1
|
Wang P, Jiang X, Duan S, Han L, Li J, Xiong J, Zhang J. Anti-seepage reinforcement property and pollution control effect of bio-cemented fracture zone in electrolytic manganese residue dump. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177928. [PMID: 39647208 DOI: 10.1016/j.scitotenv.2024.177928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The heavy metal (HM) pollutants in electrolytic manganese residue (EMR) can easily diffuse through the seepage channel of the dump under the leaching action of rainfall. Particularly, the fracture zone, as one of the widely distributed seepage channels in the manganese residue dump (MRD), poses a greater threat to the ecological environment due to its weak mechanical properties, strong ductility, and numerous fractures. In this study, the microbially induced calcium carbonate precipitation (MICP) method was used for anti-seepage reinforcement of the fracture zone in an MRD to be constructed. The optimal conditions for the anti-seepage reinforcement of the fracture zone using the MICP method were proposed, and the control effect of the bio-cemented fracture zone on the major HM pollutant in the leachate of EMR was illustrated. Results showed that after grouting at a rate of 3 mL/min for 12 cycles with a grouting slurry of high urease activity (9 mM urea/min) and high cementation solution concentration (1.5 mol/L), the permeability coefficient of the fracture zone decreased from 10-4 to 10-5, and the unconfined compressive strength was approximately 5.58 times that of uncemented. Furthermore, the cubic calcite crystal clusters with high purity, good stability, dense arrangement, and high cementation properties were generated using the optimal conditions, and the pores were transformed from long columnar to spherical pores. Additionally, the Mn2+ concentration in the effluent from the fracture zone at the stabilization stage was only 663 mg/L, significantly lower than that of the leachate of EMR, and the risk of leaching changed from very high risk to low risk. The research outcomes can provide guidance and reference for laboratory model testing and in-situ testing of bio-cemented fracture zone, and it is expected to provide the theoretical and technological support for green and economic anti-seepage reinforcement of the fracture zone.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiqing Jiang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shuqian Duan
- School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Lijun Han
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiecheng Xiong
- School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingwei Zhang
- School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Li C, Yu T, Jiang Z, Li W, Guan DX, Yang Y, Zeng J, Xu H, Liu S, Wu X, Zheng G, Yang Z. Leveraging machine learning for sustainable cultivation of Zn-enriched crops in Cd-contaminated karst regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176650. [PMID: 39368515 DOI: 10.1016/j.scitotenv.2024.176650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Karst soils often exhibit elevated zinc (Zn) levels, providing an opportunity to cultivate Zn-enriched crops. (meanwhile) However, these soils also frequently contain high background levels of toxic metals, particularly cadmium (Cd), posing potential health risks. Understanding the bioaccumulation of Cd and Zn and the related drivers in a high geochemical background area can provide important insights for the safe development of Zn-enriched crops. Traditional models often struggle to accurately predict metal levels in crop systems grown on soils with high geochemical background. This study employed machine learning models, including Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), to explore effective strategies for sustainable cultivation of Zn-enriched crops in karst regions, focusing on bioaccumulation factors (BAF). A total of 10,986 topsoil samples and 181 paired rhizosphere soil-crop samples, including early rice, late rice, and maize, were collected from a karst region in Guangxi. The SVM and XGBoost models demonstrated superior performance, achieving R2 values of 0.84 and 0.60 for estimating the BAFs of Zn and Cd, respectively. Key determinants of the BAFs were identified, including soil iron and manganese contents, pH level, and the interaction between Zn and Cd. By integrating these soil properties with machine learning, a framework for the safe cultivation of Zn-enriched crops was developed. This research contributes to the development of strategies for mitigating Zn deficiency in crops grown on Cd-contaminated soils.
Collapse
Affiliation(s)
- Cheng Li
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi 531406, China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Zhongcheng Jiang
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi 531406, China.
| | - Wenli Li
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi 531406, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yeyu Yang
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China
| | - Jie Zeng
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China
| | - Haofan Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Shaohua Liu
- Institute of Karst Geology, CAGS, Key Laboratory of Karst, MNR & GZARDynamics, International Research Center on Karst under the Auspices of UNESCO, Guilin, Guangxi 541004, China; Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, Guangxi 531406, China
| | - Xiangke Wu
- Mineral Resource Reservoir Evaluation Center of Guangxi, Nanning 530023, China
| | - Guodong Zheng
- Guangxi Institute of Geological Survey, Nanning 530023, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
3
|
Zhang Y, Lu X, Han X, Zhu T, Yu B, Wang Z, Lei K, Yang Y, Deng S. Determination of contamination, source, and risk of potentially toxic metals in fine road dust in a karst region of Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:403. [PMID: 39196318 DOI: 10.1007/s10653-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Understanding the pollution situation of potentially toxic metals (PTMs) in fine road dust (FRD) in emerging industrialized cities and identifying priority control factors is crucial for urban environmental management, resident health protection, and pollution control. This study conducted a comprehensive investigation on PTMs pollution in FRD in Zunyi, a representative emerging industrialized city in the karst region of southwestern China. The average contents of Ni, Cr, Mn, Cu, Zn, Ba, Pb, V, and Co in the FRD were 43.2, 127.0, 1232.1, 134.4, 506.6, 597.8, 76.1, 86.8, and 16.2 mg kg-1, respectively, which were obviously higher than the corresponding background levels of the local soil except for V and Co. The comprehensive pollution level of the determined PTMs in the FRD was very high, primarily caused by Zn and Cu. The sources of PTMs in Zunyi FRD were traffic, industrial, construction, and natural sources, accounting for 38.0, 23.7, 21.9, and 16.4% of the total PTMs content, respectively. The PTMs in Zunyi FRD exhibited a low to moderate overall ecological risk level, mainly contributed by Cu and traffic source. The cancer risks of PTMs in Zunyi FRD were high for all populations. The non-carcinogenic risk of PTMs in Zunyi FRD was acceptable for adults, but cannot be ignored for children. According to the source-specific probabilistic health risk estimation results, the priority control source is industrial source and the priority control PTM is Cr. Local governments need to give more attention to the carcinogenic risks and health hazards posed by PTMs in the FRD.
Collapse
Affiliation(s)
- Yingsen Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiufeng Han
- College of Resources and Environment, Baotou Normal College, Baotou, 014030, China.
| | - Tong Zhu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Sijia Deng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
4
|
Terzić A, Stojanović J, Jovanović V, Todorović D, Sokić M, Bojović D, Radulović D. Exploring the Efficiency of Magnetic Separation and Gravity Concentration for Valorizing Pb-Zn Smelter Slag in a Circular Economy Framework. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3945. [PMID: 39203122 PMCID: PMC11355818 DOI: 10.3390/ma17163945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
The presented work offers an innovative process scheme for valorizing Pb-Zn slag, which involves crushing, grinding, and separation techniques to concentrate valuable components (non-ferrous metals). This methodology could have a significant impact on the global beneficiation of metallurgical slags since it is significantly more simple, environmentally friendly, and cost-effective than standard pyro- and hydrometallurgical procedures. According to previous physicochemical and mineralogical studies, Pb-Zn slag is a valuable secondary raw material. This inhomogeneous technogenic resource contains substantial amounts of non-ferrous metals (Pb, Zn, Cu, and Ag). However, laboratory tests have indicated that the Pb-Zn slag contains highly uneven amounts of valuable metals, ranging from several g/ton to tens of g/ton. The main issue is that traditional metallurgical procedures for releasing beneficial elements are not commercially viable since the elements are "trapped" within the amorphous aluminosilicates or intergrowths of alloy grains and glassy phases. Gravity concentration (Wilfley 13 shaking table) and magnetic separation (Davis separator and disk separator) were used to obtain the final concentrate following comminution and grindability testing. The gravity concentration proved more effective. Namely, magnetic separators could not process nor adequately separate beneficial non-ferrous elements because they were merged together with iron-bearing minerals and aluminosilicates in amorphous Pb-Zn slag grains. With the gravity concentration approach, 12.99% of the processed slag belonged to ∆T fraction (concentration of non-ferrous metal alloys), while remaining 87% corresponded to the tailings fraction (∆L). The total amounts of recovered Pb, Zn, Cu, and Ag from ∆T and ∆L fractions were 5.28%, 6.69%, 0.58%, and 76.12 ppm and 1.22%, 6.05%, 0.43%, and 15.26 ppm, respectively. This streamlined approach to valorizing Pb-Zn slag can reduce the need for hazardous chemicals used in hydrometallurgical refinement operations, as well as the extremely high temperatures required for pyrometallurgical processing. This is the first study to investigate the viability of this novel methodology, which involves the direct examinations of the Pb-Zn slag feed with various alternative technologies for separation and concentration. After extracting the valuable metals, the amorphous aluminosilicate part of the Pb-Zn slag can be reapplied as an alternative raw material in the building sector, adding to the circularity of the suggested approach.
Collapse
Affiliation(s)
- Anja Terzić
- Institute for Testing of Materials, Bulevar Vojvode Mišića 43, 11000 Belgrade, Serbia;
| | - Jovica Stojanović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, 11000 Belgrade, Serbia; (J.S.); (V.J.); (D.T.); (M.S.); (D.R.)
| | - Vladimir Jovanović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, 11000 Belgrade, Serbia; (J.S.); (V.J.); (D.T.); (M.S.); (D.R.)
| | - Dejan Todorović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, 11000 Belgrade, Serbia; (J.S.); (V.J.); (D.T.); (M.S.); (D.R.)
| | - Miroslav Sokić
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, 11000 Belgrade, Serbia; (J.S.); (V.J.); (D.T.); (M.S.); (D.R.)
| | - Dragan Bojović
- Institute for Testing of Materials, Bulevar Vojvode Mišića 43, 11000 Belgrade, Serbia;
| | - Dragan Radulović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet d’Esperey 86, 11000 Belgrade, Serbia; (J.S.); (V.J.); (D.T.); (M.S.); (D.R.)
| |
Collapse
|
5
|
Li C, Jiang Z, Li W, Yu T, Wu X, Hu Z, Yang Y, Yang Z, Xu H, Zhang W, Zhang W, Ye Z. Machine learning-based prediction of cadmium pollution in topsoil and identification of critical driving factors in a mining area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:315. [PMID: 39001912 DOI: 10.1007/s10653-024-02087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
Mining activities have resulted in a substantial accumulation of cadmium (Cd) in agricultural soils, particularly in southern China. Long-term Cd exposure can cause plant growth inhibition and various diseases. Rapid identification of the extent of soil Cd pollution and its driving factors are essential for soil management and risk assessment. However, traditional geostatistical methods are difficult to simulate the complex nonlinear relationships between soil Cd and potential features. In this study, sequential extraction and hotspot analyses indicated that Cd accumulation increased significantly near mining sites and exhibited high mobility. The concentration of Cd was estimated using three machine learning models based on 3169 topsoil samples, seven quantitative variables (soil pH, Fe, Ca, Mn, TOC, Al/Si and ba value) and three quantitative variables (soil parent rock, terrain and soil type). The random forest model achieved marginally better performance than the other models, with an R2 of 0.78. Importance analysis revealed that soil pH and Ca and Mn contents were the most significant factors affecting Cd accumulation and migration. Conversely, due to the essence of controlling Cd migration being soil property, soil type, terrain, and soil parent materials had little impact on the spatial distribution of soil Cd under the influence of mining activities. Our results provide a better understanding of the geochemical behavior of soil Cd in mining areas, which could be helpful for environmental management departments in controlling the diffusion of Cd pollution and capturing key targets for soil remediation.
Collapse
Affiliation(s)
- Cheng Li
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, 530028, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Zhongcheng Jiang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Wenli Li
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Tao Yu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Xiangke Wu
- Mineral Resource Reservoir Evaluation Center of Guangxi, Nanning, 530023, People's Republic of China
| | - Zhaoxin Hu
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Yeyu Yang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, 530028, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China.
| | - Haofan Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Wenping Zhang
- Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR & GZAR/International Research Center on Karst Under the Auspices of UNESCO, Guilin, 541004, Guangxi, People's Republic of China
- Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo, 531406, Guangxi, People's Republic of China
| | - Wenjie Zhang
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, 530028, People's Republic of China
| | - Zongda Ye
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, 530028, People's Republic of China
| |
Collapse
|
6
|
Toledo FADO, Santos DOD, Vasconcelos IMA, Oliveira AR, Cabral JAG, Toledo RARD, Cunha PHH, Batista DFA, Paes Leme FDO, Carvalho MPND, da Paixão TA, Machado-Neves M, Melo MM, Santos RL. Heavy metals bioaccumulation in free-ranging South American rattlesnakes (Crotalus durissus) in Southeastern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32339-32349. [PMID: 38653891 DOI: 10.1007/s11356-024-33432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Anthropogenic activities are the main sources of soil, air, and water pollution by metals, including cadmium (Cd), lead (Pb), chromium (Cr), the metalloid arsenic (As), magnesium (Mg), zinc (Zn), and copper (Cu). The goal of this study was to assess the presence and concentration of toxic (As, Cd, Pb, and Cr) and essential metals (Mg, Zn, and Cu) in the liver and kidneys from 96 free-ranging rattlesnakes (Crotalus durissus) from Minas Gerais (Brazil). Bioaccumulation of Cd and Pb were significantly higher in males and heavier rattlesnakes (those with body weight above the average of the study population). Average ± standard deviations of Cd, Pb, Cr, Cu, Mg, Zn, and As in the general population (n = 96) were 3.19 ± 2.52; 5.98 ± 8.49; 0.66 ± 1.97; 3.27 ± 2.85; 776.14 ± 2982.92; 27.44 ± 29.55; and 0.32 ± 1.46; respectively. Bioaccumulation of some metals correlated positively with changes in hematologic and serum biochemical parameters. Results of this study were contrasted with previous studies assessing metal bioaccumulation in other species of terrestrial or aquatic snakes. Considering their position in the food chain and the broad range of bioaccumulation of both toxic and essential metals observed in this study, rattlesnakes may function as highly relevant biological sentinels for environmental pollution.
Collapse
Affiliation(s)
| | - Daniel Oliveira Dos Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | - Ayisa Rodrigues Oliveira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Pedro Hugo Henriques Cunha
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Diego Felipe Alves Batista
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marilia Martins Melo
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
7
|
Swain AA, Sharma P, Keswani C, Minkina T, Tukkaraja P, Gadhamshetty V, Kumar S, Bauddh K, Kumar N, Shukla SK, Kumar M, Dubey RS, Wong MH. The efficient applications of native flora for phytorestoration of mine tailings: a pan-global survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27653-27678. [PMID: 38598151 DOI: 10.1007/s11356-024-33054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.
Collapse
Affiliation(s)
- Ankit Abhilash Swain
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Purushotham Tukkaraja
- Department of Mining Engineering and Management, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology Center, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Sanjeev Kumar
- Department of Geology, BB Ambedkar University, Lucknow, 226025, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Institute of Environment and Sustainable Development, RGSC, Banaras Hindu University, Barkachha, Mirzapur, 231001, India.
| | - Narendra Kumar
- Department of Environmental Science, BB Ambedkar University, Lucknow, 226025, India
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar, 382030, Gujarat, India
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
8
|
Taveira Parente CE, Souza Soares LO, Farias de Araujo G, Sales Júnior SF, Oliveira de Carvalho G, Lino AS, José M Ferreira Filho V, Malm O, Correia FV, Saggioro EM. A multi-biomarker approach to verify chronic effects on Eisenia andrei earthworms exposed to tailings from one of the world's largest mining disasters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123497. [PMID: 38331242 DOI: 10.1016/j.envpol.2024.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Mining is of great relevance to the global economy, but its activities are challenging due to socio-environmental impacts. In January 2019, an iron ore tailings dam collapsed in Brumadinho (Minas Gerais, Brazil) releasing 12 × 106 m3 of tailings, causing human losses and devastation around 3.13 × 106 m2 of a watershed. In this context, the present study aimed to investigate the potential toxic effects of tailings from the collapsed dam using earthworms Eisenia andrei as a model organism for terrestrial environments. An extensive set of tests was performed, including behavioral (avoidance), acute (mortality and biomass) and chronic tests, such as biomass, reproduction and cytotoxicity (viability and cell density and change in coelomocyte pattern). The physical-chemical characterization revealed a higher density of the tailings in relation to the control soil, which can result in physical changes, such as soil compaction and surface sealing. Aluminum, Ca, Fe, Hg, Mg, Mn, K, Na and P registered higher concentrations in the tailings compared to the control soil, while Total Nitrogen, Total Organic Carbon and Organic Matter were higher in the natural soil. Based on the avoidance test, an EC50 of 27.18 ± 2.83% was estimated. No lethality was observed in the acute exposure, nor variations in biomass in the acute and chronic assays. However, there was a tendency to reduce the number of juveniles in relation to cocoons in the proportions of 3125; 12.5 and 25%. Significant changes in viability, cell density and pattern of amebocytes and eleocytes were observed up to the 35th day of exposure. A multi-biomarker approach (Integrated Biological Response version 2) indicated concentration-dependent effects and attenuation of cellular changes over time. These are the first results of chronic effects on earthworms exposed to tailings from the B1 dam. Despite being conclusive, we highlight the possible heterogeneity of the tailings and the necessary care in extrapolating the results.
Collapse
Affiliation(s)
- Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, bloco G0, sala 60, subsolo. Rio de Janeiro, 21941-902, Brazil
| | - Lorena Oliveira Souza Soares
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Gabriel Farias de Araujo
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Sidney Fernandes Sales Júnior
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Gabriel Oliveira de Carvalho
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, bloco G0, sala 60, subsolo. Rio de Janeiro, 21941-902, Brazil; Núcleo Prof. Rogério Vale de Produção Sustentável - SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Adan Santos Lino
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, bloco G0, sala 60, subsolo. Rio de Janeiro, 21941-902, Brazil
| | - Virgílio José M Ferreira Filho
- Núcleo Prof. Rogério Vale de Produção Sustentável - SAGE/COPPE, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, bloco G0, sala 60, subsolo. Rio de Janeiro, 21941-902, Brazil
| | - Fábio Veríssimo Correia
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, 22290-20, Urca, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical), Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, 22290-20, Urca, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Zhang L, Zhu Y, Zhang Y, Zhong J, Li J, Yang S, Ta W, Zhang Y. Characteristics, source analysis, and health risk assessment of potentially toxic elements pollution in soil of dense molybdenum tailing ponds area in central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:129. [PMID: 38483651 DOI: 10.1007/s10653-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, Xi'an, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, China
| | - Yuxi Zhu
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Yanan Zhang
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Jiahao Zhong
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Jiangwei Li
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Shitong Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weiyuan Ta
- Shaanxi Environmental Investigation and Assessment Center, Xi'an, China
| | - Yue Zhang
- School of Architecture, Chang'an University, Xi'an, China.
| |
Collapse
|
10
|
Boumaza B, Kechiched R, Chekushina TV, Benabdeslam N, Senouci K, Hamitouche AE, Merzeg FA, Rezgui W, Rebouh NY, Harizi K. Geochemical distribution and environmental assessment of potentially toxic elements in farmland soils, sediments, and tailings from phosphate industrial area (NE Algeria). JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133110. [PMID: 38086303 DOI: 10.1016/j.jhazmat.2023.133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
This study investigates the extent and spatial distribution of Potentially Toxic Elements (PTEs) in the Djebel Onk phosphate mine area in south-eastern Algeria, as well as the associated risks to human health. Various scales are considered and sampled, including tailing waste (n = 8), surrounding farmland soil (n = 21), and sediments (n = 5). The samples were mineralogically and chemically analyzed using XRD, FTIR, XRF, and ICP-MS techniques. Principal Component Analysis (PCA) was applied after transforming the raw data into centered-log ratios (clr) to identify the dominant factors controlling the distribution of PTEs. Furthermore, pollution assessment was conducted using several indices, including geo-accumulation, pollution load, contamination security indices, and enrichment and contamination factors. The results reveal that the analyzed samples are mostly P-enriched in the mine tailings, farmland soil, and sediments, with P2O5 concentrations ranging from 13.37 wt% to 26.17 wt%, 0.91-21.70 wt%, and 17.04-29.41 wt%, respectively. The spatial distribution of PTEs exhibits clearly a decrease in the contents of CaO, P2O5, Cr, Sr, Cd, and U with increasing distance from the mine discharge site, while other oxides, such as MgO, Al2O3, SiO2, K2O, and Fe2O3, and associated elements (Cu, Co, Pb, and Zn), show an increase. PCA confirms the influence of minerals such as, apatite, dolomite, and silicates on the distribution PTEs. It denoted that the highest contamination level of all PTEs in soils and sediments was observed in the southern part of the plant and mine tailings compared to the northern part. In terms of human health risks, the assessment reveals that the hazard index (HI) values for both non-carcinogenic and carcinogenic risks associated with PTEs in the study area are below 1, suggesting no significant risk. However, regardless of the sample type, the lifetime cancer risk (LCR) values vary from 1.69E-05-2.11E-03 and from 1.03E-04-2.27E-04 for Cr, Ni, As (children) and Cd (adults), respectively, exceeding the safe levels recommended by the United States Environmental Protection Agency. The study highlights that oral ingestion poses the greatest risk, followed by dermal contact and particle inhalation. Importantly, all these indices decrease with increasing distance from the sampling site to the waste discharge point and the factory, which indicates that the phosphate mining activity had caused some extent risks. These findings provide valuable insights for mitigating the adverse health impacts and guiding environmental management efforts.
Collapse
Affiliation(s)
- Bilal Boumaza
- Academy of Engineering (RUDN University), Miklukho-Maklaya St, Moscow 117198, Russian Federation.
| | - Rabah Kechiched
- Laboratoire des Réservoirs Souterrains: Pétroliers, Gaziers et Aquifères, Université Kasdi Merbah Ouargla, 30000, Algeria
| | - Tatiana Vladimirovna Chekushina
- Academy of Engineering (RUDN University), Miklukho-Maklaya St, Moscow 117198, Russian Federation; Research Institute for Comprehensive Exploitation of Mineral Resources-IPKON, Russian Academy of Sciences, Kryukovskii tupik 4, Moscow 111020, Russia
| | - Nouara Benabdeslam
- Laboratoire de Technologie des Matériaux et de Génie des Procédés (LTMGP), Université Abderrahmane Mira Béjaïa, 06000, Algeria
| | - Khouloud Senouci
- Laboratory of Valorization of Mining Resources and Environment (LAVAMINE), University of Badji Mokhtar Annaba, 23000, Algeria
| | - Adh'ya-Eddine Hamitouche
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Farid Ait Merzeg
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Walid Rezgui
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP, 42004 Tipaza, Algeria
| | - Nazih Yacer Rebouh
- Department of Environmental Management, Institute of Environmental Engineering (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Khaled Harizi
- Laboratoire de mobilisation et de gestion des ressources en eau (LMGRE), Université Batna II, 05000 Algeria
| |
Collapse
|
11
|
Xiuping H, Zheng D, Kang Y, Handong L, Chuan D. Fluoride and acid enrichment in coal fire sponges in the Wuda coalfield, Inner Mongolia, Northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123438. [PMID: 38272161 DOI: 10.1016/j.envpol.2024.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Coal fire sponges (CFSs) are a type of sponge-like contaminated soil bulge common in coal fire areas. However, the impacts of CFSs on the local environment are not yet understood. Thus, this study investigated soil samples from CFSs in the Wuda coalfield, Inner Mongolia, China, focusing on the acidity, sulfate, and fluorine content. The results showed that the CFSs were highly acidic, with an average pH of 0.76, and contained high levels of SO42- (257.29 × 103 μg/g), total fluorine (TF, 2011.6 μg/g), and water-soluble fluorine (WF, 118.94 μg/g), significantly exceeding those in the regional background soil and indicating that CFSs are a point source of heavy pollution. Soils in the 8000 m2 reclamation zone showed elevated acidity and high SO42- (129.6 × 103 μg/g), TF (1237.8 μg/g), and WF (43.05 μg/g) levels, which was likely the result of the weathering and dissemination of CFS. The CFS samples were rich in hydrogen fluoride, releasing 202.05 ppb of it when heated to 40 °C. Correlation analysis indicated that the acid sulfate soils in CFSs are likely caused by HSO4-/SO42-. Time-of-flight secondary ion mass spectrometry detected four characteristic ions (F-, H3O+, H2SO4+, and HSO4-) in all micro-domains of each sample, indicating that ionic fluorine compounds and sulfuric acid hydrate were found in the CFS samples. Sulfate minerals detected in CFSs included CaSO4, Fe2(SO4)3, CdSO4, NH4HSO4, and Na2SO4. Thus, the results identified CFSs as a transmission channel for contamination, with erosional surface soils as the carrier, for the first time. CFSs pose a serious threat of contamination, albeit over limited areas.
Collapse
Affiliation(s)
- Hong Xiuping
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Du Zheng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, PR China
| | - Yang Kang
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing, 100083, PR China.
| | - Liang Handong
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, PR China
| | - Du Chuan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, 100083, PR China
| |
Collapse
|
12
|
Camêlo DDL, Silva Filho LAD, Arruda DLD, Cyrino LM, Barroso GF, Corrêa MM, Barbeira PJS, Mendes DB, Pasa VMD, Profeti D. Mineralogical fingerprint and human health risk from potentially toxic elements of Fe mining tailings from the Fundão dam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169328. [PMID: 38104831 DOI: 10.1016/j.scitotenv.2023.169328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In 2015, >50 million cubic meters of Fe mining tailings were released into the Doce River basin from the Fundão dam, raising the question of its consequences on the affected ecosystems. This study aimed to establish a mineralogical-(geo)chemical association of potentially toxic elements (PTEs) from Fe mining tailings from the Fundão dam, collected seven days after the failure, through a multidisciplinary approach combining assessment of the risk to human health, environmental geochemistry, and mineralogy. Thus, eleven tailings samples were collected with the support of the Brazilian Military Police Fire Department. Granulometry, magnetic measurements, optical microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and sequential chemical extraction of PTEs analyses were performed. Contamination indexes, assessment of risk to human health, and Pearson correlation were calculated using the results of sequential chemical extraction of PTEs. The predominance of goethite in Fe oxyhydroxide concentrates from the mud indicates that the major source of hematite may not be from tailings, but from pre-existing soils and sediments, and/or preferential dissolution of hematite in deep flooded zones of the tailings column of the Fundão dam. Moreover, the high correlation of most carcinogenic PTEs with their crystallographic variables indicates that goethite is the primary source of contaminants. Goethites from Fe mining tailings showed high specific surface area and Al-substitution, and due to their greater stability and reactivity, the impacts on PTE sorption phenomena and bioavailability may be maintained for long periods. However, their lower dissolution rate, and the consequent release of heavy metals would promote greater resilience for affected ecosystems, preventing significant PTE inputs under periodic reduction conditions. More specific studies, involving the crystallographic characteristics of Fe oxyhydroxides should be developed since they may provide another critical component of this set of complex and dynamic variables that interfere with the bioavailability of metals in ecosystems.
Collapse
Affiliation(s)
- Danilo de Lima Camêlo
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil.
| | | | - David Lukas de Arruda
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| | - Luan Mauri Cyrino
- Department of Agronomy, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| | - Gilberto Fonseca Barroso
- Department of Oceanography and Ecology, Federal University of Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Marcelo Metri Corrêa
- Federal University of Agreste of Pernambuco, Garanhuns, Pernambuco 55292-270, Brazil
| | | | - Danniel Brandão Mendes
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Vânya Marcia Duarte Pasa
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Demetrius Profeti
- Department of Chemistry and Physics, Federal University of Espírito Santo, Alegre, Espírito Santo 29500-000, Brazil
| |
Collapse
|
13
|
Buch AC, Sims DB, de Ramos LM, Marques ED, Ritcher S, Abdullah MMS, Silva-Filho EV. Assessment of environmental pollution and human health risks of mine tailings in soil: after dam failure of the Córrego do Feijão Mine (in Brumadinho, Brazil). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:72. [PMID: 38367120 DOI: 10.1007/s10653-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
The dam failure of the Córrego do Feijão Mine (CFM) located in Minas Gerais State, Brazil, killed at least 278 people. In addition, large extensions of aquatic and terrestrial ecosystems were destroyed, directly compromising the environmental and socioeconomic quality of the region. This study assessed the pollution and human health risks of soils impacted by the tailing spill of the CFM dam, along a sample perimeter of approximately 200 km. Based on potential ecological risk and pollution load indices, the enrichments of Cd, As, Hg, Cu, Pb and Ni in soils indicated that the Brumadinho, Mário Campos, Betim and São Joaquim de Bicas municipalities were the most affected areas by the broken dam. Restorative and reparative actions must be urgently carried out in these areas. For all contaminated areas, the children's group indicated an exacerbated propensity to the development of carcinogenic and non-carcinogenic diseases, mainly through the ingestion pathway. Toxicological risk assessments, including acute, chronic and genotoxic effects, on people living and working in mining areas should be a priority for public management and mining companies to ensure effective environmental measures that do not harm human health and well-being over time.
Collapse
Affiliation(s)
- Andressa Cristhy Buch
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil.
| | - Douglas B Sims
- Department of Physical Sciences, College of Southern Nevada, North Las Vegas, NV, 89030, USA
| | - Larissa Magalhães de Ramos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, 82590-300, Brazil
| | - Eduardo Duarte Marques
- Service Geological Survey of Brazil/Company of Research of Mineral Resources (SGB/CPRM), Belo Horizonte Regional Office, Belo Horizonte, Minas Gerais, 30140-002, Brazil
| | - Simone Ritcher
- Researcher of Paraná Center of Reference in Agroecology, Estrada da Graciosa, Pinhais, Paraná, 6960, 83327-055, Brazil
| | - Mahmood M S Abdullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Emmanoel Vieira Silva-Filho
- Department of Environmental Geochemistry, Fluminense Federal University, Outeiro São João Baptista, S/N., Centro, Niterói, Rio de Janeiro, 24020-007, Brazil
| |
Collapse
|
14
|
Zhao R, Wu X, Zhu G, Zhang X, Liu F, Mu W. Revealing the release and migration mechanism of heavy metals in typical carbonate tailings, East China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132978. [PMID: 37984137 DOI: 10.1016/j.jhazmat.2023.132978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Refining the occurrence characteristics of tailings hazardous materials at source is of great importance for pollution management and ecological reclamation. However, the release and transport of heavy metals (HMs) from tailings under rainfall drenching in simulated real-world environments is less well portrayed, particularly highlighting the inherent neutralisation in tailings wastes under superimposed dynamic conditions. In this study, dynamic leaching columns simulating actual conditions were used to observe the release and transport of HMs from tailings under acid rainfall infiltration at spatial and temporal scales. The release rate of trace elements (e.g., As, Cr, Ni, Pb, Cd) is high. Neutralisation in the presence of carbonate rocks in the gangue reduces HMs release intensity from tailings with high heavy metal content, along with the precipitation of iron oxides and chromium-bearing minerals, etc. In addition, the vertical differentiation of HMs is more relevant to physical processes. In the absence of carbonate rocks in gangue, the lowest pH value is reached within 1.2 h after acid rain infiltrates the tailings. At the same time, Cu, Zn and Cd are released significantly from the minerals at the superficial level. The release of As(III) is mainly concentrated in the early and late stages of water-rock contact.
Collapse
Affiliation(s)
- Rong Zhao
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiong Wu
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Ge Zhu
- Department of Hydrogeology and Environmental Geology, China Geological Survey, Beijing 100011, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Fei Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Wenping Mu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
15
|
Dong Y, Lu H, Lin H. Comprehensive study on the spatial distribution of heavy metals and their environmental risks in high-sulfur coal gangue dumps in China. J Environ Sci (China) 2024; 136:486-497. [PMID: 37923458 DOI: 10.1016/j.jes.2022.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 11/07/2023]
Abstract
The accumulation of coal gangue (CG) from coal mining is an important source of heavy metals (HMs) in soil. Its spatial distribution and environment risk assessment are extremely important for the management and remediation of HMs. Eighty soil samples were collected from the high-sulfur CG site in northern China and analyzed for six HMs. The results showed that the soil was heavily contaminated by Mn, Cr and Ni based on the Nemerow index, and posed seriously ecological risk depended on the geo-accumulation index, potential ecological risk index and risk assessment code. The semi-variogram model and ordinary kriging interpolation accurately portrayed the spatial distribution of HMs. Fe, Mn, and Cr were distributed by band diffusion, Ni was distributed by core, the distribution of Cu had obvious patchiness and Zn was more uniform. The spatial autocorrelation indicated that all HMs had strong spatial heterogeneity. The BCR sequential extraction was employed to qualify the geochemical fractions of HMs. The data indicated that Fe and Cr were dominated by residual fraction; Cu, Ni and Zn were dominated by reducible and oxidizable fractions; Mn was dominated by reducible and acid-extractable (25.38%-44.67%) fractions. Pearson correlation analysis showed that pH was the main control factor affecting the non-residue fractions of HMs. Therefore, acid production from high sulfur CG reduced soil pH by 2-3, which indirectly promoted the activity of HMs. Finally, the conceptual model of HMs contamination at the CG site was proposed, which can be useful for the development of ecological remediation strategies.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Huan Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
16
|
Xiao M, Qian L, Yang B, Zeng G, Ren S. Risk assessment of heavy metals in agricultural soil based on the coupling model of Monte Carlo simulation-triangular fuzzy number. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:62. [PMID: 38294573 DOI: 10.1007/s10653-024-01866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Soils in areas wherein agriculture and mining coexist are experiencing serious heavy metal contamination, posing a great threat to the ecological environment and human health. In this study, heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) in agricultural soil samples from mining areas were analyzed to explore pollution status, bioavailability, potential sources, and ecological/health risks. Particularly, the coupling model of Monte Carlo simulation-triangular fuzzy number (MCS-TFN) was established to quantify ecological/health risks accurately. Results showed that Cd was heavily enriched in soil and had the highest bioavailability based on both geo-accumulation index (Igeo) and chemical speciation analysis. Pollution sources apportioned with the absolute principal component score-multiple linear regression (APCS-MLR) model demonstrated that heavy metals were mainly derived from agricultural activities, followed by mining activities and natural sources. The MCS-TFN ecological risk assessment classified Cd into the high-risk category with a probability of 40.96%, whereas other heavy metals were categorized as the low risk. Cd was regarded as the major pollutant for the ecosystem. Moreover, the MCS-TFN health risk assessment indicated that As showed high noncarcinogenic risk (0.07% probability) and moderate carcinogenic risk (1.87% probability), and Cd presented low carcinogenic risk (80.19% probability). As and Cd were identified as the main heavy metals that pose a threat to human health. The MCS-TFN risk assessment is superior to the traditional deterministic risk assessment since it can obtain the risk level and the corresponding probability, and significantly reduce the uncertainty in risk assessment.
Collapse
Affiliation(s)
- Minsi Xiao
- Jiangxi Provincial Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Lidan Qian
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Bing Yang
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Guangcong Zeng
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Sili Ren
- Jiangxi Provincial Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
| |
Collapse
|
17
|
Kim D, Kwak JI, Lee TY, Kim L, Kim H, Nam SH, Hwang W, Wee J, Lee YH, Kim S, Kim JI, Hong S, Hyun S, Jeong SW, An YJ. TRIAD method to assess ecological risks of contaminated soils in abandoned mine sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132535. [PMID: 37714001 DOI: 10.1016/j.jhazmat.2023.132535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/22/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Site-specific soil ecological risk assessment is important for protecting soil ecosystems because it reflects the environmental factors at the site to detect ecological risks and develop risk management measures. This study assessed the ecological risks from chemical pollutants in abandoned mine sites using the TRIAD approach, evaluating its overall applicability, including the tiered system of assessment. A site-specific soil ecological risk assessment was conducted for five abandoned mine sites (Sites 1-4 and R, the reference site); integrated risks (IRs) for each site were calculated. Our results of the Tier 2 assessment showed that IRs at Sites 1-4 were 0.701, 0.758, 0.840, and 0.429, respectively. The IR classification was moderate, high, high, and low risk, in that order for Sites 1-4, the same as that for Tier 1. The IR had more varied analyses, emphasizing the significance of conducting higher tiered analyses under TRIAD while maintaining a balance between soil ecosystem protection and socioeconomic costs. Multiple analyses reduced the uncertainty of IR, thus enabling efficient risk management decision-making to protect soil ecosystems. Our study provides a basis for using the TRIAD for soil assessment and establishing policies for site-specific soil ecological risk assessments.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sun Hwa Nam
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wonjae Hwang
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - June Wee
- Ojeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yong Ho Lee
- Humanities and Ecology Consensus Resilience Laboratory, Hankyong National University, Anseong 17579, Republic of Korea
| | - Songhee Kim
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Ji-In Kim
- Soil and Groundwater Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Sunhee Hong
- Department of Plant Resources and Landscape, Hankyong National University, Anseong 17579, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Acosta Hernández I, Muñoz Morales M, Fernández Morales FJ, Rodríguez Romero L, Villaseñor Camacho J. Removal of heavy metals from mine tailings by in-situ bioleaching coupled to electrokinetics. ENVIRONMENTAL RESEARCH 2023; 238:117183. [PMID: 37769830 DOI: 10.1016/j.envres.2023.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
This work utilizes a combined biological-electrochemical technique for the in-situ removal of metals from polluted mine tailings. As the main novelty point it is proposed to use electrokinetics (EK) for the in-situ activation of a bioleaching mechanism into the tailings, in order to promote biological dissolution of metal sulphides (Step 1), and for the subsequent removal of leached metals by EK transport out of the tailings (Step 2). Mine tailings were collected from an abandoned Pb/Zn mine located in central-southern Spain. EK-bioleaching experiments were performed under batch mode using a lab scale EK cell. A mixed microbial culture of autochthonous acidophilic bacteria grown from the tailings was used. Direct current with polarity reversal vs alternate current was evaluated in Step 1. In turn, different biological strategies were used: biostimulation, bioaugmentation and the abiotic reference test (EK alone). It was observed that bioleaching activation was very low during Step 1, because it was difficult to maintain acidic pH in the whole soil, but then it worked correctly during Step 2. It was confirmed that microorganisms successfully contributed to the in-situ solubilization of the metal sulphides as final metal removal rates were improved compared to the conventional abiotic EK (best increases of around 40% for Cu, 162% for Pb, 18% for Zn, 13% for Mn, 40% for Ni and 15% for Cr). Alternate current seemed to be the best option. The tailings concentrations of Fe, Al, Cu, Mn, Ni and Pb after treatment comply with regulations, but Pb, Cd and Zn concentrations exceed the maximum values. From the data obtained in this work it has been observed that EK-bioleaching could be feasible, but some upgrades and future work must be done in order to optimize experimental conditions, especially the control of soil pH in acidic values.
Collapse
Affiliation(s)
- Irene Acosta Hernández
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Martín Muñoz Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Francisco Jesús Fernández Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - Luis Rodríguez Romero
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain
| | - José Villaseñor Camacho
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technologies (ITQUIMA), University of Castilla La Mancha UCLM, 13071 Ciudad Real, Spain.
| |
Collapse
|
19
|
Zúñiga-Vázquez D, Armienta MA, Cruz O, Aguayo A, Pérez-Martínez I, Morales-Arredondo JI. Edaphic properties as pieces of evidence of tailings deposit on soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9175-9197. [PMID: 37356036 PMCID: PMC10673738 DOI: 10.1007/s10653-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2023] [Indexed: 06/27/2023]
Abstract
Mine tailings are one of the primary contaminant sources of heavy metals and metalloids in the soil. Besides increasing the concentration of potentially toxic elements (PTEs), tailings may modify the edaphic conditions and decrease the buffer capacity of impacted soils. The influence of tailings may reach distances far from the impoundments depending on the transport path and the specific transport mean: air, rain (runoff and infiltration), or acid mine drainage. In this study, soil samples from various horizons were collected in trial pits along a transect, at different distances from sulfide tailings. Soil analysis included texture, organic matter, alkalinity, porous space, carbonates, pH, electrical conductivity, real density, apparent density, total sulfur, main mineralogy, and total concentrations of As, Cd, Pb, Fe, and Zn. Graphical and statistical interpretation of the results showed that real density and porous space are the leading indicators of the tailings dispersion and accumulation and that pH is not a significant parameter (all values were above the neutrality) due to the limestone abundance in the area. However, Zn and Cd concentrations had an inverse relation with pH. Differences in the concentrations of PTEs between the superficial and deep layers that increased toward the tailings were also observed. Gypsum was only present in the closest samples to the tailings and may also be an indicator of tailings' influence on soils. This study allowed us to identify general edaphic parameters as a first and quick means to determine the tailings contamination of soils.
Collapse
Affiliation(s)
- Diana Zúñiga-Vázquez
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | - María Aurora Armienta
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico.
| | - Olivia Cruz
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | - Alejandra Aguayo
- Universidad Nacional Autónoma de México, Instituto de Geofísica, UNAM, 04510, Mexico City, Mexico
| | | | | |
Collapse
|
20
|
Qian L, Shi Y, Xu Q, Zhou X, Li X, Shao X, Xu C, Liang R. A prospective ecological risk assessment method based on exposure and ecological scenarios (ERA-EES) to determine soil ecological risks around metal mining areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166371. [PMID: 37604368 DOI: 10.1016/j.scitotenv.2023.166371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Soil heavy metal (HM) contamination around metal mining areas (MMAs) is a global concern that requires a cost-effective ecological risk assessment (ERA) method for preventive management. Traditional ERAs, comparing environmental HM concentrations with benchmarks, are labor- and cost-intensive in field investigations and chemical analyses, which challenge the management demands of numerous MMAs. In this study, a prospective ecological risk assessment method based on exposure and ecological scenario (ERA-EES) was developed to predict the eco-risk levels (low/medium/high) around MMAs prior to field sampling. Five exposure scenario indicators related to soil HM exposure and three ecological scenario indicators reflecting the soil bioreceptor response were selected and combined with the analytic hierarchy process and fuzzy comprehensive evaluation methods for ERA-EES development. Case application and performance evaluation with 67 MMAs in China demonstrated that the ERA-EES method had an overall effective and conservative performance when referring to potential ecological risk index (PERI) levels, with an accuracy of 0.87, kappa coefficient of 0.7, and low or medium eco-risk levels in PERI classified to high levels in ERA-EES. Overall, the selected scenario indicators could efficiently reflect the risk levels of soil HM pollution from mining activities. Besides, more regulatory efforts should be paid to the MMAs of nonferrous metals, underground and long-term mining and those located in southern China. This work provided a convenient and cost-effective prospective ERA method under the trend of ERA being tiered and refined, facilitating the risk management of various MMAs.
Collapse
Affiliation(s)
- Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglong Xu
- State Environmental Protection Key Laboratory of Numerical Modeling for Environmental Impact Assessment, The Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, Beijing, 100041, China
| | - Ruoyu Liang
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
21
|
Wang Z, Lu X, Yu B, Yang Y, Wang L, Lei K. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164022. [PMID: 37172841 DOI: 10.1016/j.scitotenv.2023.164022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Re-suspended surface dust (RSD) often poses higher environmental risks due to its specific physical characteristics. To ascertain the priority pollution sources and pollutants for the risk control of toxic metals (TMs) in RSD of medium-sized industrial cities, this study took Baotou City, a representative medium-sized industrial city in North China, as an example to systematically study TMs pollution in RSD. The levels of Cr (242.6 mg kg-1), Pb (65.7 mg kg-1), Co (54.0 mg kg-1), Ba (1032.4 mg kg-1), Cu (31.8 mg kg-1), Zn (81.7 mg kg-1), and Mn (593.8 mg kg-1) in Baotou RSD exceeded their soil background values. Co and Cr exhibited significant enrichment in 94.0 % and 49.4 % of samples, respectively. The comprehensive pollution of TMs in Baotou RSD was very high, mainly caused by Co and Cr. The main sources of TMs in the study area were industrial emissions, construction, and traffic activities, accounting for 32.5, 25.9, and 41.6 % of the total TMs respectively. The overall ecological risk in the study area was low, but 21.5 % of samples exhibited moderate or higher risk. The carcinogenic risks of TMs in the RSD to local residents and their non-carcinogenic risks to children cannot be ignored. Industrial and construction sources were priority pollution sources for eco-health risks, with Cr and Co being the target TMs. The south, north and west of the study area were the priority control areas for TMs pollution. The probabilistic risk assessment method combining of Monte Carlo simulation and source analysis can effectively identify the priority pollution sources and pollutants. These findings provide scientific basis for TMs pollution control in Baotou and constitute a reference for environmental management and protection of residents' health in other similar medium-sized industrial cities.
Collapse
Affiliation(s)
- Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
22
|
Modabberi S, Tashakor M, Rajabian N, Khorasanipour M, Esmaeilzadeh E, Ambrosino M, Cicchella D. Characterization and chemical fractionation of potentially toxic elements in soils of a pre-mining mineralized area; an evaluation of mobility and environmental risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4795-4815. [PMID: 36941446 DOI: 10.1007/s10653-023-01537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
The environmental geochemical characterization of mineralized areas prior to mining does not receive adequate attention. This study shows trace element distribution in soils of two unexploited porphyry copper deposits located in Darreh-Zereshk and Ali-Abad in central Iran. The study was carried out using a compositional data analysis (CoDa) approach and combination of multivariate statistics and clustering techniques, which made it possible to identify the geochemical associations representing the different areas of the mineral deposits. The results of the chemical analyses, performed by ICP-MS, revealed high concentrations of those elements typically associated with porphyry deposits (As, Co, Cu, Mo, Ni, Pb, and Zn). The typical zonal pattern with an anomaly of Cu in central parts of the system and the prevalence of epithermal elements (Ag, Cd, Pb, and Zn) toward the peripheral propylitic alteration zone were recognized. The XRD analysis of selected soil samples allowed us to determine the distribution of elements within the different carrier minerals. Afterward, geochemical speciation patterns were investigated by a four-step sequential extraction procedure based on BCR protocol. The residual fraction consisting of primary resistant minerals was found to be the main host for As (73-93.4%), Cr (65.1-79.6%), Cu (54.3-81.4%), Ni (58.9-80.6%), V (75.9-88%), and Zn (56.5-60.5%) in the studied soils. Even though these elements are not readily leachable, their behavior and distribution could be largely affected by the mining operation and consequent changes in the physicochemical properties of the soil. The soluble-exchangeable phase was only less than 15% of the total extractions for all elements, except for Cd. With respect to the mobility factor (MF), Cd was the most mobile element followed by Sb and Pb. The measured risk assessment code (RAC) presented the following risk order: Cd > Sb > Ni > Co > Pb > Cr > As > Zn > Cu > V. This study reveals that the acquisition of pre-mining geo-environmental data of trace elements is very important to establish pre-mining backgrounds and baselines for evaluating post-mining or post-reclamation geochemical signatures.
Collapse
Affiliation(s)
- Soroush Modabberi
- School of Geology, College of Science, University of Tehran, Tehran, Iran.
| | - Mahsa Tashakor
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Najmeh Rajabian
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Khorasanipour
- Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmat Esmaeilzadeh
- Research and Development Division, Sarcheshmeh Copper Complex, Kerman, Iran
| | - Maurizio Ambrosino
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| |
Collapse
|
23
|
Xu Z, Ito L, Dos Muchangos LS, Tokai A. Health risk assessment and cost-benefit analysis of agricultural soil remediation for tailing dam failure in Jinding mining area, SW China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3759-3775. [PMID: 36513912 DOI: 10.1007/s10653-022-01445-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
The impact of the tailing dams and the economic feasibility of the remediation process is significant for future risk management for tailing dams. In this research, we develop a hypothetical failure scenario for a tailing dam in the Jinding mining area, Southwest China. We assess the exposure with the Geo-Environmental Risk Assessment System, tier-1 model, and health impact with Disability-Adjusted Life Years (DALY). Cost and benefit are also analyzed for the following clean-up process. The result shows that the exposure dose (mg/kg-BW/d) of As, Cd, and Pb right after the dam failure is 1.07 × 10-2 for As, 1.76 × 10-4 for Cd, and 5.68 × 10-3 for Pb, respectively. The DALY caused by heavy metal exposure is 2.63 × 10-2 DALY per year, which significantly exceeds the tolerable level. This indicates that the tailing dam failure will pose a high health risk to the residents, and remediation is necessary. After remediation, the DALY is 1.24 × 10-8 DALY per year, indicating the clean-up process effectively reduces the resident's health impact. From the financial point of view, the net present value of the clean-up is $- 1.02 × 107. This indicates that the clean-up process is not economically feasible. Sensitivity analysis shows that the amount of released tailing influences the output result. The time span for benefit estimation is also an important issue. This research shows that the impact of a tailing dam failure will be severe, and remediation may be effective but economically infeasible. Therefore, preventing tailing dam failure is the most crucial task for the local government.
Collapse
Affiliation(s)
- Zhongyu Xu
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Lisa Ito
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Leticia Sarmento Dos Muchangos
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Akihiro Tokai
- Laboratory of Environmental Management, Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Li C, Dong P, Yan J, Gong R, Meng Q, Yao J, Yu H, Ma Y, Liu B, Xie R. Analytical study on heavy metal output fluxes and source apportionment of a non-ferrous smelter in southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121867. [PMID: 37270050 DOI: 10.1016/j.envpol.2023.121867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Abandoned Pb/Zn smelters are often accompanied by a large amount of smelting slag, which is a serious environmental problem. Previous studies have demonstrated that slag deposits pose an environmental threat even if the smelters are shut down. Herein, a Pb/Zn smelter and its impacted zone in GeJiu, Yunnan, China were selected as the study area. The risk and source apportionment of heavy metals (HMs) in the soil of the impacted zone were systematically studied. Based on the hydrogeological features, the migration path and output fluxes of the HMs released from smelting slag to the impacted zone were investigated. The HM contents (Cd, As, Zn, Pb, and Cu) in the soil substantially exceeded the screening values of the Chinese soil standard (GB15618-2018). Based on the results of the Pb isotopic and statistical analyses for source apportionment, the contaminated sites and agricultural irrigation water had a large impact on the HMs of soil. The hydrological analysis results showed that runoff, as an HM migration path under rainfall, continued to affect the environment. The water balance calculations using the Hydrologic Evaluation of Landfill Performance model showed that the rainfall was distributed on site as follows: evaporation (57.35%), runoff (32.63%), and infiltration (10.02%). Finally, the output fluxes were calculated in combination with the leaching experiment. As, Zn, Cd, Pb, and Cu runoff had the output fluxes of 6.1 × 10-3, 4.2 × 10-3, 4.1, 1.4 × 10-2, and 7.2 × 10-4 mg/kg/y, and infiltration of 1.9 × 10-3, 1.3 × 10-3, 1.3, 4.0 × 10-4, and 2.2 × 10-4 mg/kg/y, respectively. Therefore, this study offers theoretical and scientific recommendations for effective environmental management and engineering remediation.
Collapse
Affiliation(s)
- Chenchen Li
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jin Yan
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Rui Gong
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qi Meng
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jun Yao
- Faculty of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hanjing Yu
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yaoqiang Ma
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bang Liu
- Faculty of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruosong Xie
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
25
|
Klauberg-Filho O, Lunardi EODS, Oliveira Filho LCI, Moreira FMDS, Siqueira JO. An alternative risk assessment framework for tropical soil multi-metal contamination using arbuscular mycorrhizal fungi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162373. [PMID: 36858220 DOI: 10.1016/j.scitotenv.2023.162373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are a key group of soil organisms involved in several ecosystem services, but they had not been explored in retrospective ecological risk assessment (ERA) schemes, partially due to a lack of experimental protocols. We aimed to perform a site-specific test to assess the effects of multiple metal contaminated soil (Zn, Cu, Cd, and Pb) on several ecotypes of AMF and evaluate the conceptual fitness of the performed AMF test to include in the TRIAD approach of ERA schemes. The results demonstrated that increasing metal contaminated soil proportions that inhibited 50 % (IC50) of spore germination varied from 28 to >80. Ecotypes such as Claroideoglomus etunicatum (IC50 > 80) and Racocetra gregaria (IC50 > 80) experienced 50 % reduction in spore germination at metals concentrations of 10,776.3 for Zn, 1015.2 Cu, 65.5 Cd, 140.2 mg dm-3 Pb, that are 3 times higher than those for Acaulospora mellea CMM101 (IC50 28 [16.2-39.8]) (3441.7 Zn, 333.9 Cu, 17.8 Cd, 56.5 mg dm-3 Pb). In the evaluation of the suitability of the AMF ecotoxicological test to ERA, both spore germination and germinative tube growth were best evaluated and thus suitable in the following descending order: Tier III, Tier II, and Tier I. Variable effects of multiple-metal contamination on the ecotypes indicates how AMF community is affected in its pre-symbiotic structures. The ecotoxicological test allowed the selection of two species with the greatest sensitivity (Ambispora appendicula and Rhizophagus clarus CMM103) to the metal matrix, with the potential to best fit ERA objectives. The site-specific ecotoxicological test with AMF ex-situ proved adequate as an alternative test for Tiers II and III of TRIAD ERA schemes for metal contaminated areas. Data generated through test results, such as the inhibition concentrations (ICs), could be incorporated into ERAs risk indexes, increasing its ecological relevance, and reducing overall uncertainties.
Collapse
Affiliation(s)
- Osmar Klauberg-Filho
- Soil Science Department, Universidade do Estado de Santa Catarina (UDESC Lages), Lages, SC, Brazil.
| | | | | | | | | |
Collapse
|
26
|
Cacciuttolo C, Cano D, Custodio M. Socio-Environmental Risks Linked with Mine Tailings Chemical Composition: Promoting Responsible and Safe Mine Tailings Management Considering Copper and Gold Mining Experiences from Chile and Peru. TOXICS 2023; 11:toxics11050462. [PMID: 37235276 DOI: 10.3390/toxics11050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
There is a need to define mine tailings in a clear, precise, multidisciplinary, transdisciplinary, and holistic manner, considering not only geotechnical and hydraulic concepts but also integrating environmental and geochemical aspects with implications for the sustainability of mining. This article corresponds to an independent study that answers questions concerning the definition of mine tailings and the socio-environmental risks linked with mine tailings chemical composition by examining the practical experience of industrial-scale copper and gold mining projects in Chile and Peru. Definitions of concepts and analysis of key aspects in the responsible management of mine tailings, such as characterization of metallic-metalloid components, non-metallic components, metallurgical reagents, and risk identification, among others, are presented. Implications of potential environmental impacts from the generation of acid rock drainage (ARD) in mine tailings are discussed. Finally, the article concludes that mine tailings are potentially toxic to both communities and the environment, and cannot be considered as inert and innocuous materials; thus, mine tailings require safe, controlled, and responsible management with the application of the most high management standards, use of the best available technologies (BATs), use of best applicable practices (BAPs), and implementation of the best environmental practices (BEPs) to avoid risk and potential socio-environmental impact due to accidents or failure of tailings storage facilities (TSFs).
Collapse
Affiliation(s)
- Carlos Cacciuttolo
- Civil Works and Geology Department, Catholic University of Temuco, Temuco 4780000, Chile
- Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Santiago 8320000, Chile
- Facultad de Ingeniería, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Deyvis Cano
- Programa Académico de Ingeniería Ambiental, Universidad de Huánuco, Huánuco 10001, Peru
| | - María Custodio
- Centro de Investigación de Medicina en Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909, Huancayo 12006, Peru
| |
Collapse
|
27
|
Wang CC, Zhang QC, Yan CA, Tang GY, Zhang MY, Ma LQ, Gu RH, Xiang P. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163361. [PMID: 37068677 DOI: 10.1016/j.scitotenv.2023.163361] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s (HMs) accumulation in agricultural soils, rice, and wheat is of particular concern in China, while the status and spatio-temporal distribution of HMs in the soil-crops system have been rarely reported at the national scale. This study aimed to summarize the overall pollution status, spatiotemporal patterns, and drivers of HMs in agricultural soil, rice, and wheat nationwide. The metal-polluted data from 1030 agricultural soils, rice, and wheat in China were collected from the literature published from 2000 to 2022. The results showed that Cd was the most prevailing contaminant in soils based on its spatiotemporal distribution and accumulation. The pollution cases and severe pollution percentage of Cd (103 %) and Hg (128 %) show an increasing trend pattern. Mining activities are the main anthropogenic sources of agricultural soil HMs in China. Cd and Pb had the highest exceedance rate in rice (33.5 and 32.2 %) and wheat (25.8 and 30.3 %). The rice from Hunan, Fujian, and Guangxi showed the highest average concentration of Cd and Pb, respectively, while wheat samples from Hubei had the greatest exceedance rate of Pb. Besides, HMs in crops was not usually corresponding to soil HMs but increased gradually from north to south areas. Several mitigation strategies and accurate health risk assessments model of HMs based on bioavailability were also proposed and recommended. Collectively, this review provides valuable information to improve the management of farmland nationwide, optimize the accurate risk assessment, and reduce HMs pollution.
Collapse
Affiliation(s)
- Cheng-Chen Wang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qiao-Chu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Chang-An Yan
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650500, China
| | - Guo-Yong Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Meng-Yan Zhang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rong-Hui Gu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ping Xiang
- Yunnan Provincial Innovative Team of Environmental Pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
28
|
Kou B, He Y, Wang Y, Qu C, Tang J, Wu Y, Tan W, Yuan Y, Yu T. The relationships between heavy metals and bacterial communities in a coal gangue site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121136. [PMID: 36736561 DOI: 10.1016/j.envpol.2023.121136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Coal is the main source of energy for China's economic development, but coal gangue dumps are a major source of heavy metal pollution. Bacterial communities have a major effect on the bioremediation of heavy metals in coal gangue dumps. The effects of different concentrations of heavy metals on the composition of bacterial communities in coal gangue sites remain unclear. Soil bacterial communities from four gangue sites that vary in natural heavy metal concentrations were investigated using high-throughput sequencing in this study. Correlations among bacterial communities, heavy metal concentrations, physicochemical properties of the soil, and the composition of dissolved organic matter of soil in coal gangue dumps were also analyzed. Our results indicated that Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota were the bacterial taxa most resistant to heavy metal stress at gangue sites. Heavy metal contamination may be the main cause of changes in bacterial communities. Heavy metal pollution can foster mutually beneficial symbioses between microbial species. Microbial-derived organic matter was the main source of soil organic matter in unvegetated mining areas, and this could affect the toxicity and transport of heavy metals in soil. Polar functional groups such as hydroxyl and ester groups (A226-400) play an important role in the reaction of cadmium (Cd) and lead (Pb), and organic matter with low molecular weight (SR) tends to bind more to mercury (Hg). In addition to heavy metals, the content of nitrogen (N), phosphorus (P), and total organic carbon (TOC) also affected the composition of the bacterial communities; TOC had the strongest effect, followed by N, SOM, and P. Our findings have implications for the microbial remediation of heavy metal-contaminated soils in coal gangue sites and sustainable development.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guozhong Biotechnology Co., LTD, Beijing, 102211, China
| | - Yang Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuman Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| |
Collapse
|
29
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
30
|
Wang P, Li J, Hu Y, Cheng H. Solidification and stabilization of Pb-Zn mine tailing with municipal solid waste incineration fly ash and ground granulated blast-furnace slag for unfired brick fabrication. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121135. [PMID: 36693584 DOI: 10.1016/j.envpol.2023.121135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The mismanaged and abandoned mine tailings are an important source of heavy metal pollution in the mining regions, and there is a significant need to develop technically, environmentally, and economically feasible and sustainable solutions to manage them. This study explored the solidification and stabilization of the tailing from an abandoned Pb-Zn mine using municipal solid waste incineration fly ash (MSWIFA) blended with ground granulated blast-furnace slag (GGBFS) for fabricating unfired bricks, and systematically characterized the products' mechanical and environmental performance. Various hydration products, such as ettringite, portlandite, and hydrotalcite, were formed in the unfired bricks in the solidification and stabilization process, which enhance the physical strength of unfired bricks and help immobilize the heavy metals. Slaking treatment of MSWIFA significantly increased the mechanical strength, reduced the water absorption, and improved the durability of unfired bricks, with the product prepared from MSWIFA with 7-day slaking exhibiting the highest unconfined compressive strength (12.3 MPa) after 56 days of curing. The concentrations of As (0.35-1.49 μg/L), Cd (0.35-0.70 μg/L), Cr (1.38-9.40 μg/L), Cu (2.28-5.87 μg/L), Ni (0.16-2.24 μg/L), Pb (0.16-59.80 μg/L), and Zn (1.60-10.80 μg/L) in the leachates of unfired bricks were below the relevant regulatory limits for surface water and groundwater. Converting the mine tailing (with MSWIFA and GGBFS) to different types of unfired bricks could yield economic payback in the range of 283.7-306.5 Yuan per ton. Replacing cement with MSWIFA blended with GGBFS in the solidification and stabilization treatment could save about 0.15 ton of cement per ton of mine tailing disposed, which avoids significant energy use and carbon dioxide emissions. These findings demonstrate that utilization of mine tailings and industrial wastes to fabricate unfired bricks is a promising way of reusing such wastes and controlling the associated pollution, which also brings significant economic benefit and improves environmental sustainability.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Messias TG, Alves PRL, Cardoso EJBN. Are the Brazilian prevention values for copper and zinc in soils suitable for protecting earthworms against metal toxicity? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40641-40653. [PMID: 36622600 DOI: 10.1007/s11356-022-25106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The current Brazilian copper (Cu) and zinc (Zn) prevention values (PV) for soil quality do not take into account the ecotoxicological impacts on soil organisms, which suggests these guiding values may not be protective of soil ecological trophic levels. This study assessed the acute (mortality) and chronic toxicity (reproduction), as well as the cumulative (bioaccumulation) potential of Cu and Zn (pseudo-total and available fractions) for earthworms Eisenia andrei in a Tropical Artificial Soil (TAS) and two tropical field soils (Oxisol and Alfisol). Toxicity data based on pseudo-total fractions were compared to PV. The Lowest Observed Effect Concentrations (LOEC) for the mortality endpoint were found at Cu and Zn concentrations higher than their PV (60 and 300 mg kg-1, respectively), regardless of the soil type. However, concentrations lower than PV reduced the reproduction of E. andrei by 20% (compared to the controls) for Cu in all tested soils (EC20s from 31.7 to 51.2 mg kg-1) and by 50% for Zn in Oxisol and Alfisol (EC50s = 225 and 283 mg kg-1, respectively). In TAS, only the EC20 (273 mg kg-1) for Zn was lower than PV. Increases of Cu in earthworm tissues occurred at concentrations higher than PV in all tested soils (LOEC values from 70 to 107 mg kg-1). The same was observed for Zn in TAS (LOEC = 497 mg kg-1), while in the field soils, the increases of Zn in earthworm tissues were lower than PV (LOEC = 131 and 259 mg kg-1 in Alfisol and Oxisol, respectively). We suggest the following: (1) The current Brazilian PV for Cu and Zn are not protective for earthworms (E. andrei) in the field soils tested; (2) PV derived from ecotoxicological assays in artificial soil cannot be representative for Brazilian field soils; (3) Using PV based on the pseudo-total fraction, without a soil-type normalizing factor, may limit the representativeness of this threshold for different soil types.
Collapse
Affiliation(s)
- Tâmara Guindo Messias
- Department of Soil Science, University of São Paulo, Avenida Pádua Dias, 11, Piracicaba, 13416-900, Brazil
| | - Paulo Roger Lopes Alves
- Federal University of Fronteira Sul (UFFS), Av. Fernando Machado, 108-E, Chapecó, Santa Catarina, 89802-112, Brazil.
| | | |
Collapse
|
32
|
Zhu Y, Zhu J, Wang B, Xiao M, Li L. Pollution characteristics and probabilistic health risk of potentially hazardous elements in soils near a typical coal mine in Panzhihua City, Southwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:230. [PMID: 36571700 DOI: 10.1007/s10661-022-10852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 05/16/2023]
Abstract
This study first assessed the pollution characteristics and probabilistic health risks of potentially hazardous elements (PHEs) in soils from the Dabaoding coal mining area in southwest China using Monte Carlo simulation. Experimental results showed that Cd was moderately enriched in soils, while Ni, Cr, and V were slightly enriched. However, the geoaccumulation index (Igeo) illustrated that the coal mining area had a low level of Cd pollution. PHEs produced a very high ecological risk to soils in the coal mining area, whereas Cd showed the highest contribution (82.56%). The mean hazard index of all soil PHEs was 7.45E - 02 and 4.18E - 01 for local adults and children, respectively, all of which were obviously lower than the maximum acceptable level of 1.0. However, Monte Carlo simulation analysis indicated that 1.08% of noncarcinogenic risk values for local children still exceeded the maximum acceptable level. Additionally, 10.84% and 18.40% of the total carcinogenic risk values for local adults and children, respectively, exceeded the threshold of 1E - 04. Indeed, Cr and Ni had the highest contributions to noncarcinogenic and carcinogenic risks, respectively. These findings suggest that Cd, Cr, and Ni should be identified as priority pollutants in coal mining areas. This study also provides valuable implications for policy-makers and environmental engineers, proposing efficient policies for better soil pollution control and remediation strategies in coal mining areas.
Collapse
Affiliation(s)
- Yanyuan Zhu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- Sichuan Metallurgical Geological Survey and Ecological Environment Engineering Co., LTD, Chengdu, 610065, China
| | - Jingyi Zhu
- College of Food Science, Southwest University, Chongqing, 400000, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Min Xiao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Li Li
- Sichuan Metallurgical Geological Survey and Ecological Environment Engineering Co., LTD, Chengdu, 610065, China
| |
Collapse
|
33
|
da Silva APV, Silva AO, Lima FRDD, Benedet L, Franco ADJ, Souza JKD, Ribeiro Júnior AC, Batista ÉR, Inda AV, Curi N, Guilherme LRG, Carneiro MAC. Potentially toxic elements in iron mine tailings: Effects of reducing soil pH on available concentrations of toxic elements. ENVIRONMENTAL RESEARCH 2022; 215:114321. [PMID: 36222244 DOI: 10.1016/j.envres.2022.114321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Tailings from iron mining are characterized by high concentrations of iron and manganese oxides, as well as high pH values. With these characteristics, most of the potentially toxic elements (PTE) contained in the tailings are somewhat unavailable. The aim of the present study was to evaluate how a reduction in the pH of iron mine tailings may affect PTE availabilities. The tailings were collected on the banks of the Gualaxo do Norte River (Mariana, MG, Brazil), one of the main areas impacted by the rupture of the Fundão Dam (Barragem de Fundão). A completely randomized experimental design was used, including five pH values (6.4, 5.4, 4.3, 3.7, and 3.4) and five replications. The concentrations of the PTE (Ba, Cr, Cd, Co, Cu, Fe, Mn, Pb, Ni, and Zn) were determined after extraction following different methodologies: USEPA 3051A, DTPA, Mehlich-1, Mehlich-3, and distilled water. A comparison of the available concentrations of the elements in the tailings with those in a soil not impacted by tailings shows that Cr, Cd, Cu, Fe, Mn, Ni, Ba, and Co were higher in the soil impacted by the tailings. The different methods used for evaluating the availability of PTE in the tailings at various pH exhibited the following decreasing order in relation to the quantity extracted: Mehlich-3 > Mehlich-1 > DTPA > distilled water. However, regarding sensitivity to change in pH, the order was DTPA > water > Mehlich-1 > Mehlich-3. The increases in the concentrations of PTE due to the reduction in the pH of the tailings did not lead to concentrations that exceed the limits of Brazilian regulations. The DTPA extractant exhibited higher coefficients of correlation between the PTE concentrations and the pH of the tailings, proving to be suitable for use in areas affected by the deposition of iron mine tailings.
Collapse
Affiliation(s)
| | | | | | - Lucas Benedet
- Department of Soil Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | | | | | | | | | | | - Nilton Curi
- Department of Soil Science, Universidade Federal de Lavras, Lavras, MG, Brazil
| | | | | |
Collapse
|
34
|
Li F, Yu T, Huang Z, Jiang T, Wang L, Hou Q, Tang Q, Liu J, Yang Z. Leaching experiments and risk assessment to explore the migration and risk of potentially toxic elements in soil from black shale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156922. [PMID: 35803429 DOI: 10.1016/j.scitotenv.2022.156922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Black shale is rich in potentially toxic elements (PTEs) that migrate through rock weathering or rainfall, adversely affecting human health and the environment. In this study, simulated rainfall leaching experiments were used to investigate the migration patterns and leaching kinetics of PTEs in black shale from the Lower Cambrian Hetang Formation and to analyze the water quality index (WQI) of PTEs in the leachate. A comparison between the risk of PTEs in the leachate and those in the soil was also made to determine the risk sources, risk status, and distribution characteristics of PTEs in the study area. The WQI of the indoor column experimental leachate indicated the highest As contamination. The geo-accumulation index (Igeo) and potential ecological risk (Er) of soils in the entire region revealed that the risk of Cd was the highest. Furthermore, by mapping the distribution of Igeo and Er in soils, the risk level in the region where black shale is located was found to be significantly higher than that in other areas. Comparing the leaching rate of PTEs with the WQI from leaching experiments, the risk associated with As in soil can be inferred to originate mainly from the leaching of black shale. Previous studies on PTEs in black shale in the study area tended to focus on Cd; however, this study found that the risk of As was not negligible. The health risk assessment also showed that the risk at the location of black shale was beyond the accepted range. Overall, this study provided a new and important evaluation law for the level of pollution by PTEs and health risks in typical black shale regions.
Collapse
Affiliation(s)
- Fengyan Li
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, PR China; Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China.
| | - Zhenzhong Huang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Tianyu Jiang
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Lingxiao Wang
- School of Science, China University of Geosciences, Beijing 100083, PR China
| | - Qingye Hou
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Qifeng Tang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China; National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, PR China
| | - Jiuchen Liu
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China; National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing 100037, PR China
| | - Zhongfang Yang
- Key Laboratory of Ecogeochemistry, Ministry of Natural Resources, Beijing 100037, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
35
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
36
|
He Z, Xu Y, Yang X, Shi J, Wang X, Jin Z, Zhang D, Pan X. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156504. [PMID: 35688247 DOI: 10.1016/j.scitotenv.2022.156504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Metal tailings contain a variety of toxic heavy metals and have potential environmental risks owing to long-term open piling. In the present study, a strain of ureolytic bacteria with bio-mineralization ability, Lysinibacillus fusiformis strain Lf, was isolated from copper-nickel mine tailings in Xinjiang and applied to a pilot trial of tailings solidification under field conditions. The results of the pilot trial (0.5 m3 in scale) showed that strain Lf effectively solidified the tailings. The compressive strength of the solidified tailings increased by 121 ± 9 % and the permeability coefficient decreased by 68 ± 3 %. Compared to the control, the leaching reduction of the solidified tailings of Cu and Ni was >98 %, and that of As was 92.5 ± 1.7 %. Two mechanisms of tailings solidification and heavy metal passivation were proposed based on the findings of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS) mapping. Biogenic calcite filled the interstices of the tailings particles and cemented the adjacent particles. This improved the mechanical properties and reduced permeability. Moreover, heavy metal colloids were incorporated into large-sized calcite crystals, and heavy metal ions were sequestered within the calcite lattice. This method of using indigenous ureolytic bacteria to solidify tailings was successful in this work and may be replicated to remediate other tailings.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoliang Yang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jianfei Shi
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
37
|
Kim D, Kwak JI, Hwang W, Lee YH, Lee YS, Kim JI, Hong S, Hyun S, An YJ. Site-specific ecological risk assessment of metal-contaminated soils based on the TRIAD approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128883. [PMID: 35427964 DOI: 10.1016/j.jhazmat.2022.128883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Ecological risk assessment based on scientific data is crucial for understanding causal relationships between chemical pollution and environmental risks. Simultaneously, a balance is required between socioeconomic factors and scientific evidence. The TRIAD approach, which incorporates three lines of evidence (LoE)-chemical (Chem-LoE), ecotoxicological (Ecotox-LoE), and ecological (Eco-LoE)-was applied in five sites of an abandoned mine for site-specific soil ecological risk assessment (SERA). In combination, the three LoEs showed that two sites had extremely high risks, one site had moderate risk, and the other site had low risk. At all sites, Chem-LoE exhibited high-integrated risk values. In Ecotox-LoE and Eco-LoE, some species were not affected despite high metal concentrations in the soil samples collected from the sites, indicating that the bioavailability of metals differed according to the physiochemical properties of the soil medium. This study is significant as multiple analyses were performed considering ecosystem structure to reduce uncertainty in SERA. The results provide information to support effective decision-making risk management to protect the soil ecosystem. Moreover, these findings will be useful in establishing policies and priorities for soil risk management.
Collapse
Affiliation(s)
- Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Wonjae Hwang
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea; Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yong-Ho Lee
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yun-Sik Lee
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Ji-In Kim
- Soil and Groundwater Research Division, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Sunhee Hong
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
38
|
Liu H, Qu M, Chen J, Guang X, Zhang J, Liu M, Kang J, Zhao Y, Huang B. Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribution patterns, risk assessment, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154004. [PMID: 35192835 DOI: 10.1016/j.scitotenv.2022.154004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Previous studies about heavy metal (HM) accumulation in the surrounding areas affected by mining mainly focused on a single or just a few mining areas. However, these studies could not provide adequate information supporting HM controls in soils at the national scale. This study first conducted a literature investigation and collected HM data in mining areas in China from 263 pieces of published literature. Then, geo-accumulation index (Igeo), ecological risk index (ER), and health risk assessment model were adopted to evaluate their HM pollution, ecological risks, and health risks, respectively. Finally, Geodetector and Pearson correlation coefficients were used to explore the relationships between the spatial distribution patterns of HMs in soils and their influencing factors. Results showed that: (i) the average concentrations of Cd, Hg, Pb, Zn, Cu, As, Ni, and Cr were 5.4, 1.2, 335.3, 496.1, 105.8, 55.0, 42.6, and 72.4 mg kg-1, respectively, in the surrounding areas affected by mining in China; Cd pollution in soils (Igeo = 2.9) was most severe; Cd (ERCd > 320) and Hg (ERHg > 320) were the main ecological risk factors; (ii) among the selected factors, mine types, clay content, soil organic carbon, and precipitation with the highest relative importance for the spatial distribution patterns of the HMs; (iii) HM accumulation were inversely proportional to soil pH, and were proportional to clay content, precipitation, and temperature; (iv) As, Cd, Hg, Pb, and Ni should be selected as the HMs to be controlled preferentially; (v) priority attention should be given to mining areas in Central South China, Southwest China, Liaoning province, and Zhejiang province; (vi) special attention should be given to mining areas of antimony, tin, tungsten, molybdenum, manganese, and lead‑zinc. The above results provided crucial information for HM control in the areas affected by mining at the national scale.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| | - Mingkai Qu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Jian Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Xu Guang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Jianlin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| | - Maosheng Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China
| | - Junfeng Kang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Yongcun Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| |
Collapse
|
39
|
Liu B, Yao J, Ma B, Chen Z, Zhu X, Zhao C, Li M, Cao Y, Pang W, Li H, Mihucz VG, Duran R. Metal(loid)s diffusion pathway triggers distinct microbiota responses in key regions of typical karst non-ferrous smelting assembly. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127164. [PMID: 34534803 DOI: 10.1016/j.jhazmat.2021.127164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Non-ferrous metal(loid)s in region with karst characteristic are highly diffusible, especially by runoff or atmospheric deposition. However, microbiota in response to the diffusing metal(loid)s is still to be understood. In this study, we focused on microbiota across metal(loid)s diffusion pathways around a non-ferrous smelting assembly. The microbial distribution and metal(loid)s-microbial interactions were analysed by 16S rRNA amplicon and multivariate statistical analysis. Although runoff and atmospheric deposition showed similar metal(loid)s diffusion contribution, different microbial compositions were revealed. The microbiota along the runoff transect (region3) was similar to those within the atmospheric deposition transect (region4), which significantly differed from those closer to the smelting assembly (region1 and region2; R2 = 0.3866, p = 0.001). Random forest model indicated the negative impacts of bioavailable metal(loid)s on microbial diversity. Proteobacteria was predominant in region1 while Actinobacteriota dominated in the other regions. Twenty abundant genera were identified in metal(loid)s rich area, such as sulfur metabolizer Sulfurifustis and metal resistant Acinetobacter. Interactions between the geochemical parameters and the dominant taxa indicated that the main drivers were Al, Sb, As and their bioavailable fractions and sulfate. This study provides understandings of microbiota patterns towards different metal(loid)s diffusion pathways around non-ferrous smelting assembly with karst characteristic.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhihui Chen
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaozhe Zhu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Miaomiao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Cao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter stny. 1/A, Hungary
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
40
|
Zhang L, Xue L, Wang H, Chang S, He YY, Liu Y, Xu Y. Immobilization of Pb and Cd by two strains and their bioremediation effect to an iron tailings soil. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Zhu M, Ding Y, Li X, Xiao Y, Zhao Z, Li T. Biodiversity of Root Endophytic Fungi from Oxyria sinensis Grown in Metal-Polluted and Unpolluted Soils in Yunnan Province, Southwestern China. PLANTS 2021; 10:plants10122731. [PMID: 34961202 PMCID: PMC8705786 DOI: 10.3390/plants10122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
Oxyria sinensis adopts a tolerant strategy as a metal excluder to survive toxic metal concentrations. Biodiversity and the endophytic fungal community colonizing the O. sinensis roots were assessed from a mining area (MA) and a neighboring non-mining area (nMA) in southwestern China. All O. sinensis roots formed fully developed dark septate endophytes (DSEs) and arbuscular mycorrhizal fungi (AMF). Total DSE colonization was higher for the MA versus nMA, in contrast to the total AMF colonization in the two sites. The DSE colonization was higher than AMF colonization regardless of the site. Pure-culture data showed that the fungi closely related to Exophiala, Cadophora and Phialophora dominantly colonized the O. sinensis roots. A total of 450 operational taxonomic units (OTUs) were identified showing the presence of a distinct fungal community in MA and nMA, which was shaped by soil physiochemical properties, including soil Zn concentrations and organic matter. We found that O. sinensis accumulates and adapts efficiently to local endophytic fungi to achieve the expansion of its community, including the spontaneously reclaimed DSE. This property may be targeted to achieve its colonization with a pioneer plant for phytoremediation in the restoration of a vegetation cover in a metal-contaminated area.
Collapse
Affiliation(s)
- Meiyan Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yanhua Ding
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Xuejiao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yuqing Xiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- Correspondence: (Z.Z.); (T.L.); Tel.: +86-871-6503-4838 (Z.Z.)
| | - Tao Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; (M.Z.); (Y.D.); (X.L.); (Y.X.)
- Correspondence: (Z.Z.); (T.L.); Tel.: +86-871-6503-4838 (Z.Z.)
| |
Collapse
|
42
|
Gao T, Wang X, Liu Y, Wang H, Zuo M, He Y, Li H, Li G, Li C, Li X, Li X, Yang Y. Characteristics and diversity of microbial communities in lead-zinc tailings under heavy metal stress in north-west China. Lett Appl Microbiol 2021; 74:277-287. [PMID: 34822179 DOI: 10.1111/lam.13608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
High-throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead-zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.
Collapse
Affiliation(s)
- T Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China.,Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - X Wang
- Xi'an Institute of Environment Sanitation Sciences, Xi'an, China
| | - Y Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - H Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - M Zuo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Y He
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - H Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - G Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - C Li
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - X Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - X Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Y Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
43
|
Zhong Q, Zhang S, Pan X, Wang G, Xu X, Li T, Zhou W, He Y, Luo L, Liu Y, Long L. Efficiency and comprehensive risk assessment of soil Pb and Cd by washing technique with three biodegradable eluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61811-61824. [PMID: 34184233 DOI: 10.1007/s11356-021-15037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Soil washing with environmentally friendly eluents is a rapid remediation technique for farmland polluted by heavy metals. In this study, polyepoxysuccinic acid (PESA), ethylenediamine tetra (methylene phosphonic acid) sodium (EDTMPS), and phosphonyl carboxylic acid copolymer (POCA) were applied to remedy paddy and arid soils polluted by Pb and Cd. At the same time, ethylenediaminetetraacetic acid (EDTA) was used as a control eluent. PESA showed comparable removal of soil Pb and Cd (over 80.0%) with EDTA, and EDTMPS and POCA removed two heavy metals by 35.2-50.3%. For labile fractions, PESA significantly removed Pb by 93.5-96.7% and Cd by 84.9-90.3% in two soils. EDTMPS and POCA removed Pb by 75.5-85.8% in two soils, while they only removed Cd by 11.7-42.2% in paddy soil, and 76.3-81.7% in arid soil. The risks of total heavy metal concentrations were reduced from the high risk to low risk in paddy soil, and to considerable risk in arid soil, while only dropped to considerable or even had no change by EDTMPS and POCA leaching. The risks of the two soils reduced from high to low or considerable level after PESA washing based on labile fraction change, and to considerable or high level after EDTMPS and POCA leaching, respectively. Therefore, PESA is an ecological benefit eluent for remediating the farmland polluted by heavy metals, and the risk assessment based on labile fraction more easily identifies the dynamic change of heavy metal during the washing process.
Collapse
Affiliation(s)
- Qinmei Zhong
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaomei Pan
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
44
|
Palau J, Benaiges-Fernandez R, Offeddu F, Urmeneta J, Soler JM, Cama J, Dold B. Release of trace elements during bioreductive dissolution of magnetite from metal mine tailings: Potential impact on marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147579. [PMID: 34023600 DOI: 10.1016/j.scitotenv.2021.147579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Adverse impacts of mine tailings on water and sediments quality are major worldwide environmental problems. Due to the environmental issues associated with the deposition of mine tailings on land, a controversial discussed alternative is submarine tailings disposal (STD). However, Fe(III) bioreduction of iron oxides (e.g., magnetite) in the tailings disposed might cause toxic effects on coastal environments due to the release of different trace elements (TEs) contained in the oxides. To study the extent and kinetics of magnetite bioreduction under marine conditions and the potential release of TEs, a number of batch experiments with artificial seawater (pH 8.2) and a marine microbial strain (Shewanella loihica) were performed using several magnetite ore samples from different mines and a mine tailings sample. The elemental composition of the magnetite determined in the tailings showed relatively high amounts of TEs (e.g., Mn, Zn, Co) compared with those of the magnetite ore samples (LA-ICP-MS and EMPA analyses). The experiments were conducted at 10 °C in the dark for up to 113 days. Based on the consumption of lactate and production of acetate and aqueous Fe(II) over time, the magnitude of Fe(III) bioreduction was calculated using a geochemical model including Monod kinetics. Model simulations reproduced the release of iron and TEs observed throughout the experiments, e.g., Mn (up to 203 μg L-1), V (up to 79 μg L-1), As (up to 17 μg L-1) and Cu (up to 328 μg L-1), suggesting a potential contamination of pore water by STD. Therefore, the results of this study can help to better evaluate the potential impacts of STD.
Collapse
Affiliation(s)
- Jordi Palau
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain; University of Barcelona, Barcelona 08028, Catalonia, Spain.
| | - Robert Benaiges-Fernandez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain; University of Barcelona, Barcelona 08028, Catalonia, Spain
| | - Francesco Offeddu
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Jordi Urmeneta
- University of Barcelona, Barcelona 08028, Catalonia, Spain; Biodiversity Research Institute (IRBio), University of Barcelona, Barcelona 08028, Catalonia, Spain
| | - Josep M Soler
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Jordi Cama
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona 08034, Catalonia, Spain
| | - Bernhard Dold
- Pontifical Catholic University of Peru (PUCP), San Miguel, Lima, Peru; SUMIRCO, San Pedro de la Paz, Chile
| |
Collapse
|
45
|
Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Yin S, Chen W, Wang Y. Effect of mixed bacteria on cemented tailings backfill: Economic potential to reduce binder consumption. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125114. [PMID: 33858094 DOI: 10.1016/j.jhazmat.2021.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Tailings used as backfilling material in the presence of mixed bacteria are discussed, and the relationship between mixed bacteria and compressive strength, size variation, water-holding capacity is analyzed in this study. The results illustrate a strong improving response of mixed bacteria with enhanced compressive strength, small size variation and low water-holding capacity of cemented tailings backfill (CTB) specimens. The binder dosage and mixed bacteria proportion have great influence on CTB specimens, which indicate that with the increase of mixed bacteria proportion and binder dosage, compressive strength increased obviously. The maximum compressive strength (4.01 MPa) is obtained in the presence of 100.00% mixed bacteria in contrast to only 2.79 MPa in its absence. Samples added high mixed bacteria proportion yield low water-holding capacity and small size variation. 16S rDNA analysis illustrates that bacteria community is influenced significantly during experiment. Further, possible reaction mechanism is proposed suggesting the possible role of mixed bacteria as promoter to form precipitation (KFe3(SO4)2(OH)6, (NH4)Fe3(SO4)2(OH)6 and (KH3O)4Fe3(SO4)2(OH)6), which reduces tiny cracks in CTB specimens. The technique of using mixed bacteria to reduce binder consumption in this study shows economic benefits to some extent.
Collapse
Affiliation(s)
- Shenghua Yin
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Chen
- Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China; School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yatian Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
47
|
Selecting Bioassay Test Species at the Screening Level of Soil Ecological Risk Assessments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For site-specific soil ecological risk assessments (SERAs), an integrated chemical, ecotoxicological, and ecological analysis needs to be performed. The SERA guidelines of international institutions and countries recommend that a SERA be initiated at the screening level to save time and social economic cost; however, they provide no unified test species for this screening level. This study performed SERAs for field soils and confirmed the importance of selecting bioassay test species that reflect the ecotoxicity of field soils at the screening level. To confirm test species that reflect the ecological risk of field soils, correlation analysis was performed on the results of each bioassay with the integrated ecotoxicological risk index (EtoxRI). Our results showed that soil algae, nematodes, and plants were the most representative species in soil assays, with high correlation coefficients with EtoxRI. The results imply the importance of selecting test species that represent ecological risk for the screening level of SERAs. Based on these findings, when using SERAs, species sensitivity, ecological relevance, and economic aspects should be considered when selecting the bioassay test species.
Collapse
|
48
|
Watch Out for the Tailings Pond, a Sharp Edge Hanging over Our Heads: Lessons Learned and Perceptions from the Brumadinho Tailings Dam Failure Disaster. REMOTE SENSING 2021. [DOI: 10.3390/rs13091775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A catastrophic tailings dam failure disaster occurred in Brumadinho, Brazil on 25 January 2019, which resulted in over 270 casualties, 24,000 residents evacuated, and a huge economic loss. Environmental concerns were raised for the potential pollution of water due to tailings waste entering the Paraopeba River. In this paper, a detailed analysis has been carried out to investigate the disaster conditions of the Brumadinho dam failure using satellite images with different spatial resolutions. Our in-depth analysis reveals that the hazard chain caused by this failure contained three stages, namely dam failure, mudflow, and the hyperconcentrated flow in the Paraopeba River. The variation characteristics of turbidity of the Rio Paraopeba River after the disaster have also been investigated using high-resolution remote sensing images, followed by a qualitative analysis of the impacts on the downstream reservoir of the Retiro Baixo Plant that was over 300 km away from the dam failure origin. It is believed that, on the one hand, the lack of dam stability management at the maintenance stage was the main cause of this disaster. On the other hand, the abundant antecedent precipitation caused by extreme weather events should be a critical triggering factor. Furthermore, the spatiotemporal pattern mining of global tailings dam failures revealed that the Brumadinho dam disaster belonged to a Consecutive Hot Spot area, suggesting that the regular drainage inspection, risk assessment, monitoring, and early warning of tailings dam in Consecutive Hot Spot areas still need to be strengthened for disaster mitigation.
Collapse
|
49
|
Hong X, Yang K, Liang H. Characterization of acidity and sulfate in dust obtained from the Wuda coal base, northern China: spatial distribution and pollution assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12897-8. [PMID: 33634406 DOI: 10.1007/s11356-021-12897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The coal fire in Wuda, Inner Mongolia of China, is one of the most serious coal fires in the world with a history over 50 years and endangers the neighboring downwind urban area. A lack of effective measures to control coal fires in this region can aggravate environmental pollution. In this study, the levels and spatial distributions of acid (pH) and SO42- in dust in the Wuda coalfield and its surrounding areas in Inner Mongolia, North China, were reported to identify the potential acid and SO42- pollution in the local environment with an area of 270 km2. The mean pH and SO42- content was to found to be 7.44 and 5981 μg·g-1, respectively. Through the analysis of the spatial distribution of pH and SO42- concentrations, it was found that most of contaminated areas are mainly distributed in coalfield and its affiliated industrial parks, and the Wuda urban area also suffered from pollution. Based on chemical equilibrium, the surface acid pollution might have resulted in the change of the dust type from the original weakly alkaline CaCO3 type to the CaSO4 type in coalfield and industrial parks. Finally, the pollution assessment revealed that the coalfield and industrial parks are both at heavy pollution levels, and the urban area is mostly moderately polluted, followed by farm and peripheral region with a certain pollution risk. The results indicated that the long-term release of acidic gas from the coal fires and industrial parks can led to significantly elevated acidity and SO42- levels in the dust of the local environment, while coal fires can aggravate surface pollution in industrial parks, but the extent of contamination was also closely related to the terrain and wind direction in the study area.
Collapse
Affiliation(s)
- Xiuping Hong
- College of Life Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Kang Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Handong Liang
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, 100083, China.
| |
Collapse
|
50
|
Sabino JA, de Sá Salomão AL, de Oliveira Muniz Cunha PM, Coutinho R, Marques M. Occurrence of organic micropollutants in an urbanized sub-basin and ecological risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:130-141. [PMID: 33175334 DOI: 10.1007/s10646-020-02304-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The João Mendes River - an important contributor to the Piratininga/Itaipu lagoon system in Rio de Janeiro State, Brazil - receives untreated sewage from the population occupying the drainage basin with no proper sanitation infrastructure. The present study assessed the ecological risk resulting from the presence of five organic micropollutants (17α-ethynylestradiol, ibuprofen, trimethoprim, sulfamethoxazole, bisphenol A) based on four monitoring campaigns which included three sampling points and one reference area. Chronic ecotoxicity assays were conducted with the bioindicators R. subcapitata, C. dubia and O. niloticus. Estrogenicity was assessed with genetically modified S. cerevisiae based on YES protocol. The Ecological Risk Assessment was conducted based on the Chemical and the Ecotoxicological Lines of Evidence (LoE). In order to analyse the results from different sampling points, principal component analysis (PCA) was performed using a correlation matrix. Micropollutants below limit of detection or in very low concentrations were detected in the reference area; no significant differences were observed when samples from the reference area were compared to the negative controls for the ecotoxicity assays. A PCA including selected variables revealed the latent relationships among the three sampling points (not verified for the reference area), which confirmed the analytical results. An extreme ecological risk index was estimated for all sampling points in all campaigns. The extreme ecological risk index was mostly associated to the high concentrations of 17α-ethynylestradiol and the antibiotic sulfamethoxazole.
Collapse
Affiliation(s)
- Juliana Azevedo Sabino
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - André Luís de Sá Salomão
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil.
| | - Priscila Maria de Oliveira Muniz Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|