1
|
Yang Y, Xu Y, Zhong D, Qiao Q, Zeng H. Efficient removal of Cr(VI) by chitosan cross-linked bentonite loaded nano-zero-valent iron composite: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136183. [PMID: 39418910 DOI: 10.1016/j.jhazmat.2024.136183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
A nano-zero-valent iron loaded with 2-aminoterephthalic acid cross-linked chitosan/bentonite (2ACB@nZVI) was developed to remove Cr(VI) from aqueous solution through adsorption-reduction. It was characterized by FTIR, XRD, TGA, BET, SEM, EDS, electrochemistry and XPS. This analysis showed that chitosan cross-linked bentonite not only enhanced the adsorption effect of chitosan and its chemical stability, but also provided a good carrier for loading nZVI and effectively improves its reaction activity. The optimal mass ratios of chitosan: bentonite and 2ACB:nZVI for synthesizing the 2ACB@nZVI composite were 3:1 and 1:4, respectively. The pH value had a great influence on the removal rate of Cr(VI), and its optimal value was 2.0. This is because nZVI was more susceptible to corrosion under acidic conditions, and a large amount of Fe(II) was leached to reduce the adsorbed Cr(VI) on the surface of 2ACB@nZVI. The Cr(VI) removal by 2ACB@nZVI constituted a spontaneous endothermic reaction, aligning with both the pseudo-second-order kinetic model and the Langmuir adsorption isotherm, with a maximum adsorption capacity reached 406.36 mg g-1 at 318 K. 2ACB@nZVI had a strong tolerance to co-existing ions, and the removal rate remained about 80 % after aging for 30 days or six cycles. The main mechanisms included electrostatic adsorption, complexation, reduction, and coprecipitation. Reduction contributed 86.67 % to the removal of Cr(VI), and Fe(II) was the key to Cr(VI) reduction. This study provided a new idea for the efficient treatment of Cr(VI) wastewater.
Collapse
Affiliation(s)
- Yuqin Yang
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Dengjie Zhong
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Qingmei Qiao
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hanlu Zeng
- School of College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
2
|
Zhang SY, Shi H, Zhu MD, Jie WG, Kan LB. Synthesis, magnetic properties, biotoxicity and potential mechanism of modified nano zero-valent iron for decolorization of dye wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-14. [PMID: 38770638 DOI: 10.1080/09593330.2024.2354057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
SiO2-coated nano zero-valent iron (nZVI) has emerged as a fine material for the treatment of dye wastewater due to its large specific surface area, high surface activity, and strong reducibility. However, the magnetic properties based on which SiO2-coated nZVI (SiO2-nZVI) could effectively separate and recover from treated wastewater, and the biotoxicity analysis of degradation products of the dye wastewater treated by SiO2-nZVI remain unclear. In this study, SiO2-nZVI was synthesized using a modified one-step synthesis method. The SiO2-nZVI nanoparticles were characterized using Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Fully automatic specific surface and porosity analyzer, Vibrating sample magnetometer, and Zeta potential analyzer. The removal rate of methyl orange (MO) by SiO2-nZVI composite reached 98.35% when the degradation performance of SiO2-nZVI treating MO was optimized. Since SiO2-nZVI analysed by magnetic hysteresis loops had large saturation magnetization and strong magnetic properties, SiO2-nZVI exhibited excellent ferromagnetic behaviour. The analysis of the degradation products showed that the MO treated by SiO2-nZVI was converted into a series of intermediates, resulting in reducing the toxicity of MO. The potential mechanism of MO degradated by SiO2-nZVI was speculated through degradation process and degradation kinetics analysis. Overall, the SiO2-nZVI composite may be regarded as a promising catalyst for decolorization of dye wastewater.
Collapse
Affiliation(s)
- Si-Yi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, People's Republic of China
| | - He Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, People's Republic of China
| | - Man-di Zhu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, People's Republic of China
| | - Wei-Guang Jie
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, People's Republic of China
| | - Lian-Bao Kan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, People's Republic of China
| |
Collapse
|
3
|
Li Y, Wu N, Song J, Wang Z, Li P, Song Y. Differential and mechanism analysis of sulfate influence on the degradation of 1,1,2- trichloroethane by nano- and micron-size zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2024; 45:2612-2627. [PMID: 36763460 DOI: 10.1080/09593330.2023.2179944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The in-situ reduction of zero-valent iron (ZVI) is an effective method for removing chlorinated aliphatic hydrocarbons (CAHs) from groundwater. The heterogeneity of environmental conditions is also crucial in affecting dechlorination efficiency. Until now, the effect of Sulfate (SO42-) on ZVI activity has been debated, and the related mechanism research on SO42- behaviour during the abiotic reduction process of chlorinated alkanes is still lacking. In this study, the impacts of SO42- concentrations (0, 2, 4, 8, 80 mM) on the degradation of 1,1,2-trichloroethane (1,1,2-TCA) by micron-size ZVI (mZVI) and nano-size ZVI (nZVI) were systematically investigated. For mZVI, Kobs increased by 0.6 (2 mM), 0.5 (4 mM), 1.1 (8 mM), and 1.6 times (80 mM). For nZVI, Kobs decreased by 32% (2 mM), 39% (4 mM), 45% (8 mM), and 9% (80 mM). The results showed that SO42- increased the rate of 1,1,2-TCA degradation by mZVI but weakened the reduction performance of nZVI; however, this inhibition was reduced when the concentration reached 80 mM. SO42- controlled the degradation of 1,1,2-TCA mainly through the formation of different iron-sulfate complexes on the ZVI surface: water-soluble bidentate iron-sulfate complexes formed on the mZVI surface promoted the corrosion of the oxide layer and accelerated the reduction of 1,1,2-TCA, monodentate complexes mainly formed on the nZVI surface inhibited the reduction of 1,1,2-TCA by blocking surface sites. These results demonstrate the proof of concept to assist land managers in the field application of ZVI technology for the remediation of CAHs contaminated sites with different background concentrations of SO42-.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Naijin Wu
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Jiuhao Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Zhenxia Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, People's Republic of China
| | - Peizhong Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Yun Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|
4
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Ng WM, Chong WH, Abdullah AZ, Lim J. Exploring the Impact of Surface Functionalization on the Reaction, Magnetophoretic, and Collective Transport Behavior of Nanoscale Zerovalent Iron. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17270-17285. [PMID: 37976676 DOI: 10.1021/acs.langmuir.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This study provides a systematic analysis of the transport and magnetophoretic behavior of nanoscale zerovalent iron (nZVI) particles, both bare and surface functionalized by poly(ethylene glycol) (PEG) and carboxymethyl cellulose (CMC), after undergoing a chemical reaction. Here, a simple and well-investigated chemical reaction of methyl orange (MO) degradation by nZVI was used as a model reaction system, and the sand column transport and low-gradient magnetophoretic profiles of the nanoparticles were measured before and after the reaction. The results were compared over time and analyzed in the context of extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to understand the particle interactions involved. The colloidal stability of both bare and functionalized nZVI particles was enhanced after the reaction due to the consumption of metallic Fe content, resulting in a significant drop in their magnetic properties. As a result, they exhibited improved mobility across the sand column and a slower magnetophoretic collection rate compared to the unreacted particles. Here, the colloidal filtration theory (CFT) was employed to analyze the transport behavior of nZVI particles across the packed sand column. It has been observed that the surface properties of the reacted functionalized particles changed, possibly due to the entrapment of degraded products within the polymer adlayer. Moreover, quartz crystal microbalance with dissipation (QCM-D) measurements were performed to reveal the viscoelastic contribution of the adlayer formed by both bare and functionalized nZVI particles after the reaction on influencing their transport behavior across the sand column. Finally, we proposed the implementation of a high-gradient magnetic trap (HGMT) to reduce the transport distance of the colloidally stable CMC-nZVI, both before and after the reaction. This study sheds light on the behavioral changes of iron nanoparticles after the reaction and highlights environmental concerns regarding the presence of reacted nanoparticles.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
6
|
Mills R, Tvrdik C, Lin A, Bhattacharyya D. Enhanced Degradation of Methyl Orange and Trichloroethylene with PNIPAm-PMMA-Fe/Pd-Functionalized Hollow Fiber Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2041. [PMID: 37513052 PMCID: PMC10386459 DOI: 10.3390/nano13142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Trichloroethylene (TCE) is a prominent groundwater pollutant due to its stability, widespread contamination, and negative health effects upon human exposure; thus, an immense need exists for enhanced environmental remediation techniques. Temperature-responsive domains and catalyst incorporation in membrane domains bring significant advantages for toxic organic decontamination. In this study, hollow fiber membranes (HFMs) were functionalized with stimuli-responsive poly-N-isopropylacrylamide (PNIPAm), poly-methyl methacrylate (PMMA), and catalytic zero-valent iron/palladium (Fe/Pd) for heightened reductive degradation of such pollutants, utilizing methyl orange (MO) as a model compound. By utilizing PNIPAm's transition from hydrophilic to hydrophobic expression above the LCST of 32 °C, increased pollutant diffusion and adsorption to the catalyst active sites were achieved. PNIPAm-PMMA hydrogels exhibited 11.5× and 10.8× higher equilibrium adsorption values for MO and TCE, respectively, when transitioning from 23 °C to 40 °C. With dip-coated PNIPAm-PMMA-functionalized HFMs (weight gain: ~15%) containing Fe/Pd nanoparticles (dp~34.8 nm), surface area-normalized rate constants for batch degradation were determined, resulting in a 30% and 420% increase in degradation efficiency above 32 °C for MO and TCE, respectively, due to enhanced sorption on the hydrophobic PNIPAm domain. Overall, with functionalized membranes containing superior surface area-to-volume ratios and enhanced sorption sites, efficient treatment of high-volume contaminated water can be achieved.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Cameron Tvrdik
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew Lin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
7
|
Gupta K, Saini K, Mathur J. Eco‐Friendly Synthesis of Iron Nanoparticles Using Green Tea Extract: Characterization and Evaluation of Their Catalytic, Anti‐oxidant and Anti‐bacterial Potentials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur 302004 Rajasthan India
| |
Collapse
|
8
|
"Green" nZVI-Biochar as Fenton Catalyst: Perspective of Closing-the-Loop in Wastewater Treatment. Molecules 2023; 28:molecules28031425. [PMID: 36771092 PMCID: PMC9921900 DOI: 10.3390/molecules28031425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.
Collapse
|
9
|
Kumari N, Behera M, Singh R. Facile synthesis of biopolymer decorated magnetic coreshells for enhanced removal of xenobiotic azo dyes through experimental modelling. Food Chem Toxicol 2023; 171:113518. [PMID: 36436617 DOI: 10.1016/j.fct.2022.113518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Since contamination of xenobiotics in water bodies has become a global issue, their removal is gaining ample attention lately. In the present study, nZVI was synthesized using chitosan for removal of two such xenobitic dyes, Bromocresol green and (BCG) and Brilliant blue (BB), which have high prevalence in freshwater and wastewater matrices. nZVI functionalization prevents nanoparticle aggregation and oxidation, enhancing the removal of BCG and BB with an efficiency of 84.96% and 86.21%, respectively. XRD, FESEM, EDS, and FTIR have been employed to investigate the morphology, elemental composition, and functional groups of chitosan-modified nanoscale-zerovalent iron (CS@nZVI). RSM-CCD model was utilized to assess the combined effect of five independent variables and determine the best condition for maximum dye removal. The interactions between adsorbent dose (2-4 mg), pH (4-8), time (20-40 min), temperature (35-65 0C), and initial dye concentration (40-60 mg/L) was modeled to study the response, i.e., dye removal percentage. The reaction fitted well with Langmuir isotherm and pseudo-first-order kinetics, with a maximum qe value of 426.97 and 452.4 mg/g for BCG and BB, respectively. Thermodynamic analysis revealed the adsorption was spontaneous, and endothermic in nature. Moreover, CS@nZVI could be used up to five cycles of dye removal with remarkable potential for real water samples.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
10
|
Removal of Azo Dye Carmoisine by Adsorption Process on Diatomite. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9517605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work aims to evaluate the adsorption capacity of an abundant natural diatomite (ND) to remove the azo dye carmoisine, known as a harmful emerging organic pollutant. Indeed, to the best of our knowledge, no results were reported on this subject. The ND was characterized by FTIR, XRD, and SEM/EDX analyses. The experimental study of adsorption was carried out in batch mode. Results showed that ND adsorbent is mainly composed of silica. A fraction of calcite and ankerite was also identified. It is a porous material with a specific surface of about 41 m2.g-1 and with a hydroxyl surface functional group -OH. Adsorption results showed that adsorption process on ND is found to be effective in removing the carmoisine colorant. The adsorption capacity is strongly affected by the adsorbent and adsorbate contents, the solution pH, the work temperature, and the water hardness and mineralization. At room temperature, optimal experimental conditions for the highest adsorption capacity (12 mg.g-1) were colorant concentration 50mg.L-1, pH 2, contact time 30min, and ND content 1 g.L-1. Modeling study has showed that experimental results are well modeled by the Freundlich isotherm in multilayer adsorption. The reaction kinetics are pseudo-second order, and the thermodynamic parameters indicated that the nature of the adsorption process is endothermic and spontaneous.
Collapse
|
11
|
Chen Y, Gao Y, Liu T, Zhang Z, Li W. Activated persulfate by iron-carbon micro electrolysis used for refractory organics degradation in wastewater: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:690-713. [PMID: 36038972 DOI: 10.2166/wst.2022.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid economic development, the discharge of industrial wastewater and municipal wastewater containing many refractory organic pollutants is increasing, so there is an urgent need for processes that can treat refractory organics in wastewater. Iron-carbon micro electrolysis and advanced oxidation based on persulfate radicals (SO4-·) have received much attention in the field of organic wastewater treatment. Iron-carbon micro electrolysis activated persulfate (Fe-C/PS) treatment of wastewater is characterized by high oxidation efficiency and no secondary pollution. This paper reviews the mechanism and process of Fe-C/PS, degradation of organics in different wastewater, and the influencing factors. In addition, the degradation efficiency and optimal reaction conditions (oxidant concentration, catalyst concentration, iron-carbon material, and pH) of Fe-C/PS in the treatment of refractory organics in wastewater are summarized. Moreover, the important factors affecting the degradation of organics by Fe-C/PS are presented. Finally, we analyzed the challenges and the prospects for the future of Fe-C/PS in application, and concluded that the main future directions are to improve the degradation efficiency and cost by synthesizing stable and efficient catalysts, optimizing process parameters, and expanding the application scope.
Collapse
Affiliation(s)
- Yu Chen
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail: ; Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Tingting Liu
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao Zhang
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China E-mail:
| | - Weishi Li
- Research Institute of Solid Waste, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Lei C, Zhou Z, Chen W, Xie J, Huang B. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154754. [PMID: 35339545 DOI: 10.1016/j.scitotenv.2022.154754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoscale zerovalent iron (nZVI) represents a promising reduction technology for water remediation, but its broad application is largely hampered by the tendency of nZVI to aggregate and the low electron transferability due to the interfacial charge resistance. Herein, by combining the advantages of polypyrrole (PPY) and nZVI, we prepared a composite material (i.e., PPY supported palladium‑iron bimetallic nanoparticles (Pd/Fe@PPY)) and applied it for the simultaneous removal of 4-chlorophenol (4-CP) and Cr(VI). Our results showed that this material had superior catalytic performances with a complete removal of 4-CP (50 mg·L-1) and Cr(VI) (10 mg·L-1) within 60 and 1 min, respectively. As opposed to the bare Pd/Fe nanoparticles, the reactivity of Pd/Fe@PPY with 4-CP was significantly enhanced by nearly 8 times. The enhanced catalytic activity of Pd/Fe@PPY was attributed to the distinctive properties of PPY as i) a good support that resulted in the formation of Pd/Fe nanoparticles with high dispersibility; ii) an adsorbent that increased the accessibility of 4-CP and Cr(VI) with electrons or active species (e.g., H*) on the particles surface; iii) an electron transfer carrier that facilitated the reactivity of Pd/Fe@PPY with contaminants by reducing the interfacial charge resistance. Moreover, by conducting cyclic voltammetry and quenching investigations, we showed that two mechanisms (i.e., direct and H*-mediated indirect electron transfer) were involved in the reductive dehalogenation of 4-CP, while catalytic hydrodechlorination played a dominant role. This work offers an alternative material for the efficient removal of 4-CP and Cr(VI) and provides better understanding of the relationship between structure and catalytic activity of nZVI.
Collapse
Affiliation(s)
- Chao Lei
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zidie Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, Singapore 117544, Singapore
| | - Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
13
|
Yang C, Li K, Xu L, Wang Z, Yu L, Wang J. Reduction of nitrobenzene by a zero-valent iron microspheres/polyvinylidene fluoride (mZVI/PVDF) membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Kubendiran H, Hui D, Pulimi M, Chandrasekaran N, Murthy PS, Mukherjee A. Removal of methyl orange from aqueous solution using SRB supported Bio-Pd/Fe NPs. ENVIRONMENTAL NANOTECHNOLOGY, MONITORING & MANAGEMENT 2021; 16:100561. [DOI: 10.1016/j.enmm.2021.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
15
|
Long Y, Liang J, Xue Y. Ultrasound-assisted electrodeposition synthesis of nZVI-Pd/AC toward reductive degradation of methylene blue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67098-67107. [PMID: 34244938 DOI: 10.1007/s11356-021-15316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
A novel composite (nZVI/Pd-AC) was prepared by loading nanoscale zero-valent iron (nZVI) and Pd on activated carbon (AC) electrode under electrodeposition with ultrasound, which was used to reductive degradation of methylene blue (MB). The loading contents of Fe and Pd in composite materials were 15.84% and 2.06%, respectively. XPS results further confirmed that the as-prepared material contained Fe0 and Pd0. Without external conditions, MB could be degraded in the presence of nZVI/Pd-AC and reached equilibrium within 180 min. To investigate the reusability, the re-electrodeposition strategy was effective to refresh the active sites of nZVI/Pd-AC, and the removal efficiency only reduced by 4.51% in five circles indicating the good reusability of nZVI/Pd-AC composites. GC-MS was used to identify possible degradation pathways of MB; the results showed that the degradation products were mainly N, N-dimethylaniline and 2-amino-5-dimethylamino-benzenesulfonic acid. And the S-C, C-N bonds are the sites easier to be attacked.
Collapse
Affiliation(s)
- Yingtao Long
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China
- Chongqing Municipal Institute of Municipal Design and Research Co., Ltd., Chongqing, 400020, China
| | - Jianjun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China.
| | - Yinghao Xue
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), Chongqing University, Chongqing, 400045, China
| |
Collapse
|
16
|
Xiu Q, Zhao S, Yang X, Sun S, Dai Y, Duan L, He L, He M, Song C, Wang S. Warrior's armor: Study on the aging of sulfidated micro-sized zero valent iron in air and its subsequent reactivity for chloramphenicol degradation in different acid systems. CHEMOSPHERE 2021; 285:131422. [PMID: 34242984 DOI: 10.1016/j.chemosphere.2021.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the practical application process, the reactivity and performance of ZVI-based materials when being placed in the air for a few days, weeks or months was worth studying. Most studies on the aging of ZVI were carried out in solution, only considering the reactivity of ZVI in aqueous solution. In this work, we investigated the degradation of chloramphenicol (CAP) in sulfuric acid (SA) and citric acid (CA) systems by sulfidated micro-sized zero-valent iron (S-mZVI) in air with different aging days. The results showed that with the increase of aging days in the air, the degradation effect of S-mZVI on CAP in different acid systems showed a similar trend (first increasing and then decreasing), the removal effect of S-mZVI on CAP reached the best within the aging time of 5-9 days. The degradation path of CAP could be divided into oxidation path and reduction path. The XPS and XRD characterization results of the materials on different aging days indicated that the characteristic peak of Fe3O4 was detected on the surface of the materials with the increase of aging days, which may be the reason for changing degradation efficiencies of CAP by S-mZVI for different aging days. In addition, in different systems of SA and CA, the degradation curves of CAP differed. This might be caused by two reasons: (1) CA could adsorb on S-mZVI while SA could not; (2) The initial pH of the CA system played a more significant effect on CAP degradation compared to that of the SA system.
Collapse
Affiliation(s)
- Qi Xiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Xiaowei Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Huadian Qingdao Power Generation Corporation Limited, Qingdao, 226031, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Tan W, Ruan Y, Diao Z, Song G, Su M, Hou L, Chen D, Kong L, Deng H. Removal of levofloxacin through adsorption and peroxymonosulfate activation using carbothermal reduction synthesized nZVI/carbon fiber. CHEMOSPHERE 2021; 280:130626. [PMID: 34162068 DOI: 10.1016/j.chemosphere.2021.130626] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/18/2021] [Indexed: 06/13/2023]
Abstract
Nano zero-valent iron (nZVI) is widely used for decontamination. The main issues associated with nZVI are agglomeration and oxidation in the long term. In this study, the carbothermal reduction of cotton fiber was conducted for the synthesis of nZVI supported on cotton carbon fiber (nZVI/CF) to address the agglomeration and oxidation of nZVI. Synergistic adsorption and peroxymonosulfate (PMS) activation using nZVI/CF for removing levofloxacin (LEV) are reported herein. The nZVI concentration and morphology were conveniently adjusted by soaking cotton fiber in ferric nitrate solutions of various Fe3+ concentrations. The carbothermal reduction of the cotton fiber at 900 °C contributed to the reduction of Fe3+ into nZVI. A nZVI/CF-900-0.3 system was obtained through the carbothermal reduction of cotton fiber soaked in 0.3 M ferric nitrate. Favorable adsorption of nZVI/CF-900-0.3 to LEV facilitated LEV degradation under PMS activation. Approximately 93.83% of LEV (C0 = 20 ppm) was removed within 60 min with 0.2 g/L of the catalyst and 1 mM PMS. It was preferable to use nZVI + CF-900 to activate PMS for degrading LEV, thus confirming the favorable effect of LEV adsorption on further degradation. The nZVI/CF-900-0.3 exhibited excellent long-term stability given that it was able to activate PMS after it was stored for 6 months. ·SO4- played an important role in LEV degradation in the presence of PMS.
Collapse
Affiliation(s)
- Weitong Tan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yang Ruan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zenghui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Li'an Hou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hongmei Deng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Kubendiran H, Alex SA, Pulimi M, Chandrasekaran N, Nancharaiah YV, Venugopalan VP, Mukherjee A. Development of biogenic bimetallic Pd/Fe nanoparticle-impregnated aerobic microbial granules with potential for dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112789. [PMID: 34029979 DOI: 10.1016/j.jenvman.2021.112789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to develop bimetallic core-shell Pd/Fe nanoparticles on the surface of aerobic microbial granules (Bio-Pd/Fe) and to evaluate their dye removal potential using a representative dye, methyl orange (MO). The aerobic microbial granules (1.5 ± 0.32 mm) were grown for 70 days in a 3-L glass sequencing batch reactor (SBR) with a 12-h cycle time. The Bio-Pd/Fe formation was catalyzed by the Bio-H2 gas produced by the granules. The developed Bio-Pd/Fe was further used for MO removal from aqueous solutions, and the reaction parameters were optimized by response surface methodology (RSM). The XRD, SEM, EDAX, elemental mapping, and XPS studies confirmed the formation of Bio-Pd/Fe. Under the optimized removal conditions, 99.33% MO could be removed by Bio-Pd/Fe, whereas removal by Bio-Pd, Bio-Fe, aerobic microbial granules, and heat-killed granules were found to be quite low (68.91 ± 0.2%, 76.8 ± 0.3%, 19.8 ± 0.6%, and 6.59 ± 0.2%, respectively). The mechanism of removal was investigated by UV-visible spectroscopy, redox potential analysis, HR-LCMS analyses of the solution phase, and XRD and XPS analyses of the solid sorbent. The degradation products of MO exhibited m/z values corresponding to 292, 212, and 160 m/z. The remnant toxicity of the intermediate degradation products was analysed using freshwater algae, Scenedesmus sp. And Allium cepa, as indicator organisms. These assays suggested that after the treatment with Bio-Pd/Fe, MO was transformed to a lesser toxic form.
Collapse
Affiliation(s)
| | - Sruthi Ann Alex
- Centre for Nano Science and Technology, Anna University, Chennai, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Y V Nancharaiah
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India
| | - V P Venugopalan
- Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400 094, India.
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
19
|
Li J, Li C, Zhao L, Pan X, Cai G, Zhu G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. CHEMOSPHERE 2021; 269:129389. [PMID: 33385673 DOI: 10.1016/j.chemosphere.2020.129389] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Growing environment problem and emphasis of environmental protection motivate intense research efforts in exploring technology to improve treatment efficiency on refractory organic pollutants. Hence, finding a method to make up for the deficiency of anaerobic digestion (AD) is very attractive and challenging tasks. The recent spark in the interest for the usage of some nanomaterials as an additive to strengthen AD system. The adoption of iron compounds can influence the performance and stability in AD system. However, different iron species and compounds can influence AD system in significantly different ways, both positive and negative. Therefore, strengthening mechanism, treatment efficiency, microbial community changes in Nanoscale Zero Valent Iron (nZVI) and Fe3O4 nanoparticles (Fe3O4 NPs) added AD systems were summarized by this review. The strengthening effects of nZVI and Fe3O4 NPs in different pollutants treatment system were analyzed. Previous study on the effects of nZVI and Fe3O4 NPs addition on AD have reported the concentration of nZVI and Fe3O4 NPs, and the types and biodegradability of pollutants might be the key factors that determine the direction and extent of effect in AD system. This review provides a summary on the nZVI and Fe3O4 NPs added AD system to establish experiment systems and conduct follow-up experiments in future study.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
20
|
Degradation Kinetics of Methyl Orange Dye in Water Using Trimetallic Fe/Cu/Ag Nanoparticles. Catalysts 2021. [DOI: 10.3390/catal11040428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The release of azo dye contaminants from textile industries into the environment is an issue of major concern. Nanoscale zerovalent iron (nZVI) has been extensively studied in the degradation of azo dye pollutants such as methyl orange (MO). In this study, iron was coupled with copper and silver to make trimetallic Fe/Cu/Ag nanoparticles, in order to enhance the degradation of MO and increase reactivity of the catalyst by delaying the rate of oxidation of iron. The synthesis of the trimetallic nanoparticles (Fe/Cu/Ag) was carried out using the sodium borohydride reduction method. The characterization of the particles was performed using XRD, XPS, EDX, and TEM. The analyses confirmed the successful synthesis of the nanoparticles; the TEM images also showed the desired structures and geometry of the nanoscale zerovalent iron particles. The assessment of the nanoparticles in the degradation of methyl orange showed a notable degradation within few minutes into the reaction. The effect of parameters such as nanoparticle dosage, initial MO concentration, and the solution pH on the degradation of MO using the nanoparticles was investigated. Methyl orange degradation efficiency reached 100% within 1 min into the reaction at a low pH, with lower initial MO concentration and higher nanoparticle dosage. The degradation rate of MO using the nanoparticles followed pseudo first-order kinetics and was greatly influenced by the studied parameters. Additionally, LC-MS technique confirmed the degradation of MO within 1 min and that the degradation occurs through the splitting of the azo bond. The Fe/Cu/Ag trimetallic nanoparticles have proven to be an appropriate and efficient alternative for the treatment of dye wastewater.
Collapse
|
21
|
Silvestri D, Wacławek S, Sobel B, Torres–Mendieta R, Pawlyta M, Padil VV, Filip J, Černík M. Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Nguyen CH, Tran ML, Van Tran TT, Juang RS. Efficient removal of antibiotic oxytetracycline from water by Fenton-like reactions using reduced graphene oxide-supported bimetallic Pd/nZVI nanocomposites. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Zhou H, Huang N, Zhao Y, Baig SA, Xiang J. Dechlorination of 2,4‐dichlorophenoxyacetic acid using biochar‐supported nano‐palladium/iron: Preparation, characterization, and influencing factors. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Hongyi Zhou
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Ning Huang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yongkang Zhao
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Shams Ali Baig
- Department of Environmental Sciences Abdul Wali Khan University Mardan 23200 Pakistan
| | - Junchao Xiang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
24
|
Guo B, Xu T, Zhang L, Li S. A heterogeneous fenton-like system with green iron nanoparticles for the removal of bisphenol A:Performance, kinetics and transformation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111047. [PMID: 32677620 DOI: 10.1016/j.jenvman.2020.111047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Green synthesized iron nanoparticles have been received increasing attention due to its advantages of a simple, rapid and cost-effective synthesis. In this study, green iron nanoparticles by grape seed extracts (GS-Fe-NPs) were used as a heterogeneous catalyst of Fenton-like system to degrade bisphenol A (BPA) in the aqueous solution. The properties of GS-Fe-NPs before and after reaction were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction respectively. Effect factors, including initial pH value, initial BPA concentration, GS-Fe-NPs dosage, H2O2 dose and temperature on the degradation were investigated systematically. Good performances on the BPA degradation were observed over the wider pH range (3.0-11.0) in the GS-Fe-NPs/H2O2 system. At solution initial pH 6.9 (not adjusted), the BPA degradation efficiency could achieve 96.4% with GS-Fe-NPs 0.30 g/L and H2O2 1.0 mol/L at 308 K. Furthermore, quenching experiments confirmed that OH was the main free radical and its contribution to the BPA degradation varied with the initial pH. The kinetics behavior of BPA degradation had good agreements with the pseudo-first-order model (R12 0.9710-0.9997), suggesting that the degradation of BPA is dominated by redox process. Based on the identified intermediates by liquid chromatography/mass spectrometry, the possible degradation pathways and BPA removal mechanism in the GS-Fe-NPs/H2O2 system were proposed. It provides a simple and effective water treatment method for BPA contaminated water.
Collapse
Affiliation(s)
- Bo Guo
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Tingting Xu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Lei Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
25
|
Gopal G, KVG R, M S, J LAA, Chandrasekaran N, Mukherjee A. Green synthesized Fe/Pd and in-situ Bentonite-Fe/Pd composite for efficient tetracycline removal. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104126. [DOI: 10.1016/j.jece.2020.104126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
26
|
Ishag A, Li Y, Zhang N, Wang H, Guo H, Mei P, Sun Y. Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: A review. ENVIRONMENTAL RESEARCH 2020; 188:109855. [PMID: 32846643 DOI: 10.1016/j.envres.2020.109855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Owing to high surface energy, strong chemical reactivity and large surface area, nanoscale zero-valent iron (nZVI) as a novel emerging material has been extensively utilized in environmental cleanup. Although a lot of reviews regarding the removal of organic contaminants and heavy metals on nZVI are summarized in recent years, the advanced progress concerning the removal of radionuclides on nZVI is still scarce. In this review, we summarized the removal of technetium (Tc), uranium (U), selenium (Se) and other radionuclides on nZVI and nZVI-based composites, then their interaction mechanisms were reviewed in details. This review is crucial for the environmental chemist and material engineer to exploit the actual application of nZVI-based composites as the emerging materials of permeable reactive barrier on the removal of radionuclides from aqueous solutions.
Collapse
Affiliation(s)
- Alhadi Ishag
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ying Li
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Ning Zhang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huihui Wang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Han Guo
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Peng Mei
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yubing Sun
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
27
|
Abstract
In the present work, the modified bentonites were prepared by the modification of bentonite with cetyltrimethylammonium bromide (CTAB), both cetyltrimethylammonium bromide and hydroxy-Fe cations and both cetyltrimethylammonium bromide and hydroxy-Al cations. X-ray diffraction (XRD), thermal analysis (TG-DTA), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption/desorption isotherms were utilized to characterize the resultant modified bentonites. The modified bentonites were employed for the removal of phenol red dye from aqueous solution. Phenol red adsorption agreed well with the pseudo-second-order kinetic model. The equilibrium data were analyzed on the basis of various adsorption isotherm models, namely, Langmuir, Freundlich, and Dubinin‒Radushkevich models. The highest monolayer adsorption capacity of phenol red at 30°C derived from the Langmuir equation was 166.7 mg·g−1, 125.0 mg·g−1, and 100.0 mg·g−1 for CTAB‒bentonite, Al‒CTAB‒bentonite, and Fe‒CTAB‒bentonite, respectively. Different thermodynamic parameters were calculated, and it was concluded that the adsorption was spontaneous (∆G° < 0) and endothermic (∆H° > 0), with increased entropy (∆S° > 0) in all the investigated temperature ranges.
Collapse
|
28
|
Tran ML, Nguyen CH, Tran TTV, Juang RS. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: Roles of morphology changes and Pt catalysis. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Xu Q, Li W, Weng X, Owens G, Chen Z. Mechanism and impact of synthesis conditions on the one-step green synthesis of hybrid RGO@Fe/Pd nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136308. [PMID: 31923675 DOI: 10.1016/j.scitotenv.2019.136308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
While a one-step green synthesis of a hybrid material composed of reduced graphene oxide and bimetallic Fe/Pd nanoparticles (RGO@Fe/Pd NPs) was previously successfully reported and evaluated for the removal of organic contaminants, the relationship between the formation of RGO@Fe/Pd and the resulting reactivity was unclear. In this paper the impact of the specific synthetic conditions on the reactivity of RGO@Fe/Pd was investigated in order to enhance the removal efficiency of antibiotics such as rifampicin. The hybrid material (RGO@Fe/Pd) successfully removed 96.1% of rifampicin compared to only 63.5 and 81.0% for Fe nanoparticles and RGO, respectively. The best synthetic conditions for the formation of RGO@Fe/Pd included GO/Fe = 1:1 and Fe/Pd = 100: 5. In addition, GC-MS and FTIR were used to identify the main reducing biomolecules in the green tea extract responsible for the one-step synthesis of RGO@Fe/Pd as Catechol, Caffeine, 1,3,5-Benzenetriol. The morphology, size and surface composition of RGO@Fe/Pd was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-Ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These advanced characterization techniques suggested that during synthesis GO was initially converted to RGO, and thereafter Fe/Pd NPs (10-50 nm) were dispersed on RGO. Finally, a plausible formation mechanism for the one-step synthesis of the hybrid material was proposed.
Collapse
Affiliation(s)
- Qianyu Xu
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Wenpeng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Xiulan Weng
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China; Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
30
|
Preparation of Biomass Activated Carbon Supported Nanoscale Zero-Valent Iron (Nzvi) and Its Application in Decolorization of Methyl Orange from Aqueous Solution. WATER 2019. [DOI: 10.3390/w11081671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The nanoscale zero-valent iron (nZVI) has great potential to degrade organic polluted wastewater. In this study, the nZVI particles were obtained by the pulse electrodeposition and were loaded on the biomass activated carbon (BC) for synthesizing the composite material of BC-nZVI. The composite material was characterized by SEM-EDS and XRD and was also used for the decolorization of methyl orange (MO) test. The results showed that the 97.94% removal percentage demonstrated its promise in the remediation of dye wastewater for 60 min. The rate of MO matched well with the pseudo-second-order model, and the rate-limiting step may be a chemical sorption between the MO and BC-nZVI. The removal percentage of MO can be effectively improved with higher temperature, larger BC-nZVI dosage, and lower initial concentration of MO at the pH of 7 condition.
Collapse
|
31
|
Ngulube T, Gumbo J, Masindi V, Maity A. Calcined magnesite as an adsorbent for cationic and anionic dyes: characterization, adsorption parameters, isotherms and kinetics study. Heliyon 2018; 4:e00838. [PMID: 30294688 PMCID: PMC6171090 DOI: 10.1016/j.heliyon.2018.e00838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/27/2018] [Accepted: 09/27/2018] [Indexed: 11/22/2022] Open
Abstract
The ability of calcined magnesite for Methylene Blue (MB), Direct Red 81 (DR81), Methyl Orange (MO) and Crystal Violet (CV) dye removal was evaluated in this study. The experiments were designed to test the hypothesis that alkaline earth carbonates can remove dyes from water through a combination of sorption and coagulative reactions involving Mg2+. To achieve that, several operational factors like residence time, dosage, adsorbent concentration and temperature were appraised. The batch study proved that calcined magnesite is effective in the treatment of MB, DR81, CV and MO contaminated water and moreover it performed well in terms of color removal. The adsorption equilibrium data were analysed by the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models, and the Dubinin-Radushkevich and Temkin models were found to be the most appropriate fit to MB and MO dyes respectively. The adsorption kinetics process primarily followed the Elovich and Pseudo-second order model, a possible indication that chemisorption was the rate limiting step during the dye uptake process. With the adsorption-desorption cycle repeated four times, the calcined magnesite regeneration efficiency for DR81 and MO loaded dyes remained very high. According to the results of this study, it can be concluded that calcined magnesite can be used effectively for the adsorption of MB, DR81, CV and MO from wastewater.
Collapse
Affiliation(s)
- T. Ngulube
- Department of Ecology and Resources Management, School of Environmental Sciences, University of Venda, Private bag X5050, Thohoyandou, 0950, Limpopo, South Africa
| | - J.R. Gumbo
- Department of Hydrology and Water Resources, School of Environmental Sciences, University of Venda, Private bag X5050, Thohoyandou, 0950, Limpopo, South Africa
| | - V. Masindi
- Council for Scientific and Industrial Research (CSIR), Built Environment, Hydraulic Infrastructure Engineering, P.O BOX 395, Pretoria, 0001, South Africa
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa
| | - A. Maity
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
32
|
Galan CR, Silva MF, Mantovani D, Bergamasco R, Vieira MF. Green synthesis of copper oxide nanoparticles impregnated on activated carbon using Moringa oleifera
leaves extract for the removal of nitrates from water. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Crislaine Rodrigues Galan
- Chemical Engineering Department; State University of Maringá; Av. Colombo, 5790. Bloco D90, CEP: 87020-900 Maringá Paraná Brazil
| | - Marcela Fernandes Silva
- Chemical Engineering Department; State University of Maringá; Av. Colombo, 5790. Bloco D90, CEP: 87020-900 Maringá Paraná Brazil
| | - Daniel Mantovani
- Urban Engineering Post-Graduation, Department; State University of Maringá; Av. Colombo, 5790. Bloco C67, CEP: 87020-900 Maringá Paraná Brazil
| | - Rosângela Bergamasco
- Chemical Engineering Department; State University of Maringá; Av. Colombo, 5790. Bloco D90, CEP: 87020-900 Maringá Paraná Brazil
| | - Marcelo Fernandes Vieira
- Chemical Engineering Department; State University of Maringá; Av. Colombo, 5790. Bloco D90, CEP: 87020-900 Maringá Paraná Brazil
| |
Collapse
|
33
|
K.V.G. R, S. S, Sudakaran SV, V. Nancharaiah Y, P. M, Chandrasekaran N, Mukherjee A. Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2018; 6:1683-1689. [DOI: 10.1016/j.jece.2018.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
34
|
Ni X, Qiu J, Li Y, Zhao Y, Yang C, Hong L. Smart construction of palladium@polypyrrole nanocomposite coating on a magnetic support as a highly efficient and recyclable catalyst. NEW J CHEM 2018. [DOI: 10.1039/c8nj04024a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein is reported a facile and smart approach to fabricating polystyrene/Fe3O4/palladium@polypyrrole nanocomposite particles with high catalytic activity and stability for the degradation of methylene blue by NaBH4.
Collapse
Affiliation(s)
- Xinjiong Ni
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Ji Qiu
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yaqian Zhao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Liu Hong
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
35
|
Lei C, Sun Y, Tsang DCW, Lin D. Environmental transformations and ecological effects of iron-based nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:10-30. [PMID: 28966028 DOI: 10.1016/j.envpol.2017.09.052] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 05/16/2023]
Abstract
The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Synthesis and characterization of Fe0/TiO2 nano-composites for ultrasound assisted enhanced catalytic degradation of reactive black 5 in aqueous solutions. J Colloid Interface Sci 2017; 506:403-414. [DOI: 10.1016/j.jcis.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022]
|
37
|
Silveira JE, Barreto-Rodrigues M, Cardoso TO, Pliego G, Munoz M, Zazo JA, Casas JA. Nanoscale Fe/Ag particles activated persulfate: optimization using response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2216-2224. [PMID: 28498134 DOI: 10.2166/wst.2017.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl2 with NaBH4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L-1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).
Collapse
Affiliation(s)
- Jefferson E Silveira
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| | - Marcio Barreto-Rodrigues
- Department of Chemistry, Postgraduate Programme in Technology of Chemical and Biochemical Processes, Federal Technological University of Paraná, Pato Branco, PR, Brazil
| | - Tais O Cardoso
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| | - Gema Pliego
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| | - Macarena Munoz
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| | - Juan A Zazo
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| | - José A Casas
- Chemical Engineering, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain E-mail:
| |
Collapse
|
38
|
Arciniega Cano O, Rodríguez González C, Hernández Paz J, Amezaga Madrid P, García Casillas P, Martínez Hernández A, Martínez Pérez C. Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Li X, Zhao Y, Xi B, Meng X, Gong B, Li R, Peng X, Liu H. Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron: Synergetic effect, efficiency optimization and mechanism. J Environ Sci (China) 2017; 52:8-17. [PMID: 28254061 DOI: 10.1016/j.jes.2016.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
In this study, a novel nanoscale zero-valent iron (nZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2# clay" (HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange (MO) in aqueous solution by nZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported nZVI (HJ/nZVI) mass ratio (HJ-nZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-nZVI1 and HJ-nZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and nZVIs, or the sum of HJ clay and nZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the nZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-nZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and pH were negatively correlated to the efficiency. HJ clay not only works as a carrier for nZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-nZVI for decontamination gives it great potential for use in a variety of remediation applications.
Collapse
Affiliation(s)
- Xiaoguang Li
- School of Environment, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Zhao
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Bin Gong
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xing Peng
- School of Environment, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongliang Liu
- School of Environment, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
40
|
Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Xu J, Cao Z, Liu X, Zhao H, Xiao X, Wu J, Xu X, Zhou JL. Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2,4-dichlorophenol removal: Interactions, influence factors, and kinetics. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:656-666. [PMID: 27349842 DOI: 10.1016/j.jhazmat.2016.04.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
Magnetic multi-walled carbon nanotubes (MWCNTs) were prepared to support Pd/Fe nanoparticles, inhibit the aggregation and passivation, and achieve magnetic separation to avoid the environmental risk of nanoparticles. Rapid adsorption of initial contaminant, steady dechlorination, and gradual desorption of final product was observed. The micromorphology, chemical structure, and components of the nanohybrids were comprehensively characterized by a series of analysis technologies, such as EDX, XRD, SEM, TEM, and XPS. The interactions between the nanohybrids compositions were discussed according to the characterization and experimental data. The whole insight of 2,4-dichlorophenol (2,4-DCP) adsorption- dechlorination-desorption was studied in detail, including the pathways, influence factors, dechlorination kinetics and selectivity. Weak acidity (pH=5.0 and 6.5) favored the 2,4-DCP removal. Satisfactory reactivity of the Pd/Fe-Fe3O4@MWCNTs nanohybrids was observed in five consecutive runs, and 99.2%, 89.6%, 92.1%, 99.8%, and 99.9% of 2,4-DCP was removed, respectively. Most of the final product (phenol) was steadily desorbed to the liquid phase, resulted in the re-exposure of active sites on the nanohybrids and maintained a longer activity.
Collapse
Affiliation(s)
- Jiang Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| | - Zhen Cao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xue Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Heng Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Xi Xiao
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
42
|
Zha Y, Wang T. Boron nitride nanoplates supported zero-valent iron nanocomposites for enhanced decolorization of methyl orange with the assistance of ultrasonic irradiation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:329-336. [PMID: 26819388 DOI: 10.2166/wst.2015.497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, boron nitride nanoplates (BNNPs) supported nanoscale zero-valent iron (nZVI) was prepared through facile liquid-phase chemical reduction of ferric ion by borohydride under ambient conditions in the presence of BNNPs. The nZVI@BNNPs hybrids were characterized by scanning electron microscopy, X-ray diffraction and magnetic properties measurement. The hybrid material was evaluated for decolorization of a common azo dye, methyl orange (MO), with the assistance of ultrasonic irradiation. Results exhibited that a complete decolorization of 100 mg/L MO was achieved within 6 min using nZVI@BNNPs as the active material. Compared with bare nZVI and BNNPs, nZVI@BNNPs provided a faster reaction process for MO decolorization. The kinetic rate constants of MO decolorization reached 0.8175 min(-1) under ultrasound-assisted condition due to the synergistic effect of ultrasonic irradiation. Fluorescence spectrum experiment confirmed that hydroxyl radicals could be generated in the system combined nZVI with ultrasonic irradiation, and as a result, hydroxyl radicals would contribute to the decolorization process of MO.
Collapse
Affiliation(s)
- Yiming Zha
- Department of Chemistry, Shanghai University, Shanghai 200444, China E-mail:
| | - Tianlin Wang
- Department of Chemistry, Shanghai University, Shanghai 200444, China E-mail:
| |
Collapse
|
43
|
Han L, Xue S, Zhao S, Yan J, Qian L, Chen M. Biochar Supported Nanoscale Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions. PLoS One 2015. [PMID: 26204523 PMCID: PMC4512678 DOI: 10.1371/journal.pone.0132067] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of organic contaminants in industrial effluents is an environmental concern of increasing global importance. One innovative technology for treating contaminated industrial effluents is nanoscale zero-valent iron supported on biochar (nZVI/BC). Based on Transmission Electron Microscopy, X-Ray Diffraction, and Brunauer-Emmett-Teller characterizations, the nZVI was well dispersed on the biochar and aggregation was dramatically reduced. Methyl orange (MO) served as the representative organic contaminant for verifying the effectiveness of the composite. Using decolorization efficiency as an indicator of treatment effectiveness, increasing doses of nZVI/BC yielded progressively better results with 98.51% of MO decolorized by 0.6 g/L of composite at an nZVI/BC mass ratio of 1:5. The superior decolorization efficiency of the nZVI/BC was attributed to the increase in the dispersion and reactivity of nZVI while biochar increasing the contact area with contaminant and the adsorption of composites. Additionally, the buffering function of acid-washed biochar could be in favor of maintaining the reactivity of nZVI. Furthermore, the aging nZVI/BC for 30 day was able to maintain the removal efficiency indicating that the oxidation of nZVI may be delayed in the presence of biochar. Therefore, the composite of nZVI/BC could represent an effective functional material for treating wastewater containing organic dyes in the future.
Collapse
Affiliation(s)
- Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Song Xue
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Shichen Zhao
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- * E-mail:
| |
Collapse
|
44
|
Devi P, Saroha AK. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent. BIORESOURCE TECHNOLOGY 2014; 169:525-531. [PMID: 25089893 DOI: 10.1016/j.biortech.2014.07.062] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 05/26/2023]
Abstract
The zero-valent iron magnetic biochar composites (ZVI-MBC) were synthesized from the paper mill sludge biochar and used for the treatment of the synthetic and real effluent containing pentachlorophenol (PCP). During the synthesis of ZVI-MBC, NaBH4 was used as the reducing agent to reduce Fe(II) to Fe(0) and cetyltrimethylammonium bromide was added as surfactant. The effect of the molar ratio of FeSO4 to NaBH4, dose of the surfactant and the ZVI to biochar ratio on the PCP removal efficiency was investigated. It was found that the ZVI-MBC combines the advantages of biochar and ZVI particles for the simultaneous adsorption and dechlorination of PCP in the effluent and the complete removal of PCP was obtained. The ageing tests showed that biochar prevents the formation of oxide film on the ZVI particles and leaching tests confirmed the stability of ZVI on biochar matrix as very low iron leaching was noticed.
Collapse
Affiliation(s)
- Parmila Devi
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Anil K Saroha
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
45
|
Bahram M, Asadi S, Karimnezhad G. Synthesized poly styrene-alt-maleic acid hydrogel for removal of azo dyes, methylene blue and methyl orange, from aqueous media. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0522-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL. Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? JOURNAL OF HAZARDOUS MATERIALS 2014; 280:487-503. [PMID: 25203809 DOI: 10.1016/j.jhazmat.2014.08.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Remediation technologies for wastes generated by industrial processes include coagulation, reverse osmosis, electrochemistry, photoelectrochemistry, advanced oxidation processes, and biological methods, among others. Adsorption onto activated carbon, sewage sludge, zeolites, chitosan, silica, and agricultural wastes has shown potential for pollutants' removal from aqueous media. Recently, nanoscale systems [nanoparticles (NPs) supported on different inorganic adsorbents] have shown additional benefits for the removal/degradation of several contaminants. According to the literature, NPs enhance the adsorption capacity of adsorbent materials and facilitate degradation of pollutants through redox reactions. In this review we analyzed relevant literature from 2011 to 2013, dealing with water and soil remediation by nanomaterials (NMs), either unsupported or supported upon inorganic adsorbents. Despite the outstanding reported results for some NMs, the analysis of the literature makes clear the necessity of more studies. There is lack of information about NMs regeneration and reusability, their large-scale application, and their efficiency in actual industrial wastewaters and contaminated soils. Additionally, little is known about NMs' life cycle, release of metal ions, disposal of pollutant loaded NMs, and their impacts on different ecosystems.
Collapse
Affiliation(s)
- J Trujillo-Reyes
- Chemistry Department, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA
| | - J R Peralta-Videa
- Chemistry Department, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA
| | - J L Gardea-Torresdey
- Chemistry Department, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West Univ. Ave., El Paso, TX 79968, USA.
| |
Collapse
|