1
|
Liu Y, Wu S, Chen L, Teng X, Shi H, Xue C, Li Z. Metabolic profiles and protein expression responses of Pacific oyster (Crassostrea gigas) to polystyrene microplastic stress. Food Chem 2025; 462:140961. [PMID: 39208724 DOI: 10.1016/j.foodchem.2024.140961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Shuai Wu
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Lipin Chen
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China.
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- School of Food Science and Technology, Hainan University, Hainan 570228, PR China; College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.1299, San Sha Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
2
|
Zhao M, Chen F, Zhang B, Liu H, Li Z, Li G, Zhao M, Ma Y. Liquid metasurface for size-independent detection of microplastics. Talanta 2024; 284:127221. [PMID: 39550809 DOI: 10.1016/j.talanta.2024.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Microplastics (MPs) are widely distributed in water, soil, and air, drawing a global concern as a cause of chronic diseases and immune system disruption. Though as one of the most promising techniques in MP detection, the surface-enhanced Raman scattering (SERS) is heavily dependent on the distribution of the "hot spots" and the size of MPs, known as "coffee ring effect" and "size effect" respectively, imposing major challenges in the quantitative detection of various sized MPs on conventional SERS substrates. Here we present a self-healing metasurface based on plasmonic nanoparticle (NP) array at the liquid-liquid interface (LLI) and air-liquid interface (ALI). The fluidic nature of the metasurface and the repulsive forces between NPs offer atomic-level flatness and uniform distribution for "hot spots". Additionally, MPs are dissolved in the oil phase, uniformly enriched in the form of polymer molecular chains on the liquid metasurface, irrespective of the size of the MPs. This molecular dispersity of the dissolved MPs enhances the overlap between the "hot spots" and scattering volume of MPs, significantly improving the intensity and reproducibility of SERS. The sensing platform is successfully applied in trace detections of various MPs (PS, PET, PMMA, and PC), and validated in real samples.
Collapse
Affiliation(s)
- Mingfu Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Feng Chen
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Bin Zhang
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Hong Liu
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Zeying Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Gengchen Li
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China
| | - Minggang Zhao
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| | - Ye Ma
- School of Material Science and Engineering, Ocean University of China, 238 Songling Rd, Qingdao, Shandong, 266100, China.
| |
Collapse
|
3
|
Gao S, Huang G, Zhang P, Yin J, Li M, Huang J, Zhao K, Han D. Interactive effects of nanoplastics, multi-contaminants, and environmental conditions on prairie aquatic ecosystems: A factorial composite toxicity analysis within a Canadian context. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135652. [PMID: 39226687 DOI: 10.1016/j.jhazmat.2024.135652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/05/2024]
Abstract
Limited data exist on the interactions between nanoplastics (NPs) and co-contaminants under diverse environmental conditions. Herein, a factorial composite toxicity analysis approach (FCTA) was developed to analyze the time-dependent composite effects of NPs (0 ∼ 60 mg/L), copper (Cu, 0.2 ∼ 6 mg/L) and phenanthrene (PHE, 0.001 ∼ 1 mg/L) on microalgae under diverse pH (6.7 ∼ 9.1), dissolved organic matter (DOM, 1.5 ∼ 25.1 mg/L), salinity (1 ∼ 417 mg/L) and temperature (23 ∼ 33 °C) within the Canadian prairie context. The toxic mechanism was revealed by multiple toxic endpoints. The combined toxicity of NPs, Cu and PHE within prairie aquatic ecosystems was assessed by the developed FCTA-multivariate regression model. Contrary to individual effects, NPs exhibited a promotional effect on microalgae growth under complex environmental conditions. Although Cu and PHE were more hazardous, NPs mitigated their single toxicity. Environmental conditions and exposure times significantly influenced the main effects and interactions of NPs, Cu and PHE. The synergistic effect of NPs*Cu and NPs*PHE on microalgae growth became antagonistic with increased pH or DOM. Microalgae in the Souris River, Saskatchewan, were projected to suffer the most toxic effects. Our findings have significant implications for the risk management of NPs.
Collapse
Affiliation(s)
- Sichen Gao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Guohe Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada.
| | - Peng Zhang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Dengcheng Han
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
4
|
Titov I, Semerád J, Boháčková J, Beneš H, Cajthaml T. Microplastics meet micropollutants in a central european river stream: Adsorption of pollutants to microplastics under environmentally relevant conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124616. [PMID: 39067740 DOI: 10.1016/j.envpol.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Microplastics have emerged as pervasive pollutants in aquatic environments, and their interaction with organic contaminants poses a significant environmental challenge. This study aimed to explore the adsorption of micropollutants onto microplastics in a river, examining different plastic materials and the effect of aging on adsorption capacity. Microplastics (low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC)) were introduced into a river stream, and a comprehensive analysis involving 297 organic pollutants was conducted. Passive samplers were deployed to monitor micropollutant presence in the river. Sixty-four analytes were identified in the river flow, with telmisartan being the most prevalent. Nonaged PVC showed the highest telmisartan concentration at 279 ng/g (168 ng/m2 regarding the microplastic surface), while aged PVC exhibited a fourfold decrease. Conversely, aged LDPE preferentially adsorbed metoprolol and tramadol, with concentrations increasing 12- and 3-fold, respectively, compared to nonaged LDPE. Azithromycin and clarithromycin, positively charged compounds, exhibited higher sorption to PET microplastics, regardless of aging. Diclofenac showed higher concentrations on nonaged PVC compared to aged PVC. Aging induced structural changes in microplastics, including color alterations, smaller particle production, and increased specific surface area. These changes influenced micropollutant adsorption, with hydrophobicity, dissociation constants, and the ionic form of pollutants being key factors. Aged microplastics generally showed different sorption properties. A comparison of microplastics and control sand particles indicated preferential micropollutant sorption to microplastics, underscoring their role as vectors for contaminant transport in aquatic ecosystems. Analysis of river sediment emphasized the significance of contact time in pollutant accumulation. Overall, this study provides insights into the complex interactions between microplastics and organic pollutants under environmental conditions and contributes to a better understanding of the fate and behavior of these two types of contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Ivan Titov
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jana Boháčková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic
| | - Hynek Beneš
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague, 6, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01, Prague, Czech Republic.
| |
Collapse
|
5
|
Zhong Z, Huang W, Yin Y, Wang S, Chen L, Chen Z, Wang J, Li L, Khalid M, Hu M, Wang Y. Tris(1-chloro-2-propyl) phosphate enhances the adverse effects of biodegradable polylactic acid microplastics on the mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124741. [PMID: 39147220 DOI: 10.1016/j.envpol.2024.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Microplastics (MPs) and organophosphate flame retardants (OPFRs) have recently become ubiquitous and cumulative pollutants in the oceans. Since OPFRs are added to or adsorbed onto MPs as additives, it is necessary to study the composite contamination of OPFRs and MPs, with less focus on bio-based PLA. Therefore, this study focused on the ecotoxicity of the biodegradable MP polylactic acid (PLA) (5 μm, irregular fragments, 102 and 106 particles/L), and a representative OPFRs tris(1-chloro-2-propyl) phosphate (TCPP, 0.5 and 50 μg/L) at environmental and high concentrations. The mussel Mytilus coruscus was used as a standardised bioindicator for exposure experiments. The focus was on examining oxidative stress (catalase, CAT, superoxide dismutase, SOD, malondialdehyde, MDA), immune responses acid (phosphatase, ACP, alkaline phosphatase, AKP, lysozyme, LZM), neurotoxicity (acetylcholinesterase, AChE), energy metabolism (lactate dehydrogenase, LDH, succinate dehydrogenase, SDH, hexokinase, HK), and physiological indices (absorption efficiency, AE, excretion rate, ER, respiration rate, RR, condition index, CI) after 14 days exposure. The results of significantly increased oxidative stress and immune responses, and significantly disturbed energy metabolism and physiological activities, together with an integrated biomarker response (IBR) analysis, indicate that bio-based PLA MPs and TCPP could cause adverse effects on mussels. Meanwhile, TCPP interacted significantly with PLA, especially at environmental concentrations, resulting in more severe negative impacts on oxidative and immune stress, and neurotoxicity. The more severe adverse effects at environmental concentrations indicate higher ecological risks of PLA, TCPP and their combination in the real marine environment. Our study presents reliable data on the complex effects of bio-based MP PLA, TCPP and their combination on marine organisms and the environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Yiwei Yin
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacheng Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Mansoor Khalid
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai, 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
6
|
Zhong Z, Shang W, Yang P, Wang S, Chen L, Chen Z, Li L, Khalil MF, Hu M, Xu X, Wang Y. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174386. [PMID: 38960152 DOI: 10.1016/j.scitotenv.2024.174386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Microplastics (MPs) have accumulated in the oceans, causing adverse effects on marine organisms and the environment. Biodegradable polylactic acid (PLA) is considered as an excellent substitute for traditional petroleum-based plastics, but it is difficult to degrade completely and easily become MPs in the marine environment. To test the ecological risk of bio-based PLA, we exposed thick-shelled mussels (Mytilus coruscus) to bio-based PLA and petroleum-based polystyrene (PS) (at 102, 104, and 106 particles/L) for 14 days. The significant increase in enzyme activities related to oxidative stress and immune response showed that mussels were under physiological stress after MP ingestion. While enzyme activities of nerve conduction and energy metabolism were significantly disturbed after exposure. Meanwhile, normal physiological activities in respiration, ingestion and assimilation were also suppressed in association with enzyme changes. The negative effects of PS and PLA in mussels were not differentiated, and further integration analysis of integrated biomarker response (IBR) and principal component analysis (PCA) also showed that PLA would induce adverse effects in mussels and ecological risks as PS, especially at environmental concentrations. Therefore, it is necessary to pay more attention to the environmental and ecological risk of bio-based MP PLA accumulating in the marine environment.
Collapse
Affiliation(s)
- Zhen Zhong
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenrui Shang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Peiwen Yang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Shixiu Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Zhaowen Chen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China.
| |
Collapse
|
7
|
Shen H, Tan H, Lu Y, Gao Y, Xia Y, Cai Z. The combination of detection and simulation for the distribution and sourcing of microplastics in Shing Mun River estuary, Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174305. [PMID: 38936714 DOI: 10.1016/j.scitotenv.2024.174305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
For the first time, combined detection and simulation was performed on microplastic (MP) debris in surface water, sediment, and oyster samples at ten coastal sites of Shing Mun River estuary, Hong Kong at different tidal conditions. The MP debris were extracted and detected using Fourier transform infrared (FT-IR) spectroscopy, and the simulation was conducted using Weather Research & Forecasting Model (WRF) / Regional Ocean Modelling System (ROMS) coupled hydro-dynamic modelling and the subsequent Lagrangian particle tracking. The results demonstrated the majority of polyethylene (with partial chlorine substitution) debris among all the MPs found, and great spatial and tidal variabilities of MP concentrations were observed. The combination of MP observation and simulations referred to the interpretation that a considerable percentage of MPs found in this study originated from South China Sea. Those MPs were probably transported to Tolo Harbour through sea currents and drifted inshore and offshore with tides. This study provided baseline measures of MP concentrations in Shing Mun River estuary and comprehensive understanding for how MPs transport and distribute within a dynamic estuarine system.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yi Lu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yifei Gao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| | - Yongjun Xia
- School of Heath Science and Engineering, University of Shanghai for Science and Technology, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China.
| |
Collapse
|
8
|
Farhan M, Yaqin K, Djawad MI. Microplastic's Contamination in the Hemolymph and Organs (Gills and Hepatopancreas) of Perna viridis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:321-334. [PMID: 39384581 DOI: 10.1007/s00244-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
The issue of microplastics (MPs) has emerged as a significant concern globally, with discussions surrounding the potential environmental impact of these tiny plastic particles becoming increasingly prevalent. This study aimed to identify the concentration and characteristics of MPs in hemolymph and organs (gills and hepatopancreas) of green mussels (Perna viridis) that are frequently consumed by people in Pangkajene Kepulauan, South Sulawesi Province, Indonesia. Green mussels were collected from two different sampling sites for comparison. Screening was carried out on dispensed hemolymph and dissected organs to identify the characteristics of MPs. Surface seawater sampling was added as information on MP's characteristics from the mussel habitat. Visual observation of MP's characteristics using a stereomicroscope in laminar flow is to prevent contamination. The identification of MP's polymer type is using FTIR-ATR. The results showed that hemolymph, hepatopancreas, gills, and surface water were concentrated with MPs. Small (2-3.9 cm) green mussels accumulated more MPs than medium (4-5.9 cm) and large (> 6 cm). MPs characteristics of fiber shape, transparent color, and size 0.1-0.5 mm were dominant in all samples. A total of seven polymers of MPs were identified with polyethylene and polystyrene types most frequently found from all samples. Based on this study, green mussels are good for biomonitoring of MPs.
Collapse
Affiliation(s)
- Muh Farhan
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| | - Khusnul Yaqin
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia.
| | - Muhammad Iqbal Djawad
- Postgraduate School of Fisheries, Hasanuddin University, Perintis Kemerdekaan Km 17, Makassar, South Sulawesi, 90245, Indonesia
| |
Collapse
|
9
|
Yang W, Liu D, Gao P, Wu Q, Li Z, Li S, Zhu L. Oxidative stress and metabolic process responses of Chlorella pyrenoidosa to nanoplastic exposure: Insights from integrated analysis of transcriptomics and metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124466. [PMID: 38944181 DOI: 10.1016/j.envpol.2024.124466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Oxidative stress is a universal interpretation for the toxicity mechanism of nanoplastics to microalgae. However, there is a lack of deeper insight into the regulation mechanism in microalgae response to oxidative stress, thus affecting the prevention and control for nanoplastics hazard. The integrated analysis of transcriptomics and metabolomics was employed to investigate the mechanism for the oxidative stress response of Chlorella pyrenoidosa to nanoplastics and subsequently lock the according core pathways and driver genes induced. Results indicated that the linoleic acid metabolism, glycine (Gly)-serine (Ser)-threonine (Thr) metabolism, and arginine and proline metabolism pathways of C. pyrenoidosa were collectively involved in oxidative stress. The analysis of linoleic acid metabolism suggested that nanoplastics prompted algal cells to secrete more allelochemicals, thereby leading to destroy the immune system of cells. Gly-Ser-Thr metabolism and arginine and proline metabolism pathways were core pathways involved in algal regulation of cell membrane function and antioxidant system. Key genes, such as LOX2.3, SHM1, TRPA1, and proC1, are drivers of regulating the oxidative stress of algae cells. This investigation lays the foundation for future applications of gene editing technology to limit the hazards of nanoplastics on aquatic organism.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Dongyang Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Qirui Wu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuo Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
10
|
Ventura E, Gonçalves JM, Vilke JM, d'Errico G, Benedetti M, Regoli F, Bebianno MJ. Are mixtures of micro/nanoplastics more toxic than individual micro or nanoplastic contamination in the clam Ruditapes decussatus? MARINE POLLUTION BULLETIN 2024; 206:116697. [PMID: 39018822 DOI: 10.1016/j.marpolbul.2024.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted.
Collapse
Affiliation(s)
- Emma Ventura
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal; Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joanna M Gonçalves
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Juliano M Vilke
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Future Biodiversity Centre (NFBC), Palermo, Italy
| | - Maria João Bebianno
- CIMA, Centre of Marine and Environmental Research\ARNET - Infrastructure Network in Aquatic Research, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal.
| |
Collapse
|
11
|
Abimbola I, McAfee M, Creedon L, Gharbia S. In-situ detection of microplastics in the aquatic environment: A systematic literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173111. [PMID: 38740219 DOI: 10.1016/j.scitotenv.2024.173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment and have emerged as a significant environmental issue due to their potential impacts on human health and the ecosystem. Current laboratory-based microplastic detection methods suffer from various drawbacks, including a lack of standardisation, limited spatial and temporal coverage, high costs, and time-consuming procedures. Consequently, there is a need for the development of in-situ techniques to detect and monitor microplastics to effectively identify and understand their sources, pathways, and behaviours. Herein, we adopt a systematic literature review method to assess the development and application of experimental and field technologies designed for the in-situ detection and monitoring of aquatic microplastics, without the need for sample preparation. Four scientific databases were searched in March 2023, resulting in a review of 62 relevant studies. These studies were classified into seven sensor categories and their working principles were discussed. The sensor classes include optical devices, digital holography, Raman spectroscopy, other spectroscopy, hyperspectral imaging, remote sensing, and other methods. We also looked at how data from these technologies are integrated with machine learning models to develop classifiers capable of accurately characterising the physical and chemical properties of microplastics and discriminating them from other particles. This review concluded that in-situ detection of microplastics in aquatic environments is feasible and can be achieved with high accuracy, even though the methods are still in the early stages of development. Nonetheless, further research is still needed to enhance the in-situ detection of microplastics. This includes exploring the possibility of combining various detection methods and developing robust machine-learning classifiers. Additionally, there is a recommendation for in-situ implementation of the reviewed methods to assess their effectiveness in detecting microplastics and identify their limitations.
Collapse
Affiliation(s)
- Ismaila Abimbola
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland.
| | - Marion McAfee
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Leo Creedon
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Sligo, Ireland
| | - Salem Gharbia
- Department of Environmental Science, Faculty of Science, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
12
|
Michailidou K, Palisidou C, Feidantsis K, Ainali NM, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kaloyianni M, Bobori DC. Impact of aged and virgin polyethylene microplastics on multi end-points effects of freshwater fish tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174704. [PMID: 39002604 DOI: 10.1016/j.scitotenv.2024.174704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The buildup of plastic waste in aquatic environments presents serious threats to the environment, wildlife, and ultimately to humans. Specifically, microplastics (MPs) ingestion by aquatic animals leads to adverse physiological and toxicological effects. In addition, discarded MPs undergo aging and degradation processes which affect their morphological properties and chemical composition, enhancing the absorption of environmental pollutants. Under this prism, the present research was conducted to investigate and compare the impact of 'aged' versus pristine low-density polyethylene microplastics (PE-MPs) on various toxicity endpoints as biochemical and molecular parameters in the muscle tissue and liver of the freshwater fish species Perca fluviatilis. In parallel, the morphological, physicochemical, and structural changes occurred in "aged" PE-MPs, (after being exposed to UV radiation for 120 days) were studied, significantly illustrating signs of oxidation and crack propagation at the surface of the studied MPs. Fish were exposed to artificial diet reached with virgin and "aged" PE-MPs, sized 100-180 μm, at concentrations of 1 mg/g of dry food for a period of 15-days. Thereafter, liver and muscle tissues were analyzed in relation to multi oxidative parameters. Compared to the control group, the observed changes in the examined fish included increased activities of antioxidant enzymes, as superoxide dismutase, catalase and glutathione reductase, enhanced concentrations of malondialdehyde, protein carbonylation, HSP70 levels, elevated MAPK phosphorylation, induction of ubiquitin-proteins, as well as heightened levels of Bax/Bcl-2 proteins, caspases and differentiated levels of LC3 II/I, SQSTM1/p62. From the studied biomarkers, apoptosis, ubiquitin and hsp70 levels, showed a more sensitive response against the ingested MPs, followed by autophagy, p38MAPK levels, antioxidant enzymes, MDA and carbonylation levels. The effect of "aged" PE-MPs was more pronounced compared to that of the virgin ones. When evaluating the response of all oxidative stress biomarkers across the studied tissues, the liver demonstrates the highest response for the majority of the biomarkers against both virgin and "aged" PE-MPs. These findings strongly indicate that "aged" MPs activate the antioxidant defence mechanisms and impact the cellular well-being of the examined fish species.
Collapse
Affiliation(s)
- Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Christina Palisidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece.
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-654 04, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
13
|
Li S, Qiao Z, Huang M, Lao Q, Zhang Q, Xing Y, Pan S, Martin FL, Liu H, Pang W. Combined exposure of polystyrene microplastics and benzo[a]pyrene in rat: Study of the oxidative stress effects in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116390. [PMID: 38705037 DOI: 10.1016/j.ecoenv.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5μm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.
Collapse
Affiliation(s)
- Shengle Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Meidie Huang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qiufeng Lao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Qingquan Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Songying Pan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Francis L Martin
- Biocel UK Ltd, Hull HU10 6TS, UK; Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Hui Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China; School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China; School of Humanities and Management, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
14
|
Wu X, Yang SA, Kan Y, Li M, Dong J, Qiu T, Gu Y, Zhao Y, Liang D. Revealing Metabolic Dysregulation Induced by Polypropylene Nano- and Microplastics in Nile Tilapia via Noninvasive Probing Epidermal Mucus. Anal Chem 2024; 96:9416-9423. [PMID: 38809415 DOI: 10.1021/acs.analchem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.
Collapse
Affiliation(s)
- Xiaokang Wu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Sheng-Ao Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Ying Kan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Jiaxin Dong
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Tao Qiu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Yu Gu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Yuanxin Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| |
Collapse
|
15
|
Daniel D, Barros L, da Costa JP, Girão AV, Nunes B. Using marine mussels to assess the potential ecotoxicological effects of two different commercial microplastics. MARINE POLLUTION BULLETIN 2024; 203:116441. [PMID: 38703629 DOI: 10.1016/j.marpolbul.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) in the aquatic environment pose a serious threat to biota, by being confounded with food. These effects occur in mussels which are filter-feeding organisms. Mussels from the genus Mytilus sp. were used to evaluate the ecotoxicological effects of two MPs, polypropylene (PP) and polyethylene terephthalate (PET), after 4 and 28-days. Measured individual endpoints were condition index and feeding rate; and sub-individual parameters, metabolism of phase I (CYP1A1, CYP1A2 and CYP3A4) and II (glutathione S-transferases - GSTs), and antioxidant defense (catalase - CAT). MPs decreased both condition index (CI) and feeding rate (FR). No alterations occurred in metabolic enzymes, suggesting that these MPs are not metabolized by these pathways. Furthermore, lack of alterations in GSTs and CAT activities suggests the absence of conjugation and oxidative stress. Overall, biochemical markers were not responsive, but non-enzymatic responses showed deleterious effects caused by these MPs, which may be of high ecological importance.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Barros
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Pinto da Costa
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Violeta Girão
- Departamento de Engenharia de Materiais e Cerâmica, CICECO, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Rehman A, Huang F, Zhang Z, Habumugisha T, Yan C, Shaheen U, Zhang X. Nanoplastic contamination: Impact on zebrafish liver metabolism and implications for aquatic environmental health. ENVIRONMENT INTERNATIONAL 2024; 187:108713. [PMID: 38703446 DOI: 10.1016/j.envint.2024.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoplastics (NPs) are increasingly pervasive in the environment, raising concerns about their potential health implications, particularly within aquatic ecosystems. This study investigated the impact of polystyrene nanoparticles (PSN) on zebrafish liver metabolism using liquid chromatography hybrid quadrupole time of flight mass spectrometry (LC-QTOF-MS) based non-targeted metabolomics. Zebrafish were exposed to 50 nm PSN for 28 days at low (L-PSN) and high (H-PSN) concentrations (0.1 and 10 mg/L, respectively) via water. The results revealed significant alterations in key metabolic pathways in low and high exposure groups. The liver metabolites showed different metabolic responses with L-PSN and H-PSN. A total of 2078 metabolite features were identified from the raw data obtained in both positive and negative ion modes, with 190 metabolites deemed statistically significant in both L-PSN and H-PSN groups. Disruptions in lipid metabolism, inflammation, oxidative stress, DNA damage, and amino acid synthesis were identified. Notably, L-PSN exposure induced changes in DNA building blocks, membrane-associated biomarkers, and immune-related metabolites, while H-PSN exposure was associated with oxidative stress, altered antioxidant metabolites, and liver injury. For the first time, L-PSN was found depolymerized in the liver by cytochrome P450 enzymes. Utilizing an analytical approach to the adverse outcome pathway (AOP), impaired lipid metabolism and oxidative stress have been identified as potentially conserved key events (KEs) associated with PSN exposure. These KEs further induced liver inflammation, steatosis, and fibrosis at the tissue and organ level. Ultimately, this could significantly impact biological health. The study highlights the PSN-induced effects on zebrafish liver metabolism, emphasizing the need for a better understanding of the risks associated with NPs contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuyi Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China
| | - Uzma Shaheen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese 905 Academy of Sciences, Xiamen 361021, 906, PR China.
| |
Collapse
|
17
|
Lee JS, Lee JS, Kim HS. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170902. [PMID: 38354791 DOI: 10.1016/j.scitotenv.2024.170902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
18
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
19
|
Liu Y, Teng X, Chen L, Wu S, Xue C, Li Z. Changes in Flavor-Related Biomarkers in Pacific Oysters ( Crassostrea gigas) Following Microplastic Exposure. Foods 2024; 13:765. [PMID: 38472877 DOI: 10.3390/foods13050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Microplastics have been an emerging threat to filtering species and the ingestion and impacts of microplastics on oysters are a cause for concern. However, much remains unknown about the effects of microplastics on flavor-related biomarkers in oysters. Herein, a laboratory microplastic exposure with concentrations of 1, 10, and 100 mg/L for 15 days was performed to investigate the impacts of microplastics on the flavor parameters of oysters. Exposure to microplastics changed the odor characteristics of oysters. Microplastic exposure had minor effects on the fatty acid composition; however, significant alterations in free amino acids and nucleotides were observed under the 1 and 10 mg/L exposure groups, respectively. The overall results indicated 10 mg/L of microplastic exposure significantly increased the equivalent umami value of oysters. These findings stressed the effects of microplastics on oysters and would be an important reference for the assessment of the potential risks associated with microplastics in marine edible species.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
| | - Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shuai Wu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao 266003, China
| |
Collapse
|
20
|
Wang N, Zhang Z, Wang Y, Zhang L, Sun A, Liu H, Shi X. Comparative antioxidant and metabolomic analysis for the identification of differential response of mussel (Mytilus coruscus) to four succinate dehydrogenase inhibitor fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16819-16831. [PMID: 38324158 DOI: 10.1007/s11356-024-32309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Succinate dehydrogenase inhibitor fungicides (SDHIs) are frequently detected in the marine environment. However, studies on the toxicity of SDHIs to marine organisms, Mytilus coruscus (M. coruscus), are poorly reported. Therefore, the antioxidant activities and metabolomic response of four SDHIs, namely, boscalid (BC), thifluzamide (TF), fluopyram (FO), and bixafen (BIX), to (M. coruscus), were comprehensively investigated. The antioxidant activity of BC and TF was significantly increased (p<0.05), whereas those of FO and BIX were significantly decreased. Furthermore, metabolite discriminations among M. coruscus to four SDHIs were illustrated by an untargeted metabolomics approach. A total of 52, 50, 93, and 129 differential metabolites were obtained for BC, TF, FO, and BIX. KEGG of the different metabolites show that the four SDHIs had differential effects on the metabolic pathways of M. coruscus. The current study demonstrated four SDHIs triggered glucose metabolism, lipid metabolism, tricarboxylic acid cycle, and oxidative phosphorylation processes and caused the disruption of nutrient and energy conversion processes in mussels. Finally, five biomarkers were screened by analyzing common differential metabolites that emerged from the four SDHI exposures, which could be used for risk assessment of marine ecosystem exposure to SDHIs. Our results demonstrated the use of metabolomics to understand the potential mechanisms of toxicity of four SDHIs to mussels and to identify potential targets for future targeted risk assessment.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
| |
Collapse
|
21
|
Fuller N, Kimbrough KL, Davenport E, Edwards ME, Jacob A, Chandramouli B, Johnson WE. Contaminants of Concern and Spatiotemporal Metabolomic Changes in Quagga Mussels (Dreissena bugensis rostriformis) from the Milwaukee Estuary (Wisconsin, USA). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:307-323. [PMID: 37877769 DOI: 10.1002/etc.5776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Environmental metabolomics has emerged as a promising technique in the field of biomonitoring and as an indicator of aquatic ecosystem health. In the Milwaukee Estuary (Wisconsin, USA), previous studies have used a nontargeted metabolomic approach to distinguish between zebra mussels (Dreissena polymorpha) collected from sites of varying contamination. To further elucidate the potential effects of contaminants on bivalve health in the Milwaukee Estuary, the present study adopted a caging approach to study the metabolome of quagga mussels (Dreissena bugensis rostriformis) deployed in six sites of varying contamination for 2, 5, or 55 days. Caged mussels were co-deployed with two types of passive sampler (polar organic chemical integrative samplers and semipermeable membrane devices) and data loggers. In conjunction, in situ quagga mussels were collected from the four sites studied previously and analyzed for residues of contaminants and metabolomics using a targeted approach. For the caging study, temporal differences in the metabolomic response were observed with few significant changes observed after 2 and 5 days, but larger differences (up to 97 significantly different metabolites) to the metabolome in all sites after 55 days. A suite of metabolic pathways were altered, including biosynthesis and metabolism of amino acids, and upmodulation of phospholipids at all sites, suggesting a potential biological influence such as gametogenesis. In the caging study, average temperatures appeared to have a greater effect on the metabolome than contaminants, despite a large concentration gradient in polycyclic aromatic hydrocarbons residues measured in passive samplers and mussel tissue. Conversely, significant differences between the metabolome of mussels collected in situ from all three contaminated sites and the offshore reference site were observed. Overall, these findings highlight the importance of contextualizing the effects of environmental conditions and reproductive processes on the metabolome of model organisms to facilitate the wider use of this technique for biomonitoring and environmental health assessments. Environ Toxicol Chem 2024;43:307-323. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
| | - Kimani L Kimbrough
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | - Erik Davenport
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | - Michael E Edwards
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| | | | | | - W Edward Johnson
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration National Ocean Service, Silver Spring, Maryland, USA
| |
Collapse
|
22
|
Park K, Kim WS, Park JW, Kim TH, Kwak IS. Bioaccumulation, microbiome composition and immunity, and epigenetic signatures associated with exposure to spherical, fibrous, and fragmented microplastics in the mussel Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132691. [PMID: 37820531 DOI: 10.1016/j.jhazmat.2023.132691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Microplastic (MP) pollution has become a major global concern due to the widespread use and discharge of plastics into the environment. However, very few studies have assessed the potential variations in the toxicity of MPs according to their shape and size. Therefore, our study sought to identify the biotoxic effects of spherical, fiber-shaped, and fragment-shaped polyethylene terephthalate MPs of different sizes at different concentrations on the Mediterranean mussel Mytilus galloprovincialis. The survival rate after exposure to small-sized MPs was lower than that observed for the larger type MPs. Bioaccumulation of MPs was different depending on the exposure periods and MP shapes. Interestingly, the fiber-shaped MPs underwent morphological modifications in the mussel body upon uptake. MP exposure also increased the global DNA methylation levels (i.e., an epigenetic signature), expression of the microbiota immunity-related toll-like receptor gene, and alteration of the gut microbial composition in the mussel. These findings indicated that MPs of different shapes and sizes at different concentrations can alter the bioaccumulation sensitivity of mussels according to the exposure periods, and the balance of gut immunity and epigenetic process. Furthermore, our results demonstrated that MPs of different shapes, particularly fiber types, can undergo morphological modification in mussel tissues, thus posing a hazardous threat.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Won-Seok Kim
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea
| | - Ji Won Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea
| | - Tae Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 426-171, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
23
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
24
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
25
|
Lu J, Yao T, Yu G, Ye L. Adaptive response of triploid Fujian oyster (Crassostrea angulata) to nanoplastic stress: Insights from physiological, metabolomic, and microbial community analyses. CHEMOSPHERE 2023; 341:140027. [PMID: 37659513 DOI: 10.1016/j.chemosphere.2023.140027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Triploid Fujian oyster (Crassostrea angulata) is crucial to aquaculture and coastal ecosystems because of its accelerated growth and heightened resilience against environmental stressors. In light of the increasing prevalence of nanoplastic pollution in the ocean, understanding its potential impact on this organism, particularly its adaptive responses, is of paramount importance. Despite this, the effects of nanoplastic pollution on the physiology of C. angulata remain largely unexplored. In this study, we explored the responses of triploid Fujian oysters to nanoplastic stress during a 14-day exposure period, employing an integrative methodology that included physiological, metabolomic, and 16S rRNA sequencing analyses. Our results demonstrate that the oysters exhibit a strong adaptive response to nanoplastic exposure, characterized by alterations in enzyme activity, metabolic pathways, and microbial community composition, indicative of an adaptive recovery state as opposed to a disordered state. Oysters subjected to elevated nanoplastic levels exhibited adaptive responses primarily by boosting the activity of the antioxidant enzyme catalase and elevating the levels of antioxidants such as adenosine, 3-(4-hydroxyphenyl)pyruvate, D-sorbitol, d-mannose, and unsaturated fatty acids, as well as the functional amino acids l-proline and l-lysine. Nanoplastic treatment also resulted in increased activity of succinate dehydrogenase, a key component of energy metabolism, and increased contents of intermediate metabolites or products of energy metabolism, such as adenosine monophosphate, adenosine, guanosine, creatine, and thiamine. Nanoplastic treatment led to an increase in the abundance of certain advantageous genera of gut bacteria, specifically Phaeobacter and Nautella. The observed adaptive response of triploid Fujian oysters to nanoplastic stress provides valuable insights into the mechanisms underpinning resilience in marine bivalves.
Collapse
Affiliation(s)
- Jie Lu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Gang Yu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
26
|
Lee JS, Oh Y, Park HE, Lee JS, Kim HS. Synergistic toxic mechanisms of microplastics and triclosan via multixenobiotic resistance (MXR) inhibition-mediated autophagy in the freshwater water flea Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165214. [PMID: 37391147 DOI: 10.1016/j.scitotenv.2023.165214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Since a mixed state of environmental contaminants, including microplastics (MPs), heavy metals, pharmaceuticals, and personal care products (PPCPs), exists in aquatic ecosystems, it is necessary to evaluate not only the adverse effects of exposure to a single stressor but to combined stressors. In this study, we exposed the freshwater water flea Daphnia magna to 2 μm MPs and triclosan (TCS), one of PPCPs, for 48 h to investigate the synergistic toxic consequences of simultaneous exposure to both pollutants. We measured in vivo endpoints, antioxidant responses, multixenobiotic resistance (MXR) activity, and autophagy-related protein expression via the PI3K/Akt/mTOR and MAPK signaling pathways. While MPs single exposure did not show toxic effects in water fleas, simultaneous exposure to TCS and MPs was associated with significantly greater deleterious effects in the form of increased mortality and alterations in antioxidant enzymatic activities compared with water fleas exposed to TCS alone. In addition, MXR inhibition was confirmed by measurement of the expression of P-glycoproteins and multidrug-resistance proteins in MPs-exposed groups, which led to the accumulation of TCS. Overall, these results suggest that simultaneous exposure to MPs and TCS resulted in higher TCS accumulation via MXR inhibition, leading to synergistic toxic effects such as autophagy in D. magna.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hae Eun Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
27
|
Leistenschneider D, Wolinski A, Cheng J, Ter Halle A, Duflos G, Huvet A, Paul-Pont I, Lartaud F, Galgani F, Lavergne É, Meistertzheim AL, Ghiglione JF. A critical review on the evaluation of toxicity and ecological risk assessment of plastics in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:164955. [PMID: 37348714 DOI: 10.1016/j.scitotenv.2023.164955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The increasing production of plastics together with the insufficient waste management has led to massive pollution by plastic debris in the marine environment. Contrary to other known pollutants, plastic has the potential to induce three types of toxic effects: physical (e.g intestinal injuries), chemical (e.g leaching of toxic additives) and biological (e.g transfer of pathogenic microorganisms). This critical review questions our capability to give an effective ecological risk assessment, based on an ever-growing number of scientific articles in the last two decades acknowledging toxic effects at all levels of biological integration, from the molecular to the population level. Numerous biases in terms of concentration, size, shape, composition and microbial colonization revealed how toxicity and ecotoxicity tests are still not adapted to this peculiar pollutant. Suggestions to improve the relevance of plastic toxicity studies and standards are disclosed with a view to support future appropriate legislation.
Collapse
Affiliation(s)
- David Leistenschneider
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France; SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France.
| | - Adèle Wolinski
- SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France; Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Écogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, France
| | - Jingguang Cheng
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France
| | - Alexandra Ter Halle
- CNRS, Université de Toulouse, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR, 5623, Toulouse, France
| | - Guillaume Duflos
- Unité Physico-chimie des produits de la pêche et de l'aquaculture, ANSES, Boulogne-sur-Mer, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Ika Paul-Pont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, UMR 8222, Laboratoire d'Écogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, France
| | - François Galgani
- Unité Ressources marines en Polynésie Francaise, Institut français de recherche pour l'exploitation de la mer (Ifremer), Vairao, Tahiti, French Polynesia
| | | | | | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, France.
| |
Collapse
|
28
|
Lu HC, Kumar A, Melvin SD, Ziajahromi S, Neale PA, Leusch FDL. Metabolomic responses in freshwater benthic invertebrate, Chironomus tepperi, exposed to polyethylene microplastics: A two-generational investigation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132097. [PMID: 37541122 DOI: 10.1016/j.jhazmat.2023.132097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
The accumulation of microplastics (MPs) in sediments could pose risks to benthic organisms and their progeny. Here, we examined effects on traditional apical endpoints along with changes to whole body metabolite profiles induced by irregular shaped polyethylene MPs (1-45 µm) at environmentally relevant concentrations (125, 250, 500 and 1000 MPs/kg sediment) in Chironomus tepperi using a two-generation exposure regime. Survival and emergence of C. tepperi were negatively affected in the parental generation at the two highest concentrations, whereas endpoints associated with growth were only impacted at 1000 MPs/kg sediment. Metabolites associated with several amino acid and energy metabolism pathways were present at lower abundances at the highest exposure concentration suggesting an overall impact on bioenergetics which relates to the inhibition of food acquisition or nutrient assimilation caused by ingestion of MPs, rather than a traditional receptor-mediated toxicity response. In contrast, no significant effects on apical endpoints were observed in the continuous exposure of first filial generation, and lactic acid was the only metabolite that differed significantly between groups. Larvae in unexposed conditions showed no differences in survival or metabolite profiles suggesting that effects in the parental generation do not carry over to the next filial generation. The findings provide evidence on the underlying impacts of MP ingestion and potential adaption to MP exposure of C. tepperi.
Collapse
Affiliation(s)
- Hsuan-Cheng Lu
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia.
| | - Anupama Kumar
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| |
Collapse
|
29
|
Yang X, Zhang X, Shu X, Gong J, Yang J, Li B, Lin J, Chai Y, Liu J. The effects of polyethylene microplastics on the growth, reproduction, metabolic enzymes, and metabolomics of earthworms Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115390. [PMID: 37619398 DOI: 10.1016/j.ecoenv.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The existing data regarding the effects of polyethylene (PE) microplastics (MPs) smaller than 5 mm in size on earthworms are insufficient to fully comprehend their toxicity. In this study, earthworms Eisenia fetida were exposed to artificially added PE at a concentration ranging from 0.05 to 20 g/kg soil (0.005%-2%) for 60 days to determine the concentration range causing negative effects on earthworms and to uncover the potential toxic mechanisms. The individual growth, reproduction, and metabolic enzyme activities, including phase I enzymes (cytochrome P450 [CYP] 1A2, 2B6, 2C9, and 3A4), and phase II metabolic enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione sulfotransferase (GST)), and metabolomics were measured. The observed variations in responses of multiple cross-scale endpoints indicated that individual indices are less responsive to PE MPs than metabolic enzymes or metabolomics. Despite the absence of significant alterations in growth inhibition based on body weight, PE MPs at concentrations equal to or exceeding 2.5 g/kg were found to exert a toxic effect on earthworms, which was evidenced by significant changes in metabolic enzyme activities (CYP1A2, 2B6, 2C9, and 3A4, SOD, CAT, and GST) and important small molecule metabolites screened based on metabolomics, likely due to the bioaccumulation of PE. The toxicity of PE MPs to earthworms is inferred to be associated with neurotoxicity, oxidative damage, decreased detoxification capacity, energy metabolism imbalance, and impaired amino acid and purine metabolism due to bioaccumulation. The findings of this study will enhance our understanding of the molecular toxicity mechanisms of PE MPs and contribute to a more accurate assessment of the ecological risks posed by PE MPs in soil.
Collapse
Affiliation(s)
- Xiaoxia Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China.
| | - Xuemei Zhang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Xiao Shu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jiuping Gong
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junying Yang
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Biquan Li
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Junjie Lin
- Key Laboratory of Water, Environment, Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing 404100, People's Republic of China
| | - Yong Chai
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| | - Jianfei Liu
- Institute of Agricultural Quality Standard and Testing Technology, Chongqing Academy of Agricultural Sciences, Chongqing 401329, People's Republic of China
| |
Collapse
|
30
|
Cao S, Wang J, You X, Zhou B, Wang Y, Zhou Z. Purine Metabolism and Pyrimidine Metabolism Alteration Is a Potential Mechanism of BDE-47-Induced Apoptosis in Marine Rotifer Brachionus plicatilis. Int J Mol Sci 2023; 24:12726. [PMID: 37628905 PMCID: PMC10454229 DOI: 10.3390/ijms241612726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
This present study was conducted to provide evidence and an explanation for the apoptosis that occurs in the marine rotifer Brachionus plicatilis when facing 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) stress. Metabolomics analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and arginine biosynthesis were the top three sensitive pathways to BDE-47 exposure, which resulted in the reduction in the amino acid pool level. Pyrimidine metabolism and purine metabolism pathways were also significantly influenced, and the purine and pyrimidine content were obviously reduced in the low (0.02 mg/L) and middle (0.1 mg/L) concentration groups while increased in the high (0.5 mg/L) concentration group, evidencing the disorder of nucleotide synthesis and decomposition in B. plicatilis. The biochemical detection of the key enzymes in purine metabolism and pyrimidine metabolism showed the downregulation of Glutamine Synthetase (GS) protein expression and the elevation of Xanthine Oxidase (XOD) activity, which suggested the impaired DNA repair and ROS overproduction. The content of DNA damage biomarker (8-OHdG) increased in treatment groups, and the p53 signaling pathway was found to be activated, as indicated by the elevation of the p53 protein expression and Bax/Bcl-2 ratio. The ROS scavenger (N-acetyl-L-cysteine, NAC) addition effectively alleviated not only ROS overproduction but also DNA damage as well as the activation of apoptosis. The combined results backed up the speculation that purine metabolism and pyrimidine metabolism alteration play a pivotal role in BDE-47-induced ROS overproduction and DNA damage, and the consequent activation of the p53 signaling pathway led to the observed apoptosis in B. plicatilis.
Collapse
Affiliation(s)
- Sai Cao
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Jiayi Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Xinye You
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - You Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Zhongyuan Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| |
Collapse
|
31
|
Panagiotidis K, Engelmann B, Krauss M, Rolle-Kampczyk UE, Altenburger R, Rochfort KD, Grintzalis K. The impact of amine and carboxyl functionalised microplastics on the physiology of daphnids. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132023. [PMID: 37441864 DOI: 10.1016/j.jhazmat.2023.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Plastic waste is considered a major threat for terrestrial, marine and freshwater ecosystems. Ingestion of primary or secondary microparticles resulting from plastic degradation can lead to their trophic transfer raising serious health concerns. In this study, the effect of amine and carboxy functionalized polystyrene microparticles on the physiology of daphnids was investigated with a combination of phenotypic and metabolic endpoints. Carboxy functionalized microparticles showed higher toxicity in acute exposures compared to their amine counterparts. Accumulation of both microparticles in animal gut was confirmed by stereo-microscopy as well as fluorescent microscopy which showed no presence of particles in the rest of the animal. Fluorescence based quantification of microparticles extracted from animal lysates validated their concentration-dependent uptake. Additionally, exposure of daphnids to amine and carboxy functionalized microparticles resulted in increased activities of key enzymes related to metabolism and detoxification. Finally, significant metabolic perturbations were discovered following exposure to microplastics. These findings suggest that polystyrene microparticles can hinder organism performance of the freshwater species and highlight the importance of seeking for holistic and physiological endpoints for pollution assessment.
Collapse
Affiliation(s)
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin Krauss
- Department of Effect-Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Department of Molecular Systems Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Rolf Altenburger
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Republic of Ireland
| | | |
Collapse
|
32
|
Castaño-Ortiz JM, Courant F, Gomez E, García-Pimentel MM, León VM, Campillo JA, Santos LHMLM, Barceló D, Rodríguez-Mozaz S. Combined exposure of the bivalve Mytilus galloprovincialis to polyethylene microplastics and two pharmaceuticals (citalopram and bezafibrate): Bioaccumulation and metabolomic studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131904. [PMID: 37356174 DOI: 10.1016/j.jhazmat.2023.131904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (<MQL-3.2 ng/g dw). Metabolic profiles showed a strong effect of pharmaceuticals, generally independent of PE-MPLs co-exposure. Alterations of the citrate cycle (bezafibrate exposure) and steroid and prostaglandin metabolism (citalopram and bezafibrate exposures) were highlighted. PE-MPLs alone also impacted metabolic pathways, such as neurotransmitters or purine metabolism. After depuration, relevant latent or long-lasting effects were demonstrated as, for instance, the effect of citalopram on neurotransmitters metabolism. Altogether, the observed molecular-level responses to pharmaceuticals and/or PE-MPLs may lead to a dysregulation of mussels' reproduction, energy metabolism, and/or immunity.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain.
| | - F Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - E Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - L H M L M Santos
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| | - D Barceló
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Rodríguez-Mozaz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
33
|
Savuca A, Nicoara MN, Ciobica A, Gorgan DL, Ureche D, Balmus IM. Current Aspects on the Plastic Nano- and Microparticles Toxicity in Zebrafish-Focus on the Correlation between Oxidative Stress Responses and Neurodevelopment. Animals (Basel) 2023; 13:1810. [PMID: 37889690 PMCID: PMC10252065 DOI: 10.3390/ani13111810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Recent reports focusing on the extent of plastic pollution have shown that many types of fibers and polymers can now be found in most marine species. The severe contamination of plastic nano-/microparticles (NPs/MPs) mainly results in immediate negative outcomes, such as organic impairments and tissue damage, as well as long-termed negative effects, such as developmental retardation and defects, chronic inflammation, oxidative stress (OS), metabolic imbalance, mutagenesis, and teratogenesis. Oxidative responses are currently considered the first line molecular signal to potential toxic stimuli exposure, as the oxidative balance in electron exchange and reactive oxygen species signaling provides efficient harmful stimuli processing. Abnormal signaling or dysregulated ROS metabolism-OS-could be an important source of cellular toxicity, the source of a vicious cycle of environmental and oxidative signaling-derived toxicity. As chemical environmental pollutants, plastic NPs/MPs can also be a cause of such toxicity. Thus, we aimed to correlate the possible toxic effects of plastic NPs/MPs in zebrafish models, by focusing on OS and developmental processes. We found that plastic NPs/MPs toxic effects could be observed during the entire developmental span of zebrafish in close correlation with OS-related changes. Excessive ROS production and decreased antioxidant enzymatic defense due to plastic NPs/MPs exposure and accumulation were frequently associated with acetylcholinesterase activity inhibition, suggesting important neurodevelopmental negative outcomes (cognitive abnormalities, neurodevelopmental retardation, behavioral impairments) and extraneuronal effects, such as impaired digestive physiology.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (A.S.)
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Mircea Nicușor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
- Academy of Romanian Scientists, No 54, Independence Street, Sector 5, 050094 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania
| | - Dorel Ureche
- Department of Biology, Ecology and Environmental Protection, Faculty of Sciences, University “Vasile Alecsandri” of Bacau, 600115 Bacau, Romania
| | - Ioana Miruna Balmus
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, 700505 Iasi, Romania; (A.S.)
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700057 Iasi, Romania
| |
Collapse
|
34
|
Wang Z, Li Q, Huang H, Liu J, Wang J, Chen Y, Huang S, Luo X, Zheng Z. Distribution and potential ecological risks of microplastics in Zhushan Bay, China. CHEMOSPHERE 2023:139024. [PMID: 37247671 DOI: 10.1016/j.chemosphere.2023.139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The interaction between microplastics (MPs) and microorganisms may alter the distribution of antibiotic resistance genes (ARGs) in water and increase the ecological risk of drinking water sources. To investigate the characteristics of MPs geographical distribution and its potential ecological risk in typical urban water, this study was conducted in Zhushan Bay, and we carried out a combination of tests to analyze the distribution of MPs and the migration changes of their surface microbial community composition and ARGs in different media by 16S rRNA gene high-throughput sequencing, non-targeted metabolomics and qPCR genomics in the near-shore (I), middle area (Ⅱ) and near-lake (Ⅲ) of Zhushan Bay. The results showed that MPs in fibrous form were dominant in the aquatic environment of Zhushan Bay; Polyurethane (PU) and Silicone were the main MPs types in Zhushan Bay. The abundance of MPs in the water of Zhushan Bay was winter > summer > autumn > spring; and in the sediment was winter > summer > autumn > spring, respectively. The distribution results of MPs in geographical location are as follows: In the water I > Ⅱ > Ⅲ, sediment exhibited Ⅱ > Ⅲ > I. The results indicate that physicochemical factors will affect the geographical distribution of MPs and their surface microbial community composition in the aquatic environment of Zhushan Bay. More cooperative behaviors and increased metabolically important pathways occurred in the microbial network on water-MPs compared to sediment-MPs. However, the microbial community in the sediment-MPs was more stable and had higher abundance of mobile genetic elements (MGEs). A total of 362 differential metabolites were detected, of which 193 were up-regulated and 19 down-regulated differential metabolites. blaTEM, Sul, and inti1 were prevalent in both the water and sediments of Zhushan Bay. Sul1 was most contaminated in ARGs. This study provides the latest field data and insights into MPs pollution in key aquatic environments.
Collapse
Affiliation(s)
- Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Qihui Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Ecological and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jing Liu
- School of Ecological and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
35
|
Xu H, Li L, Wang Y, Qiu K, Chen S, Zeng J, Liu R, Yang Q, Huang W. Differential physiological response of marine and freshwater microalgae to polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130814. [PMID: 36706485 DOI: 10.1016/j.jhazmat.2023.130814] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Effects of microplastics on microalgae have not been compared from different habitat. To answer this question, three marine microalgae species (Chlorella marined, Nannochloropsis oculate, and Phaeodactylum tricornutum) and two freshwater species (Chlorella vulgaris and Tetradesmus obliquus) were selected and exposed to the environment relevant concentrations of polystyrene microplastics. The results indicated that microplastics have a significant concentration effect on the growth of microalgae. The attachment of microalgae to microplastics surface and the aggregation of microalgae with each other were observed. Under exposure of microplastics, the photosynthesis of microalgae was inhibited while the antioxidant system was activated, indicating that microplastics had a negative impact on microalgae. At the end of exposure, the oxidative stress status caused by microplastics in marine microalgae were alleviated, but the antioxidant system of freshwater microalgae was still at high levels, indicating a stress response. In addition, integrated biomarker response (IBR) indicated that the effects of microplastics on freshwater microalgae were severer than marine microalgae, which might relate to their differences in removing reactive oxygen species (ROS) effectively and membrane structure. Our study provides a reliable data for understanding the complex effects of microplastics on microalgae, and especially for comparing the differential effects of microplastics among different microalgae.
Collapse
Affiliation(s)
- Hengtao Xu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Li'ang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Kecheng Qiu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Siyang Chen
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou 310007, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ruijuan Liu
- Zhejiang Ocean Monitoring and Forecasting Center, Hangzhou 310007, China
| | - Qikun Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| |
Collapse
|
36
|
Short-Term Microplastic Exposure Impairs Cognition in Hermit Crabs. Animals (Basel) 2023; 13:ani13061055. [PMID: 36978596 PMCID: PMC10044271 DOI: 10.3390/ani13061055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
We tested whether acute microplastic exposure impacts information gathering and processing (cognition) in hermit crabs (Pagurus bernhardus). For five days, we kept 51 hermit crabs in tanks containing either polyethylene microspheres (n = 27) or no plastic (n = 24). We then transferred individuals into an intermediate-quality shell and presented them with two vials containing either a better or worse shell. Because touching both shell vials required an equivalent behavioural response, this design controlled for general activity. Plastic-exposed hermit crabs were less likely and slower than controls to touch the better shell vial, instead preferring the worse shell vial. Microplastics, therefore, impaired assessments and decision-making, providing direct evidence of acute microplastic exposure disrupting hermit crab cognition.
Collapse
|
37
|
Zhu L, Jia W, Wan X, Zhuang P, Ma G, Jiao J, Zhang Y. Advancing metabolic networks and mapping updated urinary metabolic fingerprints after exposure to typical carcinogenic heterocyclic aromatic amines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120936. [PMID: 36572270 DOI: 10.1016/j.envpol.2022.120936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Heterocyclic aromatic amines (HAAs) were not only present in cooked foods and cigarette smoke, but also measured in airborne particles and diesel-exhaust particles. Typical HAAs have been reported to induce carcinogenicity and metabolic disturbances, but how these hazardous compounds interfere with metabolic networks by regulating metabolic pathways and fingerprinting signature metabolites as biomarkers remains ambiguous. We developed an advanced strategy that adopted chemical isotope labeling ultrahigh-performance liquid chromatography coupled to quadrupole-Orbitrap high-resolution mass spectrometry for urinary nontargeted metabolomics analysis to gain new insight into in vivo physiological responses stimulated by exposure to typical HAAs. Rats were orally administered with a single dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (1 and 10 mg/kg bw) and their D3-isotopic compounds, respectively, and urine samples were then continuously collected within 36 h. Metabolomics data were acquired and processed by classical multivariate statistical analysis, while urinary metabolites were further identified and characterized according to mass spectrometric fragmentation rules, time- and dose-dependent profiles, and calibration of synthesized standards. We monitored 23 and 37 urinary metabolites as the biotransformation products of PhIP and MeIQx, respectively, and first identified demethylated metabolites of PhIP, tentatively named 2-amino-6-phenylimidazo[4,5-b]pyridine, and dihydroxylation products of classical HAAs as short-term biomarkers of exposure to further unravel the metabolic networks. In addition, our findings revealed that both HAAs significantly disturb histidine metabolism, arginine and proline metabolism, tryptophan metabolism, pyrimidine metabolism, tricarboxylic acid cycle, etc. Furthermore, we found that histamine, methionine, alanine, and 4-guanidinobutanoic acid could be considered potential characteristic biomarkers for the oncogenicity or carcinogenicity of both PhIP and MeIQx and screened their specific key pivotal metabolites. The current metabolomics approach is applicable in mapping updated urinary metabolic fingerprints and identifying potential specific biomarkers for HAAs-induced early tumorigenesis.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guicen Ma
- Tea Quality and Supervision Testing Center, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
38
|
Shang Y, Wang X, Shi Y, Huang W, Sokolova I, Chang X, Chen D, Wei S, Khan FU, Hu M, Wang Y. Ocean acidificationf affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160090. [PMID: 36379341 DOI: 10.1016/j.scitotenv.2022.160090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.
Collapse
Affiliation(s)
- Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Xueqing Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Fisheries & Aquaculture Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
39
|
Zheng X, Zhang L, Jiang C, Li J, Li Y, Liu X, Li C, Wang Z, Zheng N, Fan Z. Acute effects of three surface-modified nanoplastics against Microcystis aeruginosa: Growth, microcystin production, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158906. [PMID: 36150599 DOI: 10.1016/j.scitotenv.2022.158906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
As plastic pollution continues to increase and plastic waste is shredded to form smaller plastic particles, there is growing concern about the potential impact of nanoplastics (NPs) on freshwater ecosystems. In this work, the effects of three surface-modified NPs, including polystyrene (PS), PS-NH2, and PS-COOH, on the growth, photosynthetic activity, oxidative damage, and microcystins (MCs) production/release of Microcystis aeruginosa (M. aeruginosa) were investigated. Results indicated that all three NPs significantly inhibited the growth of M. aeruginosa after a 96 h exposure, and the growth inhibition followed the order of PS-NH2 > PS > PS-COOH (p < 0.05). Meanwhile, all three NPs at the concentration of 100 mg/L significantly increased the content of intra-MCs (115 %, 147 %, and 121 % higher than the control, respectively) and extra-MCs (142 %, 175 %, and 151 % higher than the control, respectively) after a 96 h exposure (p < 0.05). Moreover, our findings also suggested that the potential mechanisms of surface-modified PS NPs on M. aeruginosa growth and MCs production/release were associated with physical constraints, photosynthetic activity obstruct, and oxidative damage. Our findings provided direct evidence for different kinds of surface modifications of PS NPs on freshwater algae and improve the understanding of the potential risk of NPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liangliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chao Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jue Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Xianglin Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chengwei Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zeming Wang
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Nan Zheng
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
40
|
Qi P, Qiu L, Feng D, Gu Z, Guo B, Yan X. Distinguish the toxic differentiations between acute exposure of micro- and nano-plastics on bivalves: An integrated study based on transcriptomic sequencing. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106367. [PMID: 36436309 DOI: 10.1016/j.aquatox.2022.106367] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution represents one of the most severe marine environmental issues today. In the present study, mussel Mytilus coruscus, was selected as the model organism to probe the toxic effects of acute exposure to different sizes of plastic particles using integrated transcriptomic techniques and histological and biochemical analysis. Nanoplastics (NPs) were efficiently ingested by mussels, thereby inducing a severe inflammatory response. Although no distinct aggregation of microplastics (MPs) was observed, a slight inflammatory response has still occurred. Biochemical analysis revealed a significant up-regulation of biomarkers after exposure to plastic particles. Further, NPs caused more ROS production and higher T-AOC level than MPs. Transcriptomic sequencing was performed, and these differentially expressed genes after MNPs exposure were mostly enriched in pathways involved in stress and immune response. Notably, a contrast expression, substantial upregulation in MPs treatment and downregulation in NPs treatment of specific genes include in these pathways were revealed. Collectively, these results indicated that acute exposure to NPs is more toxic than MPs. Additionally, MPs exposure perhaps caused the impairment of olfactory function and neurotoxicity to mussels. These data provided some new clues for the elucidating of ecotoxicological mechanisms underlying plastic particles exposure.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China; Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Longmei Qiu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Dan Feng
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Zhongqi Gu
- Shengsi Institute of Marine Science and Technology in Zhejiang Province, Zhoushan, Zhejiang 202450, China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China
| | - Xiaojun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, China.
| |
Collapse
|
41
|
Zheng J, Li C, Zheng X. Toxic effects of polystyrene microplastics on the intestine of Amphioctopus fangsiao (Mollusca: Cephalopoda): From physiological responses to underlying molecular mechanisms. CHEMOSPHERE 2022; 308:136362. [PMID: 36087715 DOI: 10.1016/j.chemosphere.2022.136362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics are broadly used and among the most studied environmental pollutants due to their potential impacts on organisms and human health. Amphioctopus fangsiao (Cephalopoda: Octopodidae) is an important commercial species in the Pacific Northwest and is very popular among consumers owing to its rich nutritional value and fresh flavor. However, the toxic effects of microplastic exposure on A. fangsiao, including phenotypical effect and underlying molecular mechanism, remain limited. In this study, the octopus A. fangsiao were exposed to microplastics (polystyrene microplastics, Micro-PS) at concentrations of 100 and 1000 μg/L for 21 days, and then the physiological response, histopathological analysis, biomarkers of oxidative stress and glycolipid metabolism, microbiome perturbations and transcriptomic profiles in the intestines were performed. Results demonstrated that Micro-PS exposure had distinct adverse effects on the food intake of A. fangsiao. Histological analysis revealed that Micro-PS exposure has resulted in histopathological damage, thus causing early inflammation of the intestine. Oxidative stresses, metabolic disorders and microbiome perturbations were also detected in the intestine of A. fangsiao based on physiological biomarkers and microbiome analyses. Moreover, transcriptome analysis detected the differentially expressed genes (DEGs) and significantly enriched KEGG pathways in response to oxidative stress, glycolipid metabolism, DNA damage and transmembrane transport of intestinal cells, revealing distinct toxic effects at the molecular level. In summary, Micro-PS exposure has a strong impact on the intestines of A. fangsiao. For the first time, this study uses multiple approaches based on the physiological and biochemical response as well as transcriptional regulation analysis. The first assessment of the toxic impact of this species under Micro-PS exposure is also reported.
Collapse
Affiliation(s)
- Jian Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Xiaodong Zheng
- Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao, 266003, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
42
|
Zhou Y, Li Y, Lan W, Jiang H, Pan K. Short-Term Exposure to MPs and DEHP Disrupted Gill Functions in Marine Bivalves. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4077. [PMID: 36432362 PMCID: PMC9699028 DOI: 10.3390/nano12224077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/26/2023]
Abstract
The synergistic impact of microplastics (MPs) and organic pollutants remains poorly understood in the marine environment. This study aimed to assess the toxicity of polypropylene microplastics (PS) and/or di-(2-ethylhexyl) phthalate (DEHP) on marine clams. Both Ruditapes philippinarum and Tegillarca granosa were exposed to PS and DEHP individually and combined at environmentally relevant concentrations for 48 h. The filtration rate, antioxidant enzymes activity, lipid peroxidation, reactive oxygen species accumulation, and histological alterations were evaluated. Our results show that single or co-exposure to MPs and DEHP significantly decreases the filtration rate in both type of clams, but the latter exhibited stronger inhibition effect. Close examination of accumulation of reactive oxygen species and related biomarkers revealed that combined exposure exerts greater oxidative stress in the cells, which causes more serious histopathological damage in the gills of the bivalves. Our study implies that MPs, in synergy with organic pollutants, can be more harmful for marine organisms.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
43
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
44
|
Mahu E, Datsomor WG, Folorunsho R, Fisayo J, Crane R, Marchant R, Montford J, Boateng MC, Edusei Oti M, Oguguah MN, Gordon C. Human health risk and food safety implications of microplastic consumption by fish from coastal waters of the eastern equatorial Atlantic Ocean. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Patil PB, Maity S, Sarkar A. Potential human health risk assessment of microplastic exposure: current scenario and future perspectives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:898. [PMID: 36251091 DOI: 10.1007/s10661-022-10539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The vast usage of synthetic plastics has led to the global problem of plastic pollution which in turn has positively impacted the concerns regarding microplastic pollution. The major factor responsible for the increased level of pollution is the smaller size of microplastics which helps in its transportation across the globe. It has been found in most remote areas like glaciers and Antarctic regions where it is difficult for other contaminants to reach. This is ensured by the physicochemical cycle of plastic. They can either be produced for different applications or generated through the fragmentation of large plastic particles. Different studies have shown the accumulation of microplastics in different organisms, especially in aquatic animals leading to their entry into the food chain. The ultimate fate of the microplastics is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. The present review summarizes a detailed discussion on the current status of microplastic pollution, their effect on different organisms, and its impact on human health with a case study on the human health risk assessment for analyzing the global rate of microplastic ingestion.
Collapse
Affiliation(s)
- Pritam Bajirao Patil
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
46
|
Sun T, Ji C, Li F, Shan X, Wu H. The legacy effect of microplastics on aquatic animals in the depuration phase: Kinetic characteristics and recovery potential. ENVIRONMENT INTERNATIONAL 2022; 168:107467. [PMID: 35985106 DOI: 10.1016/j.envint.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of microplastics (MPs) in global aquatic environments has received considerable attention. Currently, concerns have been raised regarding reports that the adverse effect of MPs on aquatic animals in the exposure phase may not be (completely) reversed in the depuration phase. In order to provide insights into the legacy effect of MPs from the depuration phase, this study evaluated the kinetic characteristics and recovery potential of aquatic animals after the exposure to MPs. More specifically, a total of 68 depuration kinetic curves were highly fitted to estimate the retention time of MPs. It was shown that the retention time ranged from 1.26 to 3.01 days, corresponding to the egestion of 90 % to 99 % of ingested MPs. The retention time decreased with the increased retention rate. Furthermore, variables potentially affecting the retention time were ranked by the decision tree-based eXtreme Gradient Boosting (XGBoost) algorithm, suggesting that the particle size and tested species were of great importance for explaining the difference in retention time of MPs. Moreover, a biomarker profile was recompiled to determine the toxic changes. Results indicated that the MPs-induced toxicity significantly reduced in the depuration phase, evidenced by the recovery of energy reserves and metabolism, hepatotoxicity, immunotoxicity, hematological parameters, neurotoxicity and oxidative stress. However, the continuous detoxification and remarkable genotoxicity implied that the toxicity was not completely alleviated. In addition, the current knowledge gaps are also highlighted, with recommendations proposed for future research.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
47
|
Yu W, Chen J, Zhang S, Zhao Y, Fang M, Deng Y, Zhang Y. Extraction of biodegradable microplastics from tissues of aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156396. [PMID: 35654179 DOI: 10.1016/j.scitotenv.2022.156396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Biodegradable plastics (BPs) have been given high hopes to substitute conventional plastics, but their biodegradation requires strict conditions. BPs can accumulate for a long time in the environment and even derive biodegradable microplastics (BMPs), thus threatening wildlife and ecosystems. However, no efficient method is available for extracting BMPs from organisms' tissues. This study used multi-criteria decision-making (MCDM) methods to comprehensively evaluate and optimize extraction protocols of five BMPs from economic aquatic species. Digestion time, digestion efficiency, mass loss, cost, polymer integrity and size change were selected as evaluating indictors. According to the screening results of MCDM methods, Pepsin+H2O2 was selected as the optimal digestion method of BMPs because of its highest comprehensive score, which has high digestion efficiency (99.56%) and minimum plastic damage. Compared with olive oil, NaI is more suitable for separating BMPs from the digested residues. Furthermore, the combination of Pepsin+H2O2 digestion and NaI density separation was used to extract all five kinds of BMPs from the bivalve, crab, squid, and crayfish tissues, and all the recovery rates exceeded 80%. These results suggest that the optimal protocol is practicable to extract various BMPs from various aquatic organisms.
Collapse
Affiliation(s)
- Wenyi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiaqi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yanping Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Yongfeng Deng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
48
|
Chen W, Tu P, Ye X, Tang Q, Yu T, Zheng X. Cyanidin-3-O-glucoside impacts fecal discharge of polystyrene microplastics in mice: Potential role of microbiota-derived metabolites. Toxicol Appl Pharmacol 2022; 453:116212. [PMID: 36057402 DOI: 10.1016/j.taap.2022.116212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Microplastic particles degraded from plastic litters are recognized as a global environmental pollutant, which can be transferred and enriched via the food chain to impact ecosystems and human health. A balanced gut microbiota contributes to human health through host-gut interactions, environmentally-driven factors such as microplastic exposure would disturb the gut bacteria and affect its functionality. Dietary compounds can remodel the compositions of gut microbes, and interact with bacteria exerting profound effects on host physiology. This study explored the effects of bayberry-derived anthocyanin cyanidin-3-O-glucoside (C3G) and microplastic polystyrene (PS) on the gut microbiome in C57BL/6 mice, especially the alterations of gut bacteria and its metabolites. Using 16S rRNA high-throughput sequencing, variations in gut bacterial composition and enrichment of functional pathways were found upon PS and C3G administration. Meanwhile, the differential metabolites and metabolic pathways were identified by metabolomic analysis. Importantly, colonic and fecal PS levels were found to be strongly correlated with key microbiota-derived metabolites, which are associated with xenobiotic metabolism via regulation of xenobiotics-metabolizing enzymes and transporters. These results may offer new insights regarding the protective effects of C3G against xenobiotic PS exposure and the roles of gut bacterial metabolites.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Tu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiong Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Yu C, Zeng H, Wang Q, Chen W, Chen W, Yu W, Lou H, Wu J. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129181. [PMID: 35643006 DOI: 10.1016/j.jhazmat.2022.129181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Micro/nanoplastic has become an emerging pollutant of global concern. At present, ecotoxic researches on micro/nanoplastics mostly focus on marine aquatic organisms and freshwater algae. Research on the ecological impacts of plastics on higher terrestrial plants, especially on forest plants, is relatively limited. Torreya grandis cv. Merrillii, a species of conifer in the family Taxaceae, is a unique and economically valuable tree species in China. The physiological and biochemical responses of T. grandis seedlings to polystyrene nanoplastics (PSNPs) with a diameter of 100 nm were systematically studied inthe present study. The results showed that nanoplastics enhanced the accumulation of the thiobarbituric acid reactive substance and the activities of catalase and peroxidase. The concentrations of iron, sulfur, and zinc were reduced after nanoplastic exposure. PSNP treatment had an important effect on a series of chemical and genetic indicators of T. grandis, includingantioxidants, small RNA, gene transcription, protein expressions, and metabolite accumulation. Multi-omic analysis revealed that PSNPs modulate terpenoid- and flavonoid-biosynthesis pathways by regulating small RNA transcription and protein expression. Our study provided novelty insights into the responses of forest plants to nanoplastic treatment.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China.
| |
Collapse
|
50
|
Romdhani I, De Marco G, Cappello T, Ibala S, Zitouni N, Boughattas I, Banni M. Impact of environmental microplastics alone and mixed with benzo[a]pyrene on cellular and molecular responses of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128952. [PMID: 35472537 DOI: 10.1016/j.jhazmat.2022.128952] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The hazard of microplastic (MP) pollution in marine environments is a current concern. However, the effects of environmental microplastics combined with other pollutants are still poorly investigated. Herein, impact of ecologically relevant concentrations of environmental MP alone (50 µg/L) or combined with B[a]P (1 µg/L) was assessed in mussel Mytilus galloprovincialis after a short-term exposure (1 and 3 days) to environmental MP collected from a north-Mediterranean beach. Raman Microspectroscopy (RMS) revealed bioaccumulation in mussel hemolymph of MP, characterized by polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyethylene vinyl acetate (PEVA) and high-density polyethylene (HDPE), with abundance of MP sized 1.22-0.45 µm. An increase of B[a]P was detected in mussels after 3-day exposure, particularly when mixed with MP. Both contaminants induced cytotoxic and genotoxic effects on hemocytes as determined by lysosomal membrane stability (LMS), micronuclei frequency (FMN), and DNA fragmentation rate by terminal dUTP nick-end labeling (TUNEL). About apoptosis/DNA repair processes, P53 and DNA-ligase increased at 1-day exposure in all conditions, whereas after 3 days increase of bax, Cas-3 and P53 and decrease of Bcl-2 and DNA-ligase were revealed, suggesting a shift towards a cell apoptotic event in exposed mussels. Overall, this study provides new insights on the risk of MP for the marine ecosystem, their ability to accumulate xenobiotics and transfer them to marine biota, with potential adverse repercussion on their health status.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy.
| | - Samira Ibala
- Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Nesrine Zitouni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia and Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| |
Collapse
|