1
|
Meng C, Du M, Zhang Z, Liu Q, Yan C, Li Z, Dong Z, Luo J, Ma J, Liu Y, Wang X. Open-Framework Vanadate as Efficient Ion Exchanger for Uranyl Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9456-9465. [PMID: 38745405 DOI: 10.1021/acs.est.4c03703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.
Collapse
Affiliation(s)
- Cheng Meng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Mingyang Du
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Qian Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Chunpei Yan
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jianqiang Luo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jianguo Ma
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
2
|
Lv Z, Deng J, Cao T, Lee JY, Luo Y, Mao Y, Kim SH, Wang C, Hwang JH, Kang H, Yan X, Na J. Metal-Organic Frameworks Marry Sponge: New Opportunities for Advanced Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5590-5605. [PMID: 38457783 DOI: 10.1021/acs.langmuir.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered attention across various fields due to their noteworthy features like high specific surface area, substantial porosity, and adjustable performance. In the realm of water treatment, MOFs exhibit great potential for eliminating pollutants such as organics, heavy metals, and oils. Nonetheless, the inherent powder characteristics of MOFs pose challenges in terms of recycling, pipeline blockage, and even secondary pollution in practical applications. Addressing these issues, the incorporation of MOFs into sponges proves to be an effective solution. Strategies like one-pot synthesis, in situ growth, and impregnation are commonly employed for loading MOFs onto sponges. This review comprehensively explores the synthesis strategies of MOFs and sponges, along with their applications in water treatment, aiming to contribute to the ongoing advancement of MOF materials.
Collapse
Affiliation(s)
- Zheng Lv
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jianmian Deng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
| | - Taiyang Cao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao 999078, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Seong Hwan Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jin Hyun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Ahmed S, Ghani A, Muhammad I, Muhammad I, Mehmood A, Ullah N, Hassan A, Wang Y, Tian X, Yakobson B. Enhanced As-COF nanochannels as a high-capacity anode for K and Ca-ion batteries. Phys Chem Chem Phys 2024; 26:6977-6983. [PMID: 38344751 DOI: 10.1039/d3cp05171d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Covalent organic frameworks can be used for next-generation rechargeable metal-ion batteries due to their controllable spatial and chemical architectures and plentiful elemental reserves. In this study, the arsenic-based covalent organic framework (As-COF) is designed by employing the geometrical symmetry of a semiconducting phosphazene-based covalent organic framework that uses p-phenylenediamine as a linker and hexachorocyclotriphosphazene as an As-containing monomer in a C3-like spatial configuration. The As-COF with engineered nanochannels demonstrates exceptional anodic behavior for potassium (K) and calcium (Ca) ion batteries. It exhibits a high storage capacity of about 914(2039) mA h g-1, low diffusion barriers of 0.12(0.26) eV, low open circuit voltage of 0.23(0.18) V, and a minimal volume expansion of 2.41(2.32)% for K (Ca) ions. These attributes collectively suggest that As-COF could significantly advance high-capacity rechargeable batteries.
Collapse
Affiliation(s)
- Shehzad Ahmed
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Awais Ghani
- Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, P. R. China
| | - Imran Muhammad
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Iltaf Muhammad
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Andleeb Mehmood
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Naeem Ullah
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Arzoo Hassan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Yong Wang
- School of Physics, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoqing Tian
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China.
| | - Boris Yakobson
- Department of Materials Science and Nano Engineering, Department of Chemistry and the Smelly Institute for Nano Scale Science and Technology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
4
|
Zhang ZC, Wang PL, Sun YF, Yang T, Ding SY, Wang W. Rational Synthesis of Functionalized Covalent Organic Frameworks via Four-Component Reaction. J Am Chem Soc 2024; 146:4822-4829. [PMID: 38329466 DOI: 10.1021/jacs.3c13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The construction of function-oriented covalent organic frameworks (COFs) remains a challenge as it requires simultaneous consideration of diversified structures, robust linkage, and tailorable functionalities. Herein, we report the rational synthesis of functionalized COFs via a four-component reaction strategy. Through the four-component Debus-Radziszewski reaction, 11 N-substituted imidazole-based COFs with diversified structures were facilely constructed from readily available building blocks. By forming the N-substituted imidazole linkage, these synthesized COFs displayed ultrastability toward strong acids and base. Moreover, the four components reaction allows the rational synthesis of COFs with tailorable functionalities. As an example, the phosphonate-functionalized COF (LZU-530) was rationally constructed for the efficient adsorption of uranium(VI). The uranium(VI) uptake of LZU-530 reaches up to 95 mg·g-1 in 2 M HNO3, which is the highest uptake of the existing organic porous materials under such harsh conditions. Our results highlight the use of multicomponent reaction for the rational synthesis of robust and functionalized COFs toward targeted applications.
Collapse
Affiliation(s)
- Zhi-Cong Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Peng-Lai Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi-Fan Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Bai Y, Wang C, Lu W, Xie C, Song W, Zhang Z, Wang J. Exploration of the Performance and Mechanism of Uranium Adsorption by a Covalent Organic Framework Possessing the Thiazole Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16163-16173. [PMID: 37922413 DOI: 10.1021/acs.langmuir.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.
Collapse
Affiliation(s)
- Yuxuan Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wen Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chengde Xie
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wenhui Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiong Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
6
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
7
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Rhili K, Chergui S, Samih ElDouhaibi A, Mazzah A, Siaj M. One-Pot Synthesis of Cyclomatrix-Type Polyphosphazene Microspheres and Their High Thermal Stability. ACS OMEGA 2023; 8:9137-9144. [PMID: 36936297 PMCID: PMC10018513 DOI: 10.1021/acsomega.2c06394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Highly cross-linked inorganic and organic hybrid cyclomatrix-polyphosphazenes microspheres (C-PPZs) have been successfully synthesized by a one-pot polymerization technique between hexachlorocyclotriphosphazene and p-phenylenediamine in the presence of triethylamine (TEA), and they were used for enhancing the flame retardancy of epoxy resins (EPs). A thermoset EP was prepared by incorporating different percentages (2, 5, and 10%) of C-PPZs into diglycidyl ether of bisphenol A (DGEBA). The results reveal that the size and morphology of the microspheres can be tuned by varying the synthesis temperature. The average size of C-CPPZs gradually increased from 3.1, 4.9, to 7.8 μm as the temperature was increased from 100, 120, to 200 °C, respectively. The thermogravimetric analysis showed that the C-CPPZ microspheres have good thermal stability up to 900 °C with about ∼10 wt % mass loss for C-CPPZs formed at 200 °C compared to ∼30 wt % mass loss for those obtained at 100 and 120 °C. The 10% loss at 900 °C is much lower than the previous research concerning the thermal stability of cyclophosphazene, in which more weight losses were observed at lower temperatures. The resulting C-CPPZ microspheres were characterized by spectroscopic and imaging techniques including Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, elemental mapping, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Khaled Rhili
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Siham Chergui
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Ahmad Samih ElDouhaibi
- Department
of Chemistry, College of Science III, Lebanese
University, Campus Mont
Michel, 1352 Tripoli, Lebanon
| | - Ahmed Mazzah
- Miniaturisation
pour la Synthèse, l’Analyse et la Protéomique,
USR 3290, MSAP, Université de Lille,
CNRS, F-59000 Lille, France
| | - Mohamed Siaj
- Department
of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
9
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
10
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
11
|
Synthesis of Pillar[5]arene- and Phosphazene-Linked Porous Organic Polymers for Highly Efficient Adsorption of Uranium. Molecules 2023; 28:molecules28031029. [PMID: 36770695 PMCID: PMC9920965 DOI: 10.3390/molecules28031029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
It is crucial to design efficient adsorbents for uranium from natural seawater with wide adaptability, effectiveness, and environmental safety. Porous organic polymers (POPs) provide superb tunable porosity and stability among developed porous materials. In this work, two new POPs, i.e., HCCP-P5-1 and HCCP-P5-2 were rationally designed and constructed by linked with macrocyclic pillar[5]arene as the monomer and hexachlorophosphate as the core via a macrocycle-to-framework strategy. Both pillar[5]arene-containing POPs exhibited high uranium adsorption capacity compared with previously reported macrocycle-free counterparts. The isothermal adsorption curves and kinetic studies showed that the adsorption of POPs on uranium was consistent with the Langmuir model and the pseudo-second-order kinetic model. Especially, HCCP-P5-1 has reached 537.81 mg/g, which is greater than most POPs that have been reported. Meanwhile, the comparison between both HCCP-P5-1 and HCCP-P5-2 can illustrate that the adsorption capacity and stability could be adjusted by the monomer ratio. This work provides a new idea for the design and construction of uranium adsorbents from macrocycle-derived POPs.
Collapse
|
12
|
Zhang N, Li J, Tian B, Zhang J, Li T, Li Z, Wang Y, Liu Z, Zhao H, Ma F. Phosphorylated cellulose carbamate for highly effective capture of U(VI). J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Sadak AE, Cucu E, Hamur B, Ün İ, Altundas R. Cyclotriphosphazene and tricarbazole based microporous hyper-crosslinked conjugated polymer for CCUS: Exceptional CO2 selectivity and high capacity CO2, CH4, and H2 capture. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Xie Y, Wu Y, Liu X, Hao M, Chen Z, Waterhouse GI, Wang X, Yang H, Ma S. Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. CELL REPORTS PHYSICAL SCIENCE 2023; 4:101220. [DOI: doi.org/10.1016/j.xcrp.2022.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
15
|
Highly Efficient Removal of Uranium from an Aqueous Solution by a Novel Phosphonic Acid-Functionalized Magnetic Microsphere Adsorbent. Int J Mol Sci 2022; 23:ijms232416227. [PMID: 36555868 PMCID: PMC9787024 DOI: 10.3390/ijms232416227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The development of adsorption materials which can efficiently isolate and enrich uranium is of great scientific significance to sustainable development and environmental protection. In this work, a novel phosphonic acid-functionalized magnetic microsphere adsorbent Fe3O4/P (GMA-MBA)-PO4 was developed by functionalized Fe3O4/P (GMA-MBA) prepared by distill-precipitation polymerization with O-phosphoethanolamine. The adsorption process was endothermic, spontaneous and kinetically followed the pseudo second-order model. The maximum uranium adsorption capacity obtained from the Langmuir model was 333.33 mg g-1 at 298 K. In addition, the adsorbent also had good acid resistance and superparamagnetic properties, which could be quickly separated by a magnetic field. XPS analysis showed that the adsorption of adsorbent mainly depended on the complexation of phosphonic acid group with uranium. This work offers a promising candidate for the application of magnetic adsorbents in the field of uranium separation and enrichment.
Collapse
|
16
|
A cyclophosphazene-derived porous organic polymer with P-N linkage for environmental adsorption applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
A low-cost, efficient and selective detection method of acaricide residues: adsorption study. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Afshari M, Dinari M. Improving the Reaction-to-Fire Properties of Thermoplastic Polyurethane by New Phosphazene-Triazinyl-Based Covalent Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49003-49013. [PMID: 36282083 DOI: 10.1021/acsami.2c14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, an approach to simultaneously improve fire resistance and mechanical performance of thermoplastic polyurethane (TPU) was introduced through the penetration of a conjugated network containing nitrogen and phosphorus elements. For this purpose, a Bg-HCCP COF was synthesized through a solvothermal method from benzoguanamine (Bg) and hexachlorophosphazene (HCCP) monomers. Then, it was combined with TPU using the wet mixing method. The TPU/Bg-HCCP composites showed better mechanical strength than the untreated sample. The fire safety of TPU/Bg-HCCP composites was greatly improved by increasing the Bg-HCCP contents. The reduction of the peak heat release rate and the total heat release for the TPU/Bg-HCCP composite with 3 wt % Bg-HCCP were about 44.8 and 60.4%, respectively. Besides, the results showed that adding Bg-HCCP to TPU significantly improved the suppression of smoke generation so that 3% by weight of the fire retardant reduced the total smoke released by 53.1%. It also decreased the peak of the carbon monoxide production rate by 26.5%. Generally, our research provides a promising strategy for constructing flame-retardant composites with high performance.
Collapse
Affiliation(s)
- Mohaddeseh Afshari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan84156-83111, Islamic Republic of Iran
| |
Collapse
|
19
|
Su Y, Wenzel M, Seifert M, Weigand JJ. Surface ion-imprinted brewer's spent grain with low template loading for selective uranyl ions adsorption from simulated wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129682. [PMID: 35939905 DOI: 10.1016/j.jhazmat.2022.129682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of uranyl ions from wastewater requires excellent selectivity of the adsorbents. Herein, we report a new strategy using a high monomer/template molar ratio of 500:1 to prepare surface ion-imprinted brewer's spent grain (IIP-BSG) for selective U(VI) removal using binary functional monomers (2-hydroxyethyl methacrylate and diethyl vinylphosphonate) with high site accessibility and easy template removal. IIP-BSG exhibits a maximum U(VI) adsorption capacity of 165.7 mg/g, a high selectivity toward U(VI) in the presence of an excess amount of Eu(III) (Eu/U molar ratio = 20), a good tolerance of salinity, and a high reusability. In addition, mechanism studies have revealed electrostatic interaction and a coordination of uranyl ions by carboxyl and phosphoryl groups, the predominant contribution of high-energy (specific) sites during selective adsorption, and internal mass transfer as the rate-controlling step of U(VI) adsorption. Furthermore, IIP-BSG shows great potentials to separate U(VI) from lanthanides in simulated nuclear wastewater (pH0 = 3.5) and selectively concentrate U(VI) from simulated mine water (pH0 = 7.1). This study proves that the ion-imprinting effect can be achieved using a very low template amount with reduced production cost and secondary pollution, which benefits large-scale promotion of the ion-imprinted materials for selective uranyl ions removal.
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Markus Seifert
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
20
|
Geng TM, Wang K, Zhou XH, Dong XQ. Nanoarchitectonics of bipyrazole-based porous organic polymer for iodine absorption and fluorescence sensing picric acid and formation of liquid complex of its (poly)iodide ions. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Yang S, Yin J, Li Q, Wang C, Hua D, Wu N. Covalent organic frameworks functionalized electrodes for simultaneous removal of UO 22+ and ReO 4- with fast kinetics and high capacities by electro-adsorption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128315. [PMID: 35077974 DOI: 10.1016/j.jhazmat.2022.128315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The recovery of radioactive ions from high salinity low-level radioactive wastewater (LLRW) is important for the sustainable utilization of nuclear energy. Previous work primarily focuses on developing adsorbents that remove individual types of ions via physicochemical adsorption. Here, we report a new strategy for the simultaneous recovery of uranium (UO22+) and rhenium (ReO4-) as a non-radioactive surrogate of technetium from LLRW via electro-adsorption. Carboxyl functionalized covalent organic frameworks (COF-1) and cationic covalent organic frameworks (COF-2) were prepared as cathode and anode materials, respectively. The adsorption capacities were 411 mg U/g for COF-1 and 984 mg Re/g for COF-2 under 1.2 direct-current (DC) volts, 2.5 and 2.1 times higher than the capacities of the same adsorbents obtained by physicochemical adsorption. We also found that the electro-adsorption of uranium and rhenium follows pseudo-second-order kinetics with the adsorption rates of 0.45 and 1.05 g/mg/h at pH 7.0 and 298.15 K, again two times faster than those measured in physicochemical adsorption. Therefore, electro-adsorption improves both adsorption capacity and kinetics by maximizing the utility of available active sites in adsorbents and facilitating ion migration towards the adsorbents. The adsorption efficiencies for uranium and rhenium reached 65.9% and 89.2%, respectively, after electro-adsorption for 2 h. The high efficiencies can be maintained after five adsorption-desorption cycles. Furthermore, the electrodes showed high selectivity for uranium(VI) and rhenium(VII) and excellent salt resistance even in 1 mol/L NaCl solution. XPS studies revealed that covalent bonds were formed between uranium(VI) and carboxyl groups on COF-1, and rhenium(VII) was bound to cationic COF-2 through electrostatic interaction. Our asymmetric electrodes design can be extended to simultaneously and efficiently remove other types of radioactive or heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Qian Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Chaoyi Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
22
|
Liao J, He X, Zhang Y, Zhu W, Zhang L, He Z. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153145. [PMID: 35038520 DOI: 10.1016/j.scitotenv.2022.153145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, Bi2O3 doped horse manure-derived biochar was obtained by carbonizing the H2O2-modified horse manure loaded with bismuth nitrate under nitrogen atmosphere at 500 °C. The results showed that there was a sharp response between the as-prepared bismuth impregnated biochar and uranium(VI) species in solution, which resulted in a short equilibrium time (<80 min), a fast adsorption rate (about 5.0 mg/(g·min)), a high removal efficiency (93.9%) and a large adsorption capacity (516.5 mg/g) (T = 298 K, pH = 4, Ci = 10 mg/L and m/V = 0.1 g/L). Besides, the removal behavior of the bismuth impregnated biochar for uranium(VI) did not depend on the interfering ions and ion strength, except Al3+, Ca2+, CO32- and PO43-. These results indicated that the modified biochar might possess the potential of remediating the actual uranium(VI)-containing wastewater. Moreover, the interaction mechanism between Bi2O3 doped biochar and uranium(VI) species was further explored. The results demonstrated that the enrichment of uranium(VI) on the surface of the as-prepared biochar was controlled by various factors, such as surface complexation, ion exchange, electrostatic attraction, precipitation and reduction, which facilitated the adsorption of uranium(VI) on the bismuth impregnated biochar.
Collapse
Affiliation(s)
- Jun Liao
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China; School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoshan He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Yong Zhang
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wenkun Zhu
- School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Zhang
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China
| | - Zhibing He
- Division of Target Science and Fabrication, Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-987, Mianyang 621900, China.
| |
Collapse
|
23
|
Chen F, Teniola OR, Laurencin CT. Biodegradable Polyphosphazenes for Regenerative Engineering. JOURNAL OF MATERIALS RESEARCH 2022; 37:1417-1428. [PMID: 36203785 PMCID: PMC9531846 DOI: 10.1557/s43578-022-00551-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/29/2022] [Indexed: 05/05/2023]
Abstract
Regenerative engineering is a field that seeks to regenerate complex tissues and biological systems, rather than simply restore and repair individual tissues or organs. Since the first introduction of regenerative engineering in 2012, numerous research has been devoted to the development of this field. Biodegradable polymers such as polyphosphazenes in particular have drawn significant interest as regenerative engineering materials for their synthetic flexibility in designing into materials with a wide range of mechanical properties, degradation rates, and chemical functionality. These polyphosphazenes can go through complete hydrolytic degradation and provide harmlessly and pH neutral buffering degradation products such as phosphates and ammonia, which is crucial for reducing inflammation in vivo. Here, we discuss the current accomplishments of polyphosphazene, different methods for synthesizing them, and their applications in tissue regeneration such as bones, nerves, and elastic tissues.
Collapse
Affiliation(s)
- Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
| | - O R Teniola
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut
- Connecticut Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
- Connecticut Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
24
|
Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD. A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127951. [PMID: 34894515 DOI: 10.1016/j.jhazmat.2021.127951] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Uranium is a key element in the nuclear industry and also a global environmental contaminant with combined highly toxic and radioactive. Currently, the materials based on post-modification of amidoxime have been developed for uranium detection and adsorption. However, the affinity of amidoxime group for vanadium is stronger than that of uranium, which is the main challenge hindering the practical application of amidoxime-based adsorbents. Herein, we synthesized a fluorescent covalent organic framework (TFPPy-BDOH) through integrating biphenyl diamine and pyrene unit into the π-conjugated framework. TFPPy-BDOH has an excellent selectivity to uranium due to the synergistic effect of nitrogen atom in the imine bond and hydroxyl groups in conjugated framework. It can achieve ultra-fast fluorescence response time (2 s) and ultra-low detection limit (8.8 nM), which may be attributed to its intrinsic regular porous channel structures and excellent hydrophilicity. More excitingly, TFPPy-BDOH can chemically reduce soluble U (VI) to insoluble U (IV), and release the binding site to adsorb additional U (VI), achieving high adsorption capacity of 982.6 ± 49.1 mg g-1. Therefore, TFPPy-BDOH can overcome the challenges faced by current amidoxime-based adsorbents, making it as a potential adsorbent in practical applications.
Collapse
Affiliation(s)
- Cheng-Peng Niu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
25
|
Guo R, Liu Y, Huo Y, Zhang A, Hong J, Ai Y. Chelating effect between uranyl and pyridine N containing covalent organic frameworks: A combined experimental and DFT approach. J Colloid Interface Sci 2022; 606:1617-1626. [PMID: 34500163 DOI: 10.1016/j.jcis.2021.08.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for removing heavy metal ions, and have high crystallinity, a porous structure, and conjugated stability. N-containing functional groups are known to have great affinity for uranyl ions. In this work, to explore the peculiarity of the pyridine N structure as an efficient adsorbent, we chose 2,2'-dipyridine-5,5'-diamine (Bpy) and pyridine-2,5'-diamine (Py) as the core skeletons, and 1,3,5-triformylphloroglucinol (Tp) as the linker to synthesize two crystalline and stable N-containing COFs named TpBpy and TpPy, respectively, through a facile solvothermal method. Characterization results demonstrated that TpBpy and TpPy possessed regularly growing pore sizes, large specific surface areas and relatively strong thermal resistances. The results of batch experiments showed that both COF materials were capable of the effective removal of uranyl with uptake capacities of 115.45 mg g-1 and 291.79 mg g-1, respectively. In addition, density functional theory (DFT) simulations highlighted the beneficial chelation effect of the double N structure in pyridine monomers for removing uranyl ions. Combining systematic experimental and theoretical analyses, the adsorption process and interaction mode of porous COFs and UO22+ were revealed, to provide predictable support for the application of pyridine N-containing COFs in the field of environmental remediation.
Collapse
Affiliation(s)
- Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
26
|
Lv MX, Jiang S, Wang C, Dong Q, Bai FY, Xing YH. Heterocyclic compounds bearing s-triazine and cyclotriphosphazene scaffolds: facile synthesis, hydrogen-bonded organic framework construction and fluorescent amine sensing. CrystEngComm 2022. [DOI: 10.1039/d2ce00717g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of fluorescent heterocyclic compounds bearing s-triazine and cyclotriphosphazene scaffolds for researching the structure–property relationship and high-efficiency amine sensing is still challenging.
Collapse
Affiliation(s)
- Mei-Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Qi Dong
- Sinopec Maoming Petrochemical Company Ltd., Maoming 525000, P.R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| |
Collapse
|
27
|
Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119675] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Gendy EA, Oyekunle DT, Ali J, Ifthikar J, El-Motaleb Mosad Ramadan A, Chen Z. High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 238-239:106710. [PMID: 34481100 DOI: 10.1016/j.jenvrad.2021.106710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Dealing with unwanted nuclear waste is still a serious issue from the point of view of humans and the environment because of its harmful and dangerous effects. Recently, porous organic frameworks (POFs) have gained an increasing concern as effective materials in the removal of various types of hazardous metal ions, especially radioactive metal ions. POFs are a unique class that included covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) with strong covalent bonds, large surface area, high adsorption capacity, tunable porosity, and a porous structure with more efficient than conventional adsorbents. This review highlights the recent developments of POFs for the rapid elimination of radionuclide. The unique characteristics, adsorption properties, and interaction mechanisms between radioactive metal ions and the POF-based materials are summarized. Also, prospects for enhancing the performance of POFs to capture radioactive metal ions are discussed.
Collapse
Affiliation(s)
- Eman Abdelnasser Gendy
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Daniel Temitayo Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jawad Ali
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Abd El-Motaleb Mosad Ramadan
- Chemistry Department, Faculty of Science, Kafrelsheikh University, El-Geish Street, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
29
|
Adsorption optimization of uranium(VI) onto polydopamine and sodium titanate co-functionalized MWCNTs using response surface methodology and a modeling approach. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Wang YQ, Wang H, Feng Y, Zhang ZB, Cao XH, Liu YH. Effect of Zr(IV) to phosphorus ratio on U(VI) adsorption by diethylenetriamine-pentamethylene phosphate Zr(IV) hybrids. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In this work, diethylenetriamine pentamethylenephosphonic acid (DTPMP) was ultilized into preparing of Zr(IV) organophosphates hybrids (Zr-DTPMP-x, x was the molar ratio of Zr(IV)/DTPMP in the synthetic process, x = 0.5, 1, 2, and 3) using a hydrothermal method. The physical and chemical properties of Zr-DTPMP-x were characterized by SEM&EDS, FT-IR, XRD, Zeta potential, XPS, TGA and contact angle analysis. Moreover, the adsorptive performances of Zr-DTPMP-x for U(VI) were investigated. The adsorption results showed that the optimum molar ratio of Zr(IV) to phosphine, pH, equilibrium time, and dosage was 0.5, 4.0, 180 min, and 10 mg, respectively. Besides, the adsorption of U(VI) was in accordance with the pseudo-second-order kinetic model and Sips isothermal model. Moreover, the adsorption capacity determined by Sips isothermal model was 181.34 mg g−1 for Zr-DTPMP-0.5. Furthermore, the adsorptive selectivity of Zr-DTPMP-0.5 for U(VI) was superior than the others. Zr-DTPMP-0.5 may be a powerful candidate for diminishing the contamination of U(VI).
Collapse
Affiliation(s)
- You-qun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology , Nanchang , Jiangxi , 330013 , China
- Engineering Research Center of Nuclear Technology Application (East China University of Technology), Ministry of Education , Nanchang , Jiangxi , 330013 , China
| | - Huan Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology , Nanchang , Jiangxi , 330013 , China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology , Nanchang , Jiangxi , 330013 , China
| | - Yue Feng
- Department of Architectural Design , Nuclear Power Institute of China , Chengdu , Sichuan , 610000 , China
| | - Zhi-bin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology , Nanchang , Jiangxi , 330013 , China
- Engineering Research Center of Nuclear Technology Application (East China University of Technology), Ministry of Education , Nanchang , Jiangxi , 330013 , China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology , Nanchang , Jiangxi , 330013 , China
| | - Xiao-hong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology , Nanchang , Jiangxi , 330013 , China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology , Nanchang , Jiangxi , 330013 , China
| | - Yun-hai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology , Nanchang , Jiangxi , 330013 , China
- Engineering Research Center of Nuclear Technology Application (East China University of Technology), Ministry of Education , Nanchang , Jiangxi , 330013 , China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology , Nanchang , Jiangxi , 330013 , China
| |
Collapse
|
31
|
Phytic acid-decorated porous organic polymer for uranium extraction under highly acidic conditions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sun Y, Zhang H, Yuan N, Ge Y, Dai Y, Yang Z, Lu L. Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125282. [PMID: 33582468 DOI: 10.1016/j.jhazmat.2021.125282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
A simple strategy to prepare cost-effective adsorbent materials for the removal of U(VI) in radioactive wastewater is of great significance to environmental protection. Here, activated orange peel was used as a precursor for the synthesis of biomass charcoal, and then a phosphorylated honeycomb-like porous carbon (HLPC-PO4) material was prepared through simple phosphorylation modification. FT-IR and XPS showed that P-O-C, P-C, and P˭O bonds appeared in HLPC-PO4, indicating that the phosphorylation process is mainly the reaction of C-O bonds on the surface of the material with -PO4. The results of the batch experiments showed that the uptake equilibrium of HLPC-PO4 to U(VI) occurred within 20 min, and the kinetic simulation showed that the process was monolayer chemical adsorption. Interestingly, the maximum U(VI) uptake capacity of HLPC-PO4 at T = 298.15 K and pH = 6.0 was 552.6 mg/g, which was more than 3 times that of HLPC. In addition, HLPC-PO4 showed an adsorption selectivity of 70.1% for U(VI). After 5 cycles, HLPC-PO4 maintained its original adsorption capacity of 90.5%. The adsorption mechanism can be explained as the complexation of U(VI) with P-O and P˭O on the surface of the adsorbent, confirming the strong bonding ability of -PO4 to U(VI).
Collapse
Affiliation(s)
- Yanbing Sun
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Haoyan Zhang
- The Fourth Research and Design Engineering Institute of China National Nuclear Corporation, Shijiazhuang, Hebei 050022, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Nan Yuan
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Yulin Ge
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhen Yang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China.
| | - Liang Lu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China.
| |
Collapse
|
33
|
Wang Y, Xie Y, Zheng Z, Zeng D, Dai Y, Zhang Z, Cao X, Zou R, Liu Y. Surfactant-assisted adsorption of uranyl ions in aqueous solution on TiO 2/polythiophene nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37182-37194. [PMID: 33713259 DOI: 10.1007/s11356-021-12587-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In this work, hexadecyltrimethylammonium-bromide (HTAB)-modified polythiophene (PTh)/TiO2 nanocomposite (HTAB/PTh/TiO2) was applied to remove uranyl ions (UO22+). FT-IR, XRD, ζ potential, TGA, SEM, and XPS were utilized to obtain the chemical and physical properties of HTAB/PTh/TiO2. The effects of HTAB content, preparation temperature, and adsorption conditions on UO22+ removal were investigated comprehensively. And the UO22+ adsorption process on HTAB/PTh/TiO2 was fitted to the Sips model with a saturated adsorption capacity of 234.74 mg/g, which was 6 times over TiO2. The results suggested that the surfactant of HTAB can significantly improve the adsorption ability of TiO2 for UO22+ ions. This work provides a strategy of surfactant modification for enhancing the separation and recovery ability of adsorbent toward UO22+ in the radioactive wastewater.
Collapse
Affiliation(s)
- Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yinghui Xie
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhiyang Zheng
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Dejun Zeng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| | - Rong Zou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Engineering Research Center of Nuclear Technology Application, East China University of Technology, Nanchang, 330013, Jiangxi, China.
- Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
34
|
Amidoximated polyorganophosphazene microspheres with an excellent property of U(VI) adsorption in aqueous solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07744-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Abid A, Razzaque S, Hussain I, Tan B. Eco-Friendly Phosphorus and Nitrogen-Rich Inorganic–Organic Hybrid Hypercross-linked Porous Polymers via a Low-Cost Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amin Abid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Science (LUMS), D.H.A., Lahore 54792, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
36
|
Kumar P, Das A, Maji B. Phosphorus containing porous organic polymers: synthetic techniques and applications in organic synthesis and catalysis. Org Biomol Chem 2021; 19:4174-4192. [PMID: 33871521 DOI: 10.1039/d1ob00137j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The phosphorus-containing porous organic polymer is a trending material for the synthesis of heterogeneous catalysts. Decades of investigations have established phosphines as versatile ligands in homogeneous catalysis. Recently, phosphine-based heterogeneous catalysts were synthesized to exploit the same electronic properties while leveraging extra stability and reusability. In the last few decades, the catalysts were applied in diverse organic transformations, including hydroformylation, hydrogenation, C-C, C-N and C-X coupling, hydrosilylation, oxidative-carbonylation reactions, and so on. However, even though these polymers possess a multifunctional character, they face multiple synthetic issues in controlling the pore size, increasing the surface area, and creating a single type of active site. This review summarizes the developments in this field over the last few decades, highlighting the current limitation and future scope.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
37
|
Construction of Deino-flr-2 radiation-tolerant genetically engineered strain containing flr-2 fluoride-tolerant gene and its enrichment behavior for U(VI). J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07697-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Wang Y, Hu X, Liu Y, Li Y, Lan T, Wang C, Liu Y, Yuan D, Cao X, He H, Zhou L, Liu Z, Chew JW. Assembly of three-dimensional ultralight poly(amidoxime)/graphene oxide nanoribbons aerogel for efficient removal of uranium(VI) from water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142686. [PMID: 33071143 DOI: 10.1016/j.scitotenv.2020.142686] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Assembling graphene oxide nanoribbons (GONRs) into three-dimensional (3D) materials with controllable and desired structure is an effective way to expand their structural features and enable their practical applications. In this work, an ultralight 3D porous amidoxime functionalized graphene oxide nanoribbons aerogel (PAO/GONRs-A) was prepared via solvothermal polymerization method using acrylonitrile as monomer and GONRs as solid matrices for selective separation of uranium(VI) from water samples. The PAO/GONRs-A possessed a high nitrogen content (13.5%), low density (8.5 mg cm-3), and large specific surface area (494.9 m2 g-1), and presented an excellent high adsorption capacity of uranium, with a maximum capacity of 2.475 mmol g-1 at a pH of 4.5, and maximum uranium-selectivity of 65.23% at a pH of 3.0. The results of adsorption experiments showed that U(VI) adsorption on PAO/GONRs-A was a pH-dependent, spontaneous and endothermic process, which was better fitted to the pseudo-second-order kinetic model and Langmuir isotherm model. Both X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations revealed that U(VI) adsorption on PAO/GONRs-A mainly did rely on the amidoxime groups anchored on the aerogel while UO2(PAO)2(H2O)3 was dominant after interaction of uranyl with PAO/GONRs-A. Therefore, as a candidate adsorbent, PAO/GONRs-A has a high potential for the removal of uranium from aqueous solutions.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Xuewen Hu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yuting Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yang Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yan Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Dingzhong Yuan
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Xiaogang Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Houjun He
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Limin Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
39
|
Fernandes SPS, Kovář P, Pšenička M, Silva AMS, Salonen LM, Espiña B. Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15053-15063. [PMID: 33760592 DOI: 10.1021/acsami.0c18808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.
Collapse
Affiliation(s)
- Soraia P S Fernandes
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Petr Kovář
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Milan Pšenička
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Artur M S Silva
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura M Salonen
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
40
|
Zhu M, Liu L, Feng J, Dong H, Zhang C, Ma F, Wang Q. Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Lu X, Li S, Guo W, Zhang F, Qu F. A covalent organic polymer-TiO 2/Ti 3C 2 heterostructure as nonenzymatic biosensor for voltammetric detection of dopamine and uric acid. Mikrochim Acta 2021; 188:95. [PMID: 33619673 DOI: 10.1007/s00604-021-04755-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Heterostructures have potential to blend the advantages of each material, even exhibiting the evolutionary performance due to synergistic effects. Herein, covalent organic polymers (NUF) are integrated with a TiO2/Ti3C2Tx nanocomposite (TiO2/TiCT) to form TiO2/TiCT-NUF heterojunctions as an enlarged nonenzymatic biosensor for dopamine (DA) and uric acid (UA). Detection is performed by differential pulse voltammetry (DPV). The TiO2/TiCT/NUF exhibits high sensing activity with low detection limits of 0.2 and 0.18 nM (S/N = 3) in the concentration ranges from 0.002 to 100 μM and 0.001 to 60 μM for simultaneous determination of DA and UA, respectively. In addition, the TiO2/TiCT/NUF provides good selectivity and reproducibility for DA and UA detection in urine and serum samples with recoveries of 98.4 to 100.9%. The proposed heterojunctions manifest an intriguing potential as a candidate of an electrochemical sensor for sole and simultaneous detection of DA and UA.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Songnan Li
- Modern Experiment Center, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, People's Republic of China.
| |
Collapse
|
42
|
|
43
|
Ali Z, Basharat M, Wu Z. A Review on the Morphologically Controlled Synthesis of Polyphosphazenes for Electrochemical Applications. ChemElectroChem 2021. [DOI: 10.1002/celc.202001352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zahid Ali
- State Key Laboratory of High-Performance Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Ministry of Education Beijing 100029 P.R. China
| | - Majid Basharat
- State Key Laboratory of High-Performance Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Ministry of Education Beijing 100029 P.R. China
| | - Zhanpeng Wu
- State Key Laboratory of High-Performance Carbon Fiber and Functional Polymers Beijing University of Chemical Technology Ministry of Education Beijing 100029 P.R. China
| |
Collapse
|
44
|
Xue R, Zheng YP, Zhang L, Xu DY, Qian DQ, Liu YS, Rao HH, Huang SL, Yang GY. A novel 2D mesoporous phosphazene-anthraquinone-based covalent organic polymer: synthesis, characterization and supercapacitor applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj01456k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel phosphazene anthraquinone-based covalent organic polymer (HD-1) was successfully designed and synthesized through a simple polymerization reaction. The as-prepared material was used as an electrode active material for a supercapacitor.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yan-Ping Zheng
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Da-Ying Xu
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - De-Quan Qian
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Yin-Sheng Liu
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Hong-Hong Rao
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
45
|
Yu F, Song F, Wang R, Xu M, Luo F. Sulfonated perylene-based conjugated microporous polymer as a high-performance adsorbent for photo-enhanced uranium extraction from seawater. Polym Chem 2021. [DOI: 10.1039/d0py01656j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A sulfonated perylene-based adsorbent is prepared for photo-enhanced uranium extraction from seawater. Owing to the photo-enhanced effect, the uranium extraction capacity of PyB-SO3H in seawater reaches 1989 mg g−1, with 90% extraction efficiency.
Collapse
Affiliation(s)
- Fengtao Yu
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang
| | - Fangru Song
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang
| | - Runze Wang
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang
| | - Mei Xu
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang
| |
Collapse
|
46
|
Luo J, Xu Y, Zhu Q, Zhang K, Chen F, Yu X, Huang Z, Xiao F, Peng G. A novel magnetic functionalized m-carboxyphenyl azo calix[4]arene symmetric sulfide derivative: synthesis and application as a selective adsorbent for removal of U (VI). J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Xu F, Wei M, Zhang X, Wang Y. Effect of hydrophilicity on water transport through sub-nanometer pores. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Dong Z, Zhang Z, Zhou R, Dong Y, Wei Y, Zheng Z, Wang Y, Dai Y, Cao X, Liu Y. Facile construction of Fe, N and P co-doped carbon spheres by carbothermal strategy for the adsorption and reduction of U(vi). RSC Adv 2020; 10:34859-34868. [PMID: 35514430 PMCID: PMC9056867 DOI: 10.1039/d0ra06252a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
In this work, nitrogen and phosphorus co-doped magnetic carbon spheres encapsulating well-dispersed active Fe nanocrystals (Fe/P-CN) were fabricated via a simple copolymer pyrolysis strategy. Benefiting from heteroatoms doping, Fe/P-CN could primarily adsorb soluble U(vi) ions through abundant functional groups, and subsequently, the adsorbed U(vi) could be reduced to insoluble U(iv) by Fe nanocrystals. Fe/P-CN pyrolyzed at 800 °C (Fe/P-CN-800) exhibited excellent U(vi) removal capacity of 306.76 mg g−1, surpassing nitrogen and phosphorus co-doped carbon spheres and nano zero-valent iron. In addition, the magnetic separation and thermal reactivation properties endow Fe/P-CN-800 with excellent reusability. This research, especially, provides a promising synergistic adsorption and reduction strategy to effectively remove U(vi) using heteroatom-doped composites. The constructed novel magnetic carbon sphere co-doped by N, P, Fe (Fe/P-CN) exhibits high U(vi) removal efficiency, excellent magnetic separation and reusability, evidencing the potential practical applications in environmental remediation.![]()
Collapse
Affiliation(s)
- Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Runze Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yuanyuan Wei
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Zhijian Zheng
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology Nanchang Jiangxi 330013 P. R. China
| |
Collapse
|
49
|
Wang L, Deng M, Xu H, Li W, Huang W, Yan N, Zhou Y, Chen J, Qu Z. Selective Reductive Removal of Silver Ions from Acidic Solutions by Redox-Active Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37619-37627. [PMID: 32814408 DOI: 10.1021/acsami.0c11463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The selective removal and recovery of silver ions from an aqueous solution is necessary, owing to the toxicity, persistency, and recoverable value. Herein, we first reported that silver ions could be selectively removed from an acidic solution by utilizing redox-active covalent organic framework (COF) materials as an adsorbent, resulting in the loading of Ag nanoparticles (NPs) with a narrow size distribution onto the framework simultaneously. The redox-active COF not only showed promising performance in adsorbing silver ions but also had a high selectivity at a low pH value. Subsequently, it was found that the N sites of amine groups within the framework took responsibility for the Ag NP generation after the systematic investigation on the redox adsorption mechanism. Furthermore, the recycled Ag@COF materials could be further used as new adsorbents to remove Hg(II) ions from water via NPs as a "bridge", exhibiting ultrahigh atomic utilization (>100%). Accordingly, this work not only provides a novel insight for the use of redox-active COF in the removal of metal ions but also opens a new field for designing of functionalized COF for their potential application in diverse areas.
Collapse
Affiliation(s)
- Longlong Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mei Deng
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiwei Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongxian Zhou
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Jisai Chen
- CSSC Nanjing Luzhou Environmental Protection Co., Ltd., Nanjing 210039, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
50
|
Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07270-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|