1
|
Liu Y, Wu P, Chen M, Wang T, Sun L, Lu B, Zhu N, Dang Z. Cerium(III)-induced structural transformation of hexagonal birnessite: Effect of mineral phase transition on arsenite transport and valence changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176537. [PMID: 39332731 DOI: 10.1016/j.scitotenv.2024.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The widespread mining and application of rare earth elements (REEs) have led to their continuous accumulation in the environment, with increasing concentrations in soil. The interaction between the most abundant REEs, cerium (Ce), and the prevalent hexagonal birnessite (HB) in the environment is worth attention. HB is one of the most effective metal oxides for the oxidation of arsenite [As(III)] and subsequent adsorption, and thus for arsenic (As) immobilization. Therefore, in this study, we investigated the effect of the presence of Ce(III) ion on the HB formation process and the influence of generating minerals on the oxidation and removal of As(III). Research has found that the interfacial reactions of REEs in manganese (Mn) minerals not only affect their cycling but also alter the properties of the Mn minerals, thereby affecting the environmental fate of As. The results indicated that the presence of Ce ions affected the structure of HB during mineral synthesis and reduced the crystallinity of the conversion products. Their substitution for Mn(IV) in the lattice increased the specific surface area of minerals, reduced particle size, and produced more hydroxyl groups that were conducive to the immobilization of As(III). Meanwhile, Ce(III) was oxidized to Ce(IV) during the formation of Ce-bearing hexagonal birnessite (Ce-HB), and CeO2 nanoparticles were formed on the mineral surface and the removal rate of As(III) by Ce-HB was greatly improved. When the As concentration was lower than 6 mg·L-1, the removal effect of Ce-HB could reach the drinking water standard. However, the oxidation rate decreased due to the decrease in the proportion of Mn(IV). This study fundamentally reveals the behavior of HB coexisting with Ce in the migration and transformation of As(III) in the environment.
Collapse
Affiliation(s)
- Yingying Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Meiqing Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Bingxin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Zhang L, Wang Y, Xu Y. Highly efficient degradation of tetracycline in groundwater by nanoscale zero-valent iron-copper bimetallic biochar: active [H] attack and direct electron transfer mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43941-43955. [PMID: 38913261 DOI: 10.1007/s11356-024-33976-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Development of carbon materials with high activity was important for rapid degradation of emerging pollutants. In this paper, a novel nanoscale zero-valent iron-copper bimetallic biochar (nZVIC-BC) was synthesized by carbothermal reduction of waste pine wood and copper-iron layered double hydroxides (LDHs). Characterization and analysis of its structural, elemental, crystalline, and compositional aspects using XRD, FT-IR, SEM, and TEM confirmed the successful preparation of nZVIC-BC and the high dispersion of Fe-Cu nanoparticles in an ordered carbon matrix. The experimental results showed that the catalytic activity of nZVIC-BC (Kobs of 0.0219 min-1) in the degradation of tetracycline (TC) in anoxic water environment was much higher than that of Fe-BC and Cu-BC; the effective degradation rate reached 85%. It was worth noting that the negative effects of Ca2+, Mg2+, and H2PO4- on TC degradation at ionic strengths greater than 15 mg/L were due to competition for active sites. Good stability and reusability were demonstrated in five consecutive cycle tests for low leaching of iron and copper. Combined with free radical quenching experiments and XPS analyses, the degradation of TC under air conditions was only 62%, with hydroxyl radicals (·OH) playing a dominant role. The synergistic interaction between Fe2+/Fe3+ and Cu0/Cu+/Cu2+ under nitrogen atmosphere enhances the redox cycling process; π-π adsorption, electron transfer processes, and active [H] were crucial for the degradation of TC; and possible degradation pathways of TC were deduced by LC-MS, which identified seven major aromatic degradation by-products. This study will provide new ideas and materials for the treatment of TC.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yujiao Wang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
- Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Hunan, 411105, P. R. China
| | - Yin Xu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China.
- Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Hunan, 411105, P. R. China.
| |
Collapse
|
3
|
Yang L, Sun Y, Yu R, Huang P, Zhou Q, Yang H, Lin S, Zeng H. Urchin-like CO 2-responsive magnetic microspheres for highly efficient organic dye removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134101. [PMID: 38522196 DOI: 10.1016/j.jhazmat.2024.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
CO2-responsive materials have emerged as promising adsorbents for the remediation of refractory organic dyes-contaminated wastewater without the formation of byproducts or causing secondary pollution. However, realizing the simultaneous adsorption-separation or complete removal of both anionic and cationic dyes, as well as achieving deeper insights into their adsorption mechanism, still remains a challenge for most reported CO2-responsive materials. Herein, a novel type of urchin-like CO2-responsive Fe3O4 microspheres (U-Fe3O4 @P) has been successfully fabricated to enable ultrafast, selective, and reversible adsorption of anionic dyes by utilizing CO2 as a triggering gas. Meanwhile, the CO2-responsive U-Fe3O4 @P microspheres exhibit the capability to initiate Fenton degradation of non-adsorbable cationic dyes. Our findings reveal exceptionally rapid adsorption equilibrium, achieved within a mere 5 min, and an outstanding maximum adsorption capacity of 561.2 mg g-1 for anionic dye methyl orange upon CO2 stimulation. Moreover, 99.8% of cationic dye methylene blue can be effectively degraded through the Fenton reaction. Furthermore, the long-term unresolved interaction mechanism of organic dyes with CO2-responsive materials is deciphered through a comprehensive experimental and theoretical study by density functional theory. This work provides a novel paradigm and guidance for designing next-generation eco-friendly CO2-responsive materials for highly efficient purification of complex dye-contaminated wastewater in environmental engineering.
Collapse
Affiliation(s)
- Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ruiquan Yu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Qi Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Shaojian Lin
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
4
|
Sun F, Lu T, Feng J, Kang Y. Dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped Fe 3O 4@FeOOH for cyanide-containing wastewater treatment: Preparation, performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123523. [PMID: 38331238 DOI: 10.1016/j.envpol.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
The dual-functional heterogeneous Fenton catalyst Cu/Ti co-doped iron-based Fenton catalyst (Cu/Ti -Fe3O4@FeOOH, FCT) were successfully prepared by precipitation oxidation method and characterized by XRD, XPS and XAFS. The prepared Cu/Ti co-doped Fe3O4@FeOOH nanoparticles consisted of goethite nanorods and magnetite rod octahedral particles, with Cu and Ti replacing Fe in the catalyst crystal structure, leading to the formation of the goethite structure. The heterogeneous Fenton catalyst FCT exhibited excellent degradation activity for cyanide in wastewater and showed different reaction mechanisms at varying pH levels. When treating 100 mL of 12 mg L-1 NaCN solution, complete degradation occurred within 40 min at 30 °C and pH ranging from 6.5 to 12.5 without external energy. Compared to Fe3O4, FCT shows superior degradation activity for cyanide. The surface Cu(Ⅰ) facilitated the electron transfer and significantly improved the catalytic activity of the catalyst. Additionally, the magnetic properties of the Ti-doped catalyst samples were greatly enhanced compared to the Cu@FeOOH catalyst doped with Cu, making them favorable for recycling and reuse. FCT maintains 100% degradation of cyanogen after three cycles, indicating its excellent stability. Furthermore, electron spin resonance spectroscopy, free radical quenching experiments and fluorescence probe techniques using terephthalic acid (TA) and benzoic acid (BA) confirmed that the presence of •OH and FeⅣ=O reactive species was responsible for the catalysts exhibiting different mechanisms at different pH conditions. Compared with other heterogeneous Fenton catalysts, FCT exhibits intentional degradation activity for cyanide-containing wastewater under different acid-base conditions, which greatly broadened the pH range of the heterogeneous Fenton reaction.
Collapse
Affiliation(s)
- Fangkuan Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Li Z, Ma S, Sang L, Qu G, Zhang T, Xu B, Jin W, Zhao Y. Enhanced arsenite removal from water using zirconium-ferrocene MOFs coupled with peroxymonosulfate:oxidation and multi-sites adsorption mechanism. CHEMOSPHERE 2023; 319:138044. [PMID: 36736837 DOI: 10.1016/j.chemosphere.2023.138044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The efficient removal of arsenite (As(III)) poses a significant challenge to traditional water treatment technologies due to its high toxicity and mobility. In this work, multifunctional Zirconium-Ferrocene Metal Organic Framework (ZrFc-MOF) fabricated with redox-active 1,1-ferrocene dicarboxylic acid ligands and Zr4+ precursors were elaborated to achieve remarkably enhanced As(III) removal via activation by peroxymonosulfate (PMS). The adsorption affinity coefficient increased from 0.097 to 2.035 L mg-1 and the maximum adsorption capacity increased from 59.79 to 111.34 mg g-1 compared with that without PMS. Besides the conventional homogeneous PMS oxidation and the following adsorption through Zr-O clusters of ZrFc-MOFs, the enhanced As(III) removal synergistic combines the oxidation mechanism of As(III) by reactive oxygen species (•OH, SO4•-, O2•- and 1O2) formed in Ferrocene (Fc) activating PMS process with the simultaneous formed extra adsorption sites of Ferrocenium (Fc+). PMS also help ZrFc-MOF to avoid destruction in harsh alkaline condition, making the effluent in this advanced treatment meet the World Health Organization (WHO) threshold of 10 μg L-1 over a wide range of initial pH (2-11) with high selectivity and durability. These results indicate that this novel Fc-based MOFs activating PMS system has potential applicability for As(III) in oxidation and selectively capturing in the water environment.
Collapse
Affiliation(s)
- Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Linfeng Sang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Tao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Bin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Nguyen AQK, Kim K, Ahn YY, Kim M, Kim G, Lee JT, Kim S, Kim J. Ice-templated synthesis of tungsten oxide nanosheets and their application in arsenite oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161104. [PMID: 36586697 DOI: 10.1016/j.scitotenv.2022.161104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Tungsten oxide (WO3) nanosheets were prepared as catalysts to activate hydrogen peroxide (H2O2) in arsenite (As(III)) oxidation. Ice particles were employed as templates to synthesize the WO3 nanosheets, enabling easy template removal via melting. Transmission electron microscopy and atomic force microscopy revealed that the obtained WO3 nanosheets were plate-like, with lateral sizes ranging from dozens of nanometers to hundreds of nanometers and thicknesses of <10 nm. Compared to that of the WO3 nanoparticle/H2O2 system, a higher efficiency of As(III) oxidation was observed in the WO3 nanosheet/H2O2 system. Electron spin resonance spectroscopy, radical quenching studies, and As(III) oxidation experiments under anoxic conditions suggested that the hydroperoxyl radical (HO2●) acted as the primary oxidant. The WO3 nanosheets possessed numerous surface hydroxyl groups and electrophilic metal centers, enhancing the production of HO2● via H2O2 activation. Various anions commonly present in As(III)-contaminated water exhibited little effect on As(III) oxidation in the WO3 nanosheet/H2O2 system. The high oxidation efficiency was maintained by adding H2O2 when it was depleted, suggesting that the catalytic activity of the WO3 nanosheets did not deteriorate after multiple catalytic cycles.
Collapse
Affiliation(s)
- Anh Quoc Khuong Nguyen
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Minsun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Gonu Kim
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan 47162, Republic of Korea
| | - Jeong Tae Lee
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Soonhyun Kim
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jungwon Kim
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea.
| |
Collapse
|
7
|
Boruah H, Tyagi N, Gupta SK, Chabukdhara M, Malik T. Understanding the adsorption of iron oxide nanomaterials in magnetite and bimetallic form for the removal of arsenic from water. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Arsenic decontamination is a major worldwide concern as prolonged exposure to arsenic (>10 µg L-1) through drinking water causes serious health hazards in human beings. The selection of significant, cost-effective, and affordable processes for arsenic removal is the need of the hour. For the last decades, iron-oxide nanomaterials (either in the magnetite or bimetallic form) based adsorptive process gained attention owing to their high arsenic removal efficiency and high regenerative capacity as well as low yield of harmful by-products. In the current state-of-the-art, a comprehensive literature review was conducted focused on the applicability of iron-based nanomaterials for arsenic removal by considering three main factors: (a) compilation of arsenic removal efficiency, (b) identifying factors that are majorly affecting the process of arsenic adsorption and needs further investigation, and (c) regeneration capacity of adsorbents without affecting the removal process. The results revealed that magnetite and bimetallic nanomaterials are more effective for removing Arsenic (III) and Arsenic (V). Further, magnetite-based nanomaterials could be used up to five to six reuse cycles, whereas this value varied from three to six reuse cycles for bimetallic ones. However, most of the literature was based on laboratory findings using decided protocols and sophisticated instruments. It cannot be replicated under natural aquatic settings in the occurrence of organic contents, fluctuating pH and temperature, and interfering compounds. The primary rationale behind this study is to provide a comparative picture of arsenic removal through different iron-oxide nanomaterials (last twelve yearsof published literature) and insights into future research directions.
Collapse
|
8
|
Lee DW, Ahn Y, Cho DW, Basak B, Jeon BH, Choi J. Evaluation of pyrite/sodium hypochlorite for activating purification of arsenic from fractured-bedrock groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120681. [PMID: 36400135 DOI: 10.1016/j.envpol.2022.120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this work, the effectiveness of pyrite/sodium hypochlorite (FeS2/NaClO) treatment to eliminate arsenic (As) from fractured-bedrock groundwater via oxidative adsorption was evaluated. The As concentration in the tested reactors decreased sharply during the initial 5 min, as the addition of NaClO effectively increased the As removal efficiency, attaining 98.6% removal within 60 min in the presence of 0.05 M NaClO. There was no coexisting anion effect (Cl-, CO3-, HCO3-, NO3-, and F-) on the As removal capacity of FeS2/NaClO, except for the PO43- which resulted in less removal of As. X-ray spectroscopy analysis of As(III)-sorbed FeS2 surfaces revealed that a portion of As(III) was oxidized into As(V) during the adsorption process. Scanning electron microscopy-energy-dispersive spectrometer results of FeS2 exhibited the distribution of adsorbed As on the newly formed iron (oxy) hydroxide surfaces, with an As element ratio of 1.27%. A continuous flow-bed column study further demonstrated the efficiency of FeS2/NaClO treatment to lower the contamination level of As at the removal rates of 0.66-3.02 mg/L·day for 160 h. These results suggest that FeS2/NaClO treatment can be considered an effective strategy for removing As in groundwater of bedrock aquifers.
Collapse
Affiliation(s)
- Da-Won Lee
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, South Korea
| | - Yongtae Ahn
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, South Korea
| | - Dong-Wan Cho
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14, Seongbuk-gu, Seoul, 02792, South Korea.
| |
Collapse
|
9
|
Ma Y, Yang C, Shi Y, Liu Z, Cao W, Wen Q, Qin Y. Simultaneous elimination and detoxification of arsenite in the presence of micromolar hydrogen peroxide and ferrous and its environmental implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114435. [PMID: 38321657 DOI: 10.1016/j.ecoenv.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
Experiments for simultaneous elimination and detoxification of microgram level of As(Ⅲ) in the presence of micromolar H2O2 and Fe(Ⅱ) which are frequently encountered in natural water were conducted. The results showed that the molar ratio of oxidant to As(III) plays important role in As(III) oxidation under the experimental conditions. The extent of As(Ⅲ) oxidation with single H2O2 or Fe(Ⅱ) ranged from 7.9 % to 60.3 % and 22.2-46.6 %, respectively. Treatments with H2O2/As(Ⅲ) molar ratios in the range 150: 1-750: 1 or Fe(Ⅱ)/As(Ⅲ) molar ratios in the range 37.5: 1-375: 1 were more favor for As(Ⅲ) oxidation respectively, and increasing oxidant concentration did not result in complete As(Ⅲ) oxidation. As(Ⅲ) was completely oxidized and eliminated following the precipitation of ferric hydroxides in 5 reaction minutes when H2O2 and Fe(Ⅱ) coexisted in the reaction system. The interface characterization for the reacted precipitates after the experiment were conducted by using a high-resolution field emission scanning electron microscopy (SEM) coupled with an EX-350 energy dispersive X-ray spectrometer (EDX) and X-ray photoelectron spectroscopy (XPS), respectively. The results showed that As(Ⅴ) was the merely arsenic species and As oxide primary situated in the subsurface layer of the reacted precipitates, whereas Fe was more concentrated in the outermost surface layer. Our research showed that H2O2 and Fe(Ⅱ) at natural level may exert significant influence on arsenic mobilization in natural water. Considering the much more toxic of As(Ⅲ) than that of As(Ⅴ), the research also provide us an environmental friendly choice in the elimination and detoxification of microgram As(Ⅲ) in drinking water.
Collapse
Affiliation(s)
- Yingqun Ma
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenchen Yang
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yao Shi
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Liu
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Cao
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Quan Wen
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanwen Qin
- Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Yang G, Liang Y, Zheng H, Yang J, Guo S, Yu H. A self-circulating cerium-rich CeO2-x/Bi2MoO6 heterojunction catalyst for boosting photo-Fenton degradation of fluoroquinolone antibiotics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Chen J, Lian J, Fang Z. A comparative study on adsorption and catalytic degradation of tetracycline by five magnetic mineral functional materials prepared from steel pickling waste liquor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78926-78941. [PMID: 35699883 DOI: 10.1007/s11356-022-21183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Palygorskite (Pal), bentonite (Bent), sepiolite (Sep), zeolite (Zeol), and kaolin (Kaol) were used with steel pickling waste liquor to synthesize magnetic palygorskite (Pal@Fe3O4), magnetic bentonite (Bent@Fe3O4), magnetic sepiolite (Sep@Fe3O4), magnetic zeolite (Zeol@Fe3O4), and magnetic kaolin (Kaol@Fe3O4), for adsorption and catalytic degradation of tetracycline (TC), respectively. Through the study of adsorption kinetics and adsorption isotherms, the maximum adsorption capacity of Pal@Fe3O4 to TC was 149.439 mg/g, which was 1.239 times, 2.260 times, 3.161 times, and 3.448 times of Bent@Fe3O4, Zeol@Fe3O4, Kaol@Fe3O4, and Sep@Fe3O4, respectively. The kinetic study of tetracycline degradation demonstrated that the maximum reaction rate constant of Bent@Fe3O4/H2O2 system was K(obs) = 2.12 × 10-2 min-1, which was close to that of Pal@Fe3O4/H2O2, Kaol@Fe3O4/H2O2 system, and was 2.000 times, 2.356 times, 2.650 times, and 4.711 times of Fe3O4/H2O2, Zeol@Fe3O4/H2O2, Sep@Fe3O4/H2O2, and H2O2 system, respectively. The results showed that Pal@Fe3O4 and Bent@Fe3O4 were more advantageous in the treatment of wastewater containing tetracycline, and efficient reuse of exhausted magnetic minerals and deep mineralization of organic pollutants were achieved by constructing an advanced oxidation system. The BET, VSM, SEM, XPS, XRD, and FTIR were used to characterize the five clay minerals before and after magnetic modification. It was speculated that the surface structure - OH groups of clay minerals might be significant factors influencing the adsorption performance of magnetic minerals on TC, and reduction ability of clay minerals to Fe3+ importantly affected the catalytic performance of magnetic minerals. The specific surface area and morphological structure of clay minerals both affected the adsorption and catalytic degradation of TC by the five magnetic minerals.
Collapse
Affiliation(s)
- Junyi Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jintao Lian
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Fu W, Yi J, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Wang G, Yang X. When bimetallic oxides and their complexes meet Fenton-like process. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127419. [PMID: 34673389 DOI: 10.1016/j.jhazmat.2021.127419] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The heterogeneous Fenton-like reaction is an advanced oxidation process, which is widely recognized for its efficient removal of recalcitrant organic contaminants. In recent years, the construction of efficient and reusable heterogeneous Fenton-like catalysts has been extensively investigated. Recently, the use of bimetallic oxides and their complexes as catalysts for Fenton-like reaction has attracted intense attention due to their high catalytic performance and excellent stability over a wide pH range. In this article, the fundamental mechanisms of Fenton-like reactions were briefly introduced. The important reports on bimetallic oxides and their complexes are classified in detail, which are mainly divided into Fe-based and Fe-free bimetallic catalysts. We then focused in depth on the performance of their respective applications in Fenton-like reactions. Special consideration has been given to the respective contributions and synergistic mechanisms of the two metals in catalysts. Overall, it is concluded that synergistic effect of the two metals in the bimetallic catalyst can boost the utilization of hydrogen peroxide, provide adequate accessible active sites, which are all beneficial to improve catalytic performance. Finally, the current challenges in this field were proposed. Our review is expected to provide help for the application of bimetallic oxides and their complexes.
Collapse
Affiliation(s)
- Wenhong Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jing Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Bo Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaofeng Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
13
|
Fu D, Kurniawan TA, Li H, Wang H, Wang Y, Li Q. Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118062. [PMID: 34482246 DOI: 10.1016/j.envpol.2021.118062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
A highly efficient, eco-friendly and relatively low-cost catalyst is necessary to tackle bottlenecks in the treatment of industrial wastewater laden with heavy metals and antibiotic such as livestock farm and biogas liquids. This study investigated co-oxidative removal of arsenite (As(III)) and tetracycline (TC) by iron nanoparticles (Fe NP)-impregnated carbons based on heterogeneous Fenton-like reactions. The composites included Fe NP@biochar (BC), Fe NP@hydrochar (HC), and Fe NP@HC-derived pyrolysis char (HDPC). The functions of N and S atoms and the loading mass of the Fe NP in the Fe NP@BC in heterogeneous Fenton-like reactions were studied. To sustain its cost-effectiveness, the spent Fe NP@BC was regenerated using NaOH. Among the composites, the Fe NP@BC achieved an almost complete removal of As(III) and TC under optimized conditions (1.0 g/L of dose; 10 mM H2O2; pH 6; 4 h of reaction; As(III): 50 μM; TC: 50 μM). The co-oxidative removal of As(III) and TC by the Fe NP@ BC was controlled by the synergistic interactions between the Fe NPs and the active N and S sites of the BC for generating reactive oxygen species (ROS). After four consecutive regeneration cycles, about 61 and 95% of As(III) and TC removal were attained. This implies that the spent carbocatalyst still has reasonable catalytic activities for reuse. Overall, this suggests that adding technological values to unused biochar as a carbocatalyst like Fe NP@BC was promising for co-oxidative removal of As(III) and TC from contaminated water.
Collapse
Affiliation(s)
- Dun Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, Anhui, PR China
| | - Tonni Agustiono Kurniawan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Heng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China.
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, Fujian, PR China; College of Food and Biology Engineering, Jimei University, Xiamen, 361021, Fujian, PR China
| |
Collapse
|
14
|
Zhang X, Guo Y, Shi S, Liu E, Li T, Wei S, Li Y, Li Y, Sun G, Zhao Z. Efficient and stable iron-copper montmorillonite heterogeneous Fenton catalyst for removing Rhodamine B. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
16
|
Xiu Z, Zhang D, Wang J. Direct Z-Scheme Photocatalytic System: Ag2CO3/g-C3N4 Organic–Inorganic Hybrid with Superior Activity through Built-in Electric Field Transfer Mechanism. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421060273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Wen Z, Xi J, Lu J, Zhang Y, Cheng G, Zhang Y, Chen R. Porous biochar-supported MnFe 2O 4 magnetic nanocomposite as an excellent adsorbent for simultaneous and effective removal of organic/inorganic arsenic from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124909. [PMID: 33434789 DOI: 10.1016/j.jhazmat.2020.124909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
To solve the problem of organic and inorganic arsenic species contamination in drinking water and/or wastewater, porous biochar-supported MnFe2O4 magnetic nanocomposite (BC-MF) was successfully fabricated and used as an excellent adsorbent for simultaneous removal of p-ASA and As(V) from water environment. This obtained BC-MF displayed remarkable adsorption performance for both p-ASA and As(V) removal at acidic and neutral pH (3-7), and di-anionic and mono-anionic species of p-ASA and As(V) facilitated the adsorption process. Specifically, BC-MF exceeded some reported adsorbents, and the adsorption capacities of p-ASA and As(V) were approximately 105 and 90 mg/g at a 10 μg/L equilibrium concentration. Satisfactory adsorption behavior including adsorption isotherms, competitive ions, humic acid (HA), and regeneration/reusability property in single and binary systems demonstrated the BC-MF can improve the potential application for arsenic-containing wastewater remediation. Proposed adsorption mechanism indicated that electrostatic interaction and surface complexation were involved the p-ASA and As(V) immobilization, whereas hydrogen bonding and π-π interactions may also contribute to the p-ASA removal. Additionally, the prominent sequestration p-ASA and As(V) performance in different water matrix and fixed-bed column studies indicated that BC-MF was a promising nanocomposite for simultaneously removal of organic and inorganic arsenic species in practical wastewater treatment.
Collapse
Affiliation(s)
- Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Jun Lu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuhan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
18
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115755] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Zheng Y, Qiu S, Deng F, Zhu Y, Ma F, Li G. A charcoal-shaped catalyst NiFe 2O 4/Fe 2O 3 in electro-Fenton: high activity, wide pH range and catalytic mechanism. ENVIRONMENTAL TECHNOLOGY 2021; 42:1996-2008. [PMID: 31672098 DOI: 10.1080/09593330.2019.1687586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
A charcoal-shaped catalyst NiFe2O4/Fe2O3 in electro-Fenton (EF) was synthesized by a facile precipitation approach via sintering products of oxalate co-precipitation. This obtained NiFe2O4/Fe2O3 catalyst was easily separated via an external magnetic field and was used as a heterogeneous electro-Fenton catalyst for rhodamine B (RhB, a target pollutant) degradation. Characteristics of NiFe2O4/Fe2O3 catalyst were assessed using scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Barrett-Emmett-Teller (BET), respectively. SEM results revealed that the proposed NiFe2O4/Fe2O3 was charcoal-shaped with the size in the range of 0.5-5 μm. Experiment results show that the EF process with the proposed catalyst could work in a wide pH range from 3 to 9. Under optimized conditions, estimated 90% RhB degradation was achieved in 60 min under the following conditions: 0.6 g/L NiFe2O4/Fe2O3, pH 3. Radical scavengers and electron spin resonance (ESR) spectra results demonstrated that the main oxidant species involved was ⋅OH, accounting for RhB degradation in EF. Moreover, according to our research on interfacial reaction, ⋅OH was mainly generated from the homogenous Fenton reaction rather than the surface Fenton reaction, stimulating by the dissolved Fe2+, Fe3+ and Ni2+ from catalyst. The reusability of NiFe2O4/Fe2O3 catalyst was evaluated for recycling the same catalyst for 5 runs. In conclusion, the facile fabrication NiFe2O4/Fe2O3 catalyst shows great potential in wastewater treatment with promising activity.
Collapse
Affiliation(s)
- Yanshi Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Guojun Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
20
|
Lu J, Wen Z, Zhang Y, Cheng G, Xu R, Gong X, Wang X, Chen R. New insights on nanostructure of ordered mesoporous FeMn bimetal oxides (OMFMs) by a novel inverse micelle method and their superior arsenic sequestration performance: Effect of calcination temperature and role of Fe/Mn oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143163. [PMID: 33131836 DOI: 10.1016/j.scitotenv.2020.143163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
A series of ordered mesoporous FeMn bimetal oxides (OMFMs) were fabricated by using a novel inverse micelle method, and the texture, nanostructure and interface chemistry properties of OMFMs were closely correlated to the calcination temperature. Due to the amorphous regular inner-connected nanostructure and bimetallic synergistic effect, the obtained OMFMs exhibited superior arsenic sequestration performance than pure mesoporous Fe oxides (PMF) and Mn oxides (PMM). The optimum ratio of Fe/Mn and calcination temperature for arsenic removal was 3/1 and 350 °C (OMFM-3), and the maximum As(III) and As(V) adsorption capacities of OMFM-3 were 174.59 and 134.58 mg/g, respectively. Solution pH value negligibly affected the uptake of arsenic (ranged from 3.0 to 7.0), while SiO32-/PO43- ions and humic acid (HA) displayed significant inhibitory effect on arsenic removal by OMFM-3. According to the mechanism of arsenic removal, which simultaneously analyzed the arsenic redox transformation in aqueous phase and on solid phase interface, it was concluded that manganese oxides in OMFM-3 mainly played the role as a remarkable As(III) oxidant in water, whereas iron oxides dominantly acted as an excellent arsenic species adsorbent. Finally, the prominent arsenic sequestration behavior and performance in surface water suggested that OMFM-3 could be a promising and hopeful candidate for arsenic-contaminated (especially As(III)) surface water and groundwater remediation and treatment.
Collapse
Affiliation(s)
- Jun Lu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Xiaohu Gong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| |
Collapse
|
21
|
Huang T, Tian F, Wen Z, Li G, Liang Y, Chen R. Synergistic mediation of metallic bismuth and oxygen vacancy in Bi/Bi 2WO 6-x to promote 1O 2 production for the photodegradation of bisphenol A and its analogues in water matrix. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123661. [PMID: 33264869 DOI: 10.1016/j.jhazmat.2020.123661] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
Bi/Bi2WO6-x heterostructures has been successfully prepared by a facile one-step hydrothermal method. By maneuvering reaction time and Bi/W molar ratio of the precursors, we have been able to selectively introduce oxygen vacancy and metallic Bi into Bi2WO6 nanostructures. The obtained Bi/Bi2WO6-x heterostructures with more oxygen vacancy and moderate metallic Bi exhibit significantly improved photocatalytic activity for the photodegradation of bisphenol A (BPA) and its analogues due to its great ability for the generation of singlet oxygen (1O2), which has proven to work as the main reactive oxygen species during photocatalysis. It is also found the 1O2 concentration is highly depended on and modulated by the content of oxygen vacancy and metallic bismuth. Besides, we also demonstrate that the obtained Bi/Bi2WO6-x products display efficient photocatalytic performance toward BPA derivatives degradation and enhanced stability to resist the interferences in the water matrix.
Collapse
Affiliation(s)
- Teng Huang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China
| | - Fan Tian
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Ying Liang
- School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, PR China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450002, PR China.
| |
Collapse
|
22
|
Garcia-Costa AL, Sarabia A, Zazo JA, Casas JA. UV-assisted Catalytic Wet Peroxide Oxidation and adsorption as efficient process for arsenic removal in groundwater. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Activation of peroxymonosulfate by CoFeNi layered double hydroxide/graphene oxide (LDH/GO) for the degradation of gatifloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117685] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Xue K, Wang J, He R, Yang T, Yan Y, Peng Y, Omeoga U, Wang W. Photoredox catalysis of As(III) by constructed CSnS bonds: Using biomass as templates leads to bio‑carbon/SnS 2 nanosheets capable of the efficient photocatalytic conversion of As(III) and calcium arsenate capture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138963. [PMID: 32428768 DOI: 10.1016/j.scitotenv.2020.138963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In this paper, a new interface design strategy for bio‑carbon/SnS2 nanosheets equipped with CSnS bonds was proposed by using biomass as a template for the efficient photocatalytic conversion of As(III). The characterization results illustrated that the CSnS bonds could effectively prevent the agglomeration of SnS2, expand the photoresponse range and improve the hydrophilicity of the bio‑carbon/SnS2 composites while reducing their transfer resistance. Therefore, the construction of CSnS bonds could more efficiently promote the photoredox catalysis of As(III) to As(V) compared with pure SnS2, attributing to the polarization and conjugation effects of the CSn bonds. Meanwhile, CaSO4·nH2O (n = 0, 0.5, 2) could rapidly convert AsO43- into Ca3(AsO4)2 precipitates to eliminate arsenic from the aqueous solution in one step. In particular, 7500 μg/L As(III) could not only be photocatalyzed into As(V) but also be converted to Ca3(AsO4)2 to achieve the removal of arsenic within only 55 min in the coexistence of CaSO4. In addition, the electron transfer path in the photocatalytic oxidation system on arsenite was proposed according to the Mott-Schottky (MS) plots of SnS2 and graphitic carbon. The electron paramagnetic resonance (EPR) results implied that O2- and h+ were the main active substances in the photooxidation arsenic system and the effect of OH could be negligible. Thus, the possible mechanism of the photocatalytic conversion of As(III) was discussed.
Collapse
Affiliation(s)
- Kehui Xue
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ren He
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tianli Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Yan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Uche Omeoga
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
25
|
Tian Y, He X, Chen W, Tian X, Nie Y, Han B, Lin HM, Yang C, Wang Y. Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC 6 with electron deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138144. [PMID: 32224407 DOI: 10.1016/j.scitotenv.2020.138144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/06/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
An efficient strategy for enhancing iron efficiency in heterogeneous Fenton reaction via the pyrolysis of ferrocene chemically modified sepiolite (Sep) was proposed in this study. Highly dispersed FeC6 on sepiolite (Fe-Dis@Sep) was synthesized as an efficient photo-Fenton catalyst for the visible light degradation of ofloxacin (OFX). It exhibits an excellent Fenton activity and stability towards OFX degradation. The pseudo-first order reaction rate constant of Fe-Dis@Sep was 5.1-fold higher than that of the supported catalyst with aggregated iron oxides prepared by traditional impregnation method (Fe-Agg@Sep). Based on TEM images and density functional theory (DFT) calculation, the enhanced Fenton activity of Fe-Dis@Sep was attributed to the unique incorporation of FeC6 on Sep via Si-O-C-Fe bond which not only favor the high dispersion of FeC6 with an electron deficiency but also promote Fe(III) to Fe(II) cycle via the formation of surface Fe-H2O2 complex. OH and O2- were identified as active species for OFX degradation in Fe-Dis@Sep-H2O2-Vis system. 98.7% of F and 97.0% of N in OFX was converted into F- and NO3- with a TOC removal efficiency of 89.35%. The possible degradation pathway of OFX was also proposed according to HPLC-MS results. Finally, the Fenton reaction mechanism over Fe-Dis@Sep was discussed.
Collapse
Affiliation(s)
- Yayang Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xiaoyu He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075, PR China
| | - Wei Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Hong-Ming Lin
- Department Materials Engineering, Tatung University, 104 Taipei, PR China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
26
|
Pal N. Nanoporous metal oxide composite materials: A journey from the past, present to future. Adv Colloid Interface Sci 2020; 280:102156. [PMID: 32335382 DOI: 10.1016/j.cis.2020.102156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Abstract
Along with the progress of porous metal oxides, the development of multi-metal oxide composite materials have received a significant attention in the last few decades owing to the interesting physical and chemical properties of the hybrid oxide nanostructures. Consequently, a large number of national and international articles, communications etc. related to these oxide composites have come to light. This review conveys a comprehensive overview of those nanoporous metal oxide composites, illustrating various synthetic pathways and formation mechanisms for composite oxides based on template and non-templated routes. Also, characteristic properties of the synthesized materials analyzed using various techniques have been discussed systematically here. Moreover, the current review will also focus on a thorough literature survey of significant potential applications of these oxide composites in different fields including catalysis, biosensing, adsorption, energy conversion, toxic chemical removal, solar cell etc. demonstrating the impact of the metal compositions, nanostructures on the performances of the materials. Finally, a brief perspective is mentioned indicating the future prospects of these porous composites. Though, the scope of this review is limited to porous metal oxide composites, the information presented here can be helpful for any researchers working in other emerging fields.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India.
| |
Collapse
|
27
|
Wen Z, Lu J, Zhang Y, Cheng G, Huang S, Chen J, Xu R, Ming YA, Wang Y, Chen R. Facile inverse micelle fabrication of magnetic ordered mesoporous iron cerium bimetal oxides with excellent performance for arsenic removal from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121172. [PMID: 31522062 DOI: 10.1016/j.jhazmat.2019.121172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
In this study, magnetic ordered mesoporous Fe/Ce bimetal oxides (OMICs) were successfully synthesized via the modified sol-gel-based inverse micelle method. The textural/structure properties, surface chemistry and adsorption behavior of OMICs could be easily adjusted by using the calcination temperature. The sintering of samples would decrease the surface area, while expand the pore and crystallite size, which resulted in the formation of highly ordered inner-connected structure. Compared with pure mesoporous iron oxides (MI) and mesoporous cerium oxides (MC), this ordered mesoporous iron-cerium bimetal oxides (OMIC-3, 450 °C) exhibited remarkable arsenic adsorption performance. The maximum adsorption capacities of As(III) and As(V) for OMIC-3 were 281.34 and 216.72 mg/g, respectively, and both As(III)/As(V) adsorption kinetics were well described by the pseudo-second order. The ionic strength and coexisting ions (except SiO32- and PO43-) did not affect arsenic removal, while humic acid (HA) significantly influenced on the arsenic removal even at a lower concentration. The adsorption mechanism study revealed that both the surface charge and surface M-OH groups of OMIC-3 were played the key roles in arsenic removal. The reusable property suggested that this magnetic OMIC-3 was a promising excellent adsorbent for decontamination of arsenic-polluted (especially As(III)-polluted) wastewater.
Collapse
Affiliation(s)
- Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Jun Lu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Shengnan Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jin Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Yin-An Ming
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Yingru Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
28
|
Pramod L, Gandhimathi R, Lavanya A, Ramesh ST, Nidheesh PV. Heterogeneous Fenton process coupled with microfiltration for the treatment of water with higher arsenic content. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1674814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- L. Pramod
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - R. Gandhimathi
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - Addagada Lavanya
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - S. T. Ramesh
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P. V. Nidheesh
- CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
29
|
Shan C, Liu Y, Huang Y, Pan B. Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric H 2O 2 over nanoceria. ENVIRONMENT INTERNATIONAL 2019; 124:393-399. [PMID: 30660851 DOI: 10.1016/j.envint.2019.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 05/22/2023]
Abstract
Heterogeneous catalysis is a promising approach to achieve efficient As(III) oxidation by H2O2 at circumneutral pH. However, radical-attack pathways dominated catalytic As(III) oxidation over most metal oxides is undesirably associated with low utilization of H2O2 induced by rapid self-quenching of radicals. In this study, we developed a non-radical catalytic route to improve H2O2 utilization efficiency for catalytic As(III) oxidation based on nanoceria. The performance and mechanism of As(III) oxidation by H2O2 was investigated by employing four types of nanoceria with different crystallite sizes (9.1-80.6 nm). At the H2O2/As(III) molar ratio of 2.0, nanoceria exhibited crystallite size-dependent catalytic activity for oxidation of As(III) over a wide pH range (5-9). Based on comprehensive study including scavenging, enzymatic, and pretreatment experiments and miscellaneous spectroscopy techniques, the catalytic As(III) oxidation over nanoceria was proved to be mainly mediated by the non-radical Ce-hydroperoxo surface complexes, whilst the surface hydroperoxyl radical served as a minor oxidant. In contrast, the roles of dissolved oxygen, homogeneous H2O2, and OH radical were all negligible. No obvious interconversion of Ce(III)/Ce(IV) was observed by XPS for the catalytic process. Such non-radical pathway enabled a stoichiometric reaction with high H2O2 utilization efficiency (90.5%-122%). Moreover, nanoceria could be recycled for five consecutive runs without desorption/regeneration treatment. This study sheds new light on the development of nanoceria-based catalytic processes for efficient oxidation of As(III).
Collapse
Affiliation(s)
- Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuhao Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
30
|
Wen Z, Zhang Y, Cheng G, Wang Y, Chen R. Simultaneous removal of As(V)/Cr(VI) and acid orange 7 (AO7) by nanosized ordered magnetic mesoporous Fe-Ce bimetal oxides: Behavior and mechanism. CHEMOSPHERE 2019; 218:1002-1013. [PMID: 30609480 DOI: 10.1016/j.chemosphere.2018.11.208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
In this study, nanosized ordered magnetic mesoporous Fe-Ce bimetal oxides (Nanosized-MMIC) with highly well-ordered inner-connected mesostructure were successfully synthesized through the KIT-6 template method. This Nanosized-MMIC displayed excellent adsorption capacities for As(V), Cr(VI) and AO7, and the corresponding calculated maximum adsorption capacities of material were 111.17, 125.28 and 156.52 mg/g, respectively. As(V) and Cr(VI) removal by Nanosized-MMIC were slightly dependent on the ionic strength but highly solution pH-dependent, the coexistent silicate and phosphate ions competed remarkably with both As(V) and Cr(VI) for the adsorption active site. Mechanisms indicated As(V) and Cr(VI) formed inner-sphere complexes on Nanosized-MMIC interface via the electrostatic interaction and surface complexation, while the total organic carbon (TOC) change demonstrated that AO7 could be removed completely and no organic intermediates formed through the adsorption process. In addition, Nanosized-MMIC also possessed superior adsorption performance in As(V)/Cr(VI)-AO7 binary systems, and the reusable and regeneration properties indicated that the obtained nanomaterials could maintain at a comparatively high level after several recycling. Finally, fixed-bed experiments suggested the Nanosized-MMIC was expected to have a promising excellent nano-adsorbent with high application potential for co-existed toxic heavy metals and organic dyes removal in practical wastewater treatment.
Collapse
Affiliation(s)
- Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, PR China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, PR China
| | - Yingru Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, PR China
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, PR China.
| |
Collapse
|
31
|
Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: A new concept of chlorine removal mechanism. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Guo S, Yang Z, Wen Z, Fida H, Zhang G, Chen J. Reutilization of iron sludge as heterogeneous Fenton catalyst for the degradation of rhodamine B: Role of sulfur and mesoporous structure. J Colloid Interface Sci 2018; 532:441-448. [DOI: 10.1016/j.jcis.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
33
|
Eslami H, Ehrampoush MH, Esmaeili A, Ebrahimi AA, Salmani MH, Ghaneian MT, Falahzadeh H. Efficient photocatalytic oxidation of arsenite from contaminated water by Fe 2O 3-Mn 2O 3 nanocomposite under UVA radiation and process optimization with experimental design. CHEMOSPHERE 2018; 207:303-312. [PMID: 29803879 DOI: 10.1016/j.chemosphere.2018.05.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 05/28/2023]
Abstract
The efficiency of photocatalytic oxidation process in arsenite (As(III)) removal from contaminated water by a new Fe2O3-Mn2O3 nanocomposite under UVA radiation was investigated. The effect of nanocomposite dosage, pH and initial As(III) concentration on the photocatalytic oxidation of As(III) were studied by experimental design. The synthesized nanocomposite had a uniform and spherical morphological structure and contained 49.83% of Fe2O3 and 29.36% of Mn2O3. Based on the experimental design model, in photocatalytic oxidation process, the effect of pH was higher than other parameters. At nanocomposite concentrations of more than 12 mg L-1, pH 4 to 6 and oxidation time of 30 min, photocatalytic oxidation efficiency was more than 95% for initial As(III) concentration of less than 500 μg L-1. By decreasing pH and increasing the nanocomposite concentration, the photocatalytic oxidation efficiency was increased. Furthermore, by increasing the oxidation time from 10 to 240 min, in addition to oxidation of As(III) to arsenate (As(V)), the residual As(V) was adsorbed on the Fe2O3-Mn2O3 nanocomposite and total As concentration was decreased. Therefore, Fe2O3-Mn2O3 nanocomposite as a bimetal oxide, at low doses and short time, can enhance and improve the efficiency of the photocatalytic oxidation and adsorption of As(III) from contaminated water resources. Furthermore, the energy and material costs of the UVA/Fe2O3-Mn2O3 system for photocatalytic oxidation of 1 mg L-1 As(III) in the 1 L laboratory scale reactor was 0.0051 €.
Collapse
Affiliation(s)
- Hadi Eslami
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abbas Esmaeili
- Department of Environmental Health Engineering, School of Health, Rafsanjan University of Medical Sceiences, Rafsanjan, Iran.
| | - Ali Asghar Ebrahimi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Hossein Salmani
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hossein Falahzadeh
- Department of Biostatistics and Epidemiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
34
|
Jin H, Tian X, Nie Y, Zhou Z, Yang C, Li Y, Lu L. Oxygen Vacancy Promoted Heterogeneous Fenton-like Degradation of Ofloxacin at pH 3.2-9.0 by Cu Substituted Magnetic Fe 3O 4@FeOOH Nanocomposite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12699-12706. [PMID: 28934546 DOI: 10.1021/acs.est.7b04503] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To develop an ultraefficient and reusable heterogeneous Fenton-like catalyst at a wide working pH range is a great challenge for its application in practical water treatment. We report an oxygen vacancy promoted heterogeneous Fenton-like reaction mechanism and an unprecedented ofloxacin (OFX) degradation efficiency of Cu doped Fe3O4@FeOOH magnetic nanocomposite. Without the aid of external energy, OFX was always completely removed within 30 min at pH 3.2-9.0. Compared with Fe3O4@FeOOH, the pseudo-first-order reaction constant was enhanced by 10 times due to Cu substitution (9.04/h vs 0.94/h). Based on the X-ray photoelectron spectroscopy (XPS), Raman analysis, and the investigation of H2O2 decomposition, •OH generation, pH effect on OFX removal and H2O2 utilization efficiency, the new formed oxygen vacancy from in situ Fe substitution by Cu rather than promoted Fe3+/Fe2+ cycle was responsible for the ultraefficiency of Cu doped Fe3O4@FeOOH at neutral and even alkaline pHs. Moreover, the catalyst had an excellent long-term stability and could be easily recovered by magnetic separation, which would not cause secondary pollution to treated water.
Collapse
Affiliation(s)
- Hang Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Zhaoxin Zhou
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Chao Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| | - Liqiang Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences , Wuhan 430074, P. R. China
| |
Collapse
|
35
|
Wen Z, Zhang Y, Zhou X, Chen R. Effective As(III) and As(V) immobilization from aqueous solution by nascent ferrous hydroxide colloids (FHC). Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Wu L, He F, Luo J, Liu S. Synthesis of three-dimensional ordered mesoporous MnOx/CeO2 bimetal oxides for the catalytic combustion of chlorobenzene. RSC Adv 2017. [DOI: 10.1039/c7ra02299a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of CeO2 supported ordered mesoporous MnOx/CeO2 bimetal oxides with 3-D bi-continuous pore structure were prepared by an incipient-wetness impregnation method, and used in the catalytic combustion of chlorobenzene (CB) as a model of dioxins.
Collapse
Affiliation(s)
- Liyao Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Fei He
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Jiaqi Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| | - Shantang Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430074
- PR China
| |
Collapse
|
37
|
Chong S, Zhang G, Wei Z, Zhang N, Huang T, Liu Y. Sonocatalytic degradation of diclofenac with FeCeO x particles in water. ULTRASONICS SONOCHEMISTRY 2017; 34:418-425. [PMID: 27773264 DOI: 10.1016/j.ultsonch.2016.06.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
This paper studies the sonocatalytic degradation of diclofenac in water using FeCeOx-catalyzed ultrasound. The effects of pre-adsorption and gas addition were investigated. Nitrogen adsorption/desorption, SEM, XRD, Raman and XPS analyses of FeCeOx before and after sonication were characterized. The proposed mechanism was based on the microstructure changes of FeCeOx and reactive-species-scavenging performances. The results show that FeCeOx has excellent performance in catalyzing an ultrasonic system in water, and 80% of diclofenac was removed in 30min ([Diclofenac]=20mg/L, FeCeOx amount=0.5g/L, pH=6, ultrasonic density=3.0W/cm3, ultrasonic frequency=20kHz, temperature=298K). The Fe, Ce, and O elements remained highly dispersed in the structure of FeCeOx, and the solid solution structure of FeCeOx remained stable after the reaction. Ce (III) was gradually oxidized to Ce (IV) and Fe (III) was gradually reduced to Fe (II) after the reaction, which indicates that Fe and Ce ions with different valences coexisted in dynamic equilibrium. The amount of oxygen vacancies in FeCeOx significantly decreased after the reaction, which indicates that oxygen vacancy participated in the ultrasonic process. Singlet oxygen 1O2 was the primary reactive species in the degradation process, and the hydroxyl radicals OH and superoxide radical anion O2- also participated in the reaction. FeCeOx had excellent chemical stability with negligible leaching ions in the ultrasonic process.
Collapse
Affiliation(s)
- Shan Chong
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Zhongheng Wei
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Ting Huang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Yucan Liu
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
38
|
Zhang X, Blatov VA, Zhao YQ, Hao ZC, Cui GH. Synthesis, Structures, and Properties of Cadmium(II) and Nickel(II) Coordination Polymers Based on a 4,4′-Biphenyl-Containing Ligand and Aliphatic Carboxylic Acids. Z Anorg Allg Chem 2016. [DOI: 10.1002/zaac.201600210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Zhang
- College of Chemical Engineering, Hebei Key Laboratory for Environment; Photocatalytic and Electrocatalytic Materials; North China University of Science and Technology; 063009 Tangshan P. R. China
| | - Vladislav A. Blatov
- Samara Center for Theoretical Materials Science (SCTMS); Samara National Research University; Ac. Pavlov St 1 443011 Samara Russia
| | - Yan-Qin Zhao
- College of Chemical Engineering, Hebei Key Laboratory for Environment; Photocatalytic and Electrocatalytic Materials; North China University of Science and Technology; 063009 Tangshan P. R. China
| | - Zeng-Chuan Hao
- College of Chemical Engineering, Hebei Key Laboratory for Environment; Photocatalytic and Electrocatalytic Materials; North China University of Science and Technology; 063009 Tangshan P. R. China
| | - Guang-Hua Cui
- College of Chemical Engineering, Hebei Key Laboratory for Environment; Photocatalytic and Electrocatalytic Materials; North China University of Science and Technology; 063009 Tangshan P. R. China
| |
Collapse
|
39
|
Lu H, Zhu Z, Zhang H, Zhu J, Qiu Y, Zhu L, Küppers S. Fenton-Like Catalysis and Oxidation/Adsorption Performances of Acetaminophen and Arsenic Pollutants in Water on a Multimetal Cu-Zn-Fe-LDH. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25343-52. [PMID: 27588429 DOI: 10.1021/acsami.6b08933] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Acetaminophen can increase the risk of arsenic-mediated hepatic oxidative damage; therefore, the decontamination of water polluted with coexisting acetaminophen and arsenic gives rise to new challenges for the purification of drinking water. In this work, a three-metal layered double hydroxide, namely, Cu-Zn-Fe-LDH, was synthesized and applied as a heterogeneous Fenton-like oxidation catalyst and adsorbent to simultaneously remove acetaminophen (Paracetamol, PR) and arsenic. The results showed that the degradation of acetaminophen was accelerated with decreasing pH or increasing H2O2 concentrations. Under the conditions of a catalyst dosage of 0.5 g·L(-1) and a H2O2 concentration of 30 mmol·L(-1), the acetaminophen in a water sample was completely degraded within 24 h by a Fenton-like reaction. The synthesized Cu-Zn-Fe-LDH also exhibited a high efficiency for arsenate removal from aqueous solutions, with a calculated maximum adsorption capacity of 126.13 mg·g(-1). In the presence of hydrogen peroxide, the more toxic arsenite can be gradually oxidized into arsenate and adsorbed at the same time by Cu-Zn-Fe-LDH. For simulated water samples with coexisting arsenic and acetaminophen pollutants, after treatment with Cu-Zn-Fe-LDH and H2O2, the residual arsenic concentration in water was less than 10 μg·L(-1), and acetaminophen was not detected in the solution. These results indicate that the obtained Cu-Zn-Fe-LDH is an efficient material for the decontamination of combined acetaminophen and arsenic pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Linyan Zhu
- ZEA-3, Research Center Jülich , Jülich 52425, Germany
| | | |
Collapse
|
40
|
Chong S, Zhang G, Zhang N, Liu Y, Zhu J, Huang T, Fang S. Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. ULTRASONICS SONOCHEMISTRY 2016; 32:231-240. [PMID: 27150766 DOI: 10.1016/j.ultsonch.2016.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/19/2016] [Accepted: 03/19/2016] [Indexed: 05/20/2023]
Abstract
FeCeOx has been successfully synthesized by ultrasonic impregnation method and applied in diclofenac removal in heterogeneous Fenton process. The effects of ultrasonic density, impregnation time, mole ratio of Fe and Ce and calcination temperature were investigated. Nitrogen adsorption/desorption, SEM, XRD, HRTEM, Raman and XPS analyses were characterized. Stability and reusability of FeCeOx were evaluated. The results indicated that 83% degradation efficiency of diclofenac was achieved by FeCeOx under the optimum preparation conditions. Fe ions were distributed uniformly in crystal structure and the solid solution structure of FeCeOx with a lattice constriction was formed. Exposed crystalline plane (200) with a relatively high surface energy may be the main reason to provide high catalytic activity of FeCeOx. Oxygen vacancies took part in catalytic process and a portion of them were oxidized after reaction. FeCeOx showed an excellent chemical stability and reusability in heterogeneous Fenton process.
Collapse
Affiliation(s)
- Shan Chong
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Yucan Liu
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Jia Zhu
- School of Construction and Environment Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Ting Huang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| | - Shunyan Fang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
41
|
Guo S, Zhang G. Green synthesis of a bifunctional Fe–montmorillonite composite during the Fenton degradation process and its enhanced adsorption and heterogeneous photo-Fenton catalytic properties. RSC Adv 2016. [DOI: 10.1039/c5ra25096j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel Fe–MMT-I composite was synthesized during the degradation of rhodamine B (RhB) through Fenton's method, which could degrade RhB, reuse iron sludge and obtain high efficient bifunctional composite at the same time.
Collapse
Affiliation(s)
- Sheng Guo
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- P. R. China
- School of Chemistry and Environmental Engineering
| | - Gaoke Zhang
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- P. R. China
| |
Collapse
|
42
|
Wang S, Zhao C, Wang D, Wang Y, Liu F. ˙OH-initiated heterogeneous oxidation of methyl orange using an Fe–Ce/MCM-41 catalyst. RSC Adv 2016. [DOI: 10.1039/c5ra26820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface-bound ˙OH radicals play a dominant role in the oxidation of methyl orange.
Collapse
Affiliation(s)
- Shuaijun Wang
- College of Chemical Engineering
- China University of Petroleum
- Qingdao 266580
- P. R. China
| | - Chaocheng Zhao
- College of Chemical Engineering
- China University of Petroleum
- Qingdao 266580
- P. R. China
| | - Dejun Wang
- College of Chemical Engineering
- China University of Petroleum
- Qingdao 266580
- P. R. China
| | - Yongqiang Wang
- College of Chemical Engineering
- China University of Petroleum
- Qingdao 266580
- P. R. China
| | - Fang Liu
- College of Chemical Engineering
- China University of Petroleum
- Qingdao 266580
- P. R. China
| |
Collapse
|
43
|
Fu F, Cheng Z, Lu J. Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: a review. RSC Adv 2015. [DOI: 10.1039/c5ra13067k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper gives an overview of the recent advances of the synthesis methods of bimetals and bimetal oxides and applying them in contaminant removal from water.
Collapse
Affiliation(s)
- Fenglian Fu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Zihang Cheng
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Jianwei Lu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| |
Collapse
|