1
|
Zhang Y, Guo C, Wu R, Hou S, Liu Y, Zhao J, Jiang M, Xu J, Wu F. Global occurrence, distribution, and ecological risk assessment of psychopharmaceuticals and illicit drugs in surface water environment: A meta-analysis. WATER RESEARCH 2024; 263:122165. [PMID: 39084090 DOI: 10.1016/j.watres.2024.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Psychopharmaceuticals and illicit drugs (PIDs) in aquatic environments can negatively impact ecosystem and human health. However, data on the sources, distribution, drivers, and risks of PIDs in global surface waters are limited. We compiled a dataset of 331 records spanning 23 PIDs in surface waters and sediments across 100 countries by conducting a systematic review and meta-analysis of 108 studies published between 2005 and 2022. Most PIDs were sewage-derived, as wastewater treatment rarely achieved complete removal. The highest total PID levels were in Ethiopia, Australia, and Armenia, with many highly contaminated samples from low- and middle-income countries with minimal prior monitoring. Socioeconomic factors (population, GDP) and environmental variables (water stress) influenced the distribution of PIDs. 3,4-Methylenedioxy amphetamine hydrochloride (MDA), Δ9-tetrahydrocannabinol (THC), and 11- Δ9‑hydroxy-tetrahydrocannabinol (THCOH) posed the greatest ecological risks, especially in Oceania and North America. PIDs in surface waters present risks to aquatic organisms. Our findings elucidate the current status and future directions of PID research in surface waters and provide a scientific foundation for evaluating ecological risks and informing pollution control policies.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minyu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Zhang Q, Wu T, Luo C, Xie H, Wang D, Peng J, Wu K, Huang W. Ecotoxicological risk assessment of the novel psychoactive substance Esketamine: Emphasis on fish skeletal, behavioral, and vascular development. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135823. [PMID: 39278034 DOI: 10.1016/j.jhazmat.2024.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Novel psychoactive substances (NPS), such as Esketamine (Esket), often contaminate the aquatic ecosystems following human consumption, raising concerns about the residues and potential ecological hazards to non-target organisms. The study used zebrafish as a model organism to investigate the developmental toxicity and ecotoxicological effects of acute Esket exposure. Our findings demonstrate that exposure to Esket significantly affected the early development and angiogenesis of zebrafish embryos/larvae. The mandible length was significantly decreased, and the angles between the pharyngeal arch cartilages were narrowed compared to the control group (all P < 0.05). Additionally, Esket resulted in a decrease of 47.6-89.8 % in the number of neural crest cells (NCC). Transcriptome analysis indicated altered expression of genes associated with cartilage and osteoblast growth. Moreover, Esket significantly inhibited swimming ability in zebrafish larvae and was accompanied by behavioral abnormalities and molecular alterations in the brain. Potential mechanisms underlying Esket-induced behavioral disorders involve neurotransmitter system impairment, abnormal cartilage development and function, aberrant vascular development, as well as perturbations in oxidative stress and apoptosis signaling pathways. Notably, the dysregulation of skeleton development through the bone morphogenetic protein (BMP) signaling pathway is identified as the primary mechanistic behind Esket-induced behavioral disorder. This study enhances our understanding of Esket's ecotoxicology profile and provides a comprehensive assessment of the environmental risks associated with NPS.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou 515041, Guangdong, PR China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Han Xie
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Dinghui Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
3
|
Guo T, He Y, Mao S, Yang Y, Xie H, Zhang S, Dai S. Ketamine induces insomnia-like symptom of zebrafish at environmentally relevant concentrations by mediating GABAergic synapse. ENVIRONMENTAL TOXICOLOGY 2024; 39:3897-3905. [PMID: 38567678 DOI: 10.1002/tox.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Although the stimulative effects on the normal behaviors of fish posed by ketamine (KET) were well-studied, the adverse effects on the behavioral functions induced by KET at nighttime were unknown. Here, we used zebrafish larvae as a model exposed to KET (10, 50, 100, and 250 ng/L) at environmental levels for 21 days. The behavioral functions at nighttime, morphological changes during exposure stage, and alterations on the associated genes transcriptional levels of fish were determined. The difficultly initiating sleep was found in the fish exposed to KET, while the sleep duration of the animals was at the normal levels in exposure groups. The significant suppressions of the developmentally relevant genes, including bmp2, bmp4, and pth2ra were consistent with the developmental abnormalities of fish found in exposure groups. Moreover, the expression of γ-aminobutyric acid (GABA) receptor increased and melatonin (MTN) receptor decreased while the levels of GABA and MTN remained unchanged after exposure, by gene expression analysis and molecular docking. In addition, the transcriptional expression of apoptotic genes, including tp53, aifm1, and casp6, was significantly upregulated by KET. After a 7-day recovery, the insomnia-like behaviors (shorter sleep duration) were observed in zebrafish from the 250 ng/L-KET group. Accordingly, the adverse outcome pathway framework of KET was constructed by prognostic assessment of zebrafish larvae. This study suggested that the adverse outcomes of KET on the sleep health of organisms at environmentally relevant concentrations should be concerned.
Collapse
Affiliation(s)
- Tingting Guo
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Yuhang He
- West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengqiang Mao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongguan Xie
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Sifan Zhang
- Division of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Wang Y, Liang G, Chao J, Wang D. Comparison of intestinal toxicity in enhancing intestinal permeability and in causing ROS production of six PPD quinones in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172306. [PMID: 38593884 DOI: 10.1016/j.scitotenv.2024.172306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
As the derivatives of p-phenylenediamines (PPDs), PPD quinones (PPDQs) have received increasing attention due to their possible exposure risk. We compared the intestinal toxicity of six PPDQs (6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ and IPPDQ) in Caenorhabditis elegans. In the range of 0.01-10 μg/L, only 77PDQ (10 μg/L) moderately induced the lethality. All the examined PPDQs at 0.01-10 μg/L did not affect intestinal morphology. Different from this, exposure to 6-PPDQ (1-10 μg/L), 77PDQ (0.1-10 μg/L), CPPDQ (1-10 μg/L), DPPDQ (1-10 μg/L), DTPDQ (1-10 μg/L), and IPPDQ (10 μg/L) enhanced intestinal permeability to different degrees. Meanwhile, exposure to 6-PPDQ (0.1-10 μg/L), 77PDQ (0.01-10 μg/L), CPPDQ (0.1-10 μg/L), DPPDQ (0.1-10 μg/L), DTPDQ (1-10 μg/L), and IPPDQ (1-10 μg/L) resulted in intestinal reactive oxygen species (ROS) production and activation of both SOD-3::GFP and GST-4::GFP. In 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ exposed nematodes, the ROS production was strengthened by RNAi of genes (acs-22, erm-1, hmp-2, and pkc-3) governing functional state of intestinal barrier. Additionally, expressions of acs-22, erm-1, hmp-2, and pkc-3 were negatively correlated with intestinal ROS production in nematodes exposed to 6-PPDQ, 77PDQ, CPPDQ, DPPDQ, DTPDQ, and/or IPPDQ. Therefore, exposure to different PPDQs differentially induced the intestinal toxicity on nematodes. Our data highlighted potential exposure risk of PPDQs at low concentrations to organisms by inducing intestinal toxicity.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, China
| | - Jie Chao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Rodrigues DT, Padilha HA, Soares ATG, de Souza MEO, Guerra MT, Ávila DS. The Caenorhabditis elegans neuroendocrine system and their modulators: An overview. Mol Cell Endocrinol 2024; 586:112191. [PMID: 38382589 DOI: 10.1016/j.mce.2024.112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024]
Abstract
In this review we seek to systematically bring what has been published in the literature about the nervous system, endocrine system, neuroendocrine relationships, neuroendocrine modulations and endocrine disruptors in the alternative model Caenorhabditis elegans. The serotonergic, dopaminergic, GABAergic and glutamatergic neurotransmitters are related to the modulation of the neuroendocrine axis, leading to the activation or inhibition of several processes that occur in the worm through distinct and interconnected pathways. Furthermore, this review addresses the gut-neuronal axis as it has been revealed in recent years that gut microbiota impacts on neuronal functions. This review also approaches xenobiotics that can positively or negatively impact the neuroendocrine system in C. elegans as in mammals, which allows the application of this nematode to screen new drugs and to identify toxicants that are endocrine disruptors.
Collapse
Affiliation(s)
- Daniela Teixeira Rodrigues
- Graduation Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil
| | | | | | | | | | - Daiana Silva Ávila
- Graduation Program in Biological Sciences- Toxicological Biochemistry, Federal University of Santa Maria, RS, Brazil; Graduation Program in Biochemistry, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
7
|
Li SY, Shi WJ, Ma DD, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Effects of New Psychoactive Substance Esketamine on Behaviors and Transcription of Genes in Dopamine and GABA Pathways in Zebrafish Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:51. [PMID: 38556558 DOI: 10.1007/s00128-024-03883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Esketamine (ESK) is the S-enantiomer of ketamine racemate (a new psychoactive substance) that can result in illusions, and alter hearing, vision, and proprioception in human and mouse. Up to now, the neurotoxicity caused by ESK at environmental level in fish is still unclear. This work studied the effects of ESK on behaviors and transcriptions of genes in dopamine and GABA pathways in zebrafish larvae at ranging from 12.4 ng L- 1 to 11141.1 ng L- 1 for 7 days post fertilization (dpf). The results showed that ESK at 12.4 ng L- 1 significantly reduced the touch response of the larvae at 48 hpf. ESK at 12.4 ng L- 1 also reduced the time and distance of larvae swimming at the outer zone during light period, which implied that ESK might potentially decrease the anxiety level of larvae. In addition, ESK increased the transcription of th, ddc, drd1a, drd3 and drd4a in dopamine pathway. Similarly, ESK raised the transcription of slc6a1b, slc6a13 and slc12a2 in GABA pathway. This study suggested that ESK could affect the heart rate and behaviors accompanying with transcriptional alterations of genes in DA and GABA pathways at early-staged zebrafish, which resulted in neurotoxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Si-Ying Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Dong-Dong Ma
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jin-Ge Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zhi-Jie Lu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Xiao-Bing Long
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou, 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou, 510230, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Wang H, Xu J, Yuan Y, Wang Z, Zhang W, Li J. The Exploration of Joint Toxicity and Associated Mechanisms of Primary Microplastics and Methamphetamine in Zebrafish Larvae. TOXICS 2024; 12:64. [PMID: 38251019 PMCID: PMC10820113 DOI: 10.3390/toxics12010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The co-existence of microplastics (MPs) and methamphetamine (METH) in aquatic ecosystems has been widely reported; however, the joint toxicity and associated mechanisms remain unclear. Here, zebrafish larvae were exposed individually or jointly to polystyrene (PS) and polyvinyl chloride (PVC) MPs (20 mg/L) and METH (1 and 5 mg/L) for 10 days. The mortality, behavioral functions, and histopathology of fish from different groups were determined. PS MPs posed a stronger lethal risk to fish than PVC MPs, while the addition of METH at 5 mg/L significantly increased mortality. Obvious deposition of MPs was observed in the larvae's intestinal tract in the exposure groups. Meanwhile, treatment with MPs induced intestinal deposits and intestinal hydrops in the fish, and this effect was enhanced with the addition of METH. Furthermore, MPs significantly suppressed the locomotor activation of zebrafish larvae, showing extended immobility duration and lower velocity. METH stimulated the outcome of PS but had no effect on the fish exposed to PVC. However, combined exposure to MPs and METH significantly increased the turn angle, which declined in individual MP exposure groups. RNA sequencing and gene quantitative analysis demonstrated that exposure to PS MPs and METH activated the MAPK signaling pathway and the C-type lectin signaling pathway of fish, while joint exposure to PVC MPs and METH stimulated steroid hormone synthesis pathways and the C-type lectin signaling pathway in zebrafish, contributing to cellular apoptosis and immune responses. This study contributes to the understanding of the joint toxicity of microplastics and pharmaceuticals to zebrafish, highlighting the significance of mitigating microplastic pollution to preserve the health of aquatic organisms and human beings.
Collapse
Affiliation(s)
- Hao Wang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jindong Xu
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Yang Yuan
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Zhenglu Wang
- West China School of Public Health, West China Fourth Hospital Sichuan University, Chengdu 610041, China;
| | - Wenjing Zhang
- College of Oceanography, Hohai University, Nanjing 210098, China; (H.W.); (J.X.); (Y.Y.); (W.Z.)
| | - Jiana Li
- Ningbo Academy of Ecological, Environmental Sciences, Ningbo 315000, China
| |
Collapse
|
9
|
Wang Z. Caenorhabditis elegans as an In Vivo Model Organism to Elucidate Teratogenic Effects. Methods Mol Biol 2024; 2753:283-306. [PMID: 38285345 DOI: 10.1007/978-1-0716-3625-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Exogenous teratogens contribute to approximately 10% of the human abnormality with exposure occurrence during the prenatal and fetal period. However, the assessment methods and underlying mechanism remain unclear. The nematode Caenorhabditis elegans has been recognized as one of the ideal model animals for toxicologic research as convenient culture, low cost, and complete phenotypes and genomic profiling. This chapter describes the protocols about the estimations on the teratogenic effects using nematodes as model organisms, including the growth, development, behavior, reproduction, energy balance, and transgenes.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Yu Y, Tan S, Xie D, Li H, Chen H, Dang Y, Xiang M. Photoaged microplastics induce neurotoxicity associated with damage to serotonergic, glutamatergic, dopaminergic, and GABAergic neuronal systems in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165874. [PMID: 37517734 DOI: 10.1016/j.scitotenv.2023.165874] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that cause neurotoxicity in various organisms. MPs are typically affected by light irradiation and undergo photoaging. However, the neurotoxic effects of photoaged polystyrene (P-PS) and its underlying mechanisms remain unclear. In this study, locomotion behaviors, neuronal development, neurotransmitter levels, and the expression of neurotransmission-related genes were investigated in Caenorhabditis elegans exposed to P-PS at environment-relevant concentrations (0.1-100 μg/L). The characterization results showed that photoaging accelerated the aging process and changed the physicochemical properties of the MPs. The toxicity results suggested that exposure to 1-100 μg/L P-PS caused more severe neurotoxicity than virgin polystyrene (V-PS) with endpoints of head thrashes, body bends, wavelength, and mean amplitude. Exposure to P-PS also altered the fluorescence intensity and neurodegeneration percentage of serotonergic, glutamatergic, dopaminergic, and aminobutyric acid (GABA) in transgenic nematodes. Similarly, significant reductions in the levels of these neurotransmitters were also observed. Based on Pearson's correlation, locomotion behaviors were negatively correlated with the neurotransmission of serotonin, glutamate, dopamine, and GABA. Further investigation suggested that the expression of neurotransmitter-related genes (e.g., tph-1, eat-4, and unc-46) was significantly altered in the nematodes. Collectively, the neurotoxic effects of P-PS were attributed to abnormal neurotransmission. This study highlights the potential toxicity of MPs photoaged under environmentally relevant conditions.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
11
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
12
|
Yu Y, Xie D, Yang Y, Tan S, Li H, Dang Y, Xiang M, Chen H. Carboxyl-modified polystyrene microplastics induces neurotoxicity by affecting dopamine, glutamate, serotonin, and GABA neurotransmission in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130543. [PMID: 36493651 DOI: 10.1016/j.jhazmat.2022.130543] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in various environmental media and have potential toxicity. However, the neurotoxicity of carboxyl-modified polystyrene microplastics (PS-COOH) and their mechanisms remain unclear. In this study, Caenorhabditis elegans was used as a model to examine the neurotoxicity of polystyrene microplastic (PS) and PS-COOH concentrations ranging from 0.1 to 100 μg/L. Locomotion behavior, neuron development, neurotransmitter level, and neurotransmitter-related gene expression were selected as assessment endpoints. Exposure to low concentrations (1 μg/L) of PS-COOH caused more severe neurotoxicity than exposure to pristine PS. In transgenic nematodes, exposure to PS-COOH at 10-100 μg/L significantly increased the fluorescence intensity of dopaminergic, glutamatergic, serotonergic, and aminobutyric acid (GABA)ergic neurons compared to that of the control. Further studies showed that exposure to 100 μg/L PS-COOH can significantly affect the levels of glutamate, serotonin, dopamine, and GABA in nematodes. Likewise, in the present study, the expression of genes involved in neurotransmission was altered in worms. These results suggest that PS-COOH exerts neurotoxicity by affecting neurotransmission of dopamine, glutamate, serotonin, and GABA. This study provides new insights into the underlying mechanisms and potential risks associated with PS-COOH.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Dongli Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou 404100, China
| | - Yue Yang
- Xi 'an Jiaotong University Second Affiliated Hospital, Xi 'an 710004, China
| | - Shihui Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
13
|
Aydın S, Ulvi A, Aydın ME. Monitoring and ecological risk of illegal drugs before and after sewage treatment in an area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:294. [PMID: 35332403 DOI: 10.1007/s10661-022-09974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the occurrence of illicit drugs and their metabolites in the sewerage systems and in the influent and effluent of wastewater treatment plant (WWTP) in Konya, Turkey, was presented. The drug removal efficiencies of the central WWTP were investigated. Potential ecotoxicological risks for algae, fish, and Daphnia magna in the receiving environments were also evaluated. The highest estimated mean illicit drug use was obtained for cannabis (marijuana) at 280 ± 12 mg/day/1000 inhabitants and 430 ± 20 g/day/1000 inhabitants (15-64 years). Amphetamine was found to be the second most consumed drug of abuse. While cannabis and ecstasy consumption values were higher during the weekend, cocaine use dominated on weekdays. The removal efficiencies for THC-COOH and THC-OH were 100% in the WWTP. The average removal of cocaine, amphetamine, methamphetamine, MDMA, MDA, and methadone varied between 46 ± 7 and 87 ± 3%. The maximum concentration level of MDMA found can pose some low risk for Daphnia magna. The rest of the compounds detected in effluents did not show any toxic effects on fish, Daphnia magna, or algae. However, when the cumulative estimated risk quotient values were evaluated, there might be a low risk for Daphnia magna and algae in the receiving environment.
Collapse
Affiliation(s)
- Senar Aydın
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydın
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
14
|
Wang W, Zhang H, Guo C, Liu W, Xu J. Stereoselective profiling of methamphetamine in a full-scale wastewater treatment plant and its biotransformation in the activated sludge batch experiments. WATER RESEARCH 2022; 209:117908. [PMID: 34872029 DOI: 10.1016/j.watres.2021.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The stereoselective biotransformation of methamphetamine (METH), as a chiral compound, during biological treatment in wastewater treatment plants (WWTPs) is often ignored. In this study, a non-racemic form of METH was detected in the raw influent of a full-scale WWTP, with S-(+)-METH as the predominant enantiomer. Stereoselective biotransformation of METH in favor of S-(+)-METH occurred in anaerobic/anoxic and aerobic processes, resulting in the detection of R-(-)-METH as the only enantiomer in the secondary sedimentation tank. To evaluate the stereoselective biotransformation of METH in an activated sludge system, controlled laboratory experiments were conducted under aerobic and anaerobic conditions. Different stereoselective enrichment was observed in a racemic METH batch experiment at various initial concentrations. Batch experiment results with different initial concentrations of nutrient substances demonstrated that the biotransformation of S-(+)-METH occurred simultaneously with the biodegradation of COD and NH4+-N, proving its cometabolism nature. Enzymes released under microbial starvation stress likely stimulated R-(-)-METH biotransformation. Compared with the biotransformation rate of METH under the anaerobic condition, the presence of dissolved oxygen led to a higher biotransformation rate of METH under the aerobic condition.
Collapse
Affiliation(s)
- Weimin Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Wu J, Huang B, Yuan K, Wang Y, Chen B, Luan T. Occurrence, mass loads, and ecological risks of amphetamine-like substances in a rural area of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149058. [PMID: 34303256 DOI: 10.1016/j.scitotenv.2021.149058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and levels of amphetamine like substances (ALSs) in various environments, as a group of illicit psychoactive substances, have attracted great attention due to their potential ecological risks. In this study, three ALSs (i.e., ephedrine (EPH), amphetamine (AMP) and methamphetamine (METH)) in the raw domestic wastewater (RDW) and surface river water (SRW) collected from the rural area in South China were analyzed. METH was identified as the prevalent and dominant ALS in the RDW, which was detected in approximately 99.0% of the samples with a mean concentration of 0.7 μg·L-1, followed by AMP and EPH. Consistent trend was also found in the SRW collected from the same region. METH concentrations in the SRW were significantly and positively correlated with those in the RDW (p < 0.05), indicating that the discharge of RDW could be the important source of METH in the nearby rivers. The mean mass load of METH in the study rural area was about 65.8 mg·day-1·1000 inhabitants-1. Source apportionment showed that the abuse consumption was the main source of METH at most of sampling towns in the investigated rural area, and the mean mass load of METH at these towns (24.5 mg·day-1·1000 inhabitants-1) might reflect the abuse level of METH in this region. The disposal and illegal synthesis of METH could be important point sources, which led to the elevated METH level in the RDW. Risk assessment demonstrated that ALSs posed a minimal or medium risk to aquatic organisms. Our results provided valuable insights into the mass loads, source characteristics and ecological risks of ALSs in the rural area.
Collapse
Affiliation(s)
- Junhui Wu
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Bi Huang
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yuru Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| |
Collapse
|
16
|
Yin X, Guo C, Deng Y, Jin X, Teng Y, Xu J, Wu F. Tissue-specific accumulation, elimination, and toxicokinetics of illicit drugs in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148153. [PMID: 34144238 DOI: 10.1016/j.scitotenv.2021.148153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The abuse of illicit drugs has led to their extensive detection worldwide and subsequently exerted adverse effects upon aquatic organisms and ecosystem. However, less attention has been paid to the uptake, biotransformation, internal distribution, and toxicokinetic processes in the exposed organisms. In this study, zebrafish (Danio rerio) was exposed to methamphetamine (METH) and ketamine (KET) at three different concentrations in a semi-static exposure system. METH and KET, together with their metabolites, amphetamine (AMP) and norketamine (NK), were consistently detected in zebrafish. Over 14-day exposure, the relative magnitude of mean concentrations of illicit drugs in zebrafish generally followed the order of brain > liver > intestine > ovary > muscle. The uptake rate constants (Ku) of METH and KET were in the range of 0.590-1.38 × 103 L/(kg·d), the elimination rate constants (Ke) were in the range of 0.18-6.98 1/d, and the half-lives were in the range of 0.18-6.98 d, respectively. METH and KET demonstrated relatively rapid uptake and elimination kinetics and short half-lives, and concentrations in organs were driven by external concentrations. Illicit drugs were not persistent within zebrafish organs when there were no substantial external contaminant sources. The observed values of bioconcentration factor (BCFo, L/kg) and kinetically-derived bioconcentration factor (BCFk, L/kg) were at the similar level. The ability of different zebrafish organs accumulating target chemicals from the aquatic environment was different, and brain was the target organ of the test illicit drugs.
Collapse
Affiliation(s)
- Xingxing Yin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanghui Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Dai S, Wang Z, Yang Y, Li X. Ketamine induction of physiological functions alterations in Caenorhabditis elegans by chronic and multigenerational exposure and corresponding aquatic environmental risk assessment. CHEMOSPHERE 2021; 288:132486. [PMID: 34637863 DOI: 10.1016/j.chemosphere.2021.132486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Although ketamine (KET) has been widely detected in aquatic environments, the ecotoxicity data in aquatic invertebrates and associated risk remained unclear. This study aimed to investigate the adverse effects on benthos (Caenorhabditis elegans (C.elegans)) posed by KET from chronic (10 days) and multigenerational (four generations) exposure. Such exposure induced dose-dependent alterations on apoptosis, reactive oxygen species (ROS) induction, locomotion activity, feeding rate, chemotaxis, and brood size of nematodes, showing a cumulative damage through generations. KET posed vulva deformations and worm bags of C. elegans with a dosed-dependent increase. As a consequence, the fecundity and viability of worms would be impaired, which could eventually impact aquatic ecosystem equilibrium. Meanwhile, the bioactivation/detoxification process of xenobiotics and longevity regulating pathway induced by KET might be responsible for the physiological function disorders. Accordingly, the risk quotients (RQ) of KET in surface water in China were calculated using the 90% indicator protection concentration (C0.1) derived from multiple toxicity indicators cumulative analyses. The results would be more objective considering numerous biomarkers changes of one species in comparison with traditional method using no observed effect concentrations (NOEC) of teratogenesis. The risk in surface water in southern China was up to high level (RQ > 1), suggesting long-term monitoring was imperative.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Ying Yang
- Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| |
Collapse
|
18
|
Quantitative behavioural phenotyping to investigate anaesthesia induced neurobehavioural impairment. Sci Rep 2021; 11:19398. [PMID: 34588499 PMCID: PMC8481492 DOI: 10.1038/s41598-021-98405-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Anaesthesia exposure to the developing nervous system causes neuroapoptosis and behavioural impairment in vertebrate models. Mechanistic understanding is limited, and target-based approaches are challenging. High-throughput methods may be an important parallel approach to drug-discovery and mechanistic research. The nematode worm Caenorhabditis elegans is an ideal candidate model. A rich subset of its behaviour can be studied, and hundreds of behavioural features can be quantified, then aggregated to yield a 'signature'. Perturbation of this behavioural signature may provide a tool that can be used to quantify the effects of anaesthetic regimes, and act as an outcome marker for drug screening and molecular target research. Larval C. elegans were exposed to: isoflurane, ketamine, morphine, dexmedetomidine, and lithium (and combinations). Behaviour was recorded, and videos analysed with automated algorithms to extract behavioural features. Anaesthetic exposure during early development leads to persisting behavioural variation (in total, 125 features across exposure combinations). Higher concentrations, and combinations of isoflurane with ketamine, lead to persistent change in a greater number of features. Morphine and dexmedetomidine do not appear to lead to behavioural impairment. Lithium rescues the neurotoxic phenotype produced by isoflurane. Findings correlate well with vertebrate research: impairment is dependent on agent, is concentration-specific, is more likely with combination therapies, and can potentially be rescued by lithium. These results suggest that C. elegans may be an appropriate model with which to pursue phenotypic screens for drugs that mitigate the neurobehavioural impairment. Some possibilities are suggested for how high-throughput platforms might be organised in service of this field.
Collapse
|
19
|
Wang Z, Han S, Xu Z, Du P, Li X. Assessment on the adverse effects on different kinds of fish induced by methamphetamine during the natural attenuation process based on adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146587. [PMID: 33773348 DOI: 10.1016/j.scitotenv.2021.146587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The adverse effects on model fish induced by methamphetamine (METH) have been revealed. However, the toxicity of METH on different kinds of non-model fish during the natural attenuation remained unclear. Hence, in this study, we for the first time established a static lab-scale aquatic ecosystem spiked with METH (initial levels at 25 μg/L) for 40 days to estimate its metabolism and toxicity in Chinese medaka, rosy bitterling, loach, and mosquito fish. The concentrations of METH in water and fish's brain were detected termly. The physiological functions, histopathology of brain, neurotransmitters contents, and expressions of associated genes of the four kinds of fish were determined at day 0, 20, and 40, respectively. The results indicated METH could be remarkably accumulated in fish brains with the distribution factor vs water (DFw) at 232.5-folds, and attenuated both in water and fish body during the exposure. METH caused physiological functions (i.e., swimming trajectories, locomotion distances, and feeding rates) disorders of the four kinds of fish, and stimulated surfacing behavior of loach. Tissue and macro/micromolecular biomarkers including histopathology, neurotransmitters (i.e., dopamine, serotonin, and norepinephrine), and mRNA, were similarly affected by METH. Mitogen-activated protein kinase (MAPKs) signaling pathway, P53-regulated apoptosis signaling pathway, N-methyl-d-aspartate-dopamine system, and mTOR signaling pathway of different kinds of fish were regulated by METH. Additionally, the impairments of the physiological and macromolecular indicators of fish could be alleviated as the natural attenuation of METH occurred. All the biomarkers, as well as the recovery effects during the exposure were integrated onto an adverse outcome pathway (AOP) framework. The key event was the micromolecular indicators (genes). The adverse outcomes at individual and population levels would result in the ecological consequences, implying the imperative to consider the natural attenuation process while assessing the environmental risk of METH.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Zeqiong Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
20
|
Wang Z, Dai S, Wang J, Du W, Zhu L. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117696. [PMID: 34243081 DOI: 10.1016/j.envpol.2021.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECx) to derive the hazardous concentration for 10% indicators (C10) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C10 in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Lin Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
21
|
Spreafico C. A review about methods for supporting failure risks analysis in eco-assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:439. [PMID: 34160682 PMCID: PMC8222046 DOI: 10.1007/s10661-021-09175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
This paper critically reviewed 106 scientific papers proposing methods to enrich eco-assessment with failure determination and risk assessment. The provided research perspective is new and significantly different from the reviews in the literature which are mostly limited to analyse the environmental impacts of uncertainties and off-design functioning rather than the failures. The analysis, based on the contributions of the literature over more than 20 years, was carried out manually and allowed to identify and classify the application fields, the types of identifiable failures and the approaches used for their determination, for the analysis of their risk of occurrence and for their eco-assessment. The different classifications have also been intersected with each other and all the proposed approaches have been discussed in detail, highlighting the advantages and disadvantages in relation to eco-assessment. From the study emerged a growing and heterogeneous interest on the subject by the scientific community, and a certain independence of the analysed methods with respect to traditional approaches of both failure risk analysis and eco-assessment. Great attention of the methods about product functioning has been highlighted, in addition to the use of tests, simulations, FMEA (failure mode and effect analysis)-based approaches and knowledge databases to determine the failures, while statistical methods are preferred to support risks analysis and LCA (life cycle assessment) for environmental impact calculation. If, in the coming years, this argument also spreads in industry, the results provided by this review could be exploited as a first framework for practitioners.
Collapse
Affiliation(s)
- Christian Spreafico
- Department of Management, Information and Production Engineering, University of Bergamo, Via Marconi 5, Dalmine, 24044, Bergamo, Italy.
| |
Collapse
|
22
|
Wang Y, Liu SS, Huang P, Wang ZJ, Xu YQ. Assessing the combined toxicity of carbamate mixtures as well as organophosphorus mixtures to Caenorhabditis elegans using the locomotion behaviors as endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143378. [PMID: 33168241 DOI: 10.1016/j.scitotenv.2020.143378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 05/24/2023]
Abstract
Carbamate pesticides (CMs) and organophosphorus pesticides (OPs) have been widely used in agriculture and toxicologically affect non-target organisms. Although there are many reports about their toxicities, the combined behavioral toxicities of CM/OP mixtures on Caenorhabditis elegans have rarely been studied. In this study, body bend inhibition (BBI), head thrash inhibition (HTI), and swimming speed inhibition (SSI) by CMs and OPs were chosen as the toxicity endpoints. The locomotion behavioral toxicities of individual pesticides (carbofuran (CAR), methomyl (MET), chlorpyrifos (CPF), and triazophos (TAP)) and their binary mixtures on C. elegans were determined systematically and the toxicological interaction profiles of various CM/OP mixture rays constructed using the combination index. It was shown that four pesticides and their binary mixture rays have significant inhibitory effects on the locomotion behavior of C. elegans; that is, they produce locomotion behavioral toxicities and the toxicity of two OPs is higher than those of two CMs. The toxicological interactions in the binary CM and OP mixtures are different from each other. For example, one mixture ray (CAR-MET-R1) in the CM system on the SSI endpoint exhibits synergism at all concentration levels, another ray (CAR-MET-R3) displays low-dose synergism and high-dose additive action on BBI and HTI endpoints, and weak synergism at high-dose on SSI, and other rays perform additive action. Two rays (CPF-TAP-R1 and CPF-TAP-R2) in the OP mixture system display low-dose additive action and high-dose antagonism on the three endpoints. Another ray (CPF-TAP-R3) shows the additive action at all concentration levels. It can be concluded that it is not sufficient to evaluate the combined toxicity of binary CM/OP mixtures using only one concentration ratio ray and that it is necessary to examine multiple concentration ratios.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
23
|
Hossain MS, Kubec J, Guo W, Roje S, Ložek F, Grabicová K, Randák T, Kouba A, Buřič M. A combination of six psychoactive pharmaceuticals at environmental concentrations alter the locomotory behavior of clonal marbled crayfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141383. [PMID: 32882544 DOI: 10.1016/j.scitotenv.2020.141383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutically active compounds (PhACs) are ubiquitous in the aquatic environment worldwide and considered emerging contaminants. Their effects on growth, behavior, and physiological processes of aquatic organisms have been identified even at very low concentrations. Ecotoxicological investigations have primarily focused on single compound exposure, generally at a range of concentrations. In the natural environment, pollutants seldom occur in isolation, but little is known about the effects and risks of combinations of chemicals. This study aimed to investigate the effects of concurrent exposure to six psychoactive PhACs on locomotory behavior and life history traits of clonal marbled crayfish Procambarus virginalis. Crayfish were exposed to ~1 μg L-1 of the antidepressants sertraline, citalopram, and venlafaxine; the anxiolytic oxazepam; the opioid tramadol; and the widely abused psychostimulant methamphetamine. In the absence of shelter, exposed crayfish moved significantly shorter distances and at lower velocity and showed significantly less activity than controls. With available shelter, exposed crayfish moved significantly more distance, showed higher activity, and spent a significantly more time outside the shelter than controls. Molting, mortality, and spawning frequency did not vary significantly between the groups. Hemolymph glucose level did not vary among groups and was not correlated with observed behaviors. Results suggest that environmental concentrations of the tested compounds in combination can alter the behavior of non-target aquatic organisms as individual exposure of these compounds, which may lead to disruption of ecosystem processes due to their reduced caution in polluted conditions. Further research is needed using varied chemical mixtures, exposure systems, and habitats, considering molecular and physiological processes connected to behavior alterations.
Collapse
Affiliation(s)
- Md Shakhawate Hossain
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Bangabandhu Sheikh Mujibur Rahman Agricultural University, Department of Fisheries Biology and Aquatic Environment, Gazipur 1706, Bangladesh.
| | - Jan Kubec
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Wei Guo
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Sara Roje
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Filip Ložek
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Antonín Kouba
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Miloš Buřič
- University of South Bohemia in České Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
24
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
25
|
Sancho Santos ME, Grabicová K, Steinbach C, Schmidt-Posthaus H, Šálková E, Kolářová J, Vojs Staňová A, Grabic R, Randák T. Environmental concentration of methamphetamine induces pathological changes in brown trout (Salmo trutta fario). CHEMOSPHERE 2020; 254:126882. [PMID: 32957289 DOI: 10.1016/j.chemosphere.2020.126882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine, mainly consumed as an illicit drug, is a potent addictive psychostimulant that has been detected in surface water at concentrations ranging from nanograms to micrograms per litre, especially in Middle and East Europe. The aim of this study was to expose brown trout (Salmo trutta fario) to environmental (1 μg L-1) and higher (50 μg L-1) concentrations of methamphetamine for 35 days with a four-day depuration phase to assess the possible negative effects on fish health. Degenerative liver and heart alterations, similar to those described in mammals, were observed at both concentrations, although at different intensities. Apoptotic changes in hepatocytes, revealed by activated caspase-3, were found in exposed fish. The parent compound and a metabolite (amphetamine) were detected in fish tissues in both concentration groups, in the order of kidney > liver > brain > muscle > plasma. Bioconcentration factors ranged from 0.13 to 80. A therapeutic plasma concentration was reached for both compounds in the high-concentration treatment. This study indicates that chronic environmental concentrations of methamphetamine can lead to health issues in aquatic organisms.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Heike Schmidt-Posthaus
- University of Bern, Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Laenggassstrasse 122, 3001, Bern, Switzerland
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovicova 6, SK-842 15, Bratislava, Slovak Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
26
|
Wang Z, Xu Z, Wu Y, Zhang Z, Li X. Impact of ketamine on the behavior and immune system of adult medaka (Oryzias latipes) at environmentally relevant concentrations and eco-risk assessment in surface water. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:121577. [PMID: 32126430 DOI: 10.1016/j.jhazmat.2019.121577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
This work for the first time investigated the bioconcentration factor (BCF), toxicity, and eco-risk of KET using adult medaka fish (Oryzias latipes) as model organism after exposure at environmental concentrations (0.05-0.5 μg L-1) and higher levels (5-100 μg L-1) for 90 days. The BCF of KET was approximately 1.07- to 10.94- folds. The behavioral functions, including swimming properties, feeding rate, and food preference, were significantly impacted by KET (≥0.05 μg L-1). After 90-days exposure, KET induced histological abnormalities in liver and kidney tissue at 0.1 and 0.2 μg L-1, respectively. Additionally, the condition factor, hepatic-somatic index (HSI), and nephric-somatic index (NSI) of medaka were markedly impacted by KET treatment at 0.5, 0.5, and 0.1 μg L-1, respectively. Morphological inflammation (i.e., haemorrhage and erosion) in the fish body was observed exposed to KET, and the EC10 value was 0.407 μg L-1. Alterations in the expressions of genes (i.e., cacna1c, oxtr, erk1, and c-fos) and proteins (i.e., OXT and PKA), involved in in calcium ion channels induced by KET, could partly elucidate the underlying mechanism of the toxicity. The inflammatory risk to fish posed by KET in some rivers in southern China was at high level, suggesting the long-term concentration monitoring was required.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Yuexia Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 73 East Beijing Road, 210008, Nanjing, PR China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
27
|
Cao X, Yan C, Wu X, Zhou L, Xiu G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. ENVIRONMENTAL RESEARCH 2020; 186:109486. [PMID: 32283338 DOI: 10.1016/j.envres.2020.109486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
The environmental risks that have arisen from endocrine disruption compounds (EDCs) have become global challenges, especially for persistent bio-accumulated xenobiotic chemicals, such as nonylphenol (NP). In the present study, the population dynamics of Caenorhabditis elegans (C. elegans) were systemically investigated by conducting developmental and reproductive bioassays under the exposure of NP, which has been widely detected in actual aquatic environments. The results revealed that under NP exposure (400 μg L-1 NP), developmental indictors of C. elegans, including the body length and width were significantly inhibited at different life stages of L1 and L4 larva, and the growth curves were further adversely affected. In addition, abnormalities in reproductive systems were also observed under NP exposure. Such abnormalities obeyed a dose-dependent relationship with NP levels, which were closely related to the delayed spawning time and decreased reproductive rates. Moreover, the results from global genome expression analysis for nematodes revealed that the most significant enriched GO terms could be predominantly responsible for the dysregulation of growth and reproductive system. The population's parameters, including age composition and intrinsic growth rate (rm d-1), displayed significant changes, with a suppressed potentiality of population growth. Those data elucidated that NP exhibited a profound impact on the dynamic stability of the population, even with no obvious effect on certain biochemical markers.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenzhi Yan
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
28
|
Wang Z, Han S, Cai M, Du P, Zhang Z, Li X. Environmental behavior of methamphetamine and ketamine in aquatic ecosystem: Degradation, bioaccumulation, distribution, and associated shift in toxicity and bacterial community. WATER RESEARCH 2020; 174:115585. [PMID: 32105996 DOI: 10.1016/j.watres.2020.115585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Ketamine (KET) and methamphetamine (METH) have been recognized as emerging contaminants in aquatic ecosystems. This paper aimed to investigate the environmental behaviour, including the degradation, distribution, and bioaccumulation, of METH, KET, and their main metabolites (amphetamine (AMP) and norketamine (NorKET)). The changes in acute toxicity in the aqueous phase and in the bacterial community in sediment were determined to assess the associated eco-risk of the drug exposure. Five types of lab-scale aquatic ecosystems were established and exposed to KET or METH for 40 days: a water- sediment- organisms- KET system (K), a water- sediment- organisms- METH system (M), a water- sediment- organism- METH- KET system (M + K), a water-sediment- KET- METH system (control), and a water- sediment- organisms system (biocontrol). The results demonstrated that much faster degradation occurred for both METH (t1/2 = 3.89 and 2.37 days in the M and M + K group, respectively) and KET(t1/2 = 5.69 days 5.39 days in the K group and M + K group, respectively) than in the control group (t1/2 = 7.83 and 86.71days for METH and KET, respectively). Rapid adsorption of KET, METH, and their metabolites was observed in the sediment, which had clay and silt as the main particle sizes. KET was observed to be absorbed by shallow-water fish (Chinese medaka, rosy bitterling and mosquito fish), while METH was dominantly ingested by bottom-dwellers (loach). Duckweed might play a crucial role in the dissipation process of METH and KET, which were mainly adsorbed by duckweed roots. During incubation, the acute toxic levels in the K and M + K groups changed from non-toxic to medium toxicity levels, and the toxicity in the M and control groups changed from non-toxic to low toxicity levels. Moreover, marked changes in the bacterial community in the sediment induced by METH or KET exposure were observed, and the most significant change in the bacterial community was observed in the group spiked with both METH and KET. This work for the first time elucidated the environmental behaviors of METH and KET in aquatic ecosystem and associated the impact on ecological system equilibrium.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Sheng Han
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
29
|
Tian Z, Peter KT, Gipe AD, Zhao H, Hou F, Wark DA, Khangaonkar T, Kolodziej EP, James CA. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:889-901. [PMID: 31887037 DOI: 10.1021/acs.est.9b06126] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study used suspect and nontarget screening with high-resolution mass spectrometry to characterize the occurrence of contaminants of emerging concern (CECs) in the nearshore marine environment of Puget Sound (WA). In total, 87 non-polymeric CECs were identified; those confirmed with reference standards (45) included pharmaceuticals, herbicides, vehicle-related compounds, plasticizers, and flame retardants. Eight polyfluoroalkyl substances were detected; perfluorooctanesulfonic acid (PFOS) concentrations were as high as 72-140 ng/L at one location. Low levels of methamphetamine were detected in 41% of the samples. Transformation products of pesticides were tentatively identified, including two novel transformation products of tebuthiuron. While a hydrodynamic simulation, analytical results, and dilution calculations demonstrated the prevalence of wastewater effluent to nearshore marine environments, the identity and abundance of selected CECs revealed the additional contributions from stormwater and localized urban and industrial sources. For the confirmed CECs, risk quotients were calculated based on concentrations and predicted toxicities, and eight CECs had risk quotients >1. Dilution in the marine estuarine environment lowered the risks of most wastewater-derived CECs, but dilution alone is insufficient to mitigate risks of localized inputs. These findings highlighted the necessity of suspect and nontarget screening and revealed the importance of localized contamination sources in urban marine environments.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Katherine T Peter
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Alex D Gipe
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Fan Hou
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - David A Wark
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Tarang Khangaonkar
- Pacific Northwest National Laboratories , 1100 Dexter Avenue N , Seattle , Washington 98011 , United States
| | - Edward P Kolodziej
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - C Andrew James
- Center for Urban Waters , 326 East D Street , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| |
Collapse
|
30
|
Cao X, Yan C, Yang X, Zhou L, Zou W, Xiu G. Photolysis-Induced Neurotoxicity Enhancement of Chlorpyrifos in Aquatic System: A Case Investigation on Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:461-470. [PMID: 31868356 DOI: 10.1021/acs.jafc.9b05908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contamination of the environment by toxic pesticides has become of great concern in agricultural countries. Chlorpyrifos (CP) is among the pesticides most commonly detected in the environment owing to its wide agricultural applications. The aim of this study was to compare potential changes in the toxicity of CP after irradiation. To this end, photolysis of CP was conducted under simulated sunlight, and neurotoxicity assessment was carried out at CP of 20 and 50 μg L-1 and its corresponding irradiated mixture solutions which contain a mixture of identified intermediates using the nematode, Caenorhabditis elegans as a model organism. Photodegradation of 20 μg L-1 CP for 1 h produced no obvious reduction of physiological damage, and more serious effects on animal movement were detected after exposure of the animals to a solution of 50 μg L-1 for 1 h irradiation compared with unirradiated solution. GABAergic and cholinergic neurons were selectively vulnerable to CP exposure, and maximal neuropathological alterations were observed after 1 h irradiation of the CP solutions in coherence with the behavioral impairment. The generation of photoproducts was considered to be responsible for the enhanced disturbance on those biological processes. This work provided useful information on the toxicological assessments of chemicals that were produced during the environmental transformation of pesticides.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Chenzhi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Xuerui Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| | - Wenjun Zou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , PR China
| |
Collapse
|