporous polymeric adsorbents is reported. The products with high yield (>90%) were obtained within only 30 min at a low temperature of 50 °C using a microwave-assisted approach with 400 W microwave power followed by 30 min of ageing by raising the temperature to 80 °C. The synthesized adsorbents are used for removing another category of carcinogenic pollutants i.e., polycyclic aromatic sulphur heterocycles (PASHs) from model and real fuels. Adsorptive desulphurization experiment in batch mode could reduce the sulphur from high concentrated model (100 ppm) and real (102 ppm) fuels to 8 ppm and 45 ppm respectively. Similarly, desulphurization of model and real fuels with ultralow sulphur concentrations of 10 and 9 ppm, respectively, reduced the final concentration of sulphur to 0.2 and 3 ppm, respectively. Adsorption isotherms, kinetics, and thermodynamic studies have been conducted using batch mode experiments. Adsorptive desulphurization using fixed bed column studies show the breakthrough capacities of 18.6 and 8.2 mgS g-1, for the same high concentrated model and real fuels, respectively. The breakthrough capacities of 1.1 and 0.6 mgS g-1 are estimated for the ultralow sulphur model and real fuels, respectively. The adsorption mechanism, based on the spectroscopic analysis (FTIR and XPS) demonstrates the role of π-π interactions between the adsorbate and adsorbent. The adsorptive desulphurization studies of model and real fuels from batch to fixed bed column mode would offer an in-depth understanding to demonstrate the lab-scale findings for industrial applications. Thus, the present sustainable strategy could manage two classes of carcinogenic petrochemical pollutants, PAHs and PASHs, simultaneously.
Collapse
Affiliation(s)
- Anuj Rawat
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Raj K Singh
- Advanced Crude Oil Research Centre, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Pratiksha Joshi
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Om P Khatri
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Keerthana SP, Yuvakkumar R, Ravi G, Thambidurai M, Nguyen HD, Velauthapillai D. Sr doped TiO 2 photocatalyst for the removal of Janus Green B dye under visible light. RSC Adv 2023; 13:18779-18787. [PMID: 37350863 PMCID: PMC10282732 DOI: 10.1039/d3ra00567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/24/2023] Open
Abstract
Hydrothermal synthesis of pristine and Sr doped TiO2 is proposed. The synthesized products were studied for their physiochemical properties. 3% Sr-TiO2 showed a narrow bandgap, which facilitate an increase in oxygen vacancies. The agglomerated morphology was tuned to a nanoball structure after doping with Sr ions. Surface area was increased for the Sr doped TiO2. The samples were used to reduce Janus Green B (JG) dye as a model pollutant. The pure TiO2 showed poor efficiency, while the prepared Sr-TiO2 photocatalyst showed enhanced efficiency with a corresponding increase in the rate constant values of the samples. Tuning of the bandgap, an improvement in the morphology and an increase in the surface area were the major positives of the Sr doped TiO2 samples compared to pure TiO2, 3% Sr-TiO2 is emerging as the best photocatalyst in reducing toxic pollutants. The 3% Sr-TiO2 is a promising candidate for water remediation in the future.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - R Yuvakkumar
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
| | - G Ravi
- Department of Physics, Alagappa University Karaikudi 630 003 Tamil Nadu India
- Department of Physics, Chandigarh University Mohali 140 413 Punjab India
| | - M Thambidurai
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Hung D Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences Bergen 5063 Norway
| |
Collapse
|
6
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
7
|
Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, Goh SW. Sulfonated magnetic multi-walled carbon nanotubes with enhanced bonding stability, high adsorption performance, and reusability for water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40242-40259. [PMID: 36604398 DOI: 10.1007/s11356-022-25064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
Collapse
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Wei Ming Yeoh
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, 31900, Perak, Kampar, Malaysia
| | - Soon Wah Goh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
8
|
Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S, Park YK, Hussain M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. CHEMOSPHERE 2022; 306:135566. [PMID: 35787877 DOI: 10.1016/j.chemosphere.2022.135566] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Polluted water resources, particularly those polluted with industrial effluents' dyes, are carcinogenic and hence pose a severe threat to sustainable and longstanding worldwide development. Meanwhile, adsorption is a promising process for polluted/wastewater treatment. In particular, activated carbon (AC) is popular among various wastewater treatment adsorbents, especially in the organic contaminants' remediation in wastewater. Hence, the AC's synthesis from degradable and non-degradable resources, the carbon activation involved in the AC synthesis, and the AC's modification to cutting-edge and effective materials have been modern-research targets in recent years. Likewise, the main research focuses worldwide have been the salient AC characteristics, such as its surface chemistry, porosity, and enhanced surface area. Notably, various modified-AC synthesis methods have been employed to enhance the AC's potential for improved contaminants-removal. Hence, we critically analyze the different modified ACs (with enhanced (surface) functional groups and textural properties) of their capacity to remove different-natured anionic dyes in wastewater. We also discuss the corresponding AC modification techniques, the factors affecting the AC properties, and the modifying agents' influence on the AC's morphological/adsorptive properties. Finally, the AC research of future interest has been proposed by identifying the current AC research gaps, especially related to the AC's application in wastewater treatment.
Collapse
Affiliation(s)
- Kshaf Azam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Nasir Shezad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
9
|
Janjhi FA, Janwery D, Chandio I, Ullah S, Rehman F, Memon AA, Hakami J, Khan F, Boczkaj G, Thebo KH. Recent Advances in Graphene Oxide‐Based Membranes for Heavy Metal Ions Separation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farooque Ahmed Janjhi
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Dahar Janwery
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Imamdin Chandio
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Sami Ullah
- King Fahd University of Petroleum & Mineral (KFUPM) K.A. CARE Energy Research & Innovation Center (ERIC) 31261 Dhahran Saudi Arabia
| | - Faisal Rehman
- University of Virginia Department of Mechanical and Aerospace Engineering 22904 Charlottesville VA USA
| | - Ayaz Ali Memon
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Jabir Hakami
- Jazan University Department of Physics, College of Science P.O. Box 114 45142 Jazan Saudi Arabia
| | - Firoz Khan
- King Fahd University of Petroleum & Minerals (KFUPM) Interdiscipliary Research Center for Renewable Energy and Power Systems (IRC–REPS), Research Institute 31261 Dhahran Saudi Arabia
| | - Grzegorz Boczkaj
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Khalid Hussain Thebo
- Chinese Academy of Science Institute of Metal Research (IMR) Wenhua Road Shenynag China
| |
Collapse
|
10
|
Enhanced adsorption of crystal violet from aqueous solution by polyethyleneimine-modified magnetic hydrogel nanocomposites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Abu Elgoud EM, Abd-Elhamid AI, Emam SS, Aly HF. Selective removal of some heavy metals from Lanthanide solution by graphene oxide functionalized with sodium citrate. Sci Rep 2022; 12:13755. [PMID: 35962046 PMCID: PMC9374659 DOI: 10.1038/s41598-022-17949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lanthanides are widely used in several advanced technologies, and the presence of heavy metal ions as traces reduce their efficiencies. Hence, adsorption of some heavy metals from Lanthanides aqueous solution using previously prepared graphene oxide-citrate (GO-C) composite was reported. In this regard, the GO-C was applied to remove various heavy metal ions (Fe, Ni, Mn) through the batch technique. The GO-C after the adsorption process was characterized by various advanced techniques. The results obtained from the experimental investigations revealed that the GO-C showed a rapid equilibrium adsorption time (1.0 min) for all the studied heavy metal ions. Moreover, the adsorption isotherm data for Fe3+, Mn2+, and Ni2+ was fit by the Langmuir isotherm model with excellent adsorption capacity for Fe3+ (535.0 mg/g), Mn2+ (223.22 mg/g), and Ni2+ (174.65 mg/g). Furthermore, the GO-C can be reused over five times to enhance the removal efficiency. Interestingly, the GO-C adsorbent achieved removal performance reached 95.0% for the Fe3+ and ≥ 35.0% for Ni, Mn, Co, and Cu compared to < 1% for lanthanides metal ions.
Collapse
Affiliation(s)
- E M Abu Elgoud
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
| | - A I Abd-Elhamid
- Composites and Nanostructured Materials Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria, 21934, Egypt
| | - Sh Sh Emam
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - H F Aly
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
12
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
13
|
Qureshi SS, Shah V, Nizamuddin S, Mubarak N, Karri RR, Dehghani MH, Ramesh S, Khalid M, Rahman ME. Microwave-assisted synthesis of carbon nanotubes for the removal of toxic cationic dyes from textile wastewater. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Ghaedi S, Seifpanahi-Shabani K, Sillanpää M. Waste-to-Resource: New application of modified mine silicate waste to remove Pb 2+ ion and methylene blue dye, adsorption properties, mechanism of action and recycling. CHEMOSPHERE 2022; 292:133412. [PMID: 34974049 DOI: 10.1016/j.chemosphere.2021.133412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 05/07/2023]
Abstract
Currently, heavy metals and dyes are some of the most critical pollutants in the aquatic environment. So, in this paper "waste-to-resource conversion", as a new application of modified mine silicate waste to remove Pb2+ ion and methylene blue (MB) dye, adsorption properties, mechanism of action and recycling were studied. Silicate wastes are located in the alteration zone and the margin of molybdenum ore, these wastes are under the influence of hydrothermal solutions which are impregnated with iron and manganese ions. Hence, acid and base modifications have been commonly used. So, in this study, a highly porous nanostructure of modified silicate waste was used to remove MB and Pb2+ ion, in subsequent to our previous study on the application of the raw material of the same in the removal of malachite green. Acid, base, and acid/base treatments were used to activate and modify the adsorbent. Results show a significantly higher potential of modified adsorbent in the removal of MB and Pb2+ compared to the raw material. According to the isotherm and kinetic studies for MB and Pb2+ the Langmuir and Temkin and pseudo-second-order models were investigated with experimental data. Modified nanomaterial was used for several adsorption and desorption processes, without a significant decrease in the capability of the adsorbent in the removal of MB and Pb2+ pollutants. Leached iron and manganese ions (as production of modification) are deposited in the form of sludge using a simple pH adjustment and precipitation process and can be used to recover iron and manganese metals in the long run. The comparison of monolayer adsorption capacity using for Pb2+ ion and MB dye are as ((untreated SW: 29.41, 1.05); (NaOH treated: 21.74, 100); (Nitric Acid treated: 16.67, 142.86); (Citric Acid treated: 40, 125); (Nitric/Citric Acids treated: 15.63, 111.11) and (Nitric/Citric Acids/NaOH treated: 15.15, 83.33)), respectively. Higher adsorption capacity and re-generable properties of this adsorbent suggest the usage of this natural and abundant mine waste to treat wastewater containing toxic elements and dyes.
Collapse
Affiliation(s)
- Samaneh Ghaedi
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Kumars Seifpanahi-Shabani
- Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| |
Collapse
|
15
|
Zhang S, Dai F, Ke Z, Wang Q, Chen C, Qian G, Yu Y. A novel porous hollow carboxyl-polysulfone microsphere for selective removal of cationic dyes. CHEMOSPHERE 2022; 289:133205. [PMID: 34890624 DOI: 10.1016/j.chemosphere.2021.133205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.
Collapse
Affiliation(s)
- Shangying Zhang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Fengna Dai
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Zhao Ke
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Qi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Chunhai Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Guangtao Qian
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Youhai Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
16
|
Badawi AK, Abd Elkodous M, Ali GAM. Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: an overview. RSC Adv 2021; 11:36528-36553. [PMID: 35494372 PMCID: PMC9043615 DOI: 10.1039/d1ra06892j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Excessive levels of dyes and heavy metals in water sources have long been a source of concern, posing significant environmental and public health threats. However, adsorption is a feasible technique for removing dye contaminants and heavy metals from water due to its high efficiency, cost-effectiveness, and easy operation. Numerous researchers in batch studies extensively evaluated various adsorbents such as natural materials, and agriculture-derived and industrial wastes; however, large-scale application is still missing. Nanotechnology is a novel approach that has arisen as one of the most versatile and cost-effective ways for dye and heavy metal removal. Its promotion on large-scale applications to investigate technological, fiscal, and environmental aspects for wastewater decontamination is particularly important. This review critically reviews wastewater treatment techniques, emphasizing the adsorption process and highlighting the most effective parameters: solution pH, adsorbent dosage, adsorbent particle size, initial concentration, contact time, and temperature. In addition, a comprehensive, up-to-date list of potentially effective low-cost adsorbents and nano-sorbents for the removal of dyes and heavy metals has been compiled. Finally, the challenges towards the practical application of the adsorption process based on various adsorbents have been drawn from the literature reviewed, and our suggested future perspectives are proposed.
Collapse
Affiliation(s)
- Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology Giza 12588 Egypt +20 1114743578
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Gomaa A M Ali
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
17
|
Gollakota ARK, Munagapati VS, Volli V, Gautam S, Wen JC, Shu CM. Coal bottom ash derived zeolite (SSZ-13) for the sorption of synthetic anion Alizarin Red S (ARS) dye. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125925. [PMID: 34492857 DOI: 10.1016/j.jhazmat.2021.125925] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
SSZ-13 zeolite was successfully synthesized from coal bottom ash (CBA) upon hydrothermal treatment for selective sorption of Alizarin Red S (ARS) dye. The characterization of CBA, and SSZ-13 were performed using BET, SEM, FTIR, XRF, and XRD techniques. The optimal fusion ratio (CBA: NaOH) was identified as 1:3, resulting zeolite SSZ-13 with a specific surface area of 206.6 m2/g, compared to raw CBA (7.81 m2/g). The kinetics, isotherms, and thermodynamics of the ARS adsorption onto the SSZ-13, and CBA were assessed under various conditions. The results indicated that the adsorption phenomenon is optimal under acidic medium (pH = 2 for CBA, pH = 3 for SSZ-13); at ambient room temperature of 298 K; adsorbent dosage of 0.03 g, contact time of 120 min. Further, the equilibrium data fitted well to Langmuir isotherm (qe = 210.75 mg/g), following pseudo-second-order kinetics. Moreover, the chemisorption phenomenon is clearly described using Elovich kinetic model. Various thermodynamic parameters signifies the adsorption phenomenon is spontaneous, and endothermic in nature. Finally, regeneration studies revealed the sensitivity of SSZ-13 zeolite towards 0.1 M NaOH/EtOH eluent in recovery and the possibility of reuse to five successive adsorption/desorption cycles. Thus, hydrothermal treatment of CBA has potential in producing zeolites suitable to adsorption.
Collapse
Affiliation(s)
- Anjani R K Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC.
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou 64002, Taiwan, ROC
| | - Vikranth Volli
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu 641114, India
| | - Jet-Chau Wen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC; Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou 64002, Taiwan, ROC.
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City 64002, Yunlin County, Taiwan, ROC.
| |
Collapse
|
18
|
Wang T, Sun Y, Wang S, Li X, Yue Y, Gao Q. Effective Adsorption of Methyl Orange on Organo-Silica Nanoparticles Functionalized by a Multi-Hydroxyl-Containing Gemini Surfactant: A Joint Experimental and Theoretical Study. ACS OMEGA 2021; 6:18014-18023. [PMID: 34308036 PMCID: PMC8296568 DOI: 10.1021/acsomega.1c01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
A novel multi-hydroxyl-containing gemini surfactant (G16) is first designed for modifying silica precursors (SiNPs), with the purpose of fabricating organic adsorbents targeted at methyl orange (MO). The purity of G16 and structural character of the resultant G16-SiNPs are unveiled through Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry-derivative thermogravimetry, scanning electron microscopy, and surface analysis (BET). Compared with SiNPs, G16-SiNPs exhibit enhanced hydrophobicity, enlarged interlayer spacing, and increased thermal weight losses with the modifier availability reaching as high as 100%. Enhanced MO adsorption is obtained from the higher adsorption capacity of G16-SiNPs (401.88 mg/g) than SiNPs (64.72 mg/g), which is more effective than most of the existing silica-based adsorbents. Pseudo-second-order and Langmuir models conform to all adsorption processes, indicating that the adsorption mainly relies on the availability of adsorption sites and characterized by a homogeneous adsorption form. By combining the experimental study and theoretical calculation methods, it can be demonstrated that the as-synthesized adsorbent G16-SiNPs own multi-active sites that contribute to multi-adsorption mechanisms. The partition process, electrostatic interactions, and OH-π interactions are all responsible for the adsorption performance of G16-SiNPs. This study throws light on the exploration of the superb MO adsorbent in aspects of not only the novel structured modifier and precursor but also theoretical analysis for gaining insights into the adsorption mechanism.
Collapse
Affiliation(s)
- Tingting Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian
Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yaxun Sun
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Shifeng Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Xin Li
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
- Hoffmann
Institute of Advanced Materials, Shenzhen
Polytechnic, 7098 Liuxian
Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Yihang Yue
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Qi Gao
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies, College of Science, Tibet
University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| |
Collapse
|
19
|
Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125375. [PMID: 33930951 DOI: 10.1016/j.jhazmat.2021.125375] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | | | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| |
Collapse
|
20
|
Foroush MP, Ahmadi R, Yousefi M, Najafpour J. In Silico study of adsorption of penicillin antibiotic on the surface of single walled nitride boron nanotubes(SBNNT). SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Ding F, Ren P, Wang G, Wu S, Du Y, Zou X. Hollow cellulose-carbon nanotubes composite beads with aligned porous structure for fast methylene blue adsorption. Int J Biol Macromol 2021; 182:750-759. [PMID: 33836190 DOI: 10.1016/j.ijbiomac.2021.03.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Polysaccharide based beads with unique porous structure have gained considerable interests due to their specific adsorption behaviors and biodegradability. The purpose of this paper was to develop hollow cellulose/carbon nanotubes composite beads with aligned porous structure which have potential applications in fast adsorption field. The composite beads were fabricated by ice template and freeze-drying technology. Different characterizations have proved that the carbon nanotubes and magnetic nanoparticles have been incorporated into the cellulose beads. Higher concentration of carbon nanotubes and cellulose would result in a larger diameter of the composite beads. The composite beads can effectively adsorb the methylene blue (MB). The pseudo-second-order model and Langmuir isotherm were best fitted to the adsorption. The composite beads showed a fast adsorption behavior towards MB with a t1/2 of 1.07 min obtained from pseudo-second-order model. The maximum adsorption capacity was 285.71 mg g-1 at pH 7.0. The composite beads also showed good reusability and biodegradability. We anticipate that different polysaccharides based composite beads with aligned porous structure can be obtained through the similar methods and applied in adsorption fields.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ping Ren
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Guannan Wang
- School of Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yumin Du
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Highly Efficient Methylene Blue Dye Removal by Nickel Molybdate Nanosorbent. Molecules 2021; 26:molecules26051378. [PMID: 33806498 PMCID: PMC7961506 DOI: 10.3390/molecules26051378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
Removing methylene blue (MB) dye from aqueous solutions was examined by the use of nickel molybdate (α-NiMoO4) as an adsorbent produced by an uncomplicated, rapid, and cost-effective method. Different results were produced by varying different parameters such as the pH, the adsorbent dose, the temperature, the contact time, and the initial dye concentration. Adsorbent dose and pH had a major removal effect on MB. Interestingly, a lower amount of adsorbent dose caused greater MB removal. The amount of removal gained was efficient and reached a 99% level with an initial methylene blue solution concentration of ≤160 ppm at pH 11. The kinetic studies indicated that the pseudo-second-order kinetic model relates very well with that of the obtained experimental results. The thermodynamic studies showed that removing the MB dye was favorable, spontaneous, and endothermic. Impressively, the highest quantity of removal amount of MB dye was 16,863 mg/g, as shown by the Langmuir model. The thermal regeneration tests revealed that the efficiency of removing MB (11,608 mg/g) was retained following three continuous rounds of recycled adsorbents. Adsorption of MB onto α-NiMoO4 nanoparticles and its regeneration were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy (SEM) analysis. The results indicated that α-NiMoO4 nanosorbent is an outstanding and strong candidate that can be used for removing the maximum capacity of MB dye in wastewater.
Collapse
|
23
|
Velusamy S, Roy A, Sundaram S, Kumar Mallick T. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. CHEM REC 2021; 21:1570-1610. [PMID: 33539046 DOI: 10.1002/tcr.202000153] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
Textile wastewater heavy metal pollution has become a severe environmental problem worldwide. Metal ion inclusion in a dye molecule exhibits a bathochromic shift producing deeper but duller shades, which provides excellent colouration. The ejection of a massive volume of wastewater containing heavy metal ions such as Cr (VI), Pb (II), Cd (II) and Zn (II) and metal-containing dyes are an unavoidable consequence because the textile industry consumes large quantities of water and all these chemicals cannot be combined entirely with fibres during the dyeing process. These high concentrations of chemicals in effluents interfere with the natural water resources, cause severe toxicological implications on the environment with a dramatic impact on human health. This article reviewed the various metal-containing dye types and their heavy metal ions pollution from entryway to the wastewater, which then briefly explored the effects on human health and the environment. Graphene-based absorbers, specially graphene oxide (GO) benefits from an ordered structured, high specific surface area, and flexible surface functionalization options, which are indispensable to realize a high performance of heavy metal ion removal. These exceptional adsorption properties of graphene-based materials support a position of ubiquity in our everyday lives. The collective representation of the textile wastewater's effective remediation methods is discussed and focused on the GO-based adsorption methods. Understanding the critical impact regarding the GO-based materials established adsorption portfolio for heavy metal ions removal are also discussed. Various heavy-metal ions and their pollutant effect, ways to remove such heavy metal ions and role of graphene-based adsorbent including their demand, perspective, limitation, and relative scopes are discussed elaborately in the review.
Collapse
Affiliation(s)
- Sasireka Velusamy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| | - Tapas Kumar Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
| |
Collapse
|
24
|
Zhao W, Tian Y, Chu X, Cui L, Zhang H, Li M, Zhao P. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117917] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. WATER 2021. [DOI: 10.3390/w13020215] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wastewater generation and treatment is an ever-increasing concern in the current century due to increased urbanization and industrialization. To tackle the situation of increasing environmental hazards, numerous wastewater treatment approaches are used—i.e., physical, chemical, and biological (primary to tertiary treatment) methods. Various treatment techniques being used have the risks of producing secondary pollutants. The most promising technique is the use of different materials as adsorbents that have a higher efficacy in treating wastewater, with a minimal production of secondary pollutants. Biosorption is a key process that is highly efficient and cost-effective. This method majorly uses the adsorption process/mechanism for toxicant removal from wastewater. This review elaborates the major agricultural and non-agricultural materials-based sorbents that have been used with their possible mechanisms of pollutant removal. Moreover, this creates a better understanding of how the efficacy of these sorbents can be enhanced by modification or treatments with other substances. This review also explains the re-usability and mechanisms of the used adsorbents and/or their disposal in a safe and environmentally friendly way, along with highlighting the major research gaps and potential future research directions. Additionally, the cost benefit ratio of adsorbents is elucidated.
Collapse
|
26
|
Ali SH, Emran MY, Gomaa H. Rice Husk-Derived Nanomaterials for Potential Applications. WASTE RECYCLING TECHNOLOGIES FOR NANOMATERIALS MANUFACTURING 2021:541-588. [DOI: 10.1007/978-3-030-68031-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
27
|
Adsorption of Reactive Black 5 Dye from Aqueous Solutions by Carbon Nanotubes and its Electrochemical Regeneration Process. HEALTH SCOPE 2020. [DOI: 10.5812/jhealthscope.102443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
: Removal of Reactive Black 5 (RB5) dye from aqueous solutions was investigated by adsorption onto Multi-walled Carbon Nanotubes (MWCNTs) and Single-walled Carbon Nanotubes (SWCNTs). A Taguchi orthogonal design including pH, initial RB5 concentration, contact time, and CNTs dose, was used in 16 experiments. The results showed that all four factors were statistically significant, and the optimum conditions for both adsorbents were as follows: pH of 3, adsorbent dose of 1000 mg/L, RB5 concentrations of 25 mg/L, and contact time of 60 min. An equilibrium study by Isotherm Fitting Tool (ISOFIT) software showed that Langmuir isotherm provided the best fit for RB5 adsorption by CNTs. The maximum predicted adsorption capacities for the dye were obtained as 231.84 and 829.20 mg/g by MWCNTs and SWCNTs, respectively. The results also indicated that the adsorption capacity of SWCNTs was about 1.21 folds higher than that of MWCNTs. Studies of electrochemical regeneration were conducted, and the results demonstrated that RB5-loaded MWCNTs and SWCNTs could be regenerated (86.5% and 77.3%, respectively) using the electrochemical process. Adsorbent regeneration was mostly due to the degradation of the dye by the attack of active species such as chlorate, H2O2, and, •OH, which were generated by the electrochemical oxidation process with Ti/RuO2-IrO2-TiO2 anodes. The results of Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that acetic acid, 3-chlorobenzenesulfonamide, and 1,2-benzenedicarboxylic acid were produced after adsorbent regeneration by the electrochemical process in the solution of regeneration. The adsorption and regeneration cycles showed that the electrochemical process with Ti/RuO2-IrO2-TiO2 and graphite is a good alternative method for the regeneration of CNTs and simultaneous degradation of the dye.
Collapse
|
28
|
Iron Molybdate Fe 2(MoO 4) 3 Nanoparticles: Efficient Sorbent for Methylene Blue Dye Removal from Aqueous Solutions. Molecules 2020; 25:molecules25215100. [PMID: 33153124 PMCID: PMC7663641 DOI: 10.3390/molecules25215100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
The present study investigated iron molybdate (Fe2(MoO4)3), synthesized via a simple method, as a nanosorbent for methylene blue (MB) dye removal from aqueous solutions. Investigations of the effects of several parameters like contact time, adsorbent dose, initial dye concentration, temperature and pH were carried out. The results showed that MB removal was affected, significantly, by adsorbent dose and pH. Interestingly, lower values of adsorbent dose resulted in the removal of higher amounts of MB. At the optimum pH, the removal efficiency of 99% was gained with an initial MB concentration of ≤60 ppm. The kinetic study specified an excellent correlation of the experimental results with the pseudo-second-order kinetics model. Thermodynamic studies proved a spontaneous, favorable and endothermic removal. The maximum amount of removal capacity of MB dye was 6173 mg/g, which was determined from the Langmuir model. The removal efficiency was shown to be retained after three cycles of reuse, as proven by thermal regeneration tests. The presence and adsorption of the dye onto the Fe2(MoO4)3 nanoparticle surface, as well as the regeneration of the latter, was ascertained by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). These findings are indicative that the investigated nanosorbent is an excellent candidate for the removal of MB in wastewater.
Collapse
|
29
|
Wabaidur SM, Khan MA, Siddiqui MR, Otero M, Jeon BH, Alothman ZA, Hakami AAH. Oxygenated functionalities enriched MWCNTs decorated with silica coated spinel ferrite – A nanocomposite for potentially rapid and efficient de-colorization of aquatic environment. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113916] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4030135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. Unlike, reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) membranes aligned CNT membranes can act as high-flow desalination membranes. CNTs provide a relatively safer electrode solution for biosensors. The article is of the utmost importance for the scientists and technologists working in water purification technologies to eliminate the water crisis in the future. This review summarizes about the application of CNTs in water purification.
Collapse
|
31
|
Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment. NANOMATERIALS 2020; 10:nano10091764. [PMID: 32906594 PMCID: PMC7558965 DOI: 10.3390/nano10091764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology is an uppermost priority area of research in several nations presently because of its enormous capability and financial impact. One of the most promising environmental utilizations of nanotechnology has been in water treatment and remediation where various nanomaterials can purify water by means of several mechanisms inclusive of the adsorption of dyes, heavy metals, and other pollutants, inactivation and removal of pathogens, and conversion of harmful materials into less harmful compounds. To achieve this, nanomaterials have been generated in several shapes, integrated to form different composites and functionalized with active components. Additionally, the nanomaterials have been added to membranes that can assist to improve the water treatment efficiency. In this paper, we have discussed the advantages of nanomaterials in applications such as adsorbents (removal of dyes, heavy metals, pharmaceuticals, and organic contaminants from water), membrane materials, catalytic utilization, and microbial decontamination. We discuss the different carbon-based nanomaterials (carbon nanotubes, graphene, graphene oxide, fullerenes, etc.), and metal and metal-oxide based nanomaterials (zinc-oxide, titanium dioxide, nano zerovalent iron, etc.) for the water treatment application. It can be noted that the nanomaterials have the ability for improving the environmental remediation system. The examination of different studies confirmed that out of the various nanomaterials, graphene and its derivatives (e.g., reduced graphene oxide, graphene oxide, graphene-based metals, and graphene-based metal oxides) with huge surface area and increased purity, outstanding environmental compatibility and selectivity, display high absorption capability as they trap electrons, avoiding their recombination. Additionally, we discussed the negative impacts of nanomaterials such as membrane damage and cell damage to the living beings in the aqueous environment. Acknowledgment of the possible benefits and inadvertent hazards of nanomaterials to the environment is important for pursuing their future advancement.
Collapse
|
32
|
Single and simultaneous adsorption of basic dyes by novel organo-vermiculite: A combined experimental and theoretical study. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125059] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Basheer AO, Alsaadi MA, Wan Yaacob WZ, Al-Douri Y. Synthesis, Characterization, and Analysis of Hybrid Carbon Nanotubes by Chemical Vapor Deposition: Application for Aluminum Removal. Polymers (Basel) 2020; 12:E1305. [PMID: 32521657 PMCID: PMC7362265 DOI: 10.3390/polym12061305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Hybrid carbon nanotubes (CNTs) are grown on biomass powder-activated carbon (bio-PAC) by loading iron nanoparticles (Fe) as catalyst templates using chemical vapor deposition (CVD) and using acetylene as carbon source, under specific conditions as reaction temperature, time, and gas ratio that are 550 °C, 47 min, and 1, respectively. Specifications of hybrid CNTs were analyzed and characterized using field emission scanning electron microscope (FESEM) with energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopic (TEM), Fourier-transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area Brunauer-Emmett-Teller (BET), and zeta potential. The results revealed the high quality and unique morphologies of hybrid CNTs. Furthermore, removal and capacity of Al3+ were optimized by response surface methodology (RSM). However, the results revealed that the pseudo-second-order model well represented adsorption kinetic data, while the isotherm data were effectively fitted using a Freundlich model. The maximum adsorption capacity was 347.88 mg/g. It could be concluded that synthesized hybrid CNTs are a new cost-effective and promising adsorbent for removing Al3+ ion from wastewater.
Collapse
Affiliation(s)
- Alfarooq O. Basheer
- Department for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammed Abdulhakim Alsaadi
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia; (M.A.A.); (Y.A.-D.)
- National Chair of Materials Science and Metallurgy, University of Nizwa, Nizawa 611, Oman
- Department of Civil Engineering, Almaref University College, Al-Anbar 31001, Iraq
| | - Wan Zuhairi Wan Yaacob
- Department for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Y. Al-Douri
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia; (M.A.A.); (Y.A.-D.)
- University Research Center, Cihan University Sulaimaniya, Sulaymaniyah 46002, Iraq
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Besiktas, Istanbul, Turkey
| |
Collapse
|
34
|
Aboelfetoh EF, Gemeay AH, El-Sharkawy RG. Effective disposal of methylene blue using green immobilized silver nanoparticles on graphene oxide and reduced graphene oxide sheets through one-pot synthesis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:355. [PMID: 32394116 DOI: 10.1007/s10661-020-08278-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the feasibility of exploring highly efficient, cost-effective, and stable green adsorbents for the treatment of contaminated water. Here silver nanoparticles (AgNPs) were immobilized onto nanosheets of graphene oxide (GO) through in situ reduction process using green tea aqueous extract. GO reduction to reduced graphene oxide (rGO) and AgNPs decoration on rGO also occurred simultaneously. The impacts of the extract concentration, contact time, and temperature on the synthesis process have been investigated. The synthesized nanocomposites were examined by XRD, FTIR, Raman, SEM, TEM, and TGA. The GO nanosheets were decorated by AgNPs with a crystalline structure and an average particle size of 25 ± 3 nm. The temperature and the extract concentration were considerably affecting the type of the resulting nanocomposites. The GO/Ag nanocomposites were formed at room temperature (27 °C) using different extract concentration (2-18% (v/v)), while the rGO/Ag nanocomposite was formed only at a higher temperature (95 °C) with higher extract concentration (18%). The methylene blue (MB) dye was picked as a water pollutant to explore the adsorption ability of the nanocomposites. The adsorption behavior of the GO/Ag nanocomposites was examined under diverse factors (MB concentration, adsorbent dosage, pH, and contact time) to achieve optimization. The adsorption data concurs with Langmuir isotherm giving maximum adsorption up to 633 mg g-1. Adsorption kinetics demonstrate good pseudo-second-order compliance. Spontaneous and endothermic nature of adsorption was affirmed via thermodynamic parameters. The nanocomposites could be utilized as eco-friendly and reliable adsorbents in wastewater treatment, as a result of their exceptional productivity and reusing potential.
Collapse
Affiliation(s)
- Eman F Aboelfetoh
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Ali H Gemeay
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Rehab G El-Sharkawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
- Chemistry Department, College of Science, Jouf University, Aljouf 2014, Sakaka, Saudi Arabia
| |
Collapse
|
35
|
Sankararamakrishnan N, Singh N, Srivastava I. Hierarchical nano Fe(0)@FeS doped cellulose nanofibres derived from agrowaste – Potential bionanocomposite for treatment of organic dyes. Int J Biol Macromol 2020; 151:713-722. [DOI: 10.1016/j.ijbiomac.2020.02.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/16/2022]
|
36
|
An HJ, Park JM, Khan NA, Jhung SH. Adsorptive removal of bulky dye molecules from water with mesoporous polyaniline-derived carbon. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:597-605. [PMID: 32318320 PMCID: PMC7155913 DOI: 10.3762/bjnano.11.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Polyaniline-derived carbon (PDC) was obtained via pyrolysis of polyaniline under different temperatures and applied for the purification of water contaminated with dye molecules of different sizes and charge by adsorption. With increasing pyrolysis temperature, it was found that the hydrophobicity, pore size and mesopore volume increased. A mesoporous PDC sample obtained via pyrolysis at 900 °C showed remarkable performance in the adsorption of dye molecules, irrespective of dye charge, especially in the removal of bulky dye molecules, such as acid red 1 (AR1) and Janus green B (JGB). For example, the most competitive PDC material showed a Q 0 value (maximum adsorption capacity) 8.1 times that of commercial, activated carbon for AR1. The remarkable adsorption of AR1 and JGB over KOH-900 could be explained by the combined mechanisms of hydrophobic, π-π, electrostatic and van der Waals interactions.
Collapse
Affiliation(s)
- Hyung Jun An
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Min Park
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nazmul Abedin Khan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
37
|
Zhang C, Dai Y, Wu Y, Lu G, Cao Z, Cheng J, Wang K, Yang H, Xia Y, Wen X, Ma W, Liu C, Wang Z. Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr Polym 2020; 234:115882. [DOI: 10.1016/j.carbpol.2020.115882] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/03/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
38
|
Maruthapandi M, Eswaran L, Luong JHT, Gedanken A. Sonochemical preparation of polyaniline@TiO 2 and polyaniline@SiO 2 for the removal of anionic and cationic dyes. ULTRASONICS SONOCHEMISTRY 2020; 62:104864. [PMID: 31810873 DOI: 10.1016/j.ultsonch.2019.104864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Polyaniline (PANI) synthesized by simple CDs (carbon dots) initiated polymerization has formed a composite with TiO2 and SiO2, respectively via a sonochemical method. These PANI@TiO2 and PANI@SiO2 composites were proven as effective adsorbent materials to rapidly adsorb the anionic and cationic dyes from wastewater at neutral pH and ambient temperature. Selected popular cationic and anionic organic dyes consisted of methylene blue (MB), brilliant blue (BB), Evans blue (EB), crystal violet (CV), Congo red (CR), rhodamine B (RB), and rhodamine 6G (R6G). The adsorption equilibria were governed by Langmuir and Freundlich isotherms. The kinetic results revealed that the PANI@TiO2 and PANI@SiO2 composite materials synthesized via the sonochemical method are efficient adsorbents compared to other adsorbent materials for the removal of organic dyes from the water. The adsorbed dyes were effectively desorbed from the composites, rendering the reusability of PANI@TiO2 and PANI@SiO2. The estimated adsorption capacities of PANI@TiO2 and PANI@SiO2 composites were 89, 93, 80, 94 and 74, 71, 61, 61 mg/g for MB, CR, CV, and R6G, respectively.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Lakshmanan Eswaran
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003, Tamilnadu, India
| | | | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
39
|
Ghapanvari M, Madrakian T, Afkhami A, Ghoorchian A. A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01388-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Huo J, Luo B, Chen Y. Crystalline Covalent Organic Frameworks from Triazine Nodes as Porous Adsorbents for Dye Pollutants. ACS OMEGA 2019; 4:22504-22513. [PMID: 31909333 PMCID: PMC6941375 DOI: 10.1021/acsomega.9b03176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 05/21/2023]
Abstract
The development of covalent organic frameworks (COFs) with nodes and spacers, designed to maximize their functional properties, is a challenge. Triazines exhibit better electron affinity than benzene-based aromatic rings; therefore, structures based on 1,3,5-substituted triazine-centered nodes are more stable than those from 1,3,5-benzene-linked COFs. Compared to COFs prepared from flat, rigid sp2 carbon-linked triazine nodes, the O-linked flexible tripodal triazine-based COF demonstrates several unpredictable properties such as an increase in crystallinity and cavity size. In this study, the COF prepared from O-linked flexible 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine serves as an excellent absorbent for removing methylene blue from water. Our results demonstrate that COF is highly stable in water and functions as a robust adsorbent. Its adsorption isotherm is consistent with the Langmuir model and its adsorption kinetics follows a pseudo-second order model. Moreover, the COF was characterized using elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, solid-state ultraviolet-visible spectroscopy, and X-ray diffraction. It exhibited permanent porosity, a high specific surface area (279.5 m2·g-1), and was chemically and thermally stable. Photophysical studies revealed that the COF exhibits a low bandgap energy value of 3.07 eV, indicating its semiconducting nature.
Collapse
|
41
|
Saemian T, Gharagozlou M, Hossaini Sadr M, Naghibi S. A Comparative Study on the Pollutant Removal Efficiency of CoFe2O4@HKUST-1 MOF and CoFe2O4 Nanoparticles. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01406-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
|
43
|
Wang Y, Wang Z, Wang S, Chen Z, Chen J, Chen Y, Fu J. Magnetic poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes modified with glacial acetic acid for removing methylene blue: Adsorption performance and mechanism. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Zhang J, Li R, Ding G, Wang Y, Wang C. Sorptive removal of phenanthrene from water by magnetic carbon nanomaterials. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Sheydaei M, Fattahi M, Ghalamchi L, Vatanpour V. Systematic comparison of sono-synthesized Ce-, La- and Ho-doped ZnO nanoparticles and using the optimum catalyst in a visible light assisted continuous sono-photocatalytic membrane reactor. ULTRASONICS SONOCHEMISTRY 2019; 56:361-371. [PMID: 31101273 DOI: 10.1016/j.ultsonch.2019.04.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 05/07/2023]
Abstract
In the present work, La-ZnO, Ho-ZnO and Ce-ZnO nanoparticles were synthesized by sonochemical method to use as catalysts in visible light photocatalysis, sono-photocatalysis and visible light sono-photocatalysis/membrane separation (SPMS) processes for degradation of an organic pollutant. The effect of doping source, mass ratio of doping source to the precursor of ZnO synthesis, pH, sonication temperature and time, and calcination temperature and time was investigated in visible light photocatalytic activity of the prepared lanthanides-doped ZnO nanoparticles using Taguchi design. The optimum conditions for the nanoparticles synthesis were obtained at 8 wt% of cerium nitrate, pH 10, sonication time for 1 h at 60 °C and calcination for 3 h at 300 °C. FE-SEM, EDS, XRD, PL and DRS analyzes were used to identify the characteristics of Ce-ZnO as the optimum catalyst. The Ce-ZnO nanoparticles were used to remove Reactive Orange 29 (RO29) solution via sono-photocatalysis process under the visible light irradiation. The effect of initial pH of solution, catalyst dosage, light intensity (power of applied lamp(s)), initial concentrations of inorganic salts such as Na2CO3, NaCl and Na2SO4 on the decolorization efficiency was investigated. Finally, a continuous flow visible light SPMS reactor was used in the presence of Ce-ZnO catalyst and polypropylene hollow fiber membrane for treatment of dye solution. In the best conditions of SPMS reactor, 97.84% of dye removal was achieved. GC-Mass, COD and TOC analyses were used to approve degradation and mineralization of RO29 using the SPMS process. Moreover, the prepared Ce-ZnO nanocomposite was shown the favorable antibacterial behavior against positive and negative bacteria.
Collapse
Affiliation(s)
- Mohsen Sheydaei
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| | - Marzieh Fattahi
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| | - Leila Ghalamchi
- Environment Protection Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| |
Collapse
|
46
|
Lawal IA, Lawal MM, Azeez MA, Ndungu P. Theoretical and experimental adsorption studies of phenol and crystal violet dye on carbon nanotube functionalized with deep eutectic solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Jiaqi Z, Yimin D, Danyang L, Shengyun W, Liling Z, Yi Z. Synthesis of carboxyl-functionalized magnetic nanoparticle for the removal of methylene blue. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.095] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
|
49
|
Synthesis of Poly(cyclotriphosphazene-co-4,4′-diaminodiphenysulfone) Microspheres and Their Adsorption Properties for Cationic Dyes (Methylene Blue). J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Liu Y, Guo L, Huang H, Dou J, Huang Q, Gan D, Chen J, Li Y, Zhang X, Wei Y. Facile preparation of magnetic composites based on carbon nanotubes: Utilization for removal of environmental pollutants. J Colloid Interface Sci 2019; 545:8-15. [DOI: 10.1016/j.jcis.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|