1
|
Maldeniya MUS, Ma B, Liu Y, Yin J, Pan W, Wen S, Luo P. Potential harmful impacts of micro- and nanoplastics on the health of a tropical sea cucumber, Holothuria leucospilota, evidenced by changes of gut microflora, histology, immune and oxidative indexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176487. [PMID: 39332734 DOI: 10.1016/j.scitotenv.2024.176487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Nanoplastics (NPs) and microplastics (MPs) have emerged as pervasive environmental pollutants, and they ubiquitously distribute in ecosystems and accumulate within organisms, thereby posing a substantial threat to global ecology. Though the disruptive effects of NPs and MPs on physiology and behavior in some aquatic species have been extensively documented, the potential impacts of them on a widespread sea cucumber, Holothuria leucospilota, remain unexplored. In this study, we conducted a comprehensive investigation to reveal the effect of polyethylene NPs (200 nm) and MPs (20 μm) on the health of the sea cucumber. The results indicated that the exposure to NPs and MPs deeply altered the gut microbiota, wherein a substantial alternation of core gut microorganisms such as Rhodobacteraceae and Flavobacteriaceae was observed. NPs and MPs induced oxidative stress in the gut of sea cucumbers, which may be linked to intraspecific variations in the abundance of Rhodobacteraceae, Arcobacteraceae, and Spirochaetaceae, as well as an immune imbalance associated with shifts in Rhodobacteraceae and Arcobacteraceae populations within the gut microbiota. Notably, NPs exerting a more pronounced effect on oxidative stress levels compared to MPs. Additionally, obvious transmission and accumulation of plastic particles could be observed in the gut tissues, and therefore it likely contributed to histological damage, immunological dysregulation, and oxidative stress. These findings clearly demonstrated that NPs and MPs exert harmful impacts on the health of the sea cucumber. This study provides valuable and deep insights into the broader ecological hazards caused by the contamination of plastic particles in marine ecosystems.
Collapse
Affiliation(s)
- M U S Maldeniya
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Bo Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayue Yin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Pan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Wen
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peng Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; China-Sri Lanka Joint Center for Research and Education (CSL-CER), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.
| |
Collapse
|
2
|
Xu TT, Li ZL, Li HX, Lin L, Hou R, Liu S, Li T, Zeng EY, Yu KF, Xu XR. Unraveling the toxicity mechanisms of nanoplastics with various surface modifications on Skeletonema costatum: Cellular and molecular perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176164. [PMID: 39260474 DOI: 10.1016/j.scitotenv.2024.176164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Nanoplastics are ubiquitous in marine environments, exhibiting high bioavailability and potential toxicity to marine organisms. However, the impacts of nanoplastics with various surface modifications on marine microalgae remain largely unexplored. This study explored the toxicity mechanisms of two nanoplastic types-polystyrene (PS) and polymethyl methacrylate (PMMA)-with distinct surface modifications on Skeletonema costatum at cellular and molecular levels. Results showed that nanoplastics significantly impaired the growth of microalgae, particularly PS-NH2, which caused the most pronounced growth inhibition, reaching 56.99 % after a 96-h exposure at 50 mg/L. Transcriptomic profiling revealed that nanoplastics disrupted the expression of genes predominantly involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, amino acid metabolism, and carbohydrate metabolism pathways. The integrated biochemical and transcriptomic evidence highlighted that PS-NH2 nanoplastics had the most adverse impact on microalgae, affecting fundamental pathways such as ribosome biogenesis, energy metabolism, photosynthesis, and oxidative stress. Our findings underscore the influence of surface-modified nanoplastics on algal growth and contribute new understanding to the toxicity mechanisms of these nanoplastics in marine microalgae, offering critical information for assessing the risks of emerging pollutants.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Liang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Li Y, Liao H, Zeng M, Gao D, Kong C, Liu W, Zheng Y, Zheng Q, Wang J. Exposure to polystyrene nanoplastics causes immune damage, oxidative stress and intestinal flora disruption in salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175169. [PMID: 39094663 DOI: 10.1016/j.scitotenv.2024.175169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-β, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.
Collapse
Affiliation(s)
- Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yufeng Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
4
|
Xia X, Wang L, Pei H, Dong C, Zhang Y, Ding J. Nanoplastics exposure simplifies the network structure of sea cucumber (Apostichopus japonicus) gut microbiota and improves cluster randomness. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124663. [PMID: 39097257 DOI: 10.1016/j.envpol.2024.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Nanoplastics (NPs) are abundant in ocean environments, leading to environmental pollution and notable disruptions to the physiological functions of marine animals. To investigate the toxic effects of NPs on echinoderms, specifically sea cucumbers (Apostichopus japonicus), they were exposed to varying concentrations of NPs (0, 102, 104 particles/L) for 14 d. Subsequently, the 102 particles/L exposure group was purified for 35 d to elucidate the impact of both NPs exposure and purification on the intestinal bacteria structure and function. The results showed that the richness and variety of intestinal bacteria in sea cucumbers significantly reduced under NPs exposure, and then they could be restored to the pre-exposure treatment state after 35 d of purification. With the increase of NPs exposure concentration in the environment, the intestinal core bacteria gradually changed from Firmicutes and Proteobacteria to Pseudoalteromonas and Vibrio. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database annotated that the gut microbiota of sea cucumbers was significantly downregulated in the glycosylation, carbohydratic and amino acid metabolic pathways (P < 0. 05), exogenous substance biodegradation and metabolism, DNA replication and repair pathways were significantly up-regulated (P < 0.05) under the exposure of NPs. In addition, nanoplastics exposure simplified the symbiotic network relationships of the gut bacteria, reduced the selective effect of host on the intestinal bacteria, and increased stochasticity. In conclusion, waterborne NPs can adversely affect the structure and function of sea cucumber intestinal bacteria, with these effects persisting for a duration. However, as the purification time lengthens, these adverse effects gradually diminish. This study aims to provide some theoretical basis for the biotoxic effects of NPs.
Collapse
Affiliation(s)
- Xinglong Xia
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China
| | - Luo Wang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| | - Honglin Pei
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Changkun Dong
- Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Yanmin Zhang
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Dalian Ocean University, Key Laboratory of Northern Aquatic Germplasm Resources and Genetic Breeding in Liaoning Province, Dalian, 116023, China; Dalian Ocean University, Liaoning Province Aquatic Germplasm Resources Protection and Utilization Engineering Research Center, Dalian, 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Guo J, Yang N, Wu H, Miao Z, Miao Z, Xu S. Polystyrene nanoparticles with different particle sizes cause autophagy by ROS/ERS/FOXO1 axis in the Cyprinus carpio kidney affecting immunological function. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109793. [PMID: 39134230 DOI: 10.1016/j.fsi.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Microplastic pollution poses challenges for ecosystems worldwide, and nanoplastics (NPs, 1-1000 nm) have been identified as persistent pollutants. However, although some studies have described the hazards of NPs to aquatic organisms, the toxicological processes of NPs in the common carp kidney and the biotoxicity of differently sized NPs remain unclear. In this study, we used juvenile common carp as an in vivo model that were constantly exposed to freshwater at 1000 μg/L polystyrene nanoparticle (PSNP) concentrations (50, 100, and 400 nm) for 28 days. Simultaneously, we constructed an in vitro model utilizing grass fish kidney cells (CIK) to study the toxicological effects of PSNPs of various sizes. We performed RT-PCR and Western blot assays on the genes involved in FOXO1, HMGB1, HIF-1α, endoplasmic reticulum stress, autophagy, and immunoreaction. According to these results, exposure to PSNPs increased reactive oxygen species (ROS) levels, and the carp kidneys experienced endoplasmic reticulum stress. Additionally, PSNPs promoted renal autophagy by activating the ROS/ERS/FOXO1 (ERS: endoplasmic reticulum stress) pathway, and it affected immunological function by stimulating the ROS/HMGB1/HIF-1α signaling pathway. This study provides new insights into the contamination hazards of NPs in freshwater environments, as well as the harm they pose to the human living environments. The relationship between particle size and the degree of damage caused by PSNPs to organisms is a potential future research direction.
Collapse
Affiliation(s)
- Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China
| | - Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
Zhu C, Zhou H, Bao M, Tang S, Gu X, Han M, Li P, Jiang Q. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: A transcriptome and intestinal microorganism analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107046. [PMID: 39197247 DOI: 10.1016/j.aquatox.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China; Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Mengyu Bao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
7
|
Chen XL, Wu LJ, Miao LL, Li L, Qiu LM, Zhu HQ, Si XR, Li HF, Zhao QL, Qi PZ, Hou TT. Chronic polystyrene microplastics exposure-induced changes in thick-shell mussel (Mytilus coruscus) metaorganism: A holistic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116961. [PMID: 39208580 DOI: 10.1016/j.ecoenv.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics have emerged as a significant global concern, particularly in marine ecosystems. While extensive research has focused on the toxicological effects of microplastics on marine animals and/or their associated microorganisms as two separate entities, the holistic perspective of the adaptability and fitness of a marine animal metaorganism-comprising the animal host and its microbiome-remains largely unexplored. In this study, mussel metaorganisms subjected chronic PS-MPs exposure experienced acute mortality but rapidly adapted. We investigated the response of innate immunity, digestive enzymes and their associated microbiomes to chronic PS-MPs exposure. We found that PS-MPs directly and indirectly interacted with the host and microbe within the exposure system. The adaptation was a joint effort between the physiological adjustments of mussel host and genetic adaptation of its microbiome. The mussel hosts exhibited increased antioxidant activity, denser gill filaments and increased immune cells, enhancing their innate immunity. Concurrently, the gill microbiome and the digestive gland microbiome respective selectively enriched for plastic-degrading bacteria and particulate organic matter-utilizing bacteria, facilitating the microbiome's adaptation. The microbial adaptation to chronic PS-MPs exposure altered the ecological roles of mussel microbiome, as evidenced by alterations in microbial interactions and nutrient cycling functions. These findings provided new insights into the ecotoxicological impact of microplastics on marine organisms from a metaorganism perspective.
Collapse
Affiliation(s)
- Xing-Lu Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Lin-Jun Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long-Mei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hui-Qiang Zhu
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Xi-Rui Si
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Hong-Fei Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Qiao-Ling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, Zhejiang 316000, China
| | - Peng-Zhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Ting-Ting Hou
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| |
Collapse
|
8
|
Wang J, Wu F, Dong S, Wang X, Ai S, Liu Z, Wang X. Meta-analysis of the effects of microplastic on fish: Insights into growth, survival, reproduction, oxidative stress, and gut microbiota diversity. WATER RESEARCH 2024; 267:122493. [PMID: 39321729 DOI: 10.1016/j.watres.2024.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Aquatic ecosystems are primary repositories for microplastics (MPs), which pose significant risks to aquatic organisms. This study addresses the gap in understanding the effects of MPs pollution by analyzing 3,757 biological endpoints from 85 laboratory studies. Overall, our results indicate that MPs exposure significantly inhibits fish growth, survival, and reproductive ability, and increases oxidative damage, specifically, MPs exposure leads to elevated levels of malondialdehyde. However, MPs do not have a significant impact on the diversity of fish gut microbiota. Subgroup and correlation analyses indicate that the extent of various toxic effects is influenced by multiple factors, including MPs' type, exposure pathway, size, concentration, as well as the aquatic environment or life stage of the fish. In addition, the regression analysis revealed a relationship between the magnitude of toxic effects and the size, concentration, or duration of MPs exposure. This study provides useful information for understanding the potential impacts of MPs on aquatic organisms and offers new insights for the protection and management of aquatic ecosystems.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Shunqi Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China; College of Life Sciences, Nanchang University, Nanchang 330047, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, An wai da yang fang 8, Chaoyang District, Beijing 100012, PR China.
| |
Collapse
|
9
|
Zhang H, Wang J, Jing Y. Larimichthys crocea (large yellow croaker): A bibliometric study. Heliyon 2024; 10:e37393. [PMID: 39296167 PMCID: PMC11409083 DOI: 10.1016/j.heliyon.2024.e37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Larimichthys crocea is an important economic fish of East Asia, and numerous studies have been conducted on its breeding, aquaculture, preservation and processing; however, there is no systematic review of the literature on the research of Larimichthys crocea. Derwent Data Analyzer (DDA) was used to analyze 1192 Larimichthys crocea research papers indexed by SCI-E, CSCD and KCI from 2001 to 2023. The number of research publications on Larimichthys crocea has rapidly increased, and institutions and scholars from China, the United States, South Korea, Japan, and Norway have conducted the majority of Larimichthys crocea research. The immune response, Pseudomonas plecoglossicida, gene expression, lipid immune response, transcriptomics and other areas have attracted the most attention. To increase the immunity and disease resistance of Larimichthys crocea and improve its survival, growth, storage and transport, researchers have carried out a large amount of research, which has promoted not only the culture of Larimichthys crocea but also the restoration of wild Larimichthys crocea and the rehabilitation of the ecological environment.
Collapse
Affiliation(s)
- Hongyan Zhang
- Library, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Jiacan Wang
- School of Economics and Management, Zhejiang Ocean University, Zhoushan, 316000, PR China
| | - Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| |
Collapse
|
10
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
11
|
Liu J, Shang Y, Deng F, Feng Z, Hu M, Wang Y. Nano titanium dioxide alleviates the toxic effects of tris (2-chloropropyl) phosphate on the digestive gland and hemolymph of thick-shell mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 205:116682. [PMID: 38981190 DOI: 10.1016/j.marpolbul.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
In the marine environment, nanoparticles play a role in adsorbing and catalytically degrading organic pollutants, thereby mitigating their toxic effects on aquatic organisms. This study aimed to investigate the impact of nano titanium dioxide (nTiO2) and tris (2-chloropropyl) phosphate (TCPP) on the hemolymph and digestive function of the thick-shell mussel Mytilus coruscus. Mussels were divided into a control group, a group exposed to TCPP alone, a group exposed to a combination of TCPP and 0.5 mg/L nTiO2, and a group exposed to a combination of TCPP and 1 mg/L nTiO2. After 14 days of exposure, oxidative stress responses, including superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, immune defense responses, including acid phosphatase (ACP) and alkaline phosphatase (AKP) activities, and gene expression, including HSP70 expression, were measured in the hemolymph and digestive glands of the mussels. Compared to the control group, mussels solely exposed to 100 μg/L TCPP exhibited a significant reduction in SOD activity in the hemolymph. When TCPP was co-exposed with 0.5 mg/L nTiO2, there were significant increases in MDA content and AKP activity in both the digestive gland and hemolymph compared to the control group. Upon co-exposure of TCPP with 1 mg/L nTiO2, MDA content and AKP activity in the digestive gland significantly decreased, while SOD, ACP, and AKP activity in the hemolymph significantly increased and MDA content significantly decreased, returning to the control group levels. Furthermore, in the combined exposure, HSP70 gene expression significantly decreased as the nTiO2 concentration increased from 0.5 mg/L to 1 mg/L. In summary, TCPP impacted the hemolymph and digestive function of mussels, whereas a concentration of 1 mg/L nTiO2 effectively alleviated the toxic effects of TCPP. This study is crucial for assessing the ecological risks of nanoparticles and emerging organic pollutants in marine environments, and provides new insights into the interaction between nTiO2 and TCPP, as well as the influence of nTiO2 concentration on mitigating TCPP toxicity.
Collapse
Affiliation(s)
- Jiani Liu
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fujing Deng
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technolgy, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Burgos-Aceves MA, Banaee M, Vazzana I, Betancourt-Lozano M, González-Mille DJ, Aliko V, Faggio C, Ilizaliturri-Hernández CA. Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174809. [PMID: 39019277 DOI: 10.1016/j.scitotenv.2024.174809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
In recent years, emerging environmental pollutants have increasingly endangered the health of freshwater organisms. The gut microbiota exhibits sensitivity to medications, dietary factors and environmental pollutants, rendering it a novel target for toxicological studies. The gut microbiota can be a potential exposure route affecting the host's health. Herein, we review the current knowledge on two different but concurrent pollutants, microplastics and pesticides, regarding their impact on the gut microbiota, which includes alterations in microbial composition, gene expression, function, and health effects in the hosts. Moreover, synergetic interactions between microplastics and pesticides can exacerbate dysbiosis and health risks. We discuss health-related implications of gut microbial changes based on the consequences in metabolism, immunity, and physiology function. Further research is needed to discover the mechanisms underlying these effects and develop strategies for mitigating their harmful impacts on freshwater animals.
Collapse
Affiliation(s)
- Mario A Burgos-Aceves
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Irene Vazzana
- Istituto Zooprofilattico Sperimentale della Sicilia "A.Mirri", Palermo, Italy
| | | | - Donají J González-Mille
- Programa Cátedras del Consejo Nacional de Ciencia y Tecnología (CONACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Valbona Aliko
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - César A Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
13
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
15
|
Li F, Lin Y, Yang C, Yan Y, Hao R, Mkuye R, Deng Y. Effects of titanium dioxide nanoparticle exposure on the gut microbiota of pearl oyster (Pinctada fucata martensii). Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109906. [PMID: 38522712 DOI: 10.1016/j.cbpc.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
With the advancement of nanotechnology and the growing utilization of nanomaterials, titanium dioxide (TiO2) has been released into aquatic environments, posing potential ecotoxicological risks to aquatic organisms. In this study, the toxicological effects of TiO2 nanoparticles were investigated on the intestinal health of pearl oyster (Pinctada fucata martensii). The pearl oysters were subjected to a 14-day exposure to 5-mg/L TiO2 nanoparticle, followed by a 7-day recovery period. Subsequently, the intestinal tissues were analyzed using 16S rDNA high-throughput sequencing. The results from LEfSe analysis revealed that TiO2 nanoparticle increased the susceptibility of pearl oysters to potential pathogenic bacteria infections. Additionally, the TiO2 nanoparticles led to alterations in the abundance of microbial communities in the gut of pearl oysters. Notable changes included a decrease in the relative abundance of Phaeobacter and Nautella, and an increase in the Actinobacteria, which could potentially impact the immune function of pearl oysters. The abundance of Firmicutes and Bacteroidetes, as well as the expression of genes related to energy metabolism (AMPK, PK, SCS-1, SCS-2, SCS-3), were down-regulated, suggesting that TiO2 nanoparticles exposure may affect the digestive and energy metabolic functions of pearl oysters. Furthermore, the short-term recovery of seven days did not fully restore these levels to normal. These findings provide crucial insights and serve as an important reference for understanding the toxic effects of TiO2 nanoparticles on bivalves.
Collapse
Affiliation(s)
- Fengfeng Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yujing Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China.
| | - Yilong Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
16
|
Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, Fang JKH, Ma X, Wang Y, Hu M. Combined effects of norfloxacin and polystyrene nanoparticles on the oxidative stress and gut health of the juvenile horseshoe crab Tachypleus tridentatus. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133801. [PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
Collapse
Affiliation(s)
- Meilian Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Yuanxiong Ma
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Jin Qian
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Caoqi Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - James Kar Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Administrative Region of China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresourse, Ministry of Natural Resources, Beihai 536000, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| |
Collapse
|
17
|
Chu T, Zhang R, Guo F, Zhu M, Zan S, Yang R. The toxicity of polystyrene micro- and nano-plastics on rare minnow (Gobiocypris rarus) varies with the particle size and concentration. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106879. [PMID: 38422927 DOI: 10.1016/j.aquatox.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
How the particle size and concentration of microplastics impact their toxicity is largely unknown. Herein, the effects of polystyrene microplastics (1 μm, MPs) and nanoplastics (100 nm, NPs) exposed at 1 mg/L (L) and 10 mg/L (H), respectively, on the growth, histopathology, oxidative stress, gut microbiome, and metabolism of rare minnow (Gobiocypris rarus) were investigated by chemical analysis and multi-omics. MPs and NPs inhibited the growth, induced histopathological injury and aggravated oxidative stress markedly with contrasting significance of particle size and concentration. The composition of core gut microbiota changed dramatically especially for the MPs-H. Similarly, gut bacterial communities were reshaped by the MPs and NPs but only NPs-H decreased both richness and Shannon indexes significantly. Co-occurrence network analysis revealed that the potential keystone genera underwent great changes in exposed groups compared to the control. MPs-H increased the network complexity and the frequency of positive interactions which was opposite to other exposed groups. Moreover, the metabolomic profiles associated with amino acid, lipid, unsaturated fatty acid and hormone metabolism were disturbed significantly especially for MPs-H and NPs-H. In conclusion, the toxicity of MPs depends on both the particle size and concentration, and varies with the specific indicators as well.
Collapse
Affiliation(s)
- Tingting Chu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Rui Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China.
| |
Collapse
|
18
|
Zhu L, Wang K, Wu X, Zheng H, Liao X. Association of specific gut microbiota with polyethylene microplastics caused gut dysbiosis and increased susceptibility to opportunistic pathogens in honeybees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170642. [PMID: 38320694 DOI: 10.1016/j.scitotenv.2024.170642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 μm, 10 μm, 100 μm in diameter). Oral exposure to 100-μm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.
Collapse
Affiliation(s)
- Liya Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| |
Collapse
|
19
|
Covello C, Di Vincenzo F, Cammarota G, Pizzoferrato M. Micro(nano)plastics and Their Potential Impact on Human Gut Health: A Narrative Review. Curr Issues Mol Biol 2024; 46:2658-2677. [PMID: 38534784 PMCID: PMC10968954 DOI: 10.3390/cimb46030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are becoming an increasingly severe global problem due to their widespread distribution and complex impact on living organisms. Apart from their environmental impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish. However, the research on the toxicity of these particles on mammals is still limited, and their possible effects on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging, humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential harmful effects of these particles on gut health. This review focuses on recent research exploring the toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian models. Available data from various studies indicate that the accumulation of MNPs in mammalian models and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and the disruption of the gut microbiota. The paper also discusses the current research limitations and prospects in this field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro- and nanoplastics.
Collapse
Affiliation(s)
- Carlo Covello
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Federica Di Vincenzo
- Center for Diagnosis and Treatment of Digestive Diseases, Gastroenterology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
20
|
Liang Z, Xu Q, Chen X, Xiao J, Gao Q, Cao H, Liao M. Ecological Toxicity of Cyantraniliprole against Procambarus clarkii: Histopathology, Oxidative Stress, and Intestinal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3363-3373. [PMID: 38324778 DOI: 10.1021/acs.jafc.3c07693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cyantraniliprole is a novel insecticide recently introduced for rice pest control that may cause potential threats to the red swamp crayfish (Procambarus clarkii) in rice-crayfish coculture systems. In this study, we investigated the acute toxicity of cyantraniliprole against P. clarkii with a LC50 value of 149.77 mg/L (96 h), first. Some abnormal behaviors of P. clarkii treated with 125 mg/L cyantraniliprole, including incunabular hyperexcitability, imbalance, inactivity, and increased excretion were observed. Moreover, it was observed that exposure to 5 mg/L cyantraniliprole for 14 days resulted in histopathological alterations in abdominal muscle, gills, hepatopancreas, and intestines. Furthermore, exposure to 0.05 and 5 mg/L cyantraniliprole induced increased activities of several oxidative stress-related enzymes, which was verified by the upregulation of related genes. Additionally, dysregulation of the intestinal microbiota was determined via 16S rRNA sequencing. These results will provide the basis for the utilization of cyantraniliprole in the fields of rice-crayfish integrated system.
Collapse
Affiliation(s)
- Zihao Liang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Qiang Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Xin Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
21
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
22
|
Zhang J, Xia X, Ma C, Zhang S, Li K, Yang Y, Yang Z. Nanoplastics Affect the Bioaccumulation and Gut Toxicity of Emerging Perfluoroalkyl Acid Alternatives to Aquatic Insects ( Chironomus kiinensis): Importance of Plastic Surface Charge. ACS NANO 2024. [PMID: 38323841 DOI: 10.1021/acsnano.3c12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Persistent organic pollutants (POPs) have been widely suggested as contributors to the aquatic insect biomass decline, and their bioavailability is affected by engineered particles. However, the toxicity effects of emerging ionizable POPs mediated by differentially charged engineered nanoparticles on aquatic insects are unknown. In this study, 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B, an emerging perfluoroalkyl acid alternative) was selected as a model emerging ionizable POP; the effect of differentially charged nanoplastics (NPs, 50 nm, 0.5 g/kg) on F-53B bioaccumulation and gut toxicity to Chironomus kiinensis were investigated through histopathology, biochemical index, and gut microbiota analysis. The results showed that when the dissolved concentration of F-53B remained constant, the presence of NPs enhanced the adverse effects on larval growth, emergence, gut oxidative stress and inflammation induced by F-53B, and the enhancement caused by positively charged NP-associated F-53B was stronger than that caused by the negatively charged one. This was mainly because positively charged NPs, due to their greater adsorption capacity and higher bioavailable fraction of associated F-53B, increased the bioaccumulation of F-53B in larvae more significantly than negatively charged NPs. In addition, positively charged NPs interact more easily with gut biomembranes and microbes with a negative charge, further increasing the probability of F-53B interacting with gut biomembranes and microbiota and thereby aggravating gut damage and key microbial dysbacteriosis related to gut health. These findings demonstrate that the surface charge of NPs can regulate the bioaccumulation and toxicity of ionizable POPs to aquatic insects.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Kaixuan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yingying Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, Fang JKH, Wang Y, Hu M. Effects of elevated temperature and different crystal structures of TiO 2 nanoparticles on the gut microbiota of mussel Mytilus coruscus. MARINE POLLUTION BULLETIN 2024; 199:115979. [PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li'ang Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Waiho Khor
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu 20000, Malaysia
| | - James K H Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Lingang Special Area Marine Biomedical Innovation Platform, Shanghai 201306, China.
| |
Collapse
|
24
|
Chen T, Jiang H, He Y, Shen Y, Fang J, Huang Z, Shen Y, Chen X. Histopathological, physiological, and multi-omics insights into the hepatotoxicity mechanism of nanopolystyrene and/or diclofenac in Mylopharyngodon piceus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122894. [PMID: 37944890 DOI: 10.1016/j.envpol.2023.122894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Nanopolystyrene (NP) and diclofenac (DCF) are common environmental contaminants in the aquatic ecosystem; therefore, the present study aimed to investigate the hepatotoxicity of NP and/or DCF exposure on aquatic organisms and the underlying mechanisms. Juvenile Mylopharyngodon piceus were used as a model organism to study the effects of NP and/or DCF exposure at environmentally relevant concentrations for 21 days. Subchronic exposure to NP and/or DCF resulted in liver histological damage. In the NP group, the presence of large lipid droplets was observed, whereas the DCF group exhibited marked hepatic sinusoidal dilatation accompanied by inflammation. Additionally, this exposure induced liver oxidative stress, as evidenced by the changes in several physiological parameters, including catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), reactive oxygen species (ROS), and malondialdehyde (MDA). Integrated transcriptomic and metabolomic analysis was performed to further investigate the molecular mechanism underlying hepatotoxicity. Multi-omics analysis demonstrated, for the first time to our knowledge, that NP induced hepatic steatosis mainly through activating the glycerol-3-phosphate pathway and inhibiting VLDL assembly by targeting several key enzyme genes including GPAT, DGAT, ACSL, APOB, and MTTP. Furthermore, NP exposure disrupted arachidonic acid metabolism, which induced the release of inflammatory factors and inhibited the release of anti-inflammatory factors, ultimately causing liver inflammation in M. piceus. In contrast, DCF induced interleukin production and downregulated KLF2, causing hepatic sinusoidal dilatation with inflammation in juvenile M. piceus, which is consistent with the finding of JAK-STAT signaling pathway activation. In addition, the upregulated AMPK signaling pathway in the DCF group suggested perturbation of energy metabolism. Collectively, these findings provide novel insights into the molecular mechanism of the multiple hepatotoxicity endpoints of NP and/or DCF exposure in aquatic organisms.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hewei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoji He
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiajie Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zequn Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
25
|
Shi C, Liu Z, Yu B, Zhang Y, Yang H, Han Y, Wang B, Liu Z, Zhang H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167404. [PMID: 37769717 DOI: 10.1016/j.scitotenv.2023.167404] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Plastic production on a global scale is instrumental in advancing modern society. However, plastic can be broken down by mechanical and chemical forces of humans and nature, and knowledge of the fate and effects of plastic, especially nanoplastics, in the aquatic environment remains poor. We provide an overview of current knowledge on the environmental occurrence and toxicity of nanoplastics, and suggestions for future research. There are nanoplastics present in seas, rivers, and nature reserves from Asia, Europe, Antarctica, and the Arctic Ocean at levels of 0.3-488 microgram per liter. Once in the aquatic environment, nanoplastics accumulate in plankton, nekton, benthos through ingestion and adherence, with multiple toxic results including inhibited growth, reproductive abnormalities, oxidative stress, and immune system dysfunction. Further investigations should focus on chemical analysis methods for nanoplastics, effect and mechanism of nanoplastics at environmental relevant concentrations in aquatic organisms, as well as the mechanism of the Trojan horse effect of nanoplastics.
Collapse
Affiliation(s)
- Chaoli Shi
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Bingzhi Yu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yinan Zhang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Internation Urbanology Research Center, Hangzhou 311121, China
| |
Collapse
|
26
|
Liu S, Wang Z, Wang Z, Wu Q, Zhou J, Wang R, Han J, Su X. Comparison of the gut microbiota and metabolism in different regions of Red Swamp Crayfish ( Procambarus clarkii). Front Microbiol 2023; 14:1289634. [PMID: 38188569 PMCID: PMC10770849 DOI: 10.3389/fmicb.2023.1289634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background The gut microbiota is very important for maintaining the homeostasis and health of crustaceans. Many factors affect the gut microbiota of crustaceans, one of which is temperature. However, it is currently unclear how temperature affects the gut microbiota and metabolites of Procambarus clarkii. Methods Using metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) techniques, the gut microbiota and metabolites of P. clarkii from Hubei (HB), Jiangsu (JS), Shandong (SD), and Zhejiang (ZJ) in China were investigated. Results Under the impact of temperature, the gut microbiota and metabolites of P. clarkii exhibit a specific trend of change. The primary pathogenic bacteria affecting P. clarkii are Citrobacter, Enterobacterium, and Aeromonas, which are affected by temperature. Two metabolites, namely, sugars and amino acids, are regulated by temperature. Implication This study demonstrated that the gut microbiota and gut metabolites of P. clarkii were considerably affected by temperature. It provides a theoretical basis for the systematic study of P. clarkii and provides a basis for a healthy culture of P. clarkii.
Collapse
Affiliation(s)
- Songyi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ze Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qiaoli Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rixin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
27
|
Hu X, Meng LJ, Liu HD, Guo YS, Liu WC, Tan HX, Luo GZ. Impacts of Nile Tilapia (Oreochromis niloticus) exposed to microplastics in bioflocs system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165921. [PMID: 37527718 DOI: 10.1016/j.scitotenv.2023.165921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Microplastics (MPs) are abundant in aquaculture water, including in bioflocs aquaculture systems. Compared with other aquaculture systems, biofloc technology systems have the richest microbes and are beneficial to cultivated organisms. Therefore, this study provides a comprehensive assessment of the potential effects of MPs on aquaculture organisms in bioflocs systems. Here, Nile Tilapia (Oreochromis niloticus) were exposed to MPs (polystyrene; 32-40 μm diameter) with 0, 80 items/L (30 μg/L), and 800 items/L (300 μg/L) for 28 days in a bioflocs aquaculture system. The results showed that the MPs generally had no apparent effect on water quality, tilapia growth, or digestive enzyme activity. However, MPs accumulated the most in the liver (5.65 ± 0.74 μg/mg) and significantly increased the hepato-somatic index of tilapia and reduced the crude protein and lipid of tilapia muscle (p < 0.05). The levels of the antioxidant enzymes catalase and glutathione S-transferase increased significantly in response to MPs (p < 0.05). In contrast, MPs did not affect the content of glutathione, glutathione peroxidase, oxidized glutathione, and malondialdehyde, or the enzyme activity of Na+/K+-ATPase. Moreover, using an improved integrated biomarker response index, growth performance was found to be less responsive to MPs than to oxidative stress and digestive activity. Exposure to MPs did not significantly influence the microbial communities of the bioflocs and tilapia guts (p < 0.05). These results suggest that MPs barely affected tilapia in the bioflocs system. This study contributes to the evaluation of the ecological risk of MPs in aquaculture systems and a better understanding of the integrated response of cultivated vertebrates to MPs in biofloc technology systems.
Collapse
Affiliation(s)
- Xin Hu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liu-Jiang Meng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Dan Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shuo Guo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wen-Chang Liu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Hong-Xin Tan
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guo-Zhi Luo
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
28
|
Lu J, Yao T, Yu G, Ye L. Adaptive response of triploid Fujian oyster (Crassostrea angulata) to nanoplastic stress: Insights from physiological, metabolomic, and microbial community analyses. CHEMOSPHERE 2023; 341:140027. [PMID: 37659513 DOI: 10.1016/j.chemosphere.2023.140027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Triploid Fujian oyster (Crassostrea angulata) is crucial to aquaculture and coastal ecosystems because of its accelerated growth and heightened resilience against environmental stressors. In light of the increasing prevalence of nanoplastic pollution in the ocean, understanding its potential impact on this organism, particularly its adaptive responses, is of paramount importance. Despite this, the effects of nanoplastic pollution on the physiology of C. angulata remain largely unexplored. In this study, we explored the responses of triploid Fujian oysters to nanoplastic stress during a 14-day exposure period, employing an integrative methodology that included physiological, metabolomic, and 16S rRNA sequencing analyses. Our results demonstrate that the oysters exhibit a strong adaptive response to nanoplastic exposure, characterized by alterations in enzyme activity, metabolic pathways, and microbial community composition, indicative of an adaptive recovery state as opposed to a disordered state. Oysters subjected to elevated nanoplastic levels exhibited adaptive responses primarily by boosting the activity of the antioxidant enzyme catalase and elevating the levels of antioxidants such as adenosine, 3-(4-hydroxyphenyl)pyruvate, D-sorbitol, d-mannose, and unsaturated fatty acids, as well as the functional amino acids l-proline and l-lysine. Nanoplastic treatment also resulted in increased activity of succinate dehydrogenase, a key component of energy metabolism, and increased contents of intermediate metabolites or products of energy metabolism, such as adenosine monophosphate, adenosine, guanosine, creatine, and thiamine. Nanoplastic treatment led to an increase in the abundance of certain advantageous genera of gut bacteria, specifically Phaeobacter and Nautella. The observed adaptive response of triploid Fujian oysters to nanoplastic stress provides valuable insights into the mechanisms underpinning resilience in marine bivalves.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Gang Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
29
|
Zhang SQ, Li P, He SW, Xing SY, Cao ZH, Zhao XL, Sun C, Li ZH. Combined effect of microplastic and triphenyltin: Insights from the gut-brain axis. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100266. [PMID: 37096249 PMCID: PMC10121632 DOI: 10.1016/j.ese.2023.100266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), an emerging group of pollutants, not only have direct toxic effects on aquatic organisms but also cause combined toxicity by absorbing other pollutants. Triphenyltin (TPT), one of the most widely used organotin compounds, has adverse effects on aquatic organisms. However, little is known about the combined toxicity of MPs and TPT to aquatic organisms. To investigate the individual and combined toxicity of MPs and TPT, we selected the common carp (Cyprinus carpio) for a 42-day exposure experiment. Based on the environmental concentrations in a heavily polluted area, the experimental concentrations of MPs and TPT were set at 0.5 mg L-1 and 1 μg L-1, respectively. The effects of MPs combined with TPT on the carp gut-brain axis were evaluated by detecting gut physiology and biochemical parameters, gut microbial 16S rRNA, and brain transcriptome sequencing. Our results suggest that a single TPT caused lipid metabolism disorder and a single MP induced immunosuppression in carp. When MPs were combined with TPT, the involvement of TPT amplified the immunotoxic effect induced by MPs. In this study, we also explored the gut-brain axis relationship of carp immunosuppression, providing new insights for assessing the combined toxicity of MPs and TPT. At the same time, our study provides a theoretical basis for evaluating the coexistence risk of MPs and TPT in the aquatic environment.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shao-Ying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Han Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cuici Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
30
|
Pan Y, Qian J, Ma X, Huang W, Fang JKH, Arif I, Wang Y, Shang Y, Hu M. Response of moulting genes and gut microbiome to nano-plastics and copper in juvenile horseshoe crab Tachypleus tridentatus. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106128. [PMID: 37587001 DOI: 10.1016/j.marenvres.2023.106128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Nanoplastics (NPs) and heavy metals are typical marine pollutants, affecting the gut microbiota composition and molting rate of marine organisms. Currently, there is a lack of research on the toxicological effects of combined exposure to horseshoe crabs. In this study, we investigated the effects of NPs and copper on the expression of molt-related genes and gut microbiome in juvenile tri-spine horseshoe crabs Tachypleus tridentatus by exposing them to NPs (100 nm, 104 particles L-1) and/or Cu2+ (10 μgL-1) in seawater for 21 days. Compared with the control group, the relative mRNA expression of ecdysone receptor (EcR), retinoid x receptor (RXR), calmodulin-A-like isoform X1 (CaM X1), and heat shock 70 kDa protein (Hsp70) were significantly increased under the combined stress of NPs and Cu2+. There were no significant differences in the diversity and abundance indices of the gut microbial population of horseshoe crabs between the NPs and/or Cu2+ groups and the control group. According to linear discriminant analysis, Oleobacillus was the most abundant microorganism in the NPs and Cu2+ stress groups. These results indicate that exposure to either NPs stress alone or combined NPs and Cu2+ stress can promote the expression levels of juvenile molting genes. NPs exposure has a greater impact on the gut microbial community structure of juvenile horseshoe crabs compared to Cu2+ exposure. This study is helpful for predicting the growth and development of horseshoe crabs under complex environmental pollution.
Collapse
Affiliation(s)
- Yiting Pan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jin Qian
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, PR China
| | - Iqra Arif
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Yueyong Shang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, PR China.
| |
Collapse
|
31
|
Zhang L, Liu X, Zhang C. Effect of PET microplastics on the growth, digestive enzymes, and intestinal flora of the sea cucumber Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106125. [PMID: 37552920 DOI: 10.1016/j.marenvres.2023.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/16/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Marine microplastic (MP) pollution is becoming a serious problem and their potentially toxic effects on marine organisms have attracted much attention. Sea cucumber is very important for the safety and health of marine ecosystems. However, there have been relatively few studies on the effects of microplastic pollution on sea cucumbers at environmentally-related concentrations and under controlled conditions. Therefore, this study evaluated the effects of polyethylene terephthalate (PET) microplastics (particle sizes: 0.5-45 μm, 2-200 μm, and 20-300 μm; and three concentration levels for each particle size, approximately 103, 104, and 105 particles/kg) on the basic biological indicators, intestinal digestive enzymes, and intestinal flora of Apostichopus japonicus after a 28-day feeding experiment. This study showed that environmentally-related and high concentrations of microplastics had little effect on A. japonicus. This study provides valuable reference information about the effects of marine microplastic pollution on sea cucumbers.
Collapse
Affiliation(s)
- Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China.
| | - Xiang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chenxi Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao, 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao, 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
32
|
Xu J, Qin C, Xie J, Wang J, He Y, Tan J, Shi X. Transcriptome analysis of Chinese sucker (Myxocyprinus asiaticus) head kidney and discovery of key immune-related genes to cold stress after swimming fatigue. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101104. [PMID: 37390763 DOI: 10.1016/j.cbd.2023.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
For Chinese sucker (Myxocyprinus asiaticus), passing through a dam with fast flow and cold water are always unavoidable, and this process can cause stress, disease or even death. In this study, comparative transcriptome analysis was conducted to investigate the potential immune mechanism in head kidney of M. asiaticus with swimming fatigue stress and cold stress after fatigue. In general, a total of 181,781 unigenes were generated, and 38,545 differentially expressed genes (DEGs) were identified. In these DEGs, 22,593, 7286 and 8666 DEGs were identified among groups of fatigue vs. cold, control vs. cold, and control vs. fatigue, respectively. Enrichment analysis revealed these DEGs were involved in coagulation cascades and complement, natural killer cell mediated cytotoxicity, antigen processing and presentation, Toll-like receptor signaling pathways, and chemokine signaling pathway. Notably, immune genes including heat shock protein 4a (HSP4a), HSP70 and HSP90α genes were significantly up-regulated in fishes with cold stress after fatigue. Differently, more immune genes in control vs. cold compared with that in control vs. fatigue were significantly down-regulated expression, such as claudin-15-like, Toll-like receptor 13, antimicrobial peptide (hepcidin), immunoglobulin, CXCR4 chemokine receptor, T-cell receptor, complement factor B/C2-A3, and interleukin 8. In this study, the number of DEGs in the head kidney was less than that our previous study in the spleen, which we speculated was more sensitive to changes in water temperature than the head kidney. In summary, lots of immune-related genes in the head kidney were down-regulated under cold stress after fatigue, suggesting that M. asiaticus might have experienced severe immunosuppression in the process of passing through the dam.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China.
| | - Jiang Xie
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Junjun Tan
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China
| | - Xiaotao Shi
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
33
|
Zhang C, Wang F, Wang Q, Zou J, Zhu J. Species-specific effects of microplastics on juvenile fishes. Front Physiol 2023; 14:1256005. [PMID: 37601638 PMCID: PMC10436232 DOI: 10.3389/fphys.2023.1256005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Microplastics contamination have been extensively reported in aquatic ecosystem and organisms. It is wildly acknowledged that the ingestion, accumulation and elimination of microplastics in fishes are species-specific, which mainly depending on the feeding behavior. This study aimed to investigate the effects of microplastics on the morphology and inflammatory response in intestines of fishes with different feeding types. Largemouth bass (carnivorous fish), grass carp (herbivorous fish) and Jian carp (omnivorous fish) were used as organism model. The contributing concentration and size of microplastics were explored as well as the response time and legacy effect in fishes. Two different sizes of polystyrene microplastics (80 nm and 8 μm) were set at three concentrations. And samples were analyzed at different exposure times and depuration times. Histological analysis indicated that multiple abnormalities in intestines were presented in three species fishes after acute exposure microplastics. The mRNA abundance of immune-related genes in the intestine tissues of fishes were significantly fluctuant. There were differential expressions of genes coping with differential sizes and concentrations of microplastics exposure in different fishes. The reason for the difference effects of microplastics on fishes was still unclear but could be due to the difference in the structure and function of the digestive system. These results provided a theoretical basis to further analysis of the mechanism of fish intestinal pathology caused by microplastics.
Collapse
Affiliation(s)
- Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fei Wang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Junjie Zhu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
34
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
35
|
Xu R, Li L, Zheng J, Ji C, Wu H, Chen X, Chen Y, Hu M, Xu EG, Wang Y. Combined toxic effects of nanoplastics and norfloxacin on mussel: Leveraging biochemical parameters and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163304. [PMID: 37030355 DOI: 10.1016/j.scitotenv.2023.163304] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/27/2023]
Abstract
Antibiotics and nanoplastics (NPs) are among the two most concerned and studied marine emerging contaminants in recent years. Given the large number of different types of antibiotics and NPs, there is a need to apply efficient tools to evaluate their combined toxic effects. Using the thick-shelled mussel (Mytilus coruscus) as a marine ecotoxicological model, we applied a battery of fast enzymatic activity assays and 16S rRNA sequencing to investigate the biochemical and gut microbial response of mussels exposed to antibiotic norfloxacin (NOR) and NPs (80 nm polystyrene beads) alone and in combination at environmentally relevant concentrations. After 15 days of exposure, NPs alone significantly inhibited superoxide dismutase (SOD) and amylase (AMS) activities, while catalase (CAT) was affected by both NOR and NPs. The changes in lysozyme (LZM) and lipase (LPS) were increased over time during the treatments. Co-exposure to NPs and NOR significantly affected glutathione (GSH) and trypsin (Typ), which might be explained by the increased bioavailable NOR carried by NPs. The richness and diversity of the gut microbiota of mussels were both decreased by exposures to NOR and NPs, and the top functions of gut microbiota that were affected by the exposures were predicted. The data fast generated by enzymatic test and 16S sequencing allowed further variance and correlation analysis to understand the plausible driving factors and toxicity mechanisms. Despite the toxic effects of only one type of antibiotics and NPs being evaluated, the validated assays on mussels are readily applicable to other antibiotics, NPs, and their mixture.
Collapse
Affiliation(s)
- Ran Xu
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiahui Zheng
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Xiang Chen
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuchuan Chen
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark.
| | - Youji Wang
- International Research Center for Marine Biosciences, College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
36
|
Zeng F, Wang L, Zhen H, Guo C, Liu A, Xia X, Pei H, Dong C, Ding J. Nanoplastics affect the growth of sea urchins (Strongylocentrotus intermedius) and damage gut health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161576. [PMID: 36640870 DOI: 10.1016/j.scitotenv.2023.161576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are abundant and widespread throughout the ocean, not only causing severe environmental pollution, but also worsening the aquatic organisms. To elucidate the mechanism of biological toxic effects underlying the responses of marine invertebrates to NPs, Strongylocentrotus intermedius was stressed with three different NPs concentrations (0 particles/L, 102 particles/L and 104 particles/L). Specific growth rates, enzyme activity, gut tissue section observation and structural characteristics of the gut bacterial community were analyzed. After 28 days of exposure, the specific growth rate of S. intermedius decreased significantly with NPs groups. Further, both lysozyme, pepsin, lipase and amylase activities decreased, while the superoxide dismutase activity increased, indicating that NPs negatively affected digestive enzyme and immune enzyme activity. The analysis of gut tissue sections revealed that NPs caused atrophy and cytoplasmic reduction in the epithelial cells of the S. intermedius intestine. Moreover, the structural characterization of the gut bacterial community indicated significant changes in the abundances of members from Campylobacterota, Chlamydiae, and Firmicutes. Members from Arcobacteraceae, Christensenellaceae and Clostridia were endemic to the NPs treatment. The KEGG database analysis demonstrated that the metabolic pathways specific to the NPs treatment group were significantly associated with growth, energy metabolism, and immunity. In summary, NPs have negatively affected on physiological response and altered gut microecological environment.
Collapse
Affiliation(s)
- Fanshuang Zeng
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Hao Zhen
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Chao Guo
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Anzheng Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
37
|
Zhou Y, Jin Q, Xu H, Wang Y, Li M. Chronic nanoplastic exposure induced oxidative and immune stress in medaka gonad. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161838. [PMID: 36716889 DOI: 10.1016/j.scitotenv.2023.161838] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastic (NP) pollution is a global issue because of its widespread occurrence and potential toxicity. Many studies have investigated the impacts of the short-term toxicity of NPs on organisms. Until now, only a few studies have assessed the toxicological effects of prolonged exposure to NPs at low concentrations in fish. In this study, the effects of NPs (nano-polystyrene microspheres, diameter: 100 nm) on immune and oxidative stress response, histopathology, and survival in medaka were evaluated. The effects of different concentrations (0, 10, 104, and 106 particles/L) of nanoplastics were studied in medaka Oryzias latipes after 3 months of exposure. Lysozyme enzyme activity, oxidative stress-related biomarkers (i.e., superoxide dismutase, catalase, and glutathione peroxidase), and malondialdehyde levels were decreased under NP exposure. The gonadal histology showed that high NP exposure (106 particles/L) inhibited the process of spermatogenesis and oogenesis processes, implying delayed maturation of the gonad. Furthermore, the IBR and PCA analysis revealed the potential biotoxicity of NPs and the total survival rate of medaka was significantly reduced due to the long-term exposure to NPs. Overall, prolonged exposure to low concentrations of NPs is harmful to the health of medaka gonads. In the long run, this may threaten the fish reproduction and population, suggesting the need for long-term toxicological studies to predict the aquatic animal health in nature.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Qian Jin
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
38
|
Zhou Y, Gui L, Wei W, Xu EG, Zhou W, Sokolova IM, Li M, Wang Y. Low particle concentrations of nanoplastics impair the gut health of medaka. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106422. [PMID: 36773443 DOI: 10.1016/j.aquatox.2023.106422] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The environmental occurrence of nanoplastics (NPs) is now evident but their long-term impacts on organisms are unclear, limiting ecological and health risk assessment. We hypothesized that chronic exposure to low particle concentrations of NPs can result in gut-associated toxicity, and subsequently affect survival of fish. Japanese medaka Oryzias latipes were exposed to polystyrene NPs (diameter 100 nm; 0, 10, 104, and 106 items/L) for 3 months, and histopathology, digestive and antioxidant enzymes, immunity, intestinal permeability, gut microbiota, and mortality were assessed. NP exposures caused intestinal lesions, and increased intestinal permeability of the gut. The trypsin, lipase, and chymotrypsin activities were increased, but the amylase activity was decreased. Oxidative damage was reflected by the decreased superoxide dismutase and alkaline phosphatase and increased malondialdehyde, catalase, and lysozyme. The integrated biomarkers response index values of all NP-exposed medaka were significantly increased compared to the control group. Moreover, NP exposures resulted in a decrease of diversity and changed the intestinal microbiota composition. Our results provide new evidence that long-term NPs exposure impaired the health of fish at extremely low particle concentrations, suggesting the need for long-term toxicological studies resembling environmental particle concentrations when assessing the risk of NPs.
Collapse
Affiliation(s)
- Yinfeng Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenbo Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Wenzhong Zhou
- Eco‑environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai 201403, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Mingyou Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center For Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
39
|
Haldar S, Muralidaran Y, Míguez D, Mulla SI, Mishra P. Eco-toxicity of nano-plastics and its implication on human metabolism: Current and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160571. [PMID: 36471520 DOI: 10.1016/j.scitotenv.2022.160571] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario, plastic pollution has become one of the serious environmental hazard problems due to its improper handling and insufficiency in degradation. Nanoplastics (NPs) are formed when plastic fragments are subjected to ultraviolet radiation, natural weathering, and biodegradation. This review paper focuses on the source of origin, bioaccumulation, potential nanoplastics toxicity impact towards environment and human system and management strategies towards plastic pollution. Moreover, this study demonstrates that nanoplastics interfere with metabolic pathways and cause organ dysfunction. A wide range of studies have documented the alteration of organism physiology and behavior, caused by NPs exposure. A major source of NPs exposure is via ingestion because these plastics are found in foods or food packaging, however, they can also enter the human body via inhalation but in a less well-defined form. In recent literature, the studies demonstrate the mechanisms for NP uptake, affecting factors that have been discussed followed by cytotoxic mechanisms of NPs. However, study on challenges regarding NPs toxicity for the risk assessment of human health is limited. It is important to perform and focus more on the possible impacts of NPs on human health to identify the key challenges and explore the potential impacts of their environmental accumulation and its toxicity impacts.
Collapse
Affiliation(s)
- Shoumi Haldar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Yuvashree Muralidaran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Diana Míguez
- Latitud - Fundación LATU, Laboratorio Tecnológico del Uruguay (LATU), Edificio Los Abetos, Avenida Italia 6201, C.P. 11500, Montevideo, Uruguay
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India.
| |
Collapse
|
40
|
Effects of Florfenicol on Intestinal Histology, Apoptosis and Gut Microbiota of Chinese Mitten Crab ( Eriocheir sinensis). Int J Mol Sci 2023; 24:ijms24054412. [PMID: 36901841 PMCID: PMC10002397 DOI: 10.3390/ijms24054412] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Excessive use of antibiotics in aquaculture causes residues in aquatic animal products and harms human health. However, knowledge of florfenicol (FF) toxicology on gut health and microbiota and their resulting relationships in economic freshwater crustaceans is scarce. Here, we first investigated the influence of FF on the intestinal health of Chinese mitten crabs, and then explored the role of bacterial community in FF-induced intestinal antioxidation system and intestinal homeostasis dysbiosis. A total of 120 male crabs (48.5 ± 4.5 g) were experimentally treated in four different concentrations of FF (0, 0.5, 5 and 50 μg/L) for 14 days. Responses of antioxidant defenses and changes of gut microbiota were assessed in the intestine. Results revealed that FF exposure induced significant histological morphology variation. FF exposure also enhanced immune and apoptosis characteristics in the intestine after 7 days. Moreover, antioxidant enzyme catalase activities showed a similar pattern. The intestinal microbiota community was analyzed based on full-length 16S rRNA sequencing. Only the high concentration group showed a marked decrease in microbial diversity and change in its composition after 14 days of exposure. Relative abundance of beneficial genera increased on day 14. These findings illustrate that exposure to FF could cause intestinal dysfunction and gut microbiota dysbiosis in Chinese mitten crabs, which provides new insights into the relationship between gut health and gut microbiota in invertebrates following exposure to persistent antibiotics pollutants.
Collapse
|
41
|
Wu D, Lim BXH, Seah I, Xie S, Jaeger JE, Symons RK, Heffernan AL, Curren EEM, Leong SCY, Riau AK, Lim DKA, Stapleton F, Ali MJ, Singh S, Tong L, Mehta JS, Su X, Lim CHL. Impact of Microplastics on the Ocular Surface. Int J Mol Sci 2023; 24:3928. [PMID: 36835339 PMCID: PMC9962686 DOI: 10.3390/ijms24043928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Plastics are synthetic materials made from organic polymers that are ubiquitous in daily living and are especially important in the healthcare setting. However, recent advances have revealed the pervasive nature of microplastics, which are formed by degradation of existing plastic products. Although the impact on human health has yet to be fully characterised, there is increasing evidence that microplastics can trigger inflammatory damage, microbial dysbiosis, and oxidative stress in humans. Although there are limited studies investigating their effect on the ocular surface, studies of microplastics on other organs provide some insights. The prevalence of plastic waste has also triggered public outcry, culminating in the development of legislation aimed at reducing microplastics in commercial products. We present a review outlining the possible sources of microplastics leading to ocular exposure, and analyse the possible mechanisms of ocular surface damage. Finally, we examine the utility and consequences of current legislation surrounding microplastic regulation.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
| | - Blanche X. H. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Ivan Seah
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shay Xie
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
- Australian Water Association, St Leonards, NSW 2065, Australia
| | - Julia E. Jaeger
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Robert K. Symons
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Amy L. Heffernan
- Eurofins Environment Testing Australia & New Zealand, Dandenong, VIC 3175, Australia
| | - Emily E. M. Curren
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Sandric C. Y. Leong
- St. John’s Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119077, Singapore
| | - Andri K. Riau
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Dawn K. A. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Swati Singh
- LV Prasad Eye Institute, Hyderabad 500034, India
| | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Chris H. L. Lim
- Department of Ophthalmology, National University Health System, Singapore 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
42
|
Gong H, Li R, Li F, Guo X, Xu L, Gan L, Yan M, Wang J. Toxicity of nanoplastics to aquatic organisms: Genotoxicity, cytotoxicity, individual level and beyond individual level. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130266. [PMID: 36327848 DOI: 10.1016/j.jhazmat.2022.130266] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Due to the small size, high mobility and large surface area, nanoplastics (NPs) showed high potential risks to aquatic organisms. This paper reviews the toxicity of NPs to aquatic organism at various trophic levels including bacteria, plankton (algae), zooplankton, benthos, and nekton (fish). The effects at individual level caused by NPs were explained and proved by cytotoxicity and genotoxicity, and the toxicity of NPs beyond individual level was also illustrated. The toxicity of NPs is determined by the size, dosage, and surface property of NPs, as well as environmental factors, the presence of co-contaminants and the sensitivity of tested organisms. Furthermore, the joint effects of NPs with other commonly detected pollutants such as organic pollutants, metals, and nanoparticles etc. were summarized. In order to reflect the toxicity of NPs in the real natural environment, studies on toxicity assessment of NPs with the coexistence of various environmental factors and contaminants, particularly under the concentrations in natural environment are suggested.
Collapse
Affiliation(s)
- Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaowen Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
43
|
Chiba R, Fujinuma R, Yoshitomi T, Shimizu Y, Kobayashi M. Ingestion of rubber tips of artificial turf fields by goldfish. Sci Rep 2023; 13:1344. [PMID: 36693897 PMCID: PMC9873930 DOI: 10.1038/s41598-023-28672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Marine microplastics are one of the global environmental issues. The present study examined whether rubber tips of artificial sports fields could be marine microplastics. We observed the migration of rubber tips from the artificial turf field to the surrounding ditch connected to sewer pipes and then examined the ingestion of rubber tips using the goldfish Carassius auratus. The rubber tips found in sediments in the ditch suggest that the rubber tips could be sent to the river and released into the ocean. The goldfish ingested rubber tips with or without fish feed, and rubber tips were found in the intestine. However, the fish discharged the rubber tips within 48 h after ingestion. These results indicate that ingestion of the rubber tips was not accidental but an active behavior. Therefore, artificial turf sports fields could be a source of marine microplastics and may cause hazardous effects on wild fishes through ingestion.
Collapse
Affiliation(s)
- Rihito Chiba
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Ryosuke Fujinuma
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Tomoyasu Yoshitomi
- Field Studies Institute for Environmental Education, Tokyo Gakugei University, 4-1-1 Nukuikita-Machi, Koganei, Tokyo, 184-8501, Japan
| | - Yasuo Shimizu
- Department of Physical Education, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan
| | - Makito Kobayashi
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo, 181-8585, Japan.
| |
Collapse
|
44
|
Liu MJ, Guo HY, Gao J, Zhu KC, Guo L, Liu BS, Zhang N, Jiang SG, Zhang DC. Characteristics of microplastic pollution in golden pompano (Trachinotus ovatus) aquaculture areas and the relationship between colonized-microbiota on microplastics and intestinal microflora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159180. [PMID: 36191704 DOI: 10.1016/j.scitotenv.2022.159180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MPs) pollution is a global marine environmental problem. The effects of MPs on the gut microbiota of aquatic organisms have received considerable attention. For example, microbes colonizing MPs in pond cultures alter the structure and function of the intestinal microbes of shrimp and fish. It was hypothesized that bacteria on MPs in natural mariculture areas also interact with the intestinal flora of golden pompano (Trachinotus ovatus) because biofilms can form on the surface of MPs during long-term floating in seawater. To our knowledge, this study is the first to investigate MPs pollution in T. ovatus aquaculture. DNA sequencing and bioinformatics analysis confirmed the effect of microbial colonization of MPs on the intestinal flora of T. ovatus. The MPs detected in the gut wet weight (w.w.) of golden pompano (546 ± 52 items/g) were mainly pellets and fragments of blue or green, whereas the sediment MPs dry weight (d.w.) (4765 ± 116 items/kg) were mainly black fibers. The MPs richness in the sediment gradually increased from the open-sea aquaculture area to the estuarine aquaculture area and was positively correlated with the MPs richness in the intestinal tract of golden pompano. MPs 20-200 μm were the most common in the gut and sediment. The intake of MPs increased the abundance of Proteobacteria and decreased that of Firmicutes in the intestinal flora. The functional compositions of MP-colonizing microbes and gut microbiota were similar, suggesting that the two communities influence each other. Network analysis further confirmed this and revealed that Vibrio plays a key role in the intestinal flora and surface microorganisms of MPs. Overall, the intake of MPs by aquatic animals not only affects the intestinal flora and intestinal microbial function, but also poses potential risks to aquaculture.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Jie Gao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China.
| |
Collapse
|
45
|
Hao Y, Sun Y, Li M, Fang X, Wang Z, Zuo J, Zhang C. Adverse effects of polystyrene microplastics in the freshwater commercial fish, grass carp (Ctenopharyngodon idella): Emphasis on physiological response and intestinal microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159270. [PMID: 36208741 DOI: 10.1016/j.scitotenv.2022.159270] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution in aquatic environment has attracted global attention in recent years. To evaluate the potential toxic effects of MPs in freshwater cultured fish, grass carps (Ctenopharyngodon idella) (body length: 7.7 ± 0.1 cm, wet weight: 6.28 ± 0.23 g) were exposed to different sizes (0.5 μm, 15 μm) and concentrations (100 μg/L, 500 μg/L) of polystyrene microplastics (PS-MPs) suspension for 7 and 14 days, followed by 7 days of depuration, detecting the variations in growth rate, histological structure, oxidative response and intestinal microbiome. Our results indicate that MP toxicity elicited significant size- and concentration-dependent responses by grass carp. MP exposure caused obvious decrease in growth rate on day 14 but not on day 7. Additionally, MPs with large size and high concentration caused more severe intestinal damage and less weight gain, while MP particles with small size and high concentration induced more severe liver congestion and stronger oxidative stress. MP exposure dramatically shifted the gut microbial composition, with the top 10 genera in abundance being associated with the diameter and concentration of the MPs. After 7 days of depuration, only superoxide dismutase and malondialdehyde in liver, showed a tendency to recover to the initial values. Even though the differences in the gut microbial community between the control and treatment groups disappeared, and the proportion of potential pathogenic bacteria in intestine was still high. Thus, it is clear that a short-term depuration period of 7 days is not enough for complete normalization.
Collapse
Affiliation(s)
- Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China.
| | - Mo Li
- Life Sciences College, Cangzhou Normal University, Cangzhou 061001, China
| | - Xuedan Fang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Zhikui Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiulong Zuo
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Cuiyun Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| |
Collapse
|
46
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
47
|
Mogha NK, Shin D. Nanoplastic detection with surface enhanced Raman spectroscopy: Present and future. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
49
|
Zhang P, Lu G, Sun Y, Zhang J, Liu J, Yan Z. Aged microplastics change the toxicological mechanism of roxithromycin on Carassius auratus: Size-dependent interaction and potential long-term effects. ENVIRONMENT INTERNATIONAL 2022; 169:107540. [PMID: 36166955 DOI: 10.1016/j.envint.2022.107540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Size effects of microplastics have received extensive attention for their influence on other pollutants and harm to organisms. In this study, we investigated the uptake, elimination, tissue distribution and potential toxicity mechanism of roxithromycin (ROX) in the presence of 0.5, 5 and 50 μm of aged microplastics (AMPs) in Carassius auratus. The results showed that AMPs promoted the ROX bioaccumulation of various tissues in a size-dependent manner. AMPs and ROX significantly induced superoxide dismutase and catalase activities of liver and gut, and inhibited acetylcholinesterase activities of brain. The coexistence of smaller AMPs exacerbated pathological abnormalities in liver, gill and brain induced by ROX, while larger AMPs caused more intestinal damage. Moreover, high-throughput 16S rRNA gene sequencing indicated that the abundance of Proteobacteria in 0.5 μm AMPs and ROX joint treatments and Firmicutes and Bacteroidota in 50 μm AMPs and ROX joint treatments were significantly raised (p < 0.05). Metabolomics revealed that AMPs and ROX had a size-dependent long-term effect on gut microbial metabolites, which was mainly related to galactose metabolism, amino acid metabolism and primary bile acid biosynthesis pathways after a 7-day elimination, respectively. These results provide important insights into the relationship between the size effect of AMPs and interaction mechanism of AMPs and coexisting pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
50
|
Xie L, Chen T, Liu J, Hou Y, Tan Q, Zhang X, Li Z, Farooq TH, Yan W, Li Y. Intestinal flora variation reflects the short-term damage of microplastic to the intestinal tract in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114194. [PMID: 36252513 DOI: 10.1016/j.ecoenv.2022.114194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The potential toxicity of microplastic (MPs) to organisms has attracted extensive attention. However, due to the subacute toxicity of MPs, the biological effect is hard to verify in short-term exposure experiment. Here, by tracking the dynamics of gut microbes, mice model was utilized to evaluate the toxicity of compositional MPs (PE, PET, PP, PS and PVC). After 7 days digestive exposure, the physiological indicators were normal as the control group that the body weight and serum cholesterol levels were insignificant change. Whereas, through histopathological examination, all the treatment groups suffered colon tissue damage, among which PS had the most inflammatory cells. Moreover, the high-throughput sequencing results revealed great variation of intestinal flora in treated mice. The ratio of Bacteroidetes and Firmicutes in PE, PET and PP treatment groups heighten, and the relative abundance of Ruminococcaceae and Lachnospiraceae increased significantly at family levels. At the genus level, Alistipes bacteria in PS treatment group significantly decreased that is associated with obesity risk. It indicated that MPs induced inflammatory response would further interfere the dynamics of intestinal flora causing health effect in living organisms. This work shed light on MPs toxicity in short-term exposure and supplied research paradigm of MPs health risk assessment.
Collapse
Affiliation(s)
- Lingli Xie
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yuanyuan Hou
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qianlong Tan
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuyuan Zhang
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziqian Li
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Taimoor Hassan Farooq
- Bangor College China, Central South university of Forestry and Technology, Changsha 410004, China
| | - Wende Yan
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yong Li
- Faculty of Life Science and Technology, National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|