1
|
Zhou X, Li Q, Shi Z, Lu W, Shu C, Zhu J, Wu Y. Assessing the prevalence of human enteric viruses in hospital wastewater to evaluate the effectiveness of wastewater treatment systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117488. [PMID: 39644571 DOI: 10.1016/j.ecoenv.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
In this experiment, we employed Real-time PCR(RT-PCR) and metagenomic Next-Generation Sequencing (mNGS) techniques to detect the presence of Norovirus, Rotavirus Group A, Adenovirus Group F, and Astrovirus in untreated sewage from three major hospitals. A comparison with clinical lab test outcomes revealed Norovirus as having the highest infection rate, followed by Adenovirus Group F and Rotavirus Group A. Despite not testing for Astrovirus in clinical labs, its sewage detection rate was surpassed only by Norovirus, suggesting a potentially high clinical infection rate. Further analysis of these viruses in treated sewage revealed that chlorination failed to eliminate the virus, maintaining viral concentrations in the treated sewage between 10^2 and 10^3 copies/ml. Even though nucleic acid testing methods fail to detect viral actions, the possible danger they present to public safety should not be ignored. During this experiment, viral nucleic acid was extracted directly from the samples without prior concentration. This method, unlike conventional virus detection post-concentration, bypasses concerns such as recovery efficiency, offering a clearer representation of virus concentrations in water samples and facilitating easier operation.
Collapse
Affiliation(s)
- Xuebing Zhou
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China.
| | - Zhanying Shi
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children's Hospital, Ningbo, China
| | - Chunhui Shu
- Department of Laboratory Medicine, Ningbo Mingzhou Hospital, Ningbo, China
| | - Junyao Zhu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Yong Wu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| |
Collapse
|
2
|
Lehrer LW, Lewis AM, Tolliver S, Degen M, Singh R, Houser S, Rao J. An evaluation of a new rapid qPCR test for the detection of 2019-novel coronavirus nucleocapsid (N1) gene in wastewater in Roanoke and Salem VA sewersheds. JOURNAL OF WATER AND HEALTH 2024; 22:1419-1428. [PMID: 39212279 DOI: 10.2166/wh.2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The COVID-19 pandemic initiated public interest in wastewater-based epidemiology (WBE). Public and private entities responded to the need to produce timely and accurate data. LuminUltra and Hach partnered to provide a rapid, field-based quantitative polymerase chain reaction (qPCR) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater. This study evaluates the Hach GeneCount SARS-CoV-2 Wastewater RT-qPCR Assay Kit and LuminUltra GeneCount® Q-16 RT-PCR instrument. The Hach LuminUltra methods were compared to the Promega Wizard® Enviro Total Nucleic Acid kit and Bio-Rad CFX Opus 96 Real-time PCR Detection System. Over a 12-week period, wastewater samples were collected weekly from seven locations in the Roanoke/Salem, VA sewersheds. Concentration and extraction of the viral RNA were followed by qPCR analysis. The target gene for detection was the nucleocapsid gene (N1) of the SARS-CoV-2 virus. Costs, ease of use, time to produce results, sample preparation, and data comparisons were considered. The comparison determined that the Hach LuminUltra method and instrument were more affordable, consumed less time, and required less technical expertise. While the new method was specific, it had low sensitivity. This evaluation suggests the Hach LuminUltra method should be reserved for limited situations requiring onsite field analysis where data accuracy is not essential.
Collapse
Affiliation(s)
- Lia Willow Lehrer
- Radford University Carilion (RUC), Roanoke, VA, USA; Equal first authors
| | - Anna Marie Lewis
- Radford University Carilion (RUC), Roanoke, VA, USA; Equal first authors
| | - Susan Tolliver
- Carilion Roanoke Community Hospital, Carilion Clinic Basic Science Research Lab (BSRL), Roanoke, VA, USA
| | - Marcia Degen
- Virginia Department of Health (VDH), Richmond, VA, USA
| | - Rekha Singh
- Virginia Department of Health (VDH), Richmond, VA, USA
| | - Sara Houser
- Radford University Carilion (RUC), Roanoke, VA, USA E-mail:
| | - Jayasimha Rao
- Carilion Roanoke Community Hospital, Carilion Clinic Basic Science Research Lab (BSRL), Roanoke, VA, USA; Internal Medicine, Division of Infectious Disease, Carilion Medical Center, Roanoke, VA, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA; Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, USA
| |
Collapse
|
3
|
Bartolomeu M, Gomes TJ, Campos F, Vieira C, Loureiro S, Neves MGPMS, Faustino MAF, Gomes ATPC, Almeida A. Wastewater disinfection with photodynamic treatment and evaluation of its ecotoxicological effects. CHEMOSPHERE 2024; 361:142421. [PMID: 38797202 DOI: 10.1016/j.chemosphere.2024.142421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB' irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.
Collapse
Affiliation(s)
- Maria Bartolomeu
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal; Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal.
| | - Thierry J Gomes
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Fábio Campos
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Cátia Vieira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - Susana Loureiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana T P C Gomes
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505, Viseu, Portugal
| | - Adelaide Almeida
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-19, Aveiro, Portugal.
| |
Collapse
|
4
|
Singh S, Ahmed AI, Almansoori S, Alameri S, Adlan A, Odivilas G, Chattaway MA, Salem SB, Brudecki G, Elamin W. A narrative review of wastewater surveillance: pathogens of concern, applications, detection methods, and challenges. Front Public Health 2024; 12:1445961. [PMID: 39139672 PMCID: PMC11319304 DOI: 10.3389/fpubh.2024.1445961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The emergence and resurgence of pathogens have led to significant global health challenges. Wastewater surveillance has historically been used to track water-borne or fecal-orally transmitted pathogens, providing a sensitive means of monitoring pathogens within a community. This technique offers a comprehensive, real-time, and cost-effective approach to disease surveillance, especially for diseases that are difficult to monitor through individual clinical screenings. Methods This narrative review examines the current state of knowledge on wastewater surveillance, emphasizing important findings and techniques used to detect potential pathogens from wastewater. It includes a review of literature on the detection methods, the pathogens of concern, and the challenges faced in the surveillance process. Results Wastewater surveillance has proven to be a powerful tool for early warning and timely intervention of infectious diseases. It can detect pathogens shed by asymptomatic and pre-symptomatic individuals, providing an accurate population-level view of disease transmission. The review highlights the applications of wastewater surveillance in tracking key pathogens of concern, such as gastrointestinal pathogens, respiratory pathogens, and viruses like SARS-CoV-2. Discussion The review discusses the benefits of wastewater surveillance in public health, particularly its role in enhancing existing systems for infectious disease surveillance. It also addresses the challenges faced, such as the need for improved detection methods and the management of antimicrobial resistance. The potential for wastewater surveillance to inform public health mitigation strategies and outbreak response protocols is emphasized. Conclusion Wastewater surveillance is a valuable tool in the fight against infectious diseases. It offers a unique perspective on the spread and evolution of pathogens, aiding in the prevention and control of disease epidemics. This review underscores the importance of continued research and development in this field to overcome current challenges and maximize the potential of wastewater surveillance in public health.
Collapse
Affiliation(s)
- Surabhi Singh
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Amina Ismail Ahmed
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Sumayya Almansoori
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Shaikha Alameri
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Ashraf Adlan
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Giovanni Odivilas
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Marie Anne Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Laboratory, London, United Kingdom
| | - Samara Bin Salem
- Central Testing Laboratory, Abu Dhabi Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Microbiology Lab, Reference and Surveillance Intelligence Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Chen B, He J, Tian K, Qu J, Hong L, Lin Q, Yang K, Ma L, Xu X. Research Progress on Detection of Pathogens in Medical Wastewater by Electrochemical Biosensors. Molecules 2024; 29:3534. [PMID: 39124939 PMCID: PMC11314202 DOI: 10.3390/molecules29153534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The detection of pathogens in medical wastewater is crucial due to the high content of pathogenic microorganisms that pose significant risks to public health and the environment. Medical wastewater, which includes waste from infectious disease and tuberculosis facilities, as well as comprehensive medical institutions, contains a variety of pathogens such as bacteria, viruses, fungi, and parasites. Traditional detection methods like nucleic acid detection and immunological assays, while effective, are often time-consuming, expensive, and not suitable for rapid detection in underdeveloped areas. Electrochemical biosensors offer a promising alternative with advantages including simplicity, rapid response, portability, and low cost. This paper reviews the sources of pathogens in medical wastewater, highlighting specific bacteria (e.g., E. coli, Salmonella, Staphylococcus aureus), viruses (e.g., enterovirus, respiratory viruses, hepatitis virus), parasites, and fungi. It also discusses various electrochemical biosensing techniques such as voltammetry, conductometry, impedance, photoelectrochemical, and electrochemiluminescent biosensors. These technologies facilitate the rapid, sensitive, and specific detection of pathogens, thereby supporting public health and environmental safety. Future research may should pay more attention on enhancing sensor sensitivity and specificity, developing portable and cost-effective devices, and innovating detection methods for diverse pathogens to improve public health protection and environmental monitoring.
Collapse
Affiliation(s)
- Bangyao Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Kewei Tian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Jie Qu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lihui Hong
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Qin Lin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| | - Lei Ma
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing College of New Materials and Chemical Engineering, Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (B.C.); (J.H.); (K.T.); (J.Q.); (L.H.); (Q.L.)
| |
Collapse
|
6
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2024:1-21. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
7
|
Saasa N, M’kandawire E, Ndebe J, Mwenda M, Chimpukutu F, Mukubesa AN, Njobvu F, Shempela DM, Sikalima J, Chiyesu C, Muvwanga B, Nampokolwe SM, Sulwe C, Khondiwa T, Jennings T, Kamanga A, Simulundu E, Mulube C, Mwasinga W, Mumeka J, Simwanza J, Sakubita P, Kapona O, Mulenga CSA, Chipoya M, Musonda K, Kapata N, Sinyange N, Kapina M, Siwila J, Shawa M, Kajihara M, Takada A, Sawa H, Choonga SA, Chilengi R, Muyunda E, Nalubamba KS, Hang’ombe BM. Detection of Human Adenovirus and Rotavirus in Wastewater in Lusaka, Zambia: Demonstrating the Utility of Environmental Surveillance for the Community. Pathogens 2024; 13:486. [PMID: 38921784 PMCID: PMC11206273 DOI: 10.3390/pathogens13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Enteric infections due to viral pathogens are a major public health concern. Detecting the risk areas requires a strong surveillance system for pathogenic viruses in sources such as wastewater. Towards building an environmental surveillance system in Zambia, we aimed to identify group A rotavirus (RVA) and human adenovirus (HAdV) in wastewater. Convenient sampling was conducted at four study sites every Tuesday for five consecutive weeks. The research team focused on three different methods of viral concentration to determine the suitability in terms of cost and applicability for a regular surveillance system: the bag-mediated filtration system (BMFS), polyethylene glycol-based (PEG) precipitation, and skimmed milk (SM) flocculation. We screened 20 wastewater samples for HAdV and RVA using quantitative polymerase chain reaction (qPCR) and conventional polymerase chain reaction (cPCR). Of the 20 samples tested using qPCR, 18/20 (90%) tested positive for HAdV and 14/20 (70%) tested positive for RVA. For the genetic sequencing, qPCR positives were subjected to cPCR, of which 12 positives were successfully amplified. The human adenovirus was identified with a nucleotide identity range of 98.48% to 99.53% compared with the reference genome from GenBank. The BMFS and SM flocculation were the most consistent viral concentration methods for HAdV and RVA, respectively. A statistical analysis of the positives showed that viral positivity differed by site (p < 0.001). SM and PEG may be the most appropriate options in resource-limited settings such as Zambia due to the lower costs associated with these concentration methods. The demonstration of HAdV and RVA detection in wastewater suggests the presence of the pathogens in the communities under study and the need to establish a routine wastewater surveillance system for the identification of pathogens.
Collapse
Affiliation(s)
- Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Ethel M’kandawire
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Mulenga Mwenda
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Fred Chimpukutu
- Effluents and Pollution Control, Lusaka Water Supply and Sanitation Company, Stand No. 871/2, Katemo Road, Rhodes Park, P.O. Box 50198, Lusaka 10101, Zambia; (F.C.); (J.M.)
| | - Andrew Nalishuwa Mukubesa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Fred Njobvu
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Doreen Mainza Shempela
- Churches Health Association of Zambia (CHAZ), CHAZ Complex, Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, Lusaka 10101, Zambia; (D.M.S.); (J.S.)
| | - Jay Sikalima
- Churches Health Association of Zambia (CHAZ), CHAZ Complex, Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, Lusaka 10101, Zambia; (D.M.S.); (J.S.)
| | - Carol Chiyesu
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Bruce Muvwanga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Sarah M. Nampokolwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Clement Sulwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Thokozile Khondiwa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Todd Jennings
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Ameck Kamanga
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
- Macha Research Trust, Choma 10101, Zambia
| | - Conceptor Mulube
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - Wizaso Mwasinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
| | - Jalaimo Mumeka
- Effluents and Pollution Control, Lusaka Water Supply and Sanitation Company, Stand No. 871/2, Katemo Road, Rhodes Park, P.O. Box 50198, Lusaka 10101, Zambia; (F.C.); (J.M.)
| | - John Simwanza
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Patrick Sakubita
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Otridah Kapona
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Chilufya Susan Aneta Mulenga
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Musole Chipoya
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Kunda Musonda
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Nathan Kapata
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Nyambe Sinyange
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Muzala Kapina
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Joyce Siwila
- Department of Clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (J.S.); (K.S.N.)
| | - Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (E.M.); (J.N.); (A.N.M.); (B.M.); (S.M.N.); (C.S.); (T.K.); (E.S.); (W.M.); (A.T.)
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (M.S.); (M.K.); (H.S.)
- One Health Research Center, Hokkaido University, N18 W9, Sapporo 001-0020, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Simulyamana A. Choonga
- Ministry of Health, Lusaka Provincial Health Office, 3 Saise Road, P.O. Box 32573, Lusaka 10101, Zambia;
| | - Roma Chilengi
- Zambia National Public Health Institute, Stand 1186, Corner of Chaholi & Addis Ababa Road, Rhodes Park, Lusaka 10101, Zambia; (J.S.); (P.S.); (O.K.); (C.S.A.M.); (M.C.); (K.M.); (N.K.); (N.S.); (M.K.); (R.C.)
| | - Earnest Muyunda
- PATH-Zambia, National Malaria Elimination Centre, Chainama Hospital Grounds, Lusaka 10101, Zambia; (M.M.); (F.N.); (C.C.); (T.J.); (A.K.); (C.M.); (E.M.)
| | - King S. Nalubamba
- Department of Clinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; (J.S.); (K.S.N.)
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia;
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
8
|
Qin H, Qiu H, Liu K, Hong B, Liu Y, Li C, Li M, An X, Song L, Robert E, Tong Y, Fan H, Wang R. Cold atmospheric plasma can effectively disinfect SARS-CoV-2 in the wastewater. EXPLORATION (BEIJING, CHINA) 2024; 4:20230012. [PMID: 38939868 PMCID: PMC11189572 DOI: 10.1002/exp.20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/01/2023] [Indexed: 06/29/2024]
Abstract
COVID-19 is currently pandemic and the detection of SARS-CoV-2 variants in wastewater is causing widespread concern. Herein, cold atmospheric plasma (CAP) is proposed as a novel wastewater disinfection technology that effectively inactivates SARS-CoV-2 transcription- and replication-competent virus-like particles, coronavirus GX_P2V, pseudotyped SARS-CoV-2 variants, and porcine epidemic diarrhoea virus in a large volume of water within 180 s (inhibition rate > 99%). Further, CAP disinfection did not adversely affect the viability of various human cell lines. It is identified that CAP produced peroxynitrite (ONOO-), ozone (O3), superoxide anion radicals (O2 -), and hydrogen peroxide (H2O2) as the major active substances for coronavirus disinfection. Investigation of the mechanism showed that active substances not only reacted with the coronavirus spike protein and affected its infectivity, but also destroyed the nucleocapsid protein and genome, thus affecting virus replication. This method provides an efficient and environmentally friendly strategy for the elimination of SARS-CoV-2 and other coronaviruses from wastewater.
Collapse
Affiliation(s)
- Hongbo Qin
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Hengju Qiu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Ke Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Bixia Hong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yuchen Liu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chun Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Mengzhe Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaoping An
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Lihua Song
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | | | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ruixue Wang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
9
|
Pedroza-Camacho LD, Ospina-Sánchez PA, Romero-Perdomo FA, Infante-González NG, Paredes-Céspedes DM, Quevedo-Hidalgo B, Gutiérrez-Romero V, Rivera-Hoyos CM, Pedroza-Rodríguez AM. Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria. 3 Biotech 2024; 14:129. [PMID: 38601881 PMCID: PMC11003938 DOI: 10.1007/s13205-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03961-4.
Collapse
Affiliation(s)
- Lucas D. Pedroza-Camacho
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Paula A. Ospina-Sánchez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Felipe A. Romero-Perdomo
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nury G. Infante-González
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Diana M. Paredes-Céspedes
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
10
|
Dlamini M, Msolo L, Ehi Ebomah K, Nontongana N, Ifeanyi Okoh A. A systematic review on the incidence of influenza viruses in wastewater matrices: Implications for public health. PLoS One 2024; 19:e0291900. [PMID: 38662758 PMCID: PMC11045120 DOI: 10.1371/journal.pone.0291900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza viruses pose a significant public health threat, necessitating comprehensive surveillance strategies to enhance early detection and preventive measures. This systematic review investigates the incidence of influenza viruses in wastewater matrices, aiming to elucidate the potential implications for public health. The study synthesizes existing literature, employing rigorous inclusion criteria to identify relevant studies conducted globally. The essence of the problem lies in the gaps of traditional surveillance methods, which often rely on clinical data and may underestimate the true prevalence of influenza within communities. Wastewater-based epidemiology offers a novel approach to supplementing these conventional methods, providing a broader and more representative assessment of viral circulation. This review systematically examines the methodologies employed in the selected studies, including virus concentration techniques and molecular detection methods, to establish a standardized framework for future research. Our findings reveal a consistent presence of influenza viruses in diverse wastewater matrices across different geographic locations and seasons. Recommendations for future research include the standardization of sampling protocols, improvement of virus concentration methods, and the integration of wastewater surveillance into existing public health frameworks. In conclusion, this systematic review contributes to the understanding of influenza dynamics in wastewater matrices, offering valuable insights for public health practitioners and policymakers. Implementation of wastewater surveillance alongside traditional methods can enhance the resilience of public health systems and better prepare communities for the challenges posed by influenza outbreaks.
Collapse
Affiliation(s)
- Mbasa Dlamini
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| |
Collapse
|
11
|
Singh R, Ryu J, Park SS, Kim S, Kim K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171223. [PMID: 38417514 DOI: 10.1016/j.scitotenv.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC β-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum β-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sung Soo Park
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sungpyo Kim
- Department of Environmental Systems Engineering, Korea University, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Ushijima H, Hoque SA, Akari Y, Pham NTK, Phan T, Nishimura S, Kobayashi M, Sugita K, Okitsu S, Komoto S, Thongprachum A, Khamrin P, Maneekarn N, Hayakawa S. Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan. Int J Mol Sci 2024; 25:3619. [PMID: 38612429 PMCID: PMC11011564 DOI: 10.3390/ijms25073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Norovirus (NoV) genogroup II, polymerase type P31, capsid genotype 4, Sydney_2012 variant (GII.P31/GII.4_Sydney_2012) has been circulating at high levels for over a decade, raising the question of whether this strain is undergoing molecular alterations without demonstrating a substantial phylogenetic difference. Here, we applied next-generation sequencing to learn more about the genetic diversity of 14 GII.P31/GII.4_Sydney_2012 strains that caused epidemics in a specific region of Japan, with 12 from Kyoto and 2 from Shizuoka, between 2012 and 2022, with an emphasis on amino acid (aa) differences in all three ORFs. We found numerous notable aa alterations in antigenic locations in the capsid region (ORF2) as well as in other ORFs. In all three ORFs, earlier strains (2013-2016) remained phylogenetically distinct from later strains (2019-2022). This research is expected to shed light on the evolutionary properties of dominating GII.P31/GII.4_Sydney_2012 strains, which could provide useful information for viral diarrhea prevention and treatment.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ngan Thi Kim Pham
- College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan;
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Kumiko Sugita
- Sugita Children Clinic, Ibaraki, Osaka 567-0035, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
13
|
Farkas K, Kevill JL, Adwan L, Garcia-Delgado A, Dzay R, Grimsley JMS, Lambert-Slosarska K, Wade MJ, Williams RC, Martin J, Drakesmith M, Song J, McClure V, Jones DL. Near-source passive sampling for monitoring viral outbreaks within a university residential setting. Epidemiol Infect 2024; 152:e31. [PMID: 38329110 PMCID: PMC10894896 DOI: 10.1017/s0950268824000190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Latifah Adwan
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | | | - Rande Dzay
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Jasmine M. S. Grimsley
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- The London Data Company, London, UK
| | | | - Matthew J. Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, London, UK
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rachel C. Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Javier Martin
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
| | - Mark Drakesmith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Jiao Song
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Victoria McClure
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, UK
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
14
|
Corrin T, Rabeenthira P, Young KM, Mathiyalagan G, Baumeister A, Pussegoda K, Waddell LA. A scoping review of human pathogens detected in untreated human wastewater and sludge. JOURNAL OF WATER AND HEALTH 2024; 22:436-449. [PMID: 38421635 PMCID: wh_2024_326 DOI: 10.2166/wh.2024.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Wastewater monitoring is an approach to identify the presence or abundance of pathogens within a population. The objective of this scoping review (ScR) was to identify and characterize research on human pathogens and antimicrobial resistance detected in untreated human wastewater and sludge. A search was conducted up to March 2023 and standard ScR methodology was followed. This ScR included 1,722 articles, of which 56.5% were published after the emergence of COVID-19. Viruses and bacteria were commonly investigated, while research on protozoa, helminths, and fungi was infrequent. Articles prior to 2019 were dominated by research on pathogens transmitted through fecal-oral or waterborne pathways, whereas more recent articles have explored the detection of pathogens transmitted through other pathways such as respiratory and vector-borne. There was variation in sampling, samples, and sample processing across studies. The current evidence suggests that wastewater monitoring could be applied to a range of pathogens as a public health tool to detect an emerging pathogen and understand the burden and spread of disease to inform decision-making. Further development and refinement of the methods to identify and interpret wastewater signals for different prioritized pathogens are needed to develop standards on when, why, and how to monitor effectively.
Collapse
Affiliation(s)
- Tricia Corrin
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada E-mail:
| | - Prakathesh Rabeenthira
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Kaitlin M Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Gajuna Mathiyalagan
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, 110 Stone Road, Guelph, Ontario N1G 3W4, Canada
| | - Austyn Baumeister
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Kusala Pussegoda
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| | - Lisa A Waddell
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 370 Speedvale Avenue West, Guelph, Ontario N1H 7M7, Canada
| |
Collapse
|
15
|
Gogoi G, Singh SD, Kalyan E, Koch D, Gogoi P, Kshattry S, Mahanta HJ, Imran M, Pandey R, Bharali P. An interpretative review of the wastewater-based surveillance of the SARS-CoV-2: where do we stand on its presence and concern? Front Microbiol 2024; 15:1338100. [PMID: 38318336 PMCID: PMC10839012 DOI: 10.3389/fmicb.2024.1338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has been used for monitoring infectious diseases like polio, hepatitis, etc. since the 1940s. It is also being used for tracking the SARS-CoV-2 at the population level. This article aims to compile and assess the information for the qualitative and quantitative detection of the SARS-CoV-2 in wastewater. Based on the globally published studies, we highlight the importance of monitoring SARS-CoV-2 presence/detection in the wastewater and concurrently emphasize the development of early surveillance techniques. SARS-CoV-2 RNA sheds in the human feces, saliva, sputum and mucus that ultimately reaches to the wastewater and brings viral RNA into it. For the detection of the virus in the wastewater, different detection techniques have been optimized and are in use. These are based on serological, biosensor, targeted PCR, and next generation sequencing for whole genome sequencing or targeted amplicon sequencing. The presence of the SARS-CoV-2 RNA in wastewater could be used as a potential tool for early detection and devising the strategies for eradication of the virus before it is spread in the community. Additionally, with the right and timely understanding of viral behavior in the environment, an accurate and instructive model that leverages WBE-derived data may be created. This might help with the creation of technological tools and doable plans of action to lessen the negative effects of current viral epidemics or future potential outbreaks on public health and the economy. Further work toward whether presence of viral load correlates with its ability to induce infection, still needs evidence. The current increasing incidences of JN.1 variant is a case in point for continued early detection and surveillance, including wastewater.
Collapse
Affiliation(s)
- Gayatri Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sarangthem Dinamani Singh
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Emon Kalyan
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Devpratim Koch
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pronami Gogoi
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Suman Kshattry
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Hridoy Jyoti Mahanta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Md Imran
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rajesh Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Pankaj Bharali
- Center for Infectious Diseases, Biological Science and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Yao Y, Wang J, Zhong Y, Chen W, Rao Y, Su M. Investigating alcohol consumption in China via wastewater-based epidemiology. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:24. [PMID: 38225512 DOI: 10.1007/s10653-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Alcohol abuse and addiction is a public health issue of global concern. Wastewater-based epidemiology (WBE) is a forceful and effective complementary tool for investigating chemical consumption. This study examined alcohol consumption in major cities of China via WBE and compared WBE estimates with other data sources. A simple and valid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of two alcohol metabolites, ethyl glucuronide (EtG) and ethyl sulfate (EtS) in wastewater. The optimized method was applied to 62 sewage samples collected from wastewater treatment plants (WWTPs) in 31 provincial capital cities across China in the fourth quarter of 2020. The methodology established in this study was validated with the lower limit of quantification (LLOQ) up to 0.1 μg/L, good linearity in the range of 0.1-50 μg/L, intra-day and inter-day precision less than 5.58% and 5.55%, respectively, and the recoveries of the extracts were higher than 97.14%. The consumption range of alcohol estimated via WBE was 6.09 ± 4.56 ethanol/person/day (EPD) in the capital cities of China. Alcohol consumption varies significantly between cities in China, with WBE estimating lower alcohol consumption than WHO and lower than foreign countries. Investing in alcohol consumption based on WBE has great potential to accurately and efficiently estimate alcohol consumption.
Collapse
Affiliation(s)
- Yan Yao
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, People's Republic of China
| | - Jingya Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuling Zhong
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, People's Republic of China
| | - Wenyu Chen
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, People's Republic of China
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, No. 24 Tongjiaxiang Road, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
17
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
18
|
Yang Y, Wang F, Xue B, Zhou X. Field-deployable assay based on CRISPR-Cas13a coupled with RT-RPA in one tube for the detection of SARS-CoV-2 in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132077. [PMID: 37473568 DOI: 10.1016/j.jhazmat.2023.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
CRISPR-based nucleic acid detection is easy to implement, field deployable, and always coupled with isothermal amplification to improve the sensitivity. However, the conventional detection requires two separate steps, which can cause long-lasting amplicon aerosol contaminants, hence leading to false-positive results. To address this problem, we proposed a one-tube assay based on CRISPR-Cas13a coupled with reverse transcription-recombinase polymerase amplification to avoid aerosol pollution. The one-tube assay could be completed within 40 min with a sensitivity of up to 180 copies of RNA per reaction, and exhibited no cross reactivity with two related coronaviruses. Our technology showed reproducibility with relative standard deviation of 4.6% responding to 1 fM nucleic acid for three times. It could be used to detect SARS-CoV-2 nucleic acids in raw wastewater with a limit of detection of 103 copies/mL. We also validated the practicability of this technique for viral detection in environmental water samples by detecting SARS-CoV-2 in wastewater, which were not detectable by RT-qPCR technology, showing resistance of this technology to wastewater matrix. It is anticipated that the robustness and high sensitivity will significantly promote the development of a point-of-care method in environmental virus monitoring.
Collapse
Affiliation(s)
- Yihan Yang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fan Wang
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Boyuan Xue
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, Center for Sensor Technology of Environment and Health, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Aguayo-Acosta A, Jiménez-Rodríguez MG, Silva-Lance F, Oyervides-Muñoz MA, Armenta-Castro A, de la Rosa O, Ovalle-Carcaño A, Melchor-Martínez EM, Aghalari Z, Parra-Saldívar R, Sosa-Hernández JE. Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities. Viruses 2023; 15:1941. [PMID: 37766347 PMCID: PMC10537877 DOI: 10.3390/v15091941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mildred G. Jiménez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Fernando Silva-Lance
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Arnoldo Armenta-Castro
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Orlado de la Rosa
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Antonio Ovalle-Carcaño
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Elda M. Melchor-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Juan Eduardo Sosa-Hernández
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| |
Collapse
|
20
|
Prado T, Rey-Benito G, Miagostovich MP, Sato MIZ, Rajal VB, Filho CRM, Pereira AD, Barbosa MRF, Mannarino CF, da Silva AS. Wastewater-based epidemiology for preventing outbreaks and epidemics in Latin America - Lessons from the past and a look to the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161210. [PMID: 36581294 DOI: 10.1016/j.scitotenv.2022.161210] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Wastewater-based epidemiology (WBE) is an approach with the potential to complement clinical surveillance systems. Using WBE, it is possible to carry out an early warning of a possible outbreak, monitor spatial and temporal trends of infectious diseases, produce real-time results and generate representative epidemiological information in a territory, especially in areas of social vulnerability. Despite the historical uses of this approach, particularly in the Global Polio Eradication Initiative, and for other pathogens, it was during the COVID-19 pandemic that occurred an exponential increase in environmental surveillance programs for SARS-CoV-2 in wastewater, with many experiences and developments in the field of public health using data for decision making and prioritizing actions to control the pandemic. In Latin America, WBE was applied in heterogeneous contexts and with emphasis on populations that present many socio-environmental inequalities, a condition shared by all Latin American countries. This manuscript addresses the concepts and applications of WBE in public health actions, as well as different experiences in Latin American countries, and discusses a model to implement this surveillance system at the local or national level. We emphasize the need to implement this sentinel surveillance system in countries that want to detect the early entry and spread of new pathogens and monitor outbreaks or epidemics of infectious agents in their territories as a complement of public health surveillance systems.
Collapse
Affiliation(s)
- Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil.
| | - Gloria Rey-Benito
- Pan American Health Organization (PAHO/WHO), 525 23rd St NW, Washington, DC 20037, United States of America.
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil
| | - Veronica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Cesar Rossas Mota Filho
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alyne Duarte Pereira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mikaela Renata Funada Barbosa
- Department of Environmental Analysis, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil
| | - Camille Ferreira Mannarino
- Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, CEP 21040-360, Brazil
| | - Agnes Soares da Silva
- Pan American Health Organization (PAHO/WHO), 525 23rd St NW, Washington, DC 20037, United States of America.
| |
Collapse
|
21
|
Naughton CC, Roman FA, Alvarado AGF, Tariqi AQ, Deeming MA, Kadonsky KF, Bibby K, Bivins A, Medema G, Ahmed W, Katsivelis P, Allan V, Sinclair R, Rose JB. Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS MICROBES 2023; 4:xtad003. [PMID: 37333436 PMCID: PMC10117741 DOI: 10.1093/femsmc/xtad003] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 08/10/2023] Open
Abstract
A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.
Collapse
Affiliation(s)
- Colleen C Naughton
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Fernando A Roman
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Ana Grace F Alvarado
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Arianna Q Tariqi
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Matthew A Deeming
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Krystin F Kadonsky
- Department of Civil and Environmental Engineering, University of California, Merced, Merced, CA 95343, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, United States
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
- Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Michigan State University, 1405 S Harrison Rd, East-Lansing, MI 48823, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | | | - Vajra Allan
- PATH 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, United States
| | - Ryan Sinclair
- Schools of Public Health and Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
22
|
West NW, Vasquez AA, Bahmani A, Khan MF, Hartrick J, Turner CL, Shuster W, Ram JL. Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157547. [PMID: 35872187 PMCID: PMC9303066 DOI: 10.1016/j.scitotenv.2022.157547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety. We demonstrate here an automated, faster system to purify viral RNA from smaller volumes of wastewater but with increased sensitivity for detection of SARS-CoV-2 markers. We document the effectiveness of this new approach by way of comparison to the PEG/NaCl/Qiagen method prescribed by the State of Michigan for SARS-CoV-2 wastewater monitoring and show its application to several Detroit sewersheds. Specifically, compared to the PEG/NaCl/Qiagen method, viral RNA purification using the PerkinElmer Chemagic™ 360 lowered handling time, decreased the amount of wastewater required by ten-fold, increased the amount of RNA isolated per μl of final elution product by approximately five-fold, and effectively removed ddPCR inhibitors from most sewershed samples. For detection of markers on the borderline of viral detectability, we found that use of the Chemagic™ 360 enabled the measurement of viral markers in a significant number of samples for which the result with the PEG/NaCl/Qiagen method was below the level of detectability. The improvement in detectability of the viral markers might be particularly important for early warning to public health authorities at the beginning of an outbreak. Applied to sewersheds in Detroit, the technique enabled more sensitive detection of SARS-CoV-2 markers with good correlation between wastewater signals and COVID-19 cases in the sewersheds. We also discuss advantages and disadvantages of several automated RNA purification systems, made by Promega, PerkinElmer, and ThermoFisher.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adrian A Vasquez
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Azadeh Bahmani
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mohammed F Khan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
23
|
Doorn N. Wastewater research and surveillance: an ethical exploration. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:2431-2438. [PMID: 36353217 PMCID: PMC9609648 DOI: 10.1039/d2ew00127f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The current COVID-19 pandemic has given wastewater research a huge impetus. While wastewater research has some promising applications, there are as yet no well-developed ethical guidelines on how and under what conditions to use wastewater research. The current perspective paper aims to explore the different ethical questions pertaining to wastewater research and surveillance and to provide some tentative guidelines on the desirability of different types of applications. This paper shows that wastewater research offers interesting possibilities, but that legal regulation and ethical guidelines are still lacking, while there are ethical risks involved. The perspective indicates that it is important to look beyond the regulation of data collection and to shift the focus to the question how the analysis and use of wastewater data can be supervised.
Collapse
Affiliation(s)
- N Doorn
- Department of Technology, Policy and Management - Values, Technology and Innovation, Delft University of Technology PO Box 5015 2600 GA Delft The Netherlands
| |
Collapse
|
24
|
Dumke R, Geissler M, Skupin A, Helm B, Mayer R, Schubert S, Oertel R, Renner B, Dalpke AH. Simultaneous Detection of SARS-CoV-2 and Influenza Virus in Wastewater of Two Cities in Southeastern Germany, January to May 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013374. [PMID: 36293955 PMCID: PMC9603229 DOI: 10.3390/ijerph192013374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 05/06/2023]
Abstract
Dependent on the excretion pattern, wastewater monitoring of viruses can be a valuable approach to characterizing their circulation in the human population. Using polyethylene glycol precipitation and reverse transcription-quantitative PCR, the occurrence of RNA of SARS-CoV-2 and influenza viruses A/B in the raw wastewater of two treatment plants in Germany between January and May 2022 was investigated. Due to the relatively high incidence in both exposal areas (plant 1 and plant 2), SARS-CoV-2-specific RNA was determined in all 273 composite samples analyzed (concentration of E gene: 1.3 × 104 to 3.2 × 106 gc/L). Despite a nation-wide low number of confirmed infections, influenza virus A was demonstrated in 5.2% (concentration: 9.8 × 102 to 8.4 × 104 gc/L; plant 1) and in 41.6% (3.6 × 103 to 3.0 × 105 gc/L; plant 2) of samples. Influenza virus B was detected in 36.0% (7.2 × 102 to 8.5 × 106 gc/L; plant 1) and 57.7% (9.6 × 103 to 2.1 × 107 gc/L; plant 2) of wastewater samples. The results of the study demonstrate the frequent detection of two primary respiratory viruses in wastewater and offer the possibility to track the epidemiology of influenza by wastewater-based monitoring.
Collapse
Affiliation(s)
- Roger Dumke
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence:
| | - Michael Geissler
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annett Skupin
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
26
|
Yamazaki Y, Thongchankaew-Seo U, Yamazaki W. Very low likelihood that cultivated oysters are a vehicle for SARS-CoV-2: 2021-2022 seasonal survey at supermarkets in Kyoto, Japan. Heliyon 2022; 8:e10864. [PMID: 36217407 PMCID: PMC9535880 DOI: 10.1016/j.heliyon.2022.e10864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/03/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The pandemic caused by novel coronavirus disease of 2019 (COVID-19) is a global threat. Wastewater surveillance in Japan and abroad has led to the detection of SARS-CoV-2, causing concern that SARS-CoV-2 in the feces of infected persons may contaminate the aquatic environment. Bivalves such as oysters cultivated in coastal areas are known to filter and concentrate viruses such as norovirus present in seawater in their bodies; however, whether they do so with SARS-CoV-2 is unknown. Therefore, we examined cultivated oysters sold in Japan for the presence of SARS-CoV-2 between October 2021 and April 2022 to clarify the extent of viral contamination and evaluate the risk of food-borne transmission of SARS-CoV-2. Porcine epidemic diarrhea virus (PEDV), known as pig coronavirus, was used to spike midgut-gland samples as a whole process control. The presence of SARS-CoV-2 and PEDV was investigated using a modified polyethylene glycol precipitation method and RT-qPCR. While all samples spiked with the whole process control were positive, no SARS-CoV-2 was detected in any of the 145 raw oyster samples surveyed, despite a marked increase in infections caused by the Omicron variant from January to April 2022 in Japan. Therefore, our results suggest that with well-developed sewage treatment facilities, consumption of oysters cultivated in coastal areas may not be a risk factor for SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Yasuko Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Uraiwan Thongchankaew-Seo
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Yamazaki
- Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan,Kyoto University School of Public Health, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8303, Japan,Corresponding author.
| |
Collapse
|
27
|
Wang JX, Wu Z, Wang H, Zhong M, Mao Y, Li Y, Wang M, Yao S. Ventilation reconstruction in bathrooms for restraining hazardous plume: Mitigate COVID-19 and beyond. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129697. [PMID: 36104926 PMCID: PMC9335364 DOI: 10.1016/j.jhazmat.2022.129697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 05/20/2023]
Abstract
Converging evidence reports that the probability of vertical transmission patterns via shared drainage systems, may be responsible for the huge contactless community outbreak in high-rise buildings. Publications indicate that a faulty bathroom exhaust fan system is ineffective in removing lifted hazardous virus-laden aerosols from the toilet bowl space. Common strategies (boosting ventilation capability and applying disinfection tablets) seem unsustainable and remain to date untested. Using combined simulation and experimental approaches, we compared three ventilation schemes in a family bathroom including the traditional ceiling fan, floor fan, and side-wall fan. We found that the traditional ceiling fan was barely functional whereby aerosol particles were not being adequately removed. Conversely, a side-wall fan could function efficiently and an enhanced ventilation capability can have increased performance whereby nearly 80.9% of the lifted aerosol particles were removed. There exists a common, and easily-overlooked mistake in the layout of the bathroom, exposing occupants to a contactless vertical pathogen aerosol transmission route. Corrections and dissemination are thus imperative for the reconstruction of these types of family bathrooms. Our findings provide evidence for the bathroom and smart ventilation system upgrade, promoting indoor public health and human hygiene.
Collapse
Affiliation(s)
- Ji-Xiang Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Zhe Wu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongmei Wang
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Mingliang Zhong
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yufeng Mao
- Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
| | - Yunyun Li
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Mengxiao Wang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| |
Collapse
|
28
|
Guo Y, Li X, Luby S, Jiang G. Vertical outbreak of COVID-19 in high-rise buildings: The role of sewer stacks and prevention measures. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100379. [PMID: 35856009 PMCID: PMC9279164 DOI: 10.1016/j.coesh.2022.100379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 05/25/2023]
Abstract
COVID-19 outbreaks in high-rise buildings suggested the transmission route of fecal-aerosol-inhalation due to the involvement of viral aerosols in sewer stacks. The vertical transmission is likely due to the failure of water traps that allow viral aerosols to spread through sewer stacks. This process can be further facilitated by the chimney effect in vent stack, extract ventilation in bathrooms, or wind-induced air pressure fluctuations. To eliminate the risk of such vertical disease spread, the installation of protective devices is highly encouraged in high-rise buildings. Although the mechanism of vertical pathogen spread through drainage pipeline has been illustrated by tracer gas or microbial experiments and numerical modeling, more research is needed to support the update of regulatory and design standards for sewerage facilities.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xuan Li
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stephen Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
29
|
Cao H, Mao K, Ran F, Xu P, Zhao Y, Zhang X, Zhou H, Yang Z, Zhang H, Jiang G. Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13245-13253. [PMID: 36040863 PMCID: PMC9454323 DOI: 10.1021/acs.est.2c04727] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Wastewater-based surveillance of the COVID-19 pandemic holds great promise; however, a point-of-use detection method for SARS-CoV-2 in wastewater is lacking. Here, a portable paper device based on CRISPR/Cas12a and reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with excellent sensitivity and specificity was developed for SARS-CoV-2 detection in wastewater. Three primer sets of RT-LAMP and guide RNAs (gRNAs) that could lead Cas12a to recognize target genes via base pairing were used to perform the high-fidelity RT-LAMP to detect the N, E, and S genes of SARS-CoV-2. Due to the trans-cleavage activity of CRISPR/Cas12a after high-fidelity amplicon recognition, carboxyfluorescein-ssDNA-Black Hole Quencher-1 and carboxyfluorescein-ssDNA-biotin probes were adopted to realize different visualization pathways via a fluorescence or lateral flow analysis, respectively. The reactions were integrated into a paper device for simultaneously detecting the N, E, and S genes with limits of detection (LODs) of 25, 310, and 10 copies/mL, respectively. The device achieved a semiquantitative analysis from 0 to 310 copies/mL due to the different LODs of the three genes. Blind experiments demonstrated that the device was suitable for wastewater analysis with 97.7% sensitivity and 82% semiquantitative accuracy. This is the first semiquantitative endpoint detection of SARS-CoV-2 in wastewater via different LODs, demonstrating a promising point-of-use method for wastewater-based surveillance.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
- University of Chinese Academy of
Sciences, Beijing100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Pengqi Xu
- Precision Medicine Center, The Seventh
Affiliated Hospital, Sun Yat-sen University, Shenzhen518107,
China
| | - Yirong Zhao
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
- University of Chinese Academy of
Sciences, Beijing100049, China
| | - Xiangyan Zhang
- Guizhou Provincial People’s
Hospital, Guiyang550002, China
| | - Hourong Zhou
- Guizhou Provincial People’s
Hospital, Guiyang550002, China
- Jiangjunshan Hospital of Guizhou
Province, Guiyang550001, China
| | - Zhugen Yang
- School of Water, Energy, and Environment,
Cranfield University, CranfieldMK43 0AL,
UK
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry,
Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang550081, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and
Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing100085, China
| |
Collapse
|
30
|
Hyllestad S, Myrmel M, Lomba JAB, Jordhøy F, Schipper SK, Amato E. Effectiveness of environmental surveillance of SARS-CoV-2 as an early warning system during the first year of the COVID-19 pandemic: a systematic review. JOURNAL OF WATER AND HEALTH 2022; 20:1223-1242. [PMID: 36044191 DOI: 10.2166/wh.2022.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since infected persons shed SARS-CoV-2 in faeces before symptoms appear, environmental surveillance (ES) may serve as an early warning system (EWS) for COVID-19 and new variants of concern. The ES of SARS-CoV-2 has been widely reviewed; however, its effectiveness as an EWS for SARS-CoV-2 in terms of timeliness, sensitivity and specificity has not been systematically assessed. We conducted a systematic review to identify and synthesise evidence on the ES of SARS-CoV-2 as an EWS to evaluate the added value for public health. Of 1,014 studies identified, we considered 29 for a qualitative synthesis of the timeliness of ES as an EWS for COVID-19, while six studies were assessed for the ability to detect new variants and two for both aims. The synthesis indicates ES may serve as an EWS of 1-2 weeks. ES could complement clinical surveillance for SARS-CoV-2; however, its cost-benefit value for public health decisions needs to be assessed based on the stage of the pandemic and resources available. Studies focusing methodological knowledge gaps as well as how to use and interpret ES signals for public health actions are needed, as is the sharing of knowledge within countries/areas with long experience of such surveillance.
Collapse
Affiliation(s)
- Susanne Hyllestad
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jose Antonio Baz Lomba
- Department of Environmental Chemistry and Technology, Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Fredrik Jordhøy
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Svanhild Kjørsvik Schipper
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| | - Ettore Amato
- Department for Infection Control and Preparedness, Norwegian Institute of Public Health (NIPH), Oslo, Norway E-mail:
| |
Collapse
|
31
|
Mahmoudi T, Naghdi T, Morales-Narváez E, Golmohammadi H. Toward smart diagnosis of pandemic infectious diseases using wastewater-based epidemiology. Trends Analyt Chem 2022; 153:116635. [PMID: 35440833 PMCID: PMC9010328 DOI: 10.1016/j.trac.2022.116635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 outbreak revealed fundamental weaknesses of current diagnostic systems, particularly in prediction and subsequently prevention of pandemic infectious diseases (PIDs). Among PIDs detection methods, wastewater-based epidemiology (WBE) has been demonstrated to be a favorable mean for estimation of community-wide health. Besides, by going beyond purely sensing usages of WBE, it can be efficiently exploited in Healthcare 4.0/5.0 for surveillance, monitoring, control, and above all prediction and prevention, thereby, resulting in smart sensing and management of potential outbreaks/epidemics/pandemics. Herein, an overview of WBE sensors for PIDs is presented. The philosophy behind the smart diagnosis of PIDs using WBE with the help of digital technologies is then discussed, as well as their characteristics to be met. Analytical techniques that are pushing the frontiers of smart sensing and have a high potential to be used in the smart diagnosis of PIDs via WBE are surveyed. In this context, we underscore key challenges ahead and provide recommendations for implementing and moving faster toward smart diagnostics.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150, León, Guanajuato, Mexico
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| |
Collapse
|
32
|
Alhama J, Maestre JP, Martín MÁ, Michán C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microb Biotechnol 2022; 15:1719-1728. [PMID: 34905659 PMCID: PMC9151337 DOI: 10.1111/1751-7915.13989] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of the current SARS-CoV-2 pandemic at local levels. In this review, we address the different approaches to the steps needed for this surveillance: sampling wastewaters (WWs), concentrating the virus from the samples and quantifying them by qPCR, focusing on the main limitations of the methodologies used. Factors that can influence SARS-CoV-2 monitoring in WWs include: (i) physical parameters as temperature that can hamper the detection in warm seasons and tropical regions, (ii) sampling methodologies and timetables, being composite samples and Moore swabs the less variable and more sensitive approaches, (iii) virus concentration methodologies that need to be feasible and practicable in simpler laboratories and (iv) detection methodologies that should tend to use faster and cost-effective procedures. The efficiency of WW treatments and the use of WWs for SARS-CoV-2 variants detection are also addressed. Furthermore, we discuss the need for the development of common standardized protocols, although these must be versatile enough to comprise variations among target communities. WBE screening of risk populations will allow for the prediction of future outbreaks, thus alerting authorities to implement early action measurements.
Collapse
Affiliation(s)
- José Alhama
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| | - Juan P. Maestre
- Department of Civil, Architectural, and Environmental EngineeringThe University of Texas at Austin301 E. Dean Keeton St., Stop C1786AustinTX78712USA
| | - M. Ángeles Martín
- Department of Inorganic Chemistry and Chemical EngineeringArea of Chemical EngineeringUniversidad de CórdobaInstitute of Fine Chemistry and Nanochemistry (IUNAN)Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie CurieCórdoba14071Spain
| | - Carmen Michán
- Department of Biochemistry and Molecular BiologyUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo OchoaCórdoba14071Spain
| |
Collapse
|
33
|
Petrovski S, Batinovic S, Rose JJ, Seviour RJ. Biological control of problem bacterial populations causing foaming in activated sludge wastewater treatment plants - phage therapy and beyond. Lett Appl Microbiol 2022; 75:776-784. [PMID: 35598184 DOI: 10.1111/lam.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The production of a stable foam on the surfaces of reactors is a global operating problem in activated sludge plants. In many cases these foams are stabilized by hydrophobic members of the Mycolata, a group of Actinobacteria whose outer membranes contains long chain hydroxylated mycolic acids. There is currently no single strategy which works for all foams. One attractive approach is to use lytic bacteriophages specific for the foam stabilizing Mycolata population. Such phages are present in activated sludge mixed liquor, and can be recovered readily from it. However, no phage has been recovered which lyses Gordonia amarae and Gordonia pseudoamarae, probably the most common foaming Mycolata members. Whole genome sequencing revealed that both G. amarae and G. pseudoamarae from plants around the world are particularly well endowed with genes encoding anti-viral defence mechanisms. However, both these populations were lysed rapidly by a parasitic nanobacterium isolated from a plant in Australia. This organism, a member of the Saccharibacteria was also effective against many other Mycolata, thus providing a potential agent for control of foams stabilized by them.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Steven Batinovic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Jayson Ja Rose
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
34
|
Guo Y, Sivakumar M, Jiang G. Decay of four enteric pathogens and implications to wastewater-based epidemiology: Effects of temperature and wastewater dilutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152000. [PMID: 34843787 DOI: 10.1016/j.scitotenv.2021.152000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Measurement of pathogens in raw wastewater from a population within certain sewer catchments can provide quantitative information on public health status within the sampled urban area. This so-called wastewater-based epidemiology (WBE) approach has the potential of becoming a powerful tool to monitor pathogen circulation and support timely intervention during outbreaks. However, many WBE studies failed to account for the pathogen decay during wastewater transportation in back calculating the disease prevalence. Various sewer process factors, including water temperature and infiltration/inflow, can lead to the variation of pathogen decay rates. This paper firstly reviewed the effects of temperature and types of water, i.e., wastewater, freshwater, and saline water, on the decay of four selected enteric pathogens, i.e., Campylobacter, Salmonella, Norovirus, and Adenovirus. To elucidate the importance of the pathogen decay rates (measured by culture and molecular methods) to WBE, a sensitivity analysis was conducted on the back-calculation equation for infection prevalence with decay rates collected from published literature. It was found that WBE back-calculation is more sensitive to decay rates under the condition of high wastewater temperature (i.e., over 25 °C) or if wastewater is diluted by saline water (i.e., sewer infiltration or use of seawater as an alternative source of freshwater constituting around 1/3 household water demand in some cities). Stormwater dilution of domestic wastewater (i.e., sewer inflow might achieve 10 times volumetric dilution) was shown to play a role in increasing the sensitivity of WBE back-calculation to bacterial pathogens, but not viral pathogens. Hence, WBE back-calculation in real sewers should account for in-sewer decay of specific pathogen species under different wastewater temperatures and dilutions. Overall, this review contributes to a better understanding of pathogen decay in wastewater which can lead to improved accuracy of WBE back-calculation.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
35
|
Gomes M, Bartolomeu M, Vieira C, Gomes ATPC, Faustino MAF, Neves MGPMS, Almeida A. Photoinactivation of Phage Phi6 as a SARS-CoV-2 Model in Wastewater: Evidence of Efficacy and Safety. Microorganisms 2022; 10:659. [PMID: 35336234 PMCID: PMC8954818 DOI: 10.3390/microorganisms10030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage φ6 (or, simply, phage φ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus's survival in the environment, phage φ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage φ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage φ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.
Collapse
Affiliation(s)
- Marta Gomes
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Maria Bartolomeu
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Cátia Vieira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| | - Ana T. P. C. Gomes
- Center for Interdisciplinary Investigation (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | | | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (M.G.); (M.B.); (C.V.)
| |
Collapse
|
36
|
Wen R, Yang L, Wu S, Zhou D, Jiang B. Tuning surface sites to boost photocatalytic degradation of phenol and ciprofloxacin. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
38
|
Khan AH, Abutaleb A, Khan NA, El Din Mahmoud A, Khursheed A, Kumar M. Co-occurring indicator pathogens for SARS-CoV-2: A review with emphasis on exposure rates and treatment technologies. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 4:100113. [PMID: 38620839 PMCID: PMC8233050 DOI: 10.1016/j.cscee.2021.100113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 05/23/2023]
Abstract
Scientific advancements from 2002 to 2020 for coronaviruses, i.e., SARS-CoV and MERS-CoV outbreaks, could lead towards a better understanding of the exposure to a health crisis. However, data on its transmission routes and persistence in the environment is still in need of the hour. In this review, we discuss the impact of environmental matrices on dealing with the consequences of the global COVID-19 outbreak. We have compiled the most recent data on the epidemiology and pathogenesis of the diseases. The review aims to help researchers and the larger public recognize and deal with the consequences of co-occurring viral indicators for COVID-19 and provide nano-technological perspectives of possible diagnostic and treatment tools for further studies. The review highlights environmental wastes such as hospital wastewater effluents, pathogen-laden waste, pathogen-laden ground/surface water, wastewater sludge residues and discusses their potential remediation technologies, i.e., pathogen-contaminated soil disposal, municipal and medical solid waste collection, recycling, and final disposal. Finally, holistic suggestions to tackle environmental-related issues by the scientific community have been provided, where scientists, consultants may involve in a tiered assessment from the hazard to risk management in the post-COVID-19 world.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, Jazan University, 114 Jazan, Saudi Arabia
| | - Ahmed Abutaleb
- Chemical Engineering Department, Jazan University, 114 Jazan, Saudi Arabia
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India
| | - Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Anwar Khursheed
- Department of Civil Engineering, College of Engineering, King Saud University, PO Box 800, Riyadh 11421, Saudi Arabia
- Department of Civil Engineering, Z. H. College of Engineering, Aligarh Muslim University, Aligarh 202 002, India
| | - Manish Kumar
- Discipline of Earth Sciences, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
39
|
Gururani P, Bhatnagar P, Bisht B, Kumar V, Joshi NC, Tomar MS, Pathak B. Cold plasma technology: advanced and sustainable approach for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65062-65082. [PMID: 34617236 PMCID: PMC8494511 DOI: 10.1007/s11356-021-16741-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 05/22/2023]
Abstract
Cold plasma has been a potent energy-efficient and eco-friendly advanced oxidation technology which has gained attention in recent decades as a non-thermal approach in diverse forms of applications. This review highlights a comprehensive account of the implementation of this technology in the field of wastewater treatment to resolve certain issues regarding the degradation of numerous aqueous pollutants and water-borne pathogenic microorganisms including viruses up to a significant level. The paper addresses plasma chemistry sources and mechanisms on wastewater treatment and impact on various physical, chemical, and biological characteristics of treated water. Furthermore, studies have revealed that this emerging technology is effective in inactivating SARS-CoV-2 or coronavirus, which serves as a transmission channel for this lethal virus in wastewater. Despite these benefits, the development of cold plasma as a wastewater treatment technique is still hampered by a lack of information like capital investment, proficient application, liveability, and operating cost, thus necessitating additional research for its booming commercialization, as this can be an emerging approach to solving water crises and meeting the demand for fresh or potable water resources.
Collapse
Affiliation(s)
- Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Pooja Bhatnagar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, 248002, India
| | - Bhawna Bisht
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- Department of Post-Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
| | - Vinod Kumar
- Department of Life Sciences, Graphic Era (Deemed to be University), Dehradun, 248002, India.
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation, 117198.
| | - Naveen Chandra Joshi
- Material Science & Nanotechnology Laboratory, Research & Development, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 76900I, India
| | - Beena Pathak
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
40
|
Facciolà A, Laganà P, Caruso G. The COVID-19 pandemic and its implications on the environment. ENVIRONMENTAL RESEARCH 2021; 201:111648. [PMID: 34242676 PMCID: PMC8261195 DOI: 10.1016/j.envres.2021.111648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/06/2023]
Abstract
The emerging threat posed by COVID-19 pandemic has strongly modified our lifestyle, making urgent to re-consider the humans-environment relationships and stimulating towards more sustainable choices in our daily behavior. Scientific evidences showed that the onset of new viral pathogens with a high epidemic-pandemic potential is often the result of complex interactions between animals, humans and environment. In this context, the interest of the scientific community has also been attracted towards the potential interactions of SARS-CoV-2 with environmental compartments. Many issues, ranging from the epidemiology and persistence of SARS-CoV-2 in water bodies to the potential implications of lockdown measures on environmental quality status are here reviewed, with a special reference to marine ecosystems. Due to current sanitary emergence, the relevance of pilot studies regarding the interactions between SARS-CoV-2 spread and the direct and indirect environmental impacts of the COVID-19 pandemic, that are still a matter of scientific debate, is underlined.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Messina, Italy
| |
Collapse
|