1
|
Wan K, Wu D, Xie G, Li Y, Zhang J. Different Cytotoxicity Induced by Hexabromocyclododecanes on Mouse Neuroblastoma N2a Cells via Oxidative Stress and Mitochondrial Apoptotic Pathway. TOXICS 2024; 12:665. [PMID: 39330593 PMCID: PMC11436204 DOI: 10.3390/toxics12090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Hexabromocyclododecane (HBCD) is widely used in polystyrene foams, building materials, and electrical equipment as a brominated flame retardant (BFR) and persists in the environment and human body matrix. It has attracted increased attention since its neuroendocrine disorder effects have been observed in humans and animals. However, studies evaluating the neurotoxicity of HBCD diastereoisomers and the potential mechanisms involved are still limited. In this study, we compared the cytotoxicity induced by the three HBCD diastereoisomers (i.e., α-, β-, and γ-HBCD) in N2a cells and further investigated the underlying molecular mechanism. Our results showed that HBCD diastereoisomers decreased cell viability in the order of β-HBCD > α-HBCD > γ-HBCD. Moreover, α-HBCD and β-HBCD exposure led to different degrees of cell cycle disruption and oxidative stress of N2a cells, implying that oxidative stress-mediated differential cytotoxicity of HBCD diastereoisomers. The expressions of caspases and Bcl-2 were differentially regulated by α-HBCD and β-HBCD, suggesting that the mitochondrial apoptosis pathway may be critical in HBCDs-mediated N2a cell toxicity. Therefore, our studies provided novel evidence for the underlying mechanisms of the distinct cytotoxicity of HBCD diastereoisomers.
Collapse
Affiliation(s)
- Keyan Wan
- Shenzhen Bao'an District Songgang People's Hospital, Shenzhen 518105, China
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dongting Wu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518010, China
| | - Guangshan Xie
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunxiu Li
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| |
Collapse
|
2
|
Fang Z, Lu M, Huang R, Wang G, Yushanjiang F, Jiang X, Li J. Carnosol prevents cardiac remodeling and ventricular arrhythmias in pressure overload-induced heart failure mice. Phytother Res 2024; 38:3763-3781. [PMID: 38831669 DOI: 10.1002/ptr.8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 06/05/2024]
Abstract
Cardiac remodeling is a commonly observed pathophysiological phenomenon associated with the progression of heart failure in various cardiovascular disorders. Carnosol, a phenolic compound extracted from rosemary, possesses noteworthy pharmacological properties including anti-inflammatory, antioxidant, and anti-apoptotic activities. Considering the pivotal involvement of inflammation, oxidative stress, and apoptosis in cardiac remodeling, the present study aims to assess the effects of carnosol on cardiac remodeling and elucidate the underlying mechanisms. In an in vivo model, cardiac remodeling was induced by performing transverse aortic constriction (TAC) surgery on mice, while an in vitro model was established by treating neonatal rat cardiomyocytes (NRCMs) with Ang II. Our results revealed that carnosol treatment effectively ameliorated TAC-induced myocardial hypertrophy and fibrosis, thereby attenuating cardiac dysfunction in mice. Moreover, carnosol improved cardiac electrical remodeling and restored connexin 43 expression, thereby reducing the vulnerability to ventricular fibrillation (VF). Furthermore, carnosol significantly reduced Ang II-induced cardiomyocyte hypertrophy in NRCMs and alleviated the upregulation of hypertrophy and fibrosis markers. Both in vivo and in vitro models of cardiac remodeling exhibited the anti-inflammatory, anti-oxidative, and anti-apoptotic effects of carnosol. Mechanistically, these effects were mediated through the Sirt1/PI3K/AKT pathway, as the protective effects of carnosol were abrogated upon inhibition of Sirt1 or activation of the PI3K/AKT pathway. In summary, our study suggests that carnosol prevents cardiac structural and electrical remodeling by regulating the anti-inflammatory, anti-oxidative, and anti-apoptotic effects mediated by Sirt1/PI3K/AKT signaling pathways, thereby alleviating heart failure and VF.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
3
|
Ma J, Ross L, Grube C, Wang HS. Toxicity of low dose bisphenols in human iPSC-derived cardiomyocytes and human cardiac organoids - Impact on contractile function and hypertrophy. CHEMOSPHERE 2024; 353:141567. [PMID: 38417488 DOI: 10.1016/j.chemosphere.2024.141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with various adverse health impacts, including cardiac toxicity. In this study, we examined the long term effect of low dose BPA and three common BPA analogs, bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) based models. HiPSC-CMs and human cardiac organoids were exposed to these chemicals for 4-5 or 20 days. 1 nM BPA, BPS, and BPAF, but not BPF, resulted in suppressed myocyte contractility, retarded contraction kinetics, and aberrant Ca2+ transients in hiPSC-CMs. In cardiac organoids, BPAF and BPA, but not the other bisphenols, resulted in suppressed contraction and Ca2+ transients, and aberrant contraction kinetics. The order of toxicities was BPAF > BPA>∼BPS > BPF and the toxicities of BPAF and BPA were more pronounced under longer exposure. The impact of BPAF on myocyte contraction and Ca2+ handling was mediated by reduction of sarcoplasmic reticulum Ca2+ load and inhibition of L-type Ca2+ channel involving alternation of Ca2+ handling proteins. Impaired myocyte Ca2+ handling plays a key role in cardiac pathophysiology and is a characteristic of cardiac hypertrophy; therefore we examined the potential pro-hypertrophic cardiotoxicity of these bisphenols. Four to five day exposure to BPAF did not cause hypertrophy in normal hiPSC-CMs, but significantly exacerbated the hypertrophic phenotype in myocytes with existing hypertrophy induced by endothelin-1, characterized by increased cell size and elevated expression of the hypertrophic marker proBNP. This pro-hypertrophic cardiotoxicity was also occurred in cardiac organoids, with BPAF having the strongest toxicity, followed by BPA. Our findings demonstrate that long term exposures to BPA and some of its analogs cause contractile dysfunction and abnormal Ca2+ handling, and have potential pro-hypertrophic cardiotoxicity in human heart cells/tissues, and suggest that some bisphenol chemicals may be a risk factor for cardiac hypertrophy in human hearts.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA.
| | - Leah Ross
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Christian Grube
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| |
Collapse
|
4
|
Yin W, Xu R, Zou J, Wang Y, Zhang Y. Single and combined association between brominated flame retardants and cardiovascular disease: a large-scale cross-sectional study. Front Public Health 2024; 12:1357052. [PMID: 38596517 PMCID: PMC11002127 DOI: 10.3389/fpubh.2024.1357052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The single and combined association between brominated flame retardants (BFRs) and cardiovascular diseases (CVD) has remained unelucidated. This research aimed at exploring the associations between mixture of BFRs and CVD. Methods This research encompassed adult participants from the National Health and Nutrition Examination Survey in 2005-2016. The weighted quantile sum (WQS) model and quantile g-computation (QGC) model were applied to examine the combined effects of BFRs mixture on CVD. Results In this research, overall 7,032 individuals were included. In comparison with the lowest quartile, the highest quartile of PBB153 showed a positive association with CVD, with odds ratio (OR) values and 95% confidence intervals (CI) of 19.2 (10.9, 34.0). Furthermore, the acquired data indicated that PBB153 (OR: 1.23; 95% CI: 1.02, 1.49), PBB99 (OR: 1.29; 95% CI: 1.06, 1.58), and PBB154 (OR: 1.29; 95% CI: 1.02, 1.63) were linked to congestive heart failure. PBB153 was also related to coronary heart disease (OR: 1.29; 95% CI: 1.06, 1.56). Additionally, a positive correlation between the BFRs mixture and CVD (positive model: OR: 1.23; 95% CI: 1.03, 1.47) was observed in the weighted quantile sum (WQS) model and the quantile g-computation (QGC) model. Discussion Therefore, exposure to BFRs has been observed to heighten the risk of cardiovascular disease in US adults, particularly in the case of PBB153. Further investigation is warranted through a large-scale cohort study to validate and strengthen these findings.
Collapse
Affiliation(s)
- Wenhao Yin
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Rui Xu
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiyu Zou
- Department of Respiratory Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yaqin Wang
- Department of Cardiovascular Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Zhang
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
5
|
Yan Q, Xiao Z, Zhang X, Wang G, Zhong C, Qiu D, Huang S, Zheng L, Gao Z. Association of organophosphate flame retardants with all-cause and cause-specific mortality among adults aged 40 years and older. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115690. [PMID: 37976933 DOI: 10.1016/j.ecoenv.2023.115690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihao Xiao
- School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Wu HD, Yang LW, Deng DY, Jiang RN, Song ZK, Zhou LT. The effects of brominated flame retardants (BFRs) on pro-atherosclerosis mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115325. [PMID: 37544066 DOI: 10.1016/j.ecoenv.2023.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Brominated flame-retardants (BFRs) are environmental endocrine disruptors, comprising several pollutants, which potentially affect the endocrine system and cause dysfunction and disease. Widespread BFR exposure may cause multisystem toxicity, including cardiovascular toxicity in some individuals. Studies have shown that BFRs not only increase heart rate, induce arrhythmia and cardiac hypertrophy, but also cause glycolipid metabolism disorders, vascular endothelial dysfunction, and inflammatory responses, all of which potentially induce pre-pathological changes in atherosclerosis. Experimental data indicated that BFRs disrupt gene expression or signaling pathways, which cause vascular endothelial dysfunction, lipid metabolism-related disease, inflammation, and possibly atherosclerosis. Considerable evidence now suggests that BFR exposure may be a pro-atherosclerotic risk factor. In this study, we reviewed putative BFR effects underpinning pro-atherosclerosis mechanisms, and focused on vascular endothelial cell dysfunction, abnormal lipid metabolism, pro-inflammatory cytokine production and foam cell formation. Consequently, we proposed a scientific basis for preventing atherosclerosis by BFRs and provided concepts for further research.
Collapse
Affiliation(s)
- Hai-Di Wu
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Li-Wei Yang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Da-Yong Deng
- Department of Radiology, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Rong-Na Jiang
- Department of Intensive Care Unit, Jilin Provincial Cancer Hospital, 1066 Jinhu Road, 130000 Changchun, China
| | - Zi-Kai Song
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Li-Ting Zhou
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Marques ML, Cairrao E. Occurrence and Health Effects of Hexabromocyclododecane: An Updated Review. TOXICS 2023; 11:toxics11050409. [PMID: 37235223 DOI: 10.3390/toxics11050409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Hexabromocyclododecane (HBCD) is a non-aromatic compound belonging to the bromine flame retardant family and is a known persistent organic pollutant (POP). This compound accumulates easily in the environment and has a high half-life in water. With a variety of uses, the HBCD is found in house dust, electronics, insulation, and construction. There are several isomers and the most studied are α-, β-, and γ-HBCD. Initially used as a substitute for other flame retardants, the polybrominated diphenyl ethers (PBDEs), the discovery of its role as a POP made HBCD use and manufacturing restricted in Europe and other countries. The adverse effects on the environment and human health have been piling, either as a result from its accumulation or considering its power as an endocrine disruptor (ED). Furthermore, it has also been proven that it has detrimental effects on the neuronal system, endocrine system, cardiovascular system, liver, and the reproductive system. HBCD has also been linked to cytokine production, DNA damage, increased cell apoptosis, increased oxidative stress, and reactive oxygen species (ROS) production. Therefore, this review aims to compile the most recent studies regarding the negative effects of this compound on the environment and human health, describing the possible mechanisms by which this compound acts and its possible toxic effects.
Collapse
Affiliation(s)
- Maria Lopes Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
8
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
9
|
Nie H, Pan M, Chen J, Yang Q, Hung TC, Xing D, Peng M, Peng X, Li G, Yan W. Titanium dioxide nanoparticles decreases bioconcentration of azoxystrobin in zebrafish larvae leading to the alleviation of cardiotoxicity. CHEMOSPHERE 2022; 307:135977. [PMID: 35948095 DOI: 10.1016/j.chemosphere.2022.135977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Interactions between titanium dioxide nanoparticles (n-TiO2) and pollutants in the aquatic environment may alter the bioavailability of pollutants, and thus altering their toxicity and fate. In order to investigate the bioconcentration of azoxystrobin (AZ) and its mechanism of cardiotoxicity in the presence of n-TiO2, the experiment was divided into control, n-TiO2 (100 μg/L), AZ (40, 200 and 1000 μg/L) and AZ (40, 200, 1000 μg/L) + n-TiO2 groups, and the zebrafish embryos were exposed to the exposure solution until 72 h post-fertilization. Results suggested the presence of n-TiO2 notably reduced the accumulation of AZ in larvae compared with exposure to AZ alone, thereby significantly decreasing AZ-induced cardiotoxicity, including heart rate changes, pericardium edema, venous thrombosis, increased sinus venosus and bulbus arteriosus distance and changes in cardiac-related gene expression. Further studies showed that AZ + n-TiO2 together restrained total-ATPase and Ca2+-ATPase activities, while the activity of Na+K+-ATPase increased at first and then decreased. Furthermore, there were significant changes in the expressions of oxidative phosphorylation and calcium channel-related genes, suggesting mitochondrial dysfunction may be the potential mechanism of cardiotoxicity induced by AZ and n-TiO2. This study supplies a new perspective for the joint action of AZ and environmental coexisting pollutants and provides a basis for ecological risk management of pesticides.
Collapse
Affiliation(s)
- Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Chen
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha, 410000, Hunan, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources and Chinese Academy of Sciences, Wuhan, 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA, 95616, USA
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu, China
| | - Maomin Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Xitian Peng
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan, 430064, Hubei, China
| |
Collapse
|
10
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
11
|
Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117475. [PMID: 34087639 DOI: 10.1016/j.envpol.2021.117475] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) and Tetrabromobisphenol A (TBBP-A) are brominated flame retardants widely used in variety of industrial and consumer products (e.g., automobiles, electronics, furniture, textiles and plastics) to reduce flammability. HBCD and TBBPA can also contaminate the environment, mainly water, dust, air and soil, from which human exposure occurs. This constant exposure has raised some concerns against human health. These compounds can act as endocrine disruptors, a property that gives them the ability to interfere with hormonal function and quantity, when HBCD and TBBPA bind target tissues in the body. Studies in human and animals suggest a correlation between HBCD and TBBPA exposure and adverse health outcomes, namely thyroid disorders, neurobehavior and development disorders, reproductive health, immunological, oncological and cardiovascular diseases. However, in humans these effects are still poorly understood, once only a few data evaluated the human health effects. Thus, the purpose of this review is to present the toxicity effects of HBCD and TBBPA and how these compounds affect the environment and health, resorting to data and knowledge of 255 published papers from 1979 to 2020.
Collapse
Affiliation(s)
- Joana Feiteiro
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Melissa Mariana
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, University of Beira Interior, Covilhã, Portugal; FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
12
|
New Insights into the Development and Morphogenesis of the Cardiac Purkinje Fiber Network: Linking Architecture and Function. J Cardiovasc Dev Dis 2021; 8:jcdd8080095. [PMID: 34436237 PMCID: PMC8397066 DOI: 10.3390/jcdd8080095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
The rapid propagation of electrical activity through the ventricular conduction system (VCS) controls spatiotemporal contraction of the ventricles. Cardiac conduction defects or arrhythmias in humans are often associated with mutations in key cardiac transcription factors that have been shown to play important roles in VCS morphogenesis in mice. Understanding of the mechanisms of VCS development is thus crucial to decipher the etiology of conduction disturbances in adults. During embryogenesis, the VCS, consisting of the His bundle, bundle branches, and the distal Purkinje network, originates from two independent progenitor populations in the primary ring and the ventricular trabeculae. Differentiation into fast-conducting cardiomyocytes occurs progressively as ventricles develop to form a unique electrical pathway at late fetal stages. The objectives of this review are to highlight the structure–function relationship between VCS morphogenesis and conduction defects and to discuss recent data on the origin and development of the VCS with a focus on the distal Purkinje fiber network.
Collapse
|
13
|
Fan E, Xu Z, Yan J, Wang F, Sun S, Zhang Y, Zheng S, Wang X, Rao Y. Acute exposure to N-Ethylpentylone induces developmental toxicity and dopaminergic receptor-regulated aberrances in zebrafish larvae. Toxicol Appl Pharmacol 2021; 417:115477. [PMID: 33667508 DOI: 10.1016/j.taap.2021.115477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
N-Ethylpentylone (NEP) is one of the most recent novel stimulants, and there is limited understanding of its toxicity. Here we employed zebrafish model for analyzing the effects of NEP on early embryos and cardiovascular and nervous systems at late developmental stages. We first observed multi-malformations in early embryos and larvae after NEP administration, together with significant deregulations of brain and heart development-associated genes (neurog1, her6, elavl3, nkx2.5, nppa, nppb, tnnt2a) at transcriptional level. Low-dosed NEP treatment induced an anxiety-like phenotype in zebrafish larvae, while higher doses of NEP exerted an inhibitory effect on locomotion and heart rate. Besides, the expression of th (tyrosine hydroxylase) and th2 (tyrosine hydroxylase 2), identifying dopamine (DA) release, were significantly increased during one-hour free swimming after effective low-dosed NEP administration, along with the upregulation of gene fosab and fosb related to stress and anxiety response. D1R antagonist SCH23390 and D2R antagonist sulpiride partially alleviated the aberrances of locomotion and heart rate, indicating dopaminergic receptors were involved in the bidirectional dosage-dependent pattern of NEP-induced performance. Meanwhile, sulpiride offset the upregulated expression of th, th2 and fosab in the group of 1.5 μM NEP, which highlighted the significant role of D2R in NEP-induced locomotive effects. This study systematically described the developmental, neuronal and cardiac toxicity of NEP in zebrafish, and identified the dopaminergic receptors as one of the downstream effectors of NEP administration.
Collapse
Affiliation(s)
- Enshan Fan
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiru Xu
- State Key Lab. of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, PR China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, PR China
| | - Fanglin Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, PR China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Yurong Zhang
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Shuiqing Zheng
- Shanghai Institute of Forensic Science, Shanghai Key Laboratory of Crime Scene Evidence, PR China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China; Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China.
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
14
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Rose M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J 2021; 19:e06421. [PMID: 33732387 PMCID: PMC7938899 DOI: 10.2903/j.efsa.2021.6421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on hexabromocyclododecanes (HBCDDs) in food. HBCDDs, predominantly mixtures of the stereoisomers α-, β- and γ-HBCDD, were widely used additive flame retardants. Concern has been raised because of the occurrence of HBCDDs in the environment, food and in humans. Main targets for toxicity are neurodevelopment, the liver, thyroid hormone homeostasis and the reproductive and immune systems. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour in mice can be considered the critical effects. Based on effects on spontaneous behaviour in mice, the Panel identified a lowest observed adverse effect level (LOAEL) of 0.9 mg/kg body weight (bw) as the Reference Point, corresponding to a body burden of 0.75 mg/kg bw. The chronic intake that would lead to the same body burden in humans was calculated to be 2.35 μg/kg bw per day. The derivation of a health-based guidance value (HBGV) was not considered appropriate. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Over 6,000 analytical results for HBCDDs in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary LB exposure to HBCDDs were fish meat, eggs, livestock meat and poultry. The CONTAM Panel concluded that the resulting MOE values support the conclusion that current dietary exposure to HBCDDs across European countries does not raise a health concern. An exception is breastfed infants with high milk consumption, for which the lowest MOE values may raise a health concern.
Collapse
|
15
|
Krishna S, Berridge B, Kleinstreuer N. High-Throughput Screening to Identify Chemical Cardiotoxic Potential. Chem Res Toxicol 2020; 34:566-583. [PMID: 33346635 DOI: 10.1021/acs.chemrestox.0c00382] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular (CV) disease is one of the most prevalent public health concerns, and mounting evidence supports the contribution of environmental chemicals to CV disease burden. In this study, we performed cardiotoxicity profiling for the Tox21 chemical library by focusing on high-throughput screening (HTS) assays whose targets are associated with adverse events related to CV failure modes. Our objective was to develop new hypotheses around environmental chemicals of potential interest for adverse CV outcomes using Tox21/ToxCast HTS data. Molecular and cellular events linked to six failure modes of CV toxicity were cross-referenced with 1399 Tox21/ToxCast assays to identify cardio-relevant bioactivity signatures. The resulting 40 targets, measured in 314 assays, were integrated via a ToxPi visualization tool and ranking system to prioritize 1138 chemicals based upon formal integration across multiple domains of information. Filtering was performed based on cytotoxicity and generalized cell stress endpoints to try and isolate chemicals with effects specific to CV biology, and bioactivity- and structure-based clustering identified subgroups of chemicals preferentially affecting targets such as ion channels and vascular tissue biology. Our approach identified drugs with known cardiotoxic effects, such as estrogenic modulators like clomiphene and raloxifene, anti-arrhythmic drugs like amiodarone and haloperidol, and antipsychotic drugs like chlorpromazine. Several classes of environmental chemicals such as organotins, bisphenol-like chemicals, pesticides, and quaternary ammonium compounds demonstrated strong bioactivity against CV targets; these were compared to existing data in the literature (e.g., from cardiomyocytes, animal data, or human epidemiological studies) and prioritized for further testing.
Collapse
Affiliation(s)
- Shagun Krishna
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Brian Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Nicole Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| |
Collapse
|
16
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
17
|
Shen C, Zuo Z. Zebrafish (Danio rerio) as an excellent vertebrate model for the development, reproductive, cardiovascular, and neural and ocular development toxicity study of hazardous chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43599-43614. [PMID: 32970263 DOI: 10.1007/s11356-020-10800-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
In the past decades, the type of chemicals has gradually increased all over the world, and many of these chemicals may have a potentially toxic effect on human health. The zebrafish, as an excellent vertebrate model, is increasingly used for assessing chemical toxicity and safety. This review summarizes the efficacy of zebrafish as a model for the study of developmental toxicity, reproductive toxicity, cardiovascular toxicity, neurodevelopmental toxicity, and ocular developmental toxicity of hazardous chemicals, and the transgenic zebrafish as biosensors are used to detect the environmental pollutants.
Collapse
Affiliation(s)
- Chao Shen
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China
| | - Zhenghong Zuo
- Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiangan South Road, Xiamen, 361002, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361002, Fujian, China.
| |
Collapse
|
18
|
Zhang X, Herger AG, Ren Z, Li X, Cui Z. Resistance effect of flavonols and toxicology analysis of hexabromocyclododecane based on soil-microbe-plant system. CHEMOSPHERE 2020; 257:127248. [PMID: 32526471 DOI: 10.1016/j.chemosphere.2020.127248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity characteristics of HBCD and resistance mechanism of flavonols are investigated based on physiological and metagenomic analysis. Toxicology research of HBCD on Arabidopsis thaliana (Col and fls1-3) not only shows the toxic effect of HBCD on plants, but also indicates that flavonols could improve plant resistance to HBCD, including root length, shoot biomass and chlorophyll content. Analysis of eggNOG and GO enrichment demonstrates that HBCD has toxic effect on both gene expression and protein function, which concentrates on energy production - conversion and amino acid transport - metabolism. Differential expressed genes in flavonols-treated groups indicates that flavonols regulate the metabolism of amino acids, cofactors and vitamins, which is involved in plant defense system against oxidative damage caused by HBCD stress. HBCD is believed to affect the synthesis of proteins via genes expression of ribosome biogenesis process. Flavonols could strengthen the plant resistance and alleviate toxic effect under HBCD stress.
Collapse
Affiliation(s)
- Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China.
| | - Aline Galatea Herger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| | - Zhen Ren
- School of Architecture and Urban Planning, Shandong Jianzhu University, Ji'nan, 250101, China
| | - Xinxin Li
- College of Agriculture and Life Sciences, Cornell University, New York, 14850, USA
| | - Zhaojie Cui
- Department of Plant and Microbial Biology, University of Zurich, Zurich, 8008, Switzerland
| |
Collapse
|
19
|
Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020; 7:559-570. [PMID: 32373477 PMCID: PMC7195498 DOI: 10.1016/j.toxrep.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are an established vertebrate model for toxicity studies. Zebrafish have a fully sequenced genome and the capability to create genetic models. Zebrafish have over 80 % homology for genes related to human disease. Functions of miRNAs in the zebrafish genome are being characterized. Zebrafish are ideal for mechanistic studies on how miRNAs regulate toxicity.
Zebrafish (Danio rerio) are an integrative vertebrate model ideal for toxicity studies. The zebrafish genome is sequenced with detailed characterization of all life stages. With their genetic similarity to humans, zebrafish models are established to study biological processes including development and disease mechanisms for translation to human health. The zebrafish genome, similar to other eukaryotic organisms, contains microRNAs (miRNAs) which function along with other epigenetic mechanisms to regulate gene expression. Studies have now established that exposure to toxins and xenobiotics can change miRNA expression profiles resulting in various physiological and behavioral alterations. In this review, we cover the intersection of miRNA alterations from toxin or xenobiotic exposure with a focus on studies using the zebrafish model system to identify miRNA mechanisms regulating toxicity. Studies to date have addressed exposures to toxins, particulate matter and nanoparticles, various environmental contaminants including pesticides, ethanol, and pharmaceuticals. Current limitations of the completed studies and future directions for this research area are discussed.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
20
|
Zezza D, Tait S, Della Salda L, Amorena M, Merola C, Perugini M. Toxicological, gene expression and histopathological evaluations of environmentally realistic concentrations of polybrominated diphenyl ethers PBDE- 47, PBDE-99 and PBDE-209 on zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109566. [PMID: 31437728 DOI: 10.1016/j.ecoenv.2019.109566] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants. Biomonitoring studies have shown widespread presence of PBDEs in humans and their accumulation in food chain cause concern to human health, especially for foetus and infant development. The early-life stages are generally considered more sensitive to exposure to toxic compounds than juvenile or adults. For this reason the aim of this study was to evaluate the effects of the three most environmentally relevant BDE (BDE- 47, 99 and 209) on zebrafish embryos. The fish embryo toxicity (FET) OECD tests on zebrafish were performed followed by histopathogical examination to assess morphological changes. The gene expression of the thyroid stimulating hormone β (Tshβ), the transport proteins transthyretin (Ttr) and thyroxine-binding globulin (Tbg) as well as the enzyme iodothyronine deiodinase 1 (Dio1) was also assessed by Real-time PCR. BDE-47 and BDE-99 showed an increase of the severity of the effects at the lower concentrations while for the BDE-209 the effects were higher to the high concentrations. Although all compounds did not show any acute toxicity for none of the concentrations tested, they reported interesting sub-acute lesions, including yolk and pericardial edema, tail and head malformation, reduced and extremely reduced heart beat rate, blood stasis and spinal curvature, with the highest percentage recorded for BDE-209. Cardiac edema, damage of eye structure and hydrocephaly were confirmed also by histophatological examination. Furthermore, a toxic and dose-dependent liver vacuolization in BDE-209 was observed in all experimental groups. Although no statistically significant difference in gene expression was observed, BDE-209 up-regulated only Dio1 while the other congeners induced Tshβ, Ttr, Tbg and Dio1. Overall, this research highlighted that exposure to BDE-47, BDE-99 and BDE-209 at realistic concentrations caused lethal and sub-lethal alterations and impaired genes involved in thyroid hormones homeostasis leading to abnormal development of zebrafish embryos.
Collapse
Affiliation(s)
- Daniela Zezza
- Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo University, Località Piano d'Accio, 64100, Teramo, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, Teramo University, Località Piano d'Accio, 64100 Teramo, Italy
| | - Michele Amorena
- Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo University, Località Piano d'Accio, 64100, Teramo, Italy
| | - Carmine Merola
- Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo University, Località Piano d'Accio, 64100, Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo University, Località Piano d'Accio, 64100, Teramo, Italy.
| |
Collapse
|
21
|
Wang D, Weng Y, Guo S, Qin W, Ni J, Yu L, Zhang Y, Zhao Q, Ben J, Ma J. microRNA-1 Regulates NCC Migration and Differentiation by Targeting sec63. Int J Biol Sci 2019; 15:2538-2547. [PMID: 31754327 PMCID: PMC6854364 DOI: 10.7150/ijbs.35357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Neural crest cells play a vital role in craniofacial development, microRNA-1 (miR-1) is essential in development and disease of the cardiac and skeletal muscle, the objective of our study is to investigate effects of miR-1 on neural crest cell in the craniofacial development and its molecular mechanism. Methods: We knocked down miR-1 in zebrafish by miR-1 morpholino (MO) microinjection and observed phenotype of neural crest derivatives. We detected neural crest cell migration by time-lapse. Whole-mount in situ hybridization was used to monitor the expressions of genes involved in neural crest cell induction, specification, migration and differentiation. We performed a quantitative proteomics study (iTRAQ) and bioinformatics prediction to identify the targets of miR-1 and validate the relationship between miR-1 and its target gene sec63. Results: We found defects in the tissues derived from neural crest cells: a severely reduced lower jaw and delayed appearance of pigment cells. miR-1 MO injection also disrupted neural crest cell migration. At 24 hours post fertilization (hpf), reduced expression of tfap2a, dlx2, dlx3b, ngn1 and crestin indicated that miR-1 deficiency affected neural crest cell differentiation. iTRAQ and luciferase reporter assay identified SEC63 as a direct target gene of miR-1. The defects of miR-1 deficiency could be reversed, at least in part, by specific suppression of sec63 expression. Conclusion: miR-1 is involved in the regulation of neural crest cell development, and that it acts, at least partially, by targeting sec63 expression.
Collapse
Affiliation(s)
- Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Lei Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210029, China
| | - Jingjing Ben
- Department of Pathophysiology, Key laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
22
|
Yang Z, Shi J, Guo Z, Chen M, Wang C, He C, Zuo Z. A pilot study on polycystic ovarian syndrome caused by neonatal exposure to tributyltin and bisphenol A in rats. CHEMOSPHERE 2019; 231:151-160. [PMID: 31129395 DOI: 10.1016/j.chemosphere.2019.05.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The development of polycystic ovary syndrome (PCOS) could be caused by exposure to environmental endocrine disrupting chemicals (EDCs). In the current study, two commonly found EDCs, bisphenol A (BPA) and tributyltin (TBT), were investigated for their effects on PCOS occurrence in neonatal female rats. TBT (10 and 100 ng kg-1 d-1), BPA (50 μg kg-1 d-1), and a mixture of the two (TBT 100 ng kg-1 d-1 with BPA 50 μg kg-1 d-1) were administered to female rats from postnatal day 1-16. TBT, BPA, and TBT + BPA treatment resulted in an irregular estrus cycle and disturbed ovarian development, with less corpora lutea and antral follicles, but more atretic follicles and cysts. In addition, serum testosterone and luteinizing hormone levels were significantly elevated, whereas a reduced level of serum sex hormone-binding globulin was observed after TBT100, BPA50, and TBT + BPA treatments. Moreover, gene expression analyses identified significant differential expression of the genes involved in a variety of biological pathways, such as lipid transport and steroidogenesis. Moreover, the expression level of proteins regulating lipid and androgen biosynthesis was elevated after the treatments. In conclusion, this study demonstrated that exposure to TBT, BPA, and a mixture of the two in newborn rats could contribute to a PCOS-like syndrome. The mechanism of PCOS pathogenesis caused by exposure to TBT and BPA is likely to be mediated by the lipid metabolism and steroidogenesis pathways. Our results provide novel insight into female reproduction affected by EDCs, which may be helpful for revealing the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhibing Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Junxia Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhizhun Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingyue Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
23
|
Chatterjee N, Gim J, Choi J. Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018015-0. [PMID: 30286591 PMCID: PMC6182246 DOI: 10.5620/eht.e2018015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 05/16/2023]
Abstract
Epigenetics, potentially heritable changes in genome function that occur without alterations to DNA sequence, is an important but understudied component of ecotoxicology studies. A wide spectrum of environmental challenge, such as temperature, stress, diet, toxic chemicals, are known to impact on epigenetic regulatory mechanisms. Although the role of epigenetic factors in certain biological processes, such as tumourigenesis, has been heavily investigated, in ecotoxicology field, epigenetics still have attracted little attention. In ecotoxicology, potential role of epigenetics in multi- and transgenerational phenomenon to environmental stressors needs to be unrevealed. Natural variation in the epigenetic profiles of species in responses to environmental stressors, nature of dose-response relationships for epigenetic effects, and how to incorporate this information into ecological risk assessment should also require attentions. In this review, we presented the available information on epigenetics in ecotoxicological context. For this, we have conducted a systemic review on epigenetic profiling in response to environmental stressors, mostly chemical exposure, in model organisms, as well as, in ecotoxicologically relevant wildlife species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jiwan Gim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dondaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
24
|
Wang Y, Shen C, Wang C, Zhou Y, Gao D, Zuo Z. Maternal and embryonic exposure to the water soluble fraction of crude oil or lead induces behavioral abnormalities in zebrafish (Danio rerio), and the mechanisms involved. CHEMOSPHERE 2018; 191:7-16. [PMID: 29024898 DOI: 10.1016/j.chemosphere.2017.09.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The water-soluble fraction (WSF) of crude oil plays an important role in the toxicity of crude oil in aquatic environments. Heavy metals, such as lead (Pb) are also important environmental contaminants, which can reach aquatic systems via the effluents of industrial, urban and mining sources. In the present study, we investigated whether maternal and embryonic exposure to the WSF (5, 50 μg/L) or Pb (10, 100 μg/L) could induce behavioral abnormalities in zebrafish. Our results showed that maternal and embryonic exposure to the WSF (5, 50 μg/L) and Pb (10, 100 μg/L) induced swimming activity alterations in larval and juvenile zebrafish. In 15 days post-fertilization (dpf) larval zebrafish, the distance moved was significantly increased in the groups treated with the WSF (5, 50 μg/L), but the angular velocity and turn angle were decreased after treatment with the WSF (5, 50 μg/L) or Pb (10, 100 μg/L). In 30 dpf juvenile zebrafish, the distance moved was markedly decreased in both groups treated with the WSF (5, 50 μg/L) and the Pb (10 μg/L) group, but the percentage of zebrafish moving up and the inter-fish distance of two juvenile fish were increased after treatment with the WSF (5, 50 μg/L) or Pb (10, 100 μg/L). Maternal and embryonic exposure to the WSF (5, 50 μg/L) or Pb (10, 100 μg/L) likely impaired the brain neurons growth and induced behavioral abnormalities in the larval and juvenile zebrafish. Furthermore, the expressions of some key genes, which were associated with calcium channels, behavioral development or the metabolism of environmental contaminants, were changed.
Collapse
Affiliation(s)
- Yuanchuan Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chonggang Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixi Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dongxu Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
25
|
Parallel in vivo and in vitro transcriptomics analysis reveals calcium and zinc signalling in the brain as sensitive targets of HBCD neurotoxicity. Arch Toxicol 2017; 92:1189-1203. [PMID: 29177809 PMCID: PMC5866835 DOI: 10.1007/s00204-017-2119-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/18/2017] [Indexed: 11/04/2022]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant (BFR) that accumulates in humans and affects the nervous system. To elucidate the mechanisms of HBCD neurotoxicity, we used transcriptomic profiling in brains of female mice exposed through their diet to HBCD (199 mg/kg body weight per day) for 28 days and compared with those of neuronal N2A and NSC-19 cell lines exposed to 1 or 2 µM HBCD. Similar pathways and functions were affected both in vivo and in vitro, including Ca2+ and Zn2+ signalling, glutamatergic neuron activity, apoptosis, and oxidative stress. Release of cytosolic free Zn2+ by HBCD was confirmed in N2A cells. This Zn2+ release was partially quenched by the antioxidant N-acetyl cysteine indicating that, in accordance with transcriptomic analysis, free radical formation is involved in HBCD toxicity. To investigate the effects of HBCD in excitable cells, we isolated mouse hippocampal neurons and monitored Ca2+ signalling triggered by extracellular glutamate or zinc, which are co-released pre-synaptically to trigger postsynaptic signalling. In control cells application of zinc or glutamate triggered a rapid rise of intracellular [Ca2+]. Treatment of the cultures with 1 µM of HBCD was sufficient to reduce the glutamate-dependent Ca2+ signal by 50%. The effect of HBCD on zinc-dependent Ca2+ signalling was even more pronounced, resulting in the reduction of the Ca2+ signal with 86% inhibition at 1 µM HBCD. Our results show that low concentrations of HBCD affect neural signalling in mouse brain acting through dysregulation of Ca2+ and Zn2+ homeostasis.
Collapse
|
26
|
Han T, Wu MH, Zang C, Sun R, Tang L, Liu N, Lei JQ, Shao HY, Gu JZ, Xu G. Hexabromocyclododecane and tetrabromobisphenol A in tree bark from different functional areas of Shanghai, China: levels and spatial distributions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1346-1354. [PMID: 28892110 DOI: 10.1039/c7em00275k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The concentrations and spatial distributions of hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) were measured in tree bark from different functional areas of Shanghai. ΣHBCDD (sum of α-, β-, and γ-HBCDD) concentrations ranged from 1.2 × 102 to 6.6 × 103 ng g-1 lw (median 5.7 × 102 ng g-1 lw) and TBBPA concentrations ranged from 48 to 7.2 × 104 ng g-1 lw (median 2.8 × 102 ng g-1 lw). The concentrations of ΣHBCDD and TBBPA all followed the order of industrial areas > commercial areas > residential areas. The mean percentage of α-HBCDD in bark samples (44%) from Shanghai was higher than that in technical HBCDD products, but comparable with that in air. The concentrations of TBBPA and individual HBCDD diastereoisomers between industrial areas and commercial areas were correlated. Based on the concentrations of HBCDD in the bark, the corresponding atmospheric HBCDD concentrations were estimated. Compared with the published data for HBCDD in urban air, the estimated atmospheric HBCDD concentrations in Shanghai had a relatively high level, and more attention should be paid to the pollution status of HBCDD in Shanghai.
Collapse
Affiliation(s)
- Tao Han
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effect of Wenxin Granules on Gap Junction and MiR-1 in Rats with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3495021. [PMID: 29094045 PMCID: PMC5637836 DOI: 10.1155/2017/3495021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/20/2017] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) patients are at high risk of potential lethal arrhythmia. Gap junction and microRNA-1 (miR-1) are both arrhythmia generating conditions. The present study investigated whether Wenxin Granules (Wenxin-Keli, WXKL) could prevent potential lethal arrhythmia by improving gap junctions and miR-1 following MI. Male Sprague-Dawley rats were divided randomly into control, model, metoprolol, low dose WXKL, and high dose WXKL groups. The MI rat model was created by coronary artery ligation. Treatments were administrated intragastrically to the rats for 4 weeks. Conventional transmission electron microscopy was performed to observe the ultrastructure of gap junctions. Quantitative real-time PCR and western blotting were used to detect the expression of miR-1, protein kinase C (PKC), and related proteins. Additionally, a programmatic electrophysiological stimulation test was performed to detect the ventricular fibrillation threshold (VFT). WXKL protected the ultrastructure of the gap junctions and their constituent Cx43 by regulating miR-1 and PKC mediated signal transduction and increased the VFT significantly in the rat MI model. The results suggested that WXKL is an effective alternative medicine to prevent potentially lethal arrhythmia following MI.
Collapse
|
28
|
Xiang P, Liu RY, Sun HJ, Yang YW, Cui XY, Ma LQ. Effects of novel brominated flame retardant TBPH and its metabolite TBMEHP on human vascular endothelial cells: Implication for human health risks. ENVIRONMENTAL RESEARCH 2017; 156:834-842. [PMID: 28318508 DOI: 10.1016/j.envres.2017.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
As a replacement for polybrominated diphenyl ethers, bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a novel flame retardant and has been detected in many environmental matrix including human blood. TBPH can be metabolized into mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) by carboxylesterase. However, their adverse effects on human vascular endothelium and their potential impacts on human cardiovascular disease are unknown. In this study, their adverse effects and associated molecular mechanisms on human vascular endothelial cells (HUVECs) were investigated. A concentration-dependent inhibition on HUVECs' viability and growth was observed for TBMEHP but not for TBPH. TBMEHP induced a marked G0/G1 cell cycle arrest and robust cell apoptosis at 1μg/mL by inducing expression of p53, GADD45α and cyclin dependent kinase (CDK) inhibitors (p21and p27) while suppressing the expression of cyclin D1, CDK2, CDK6, and Bcl-2. Unlike TBMEHP, TBPH caused early apoptosis after G2/M phase arrest only at 10μg/mL via up-regulation of p21 and down-regulation of CDK2 and CDK4. TBMEHP decreased mitochondrial membrane potential and increased caspase-3 activity at 1μg/mL, suggesting that activation of p53 and mitochondrial pathway were involved in the cell apoptosis. The data showed that TBPH and TBMEHP induced different cell cycle arrest and apoptosis through different molecular mechanisms with much higher toxicity for TBMEHP. Our study implies that the metabolites of TBPH, possibly other novel brominated flame retardants, may be of potential concern for human cardiovascular disease.
Collapse
Affiliation(s)
- Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rong-Yan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yun-Wen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|