1
|
Le VG, Nguyen MK, Lin C, Nguyen HL, Nguyen TQH, Hue NK, Truong QM, Chang SW, Nguyen XH, Nguyen DD. Review on personal protective equipment: Emerging concerns in micro(nano)plastic pollution and strategies for addressing environmental challenges. ENVIRONMENTAL RESEARCH 2024; 257:119345. [PMID: 38851370 DOI: 10.1016/j.envres.2024.119345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi, 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Tri Quang Hung Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen K Hue
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong, 75000, Viet Nam
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
2
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Tang S, Ma S, Lin L, Ding Y, Zhang X, Wu X, Zhang Q, Pervez MN, Cao C, Zhao Y. Carrier effects of face mask-derived microplastics on metal ions: Enhanced adsorption by photoaging combined with biofilms, exemplified with Pb(Ⅱ). JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135311. [PMID: 39068889 DOI: 10.1016/j.jhazmat.2024.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Face masks have emerged as a significant source of microplastics (MPs) under the influence of biotic and abiotic interactions. However, the combined effects of abiotic photoaging and biofilm-loading on mask-derived MPs as carriers of metal ions are not clear. We investigated the Pb(Ⅱ) adsorption onto polypropylene (PP) and polyurethane (PU) mask-derived MPs treated by photoaging, biofilm-loading, and both combinations, evaluating the composite risks. PU mask-derived MPs (1.157.47 mg/g) exhibited greater Pb(Ⅱ) adsorption capacity than PP mask-derived MPs (0.842.08 mg/g) because of the presence of intrinsic carbonyl functional groups. Photoaging (30.5%, 88.4%), biofilm-loading (110.7%, 87.1%), and both combinations (146.7%, 547.0%) of PP and PU masks enhanced Pb(Ⅱ) adsorption compared to virgin mask-derived MPs due to the increase of oxygen-containing functional groups. High-throughput sequencing indicated that the structural morphology and chemical composition of masks significantly affected the microbial community. Adsorption mechanisms involved electrostatic force and surface complexation. A combination of photoaging and biofilms increased the ecological risk index of mask-derived MPs in freshwater, showing the risk level to be high (PP mask) and very high (PU mask). This research highlights the crucial role of photoaging combined with biofilms in controlling metal ion adsorption onto mask-derived MPs, thereby increasing the composite risks.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shengjia Ma
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yimei Ding
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoting Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiaowei Wu
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qun Zhang
- School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Tang S, Zhang Q, Xu H, Zhu M, Nahid Pervez M, Wu B, Zhao Y. Fabric structure and polymer composition as key contributors to micro(nano)plastic contamination in face masks. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135089. [PMID: 38959827 DOI: 10.1016/j.jhazmat.2024.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, μ-Fourier transform infrared spectroscopy (μ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qun Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; School of Public Health, Shandong Second Medical University, Weifang 261053, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Mengyuan Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
6
|
Kwon Y, Bui-Vinh D, Lee SH, Baek SH, Lee HW, Yun J, Cho I, Lee J, Lee MH, Lee H, Jeong DW. A New Paradigm on Waste-to-Energy Applying Hydrovoltaic Energy Harvesting Technology to Face Masks. Polymers (Basel) 2024; 16:2515. [PMID: 39274147 PMCID: PMC11398234 DOI: 10.3390/polym16172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread use of single-use face masks during the recent epidemic has led to significant environmental challenges due to waste pollution. This study explores an innovative approach to address this issue by repurposing discarded face masks for hydrovoltaic energy harvesting. By coating the face masks with carbon black (CB) to enhance their hydrophilic properties, we developed mask-based hydrovoltaic power generators (MHPGs). These MHPGs were evaluated for their hydrovoltaic performance, revealing that different mask configurations and sizes affect their efficiency. The study found that MHPGs with smaller, more structured areas exhibited better energy output, with maximum open-circuit voltages (VOC) reaching up to 0.39 V and short-circuit currents (ISC) up to 65.6 μA. The integration of CB improved water absorption and transport, enhancing the hydrovoltaic performance. More specifically, MHPG-1 to MHPG-4, which represented different sizes and features, presented mean VOC values of 0.32, 0.17, 0.19 and 0.05 V, as well as mean ISC values of 16.57, 15.59, 47.43 and 3.02 μA, respectively. The findings highlight the feasibility of utilizing discarded masks in energy harvesting systems, offering both environmental benefits and a novel method for renewable energy generation. Therefore, this work provides a new paradigm for waste-to-energy (WTE) technologies and inspires further research into the use of unconventional waste materials for energy production.
Collapse
Affiliation(s)
- Yongbum Kwon
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dai Bui-Vinh
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Hwan Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - So Hyun Baek
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Hyun-Woo Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Jeungjai Yun
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Inhee Cho
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Jeonghoon Lee
- Manufacturing AI Research Center, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Mi Hye Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Handol Lee
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea
| | - Da-Woon Jeong
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| |
Collapse
|
7
|
Zhang X, Zhang Y, Li D, Wang J, Ding Y, Wang Y, Feng L, Hu Y. Aging properties of polyethylene and polylactic acid microplastics and their adsorption behavior of Cd(II) and Cr(VI) in aquatic environments. CHEMOSPHERE 2024; 363:142833. [PMID: 39002654 DOI: 10.1016/j.chemosphere.2024.142833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
In this study, we examined the aging characteristics of polyethylene (PE) and polylactic acid (PLA) microplastics (MPs), examining the adsorption behaviors and mechanisms concerning Cd(II) and Cr(VI) under both single and binary systems. The results revealed that aging treatment changed the physicochemical properties of MPs. The aging mechanisms of PLA and PE MPs were shown to be similar by the 2D-FTIR-COS study. These mechanisms involve the formation of oxygen-containing functional groups through the combination of carbon chain breakdown and oxygen. Aged MPs had a greater ability to adsorb metal ions than pristine MPs, with PLA MPs outperforming PE MPs. After 30 days of aging, Cd(II) adsorption increased by 40.61 % and 25.49 % for PE and PLA MPs, respectively, while Cr(VI) adsorption increased by 37.50 % and 69.29 %, respectively. The adsorption ability of PE and PLA MPs with Cd(II) or Cr(VI) under binary systems was less than that under single systems, with Cd(II) exhibiting more adsorption competitiveness than Cr(VI). Humic acid (HA), ionic species and strength, solution pH, and adsorption of Cd(II) and Cr(VI) were found to be significantly correlated. Further investigation into the adsorption mechanisms of Cd(II) and Cr(VI) on PE and PLA MPs revealed that pore-filling, electrostatic interactions, complexation, and hydrogen bonding play important roles in the adsorption process. The study's conclusions are crucial for assessing the risk associated with concurrent contamination by metal ions and microplastics.
Collapse
Affiliation(s)
- Xinying Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China.
| | - Dong Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yiliang Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Liuyuan Feng
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yuliang Hu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; College of New Energy and Environment, Jilin University, Changchun 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Şahin B, Belivermiş M, Demiralp S, Sezer N, Bektaş S, Kaptan E, Gönülal O, Kılıç Ö. The multistressor effect of pH reduction, microplastic and lanthanum on sea urchin Arbacia lixula. MARINE POLLUTION BULLETIN 2024; 205:116638. [PMID: 38959571 DOI: 10.1016/j.marpolbul.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
pH reduction (Low pH), microplastic (MP), and lanthanum (La) are substantial stressors due to their increasing trends in marine ecosystems and having adverse effects on marine species. This study investigates the single and combined effects of those stressors (Low pH: 7.45, polyethylene MP: 26 μg L-1, and La: 9 μg L-1) on the physiology and histology of sea urchin Arbacia lixula. Regarding physiological results, while the coelomocytes' quantity was slightly affected by stressors, their viability was significantly affected. The coelomocyte count and viability were suppressed most in Low pH-MP-La treatment. The stressors did not impact the respiration rate. According to the histological examination results, the crypt (villi-like structure) was shorter, and epithelial layers were thinner in single and dual stress treatments like MP, Low pH, Low pH-La, and MP-La. Overall, we suggest that the combination of variable types of those stressors causes negative effects on sea urchin's physiology and histology.
Collapse
Affiliation(s)
- Berna Şahin
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye
| | - Selcan Demiralp
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Narin Sezer
- Medical Services and Techniques Department, Medical Laboratory Techniques Program, Istanbul Arel University, 34295 Sefaköy, Istanbul, Türkiye
| | - Suna Bektaş
- Institute of Graduate Studies in Sciences, Istanbul University, Suleymaniye, Istanbul, Türkiye
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye
| | - Onur Gönülal
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Türkiye
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Türkiye.
| |
Collapse
|
9
|
Zhang Y, Jiang F, Li F, Lu S, Liu Z, Wang Y, Chi Y, Jiang C, Zhang L, Chen Q, He Z, Zhao X, Qiao J, Xu X, Leung KMY, Liu X, Wu F. Global daily mask use estimation in the pandemic and its post environmental health risks: Analysis based on a validated dynamic mathematical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134572. [PMID: 38772106 DOI: 10.1016/j.jhazmat.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.
Collapse
Affiliation(s)
- Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fei Jiang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zihao Liu
- School of information science and engineering, Shandong Normal University, Jinan 250358, China
| | - Yuwen Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Chi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenchen Jiang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Zhipeng He
- Shandong Freshwater Fisheries Research Institude, Jinan 250013, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianmin Qiao
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaohui Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Yang W, Gao P, Ye Z, Chen F, Zhu L. Micro/nano-plastics and microalgae in aquatic environment: Influence factor, interaction, and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173218. [PMID: 38761949 DOI: 10.1016/j.scitotenv.2024.173218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Micro/nano-plastics, as emerging persistent pollutant, are frequently detected in aquatic environments together with other environmental pollutants. Microalgae are the major primary producers and bear an important responsibility for maintaining the balance of aquatic ecosystems. Numerous studies have been conducted on the influence of micro/nano-plastics on the growth, photosynthesis, oxidative stress, gene expression and metabolites of microalgae in laboratory studies. However, it is difficult to comprehensively evaluate the toxic effects of micro/nano-plastics on microalgae due to different experimental designs. Moreover, there is a lack of effective analysis of the aforementioned multi-omics data and reports on shared biological patterns. Therefore, the purpose of this review is to compare the acute, chronic, pulsed, and combined effect of micro/nano-plastics on microalgae and explore hidden rules in the molecular mechanisms of the interaction between them. Results showed that the effect of micro/nano-plastics on microalgae was related to exposure mode, exposure duration, exposure size, concentration, and type of micro/nano-plastics. Meanwhile, the phenomenon of poisoning and detoxification between micro/nano-plastics and microalgae was found. The inhibitory mechanism of micro/nano-plastics on algal growth was due to the micro/nano-plastics affected the photosynthesis, oxidative phosphorylation, and ribosome pathways of algal cells. This brought the disruption of the functions of chloroplasts, mitochondria, and ribosome, as well as impacted on energy metabolism and translation pathways, eventually leading to impairment of cell function. Besides, algae resisted this inhibitory effect by regulating the alanine, aspartate, and glutamate metabolism and purine metabolism pathways, thereby increasing the chlorophyll synthesis, inhibiting the increase of reactive oxygen species, delaying the process of lipid peroxidation, balancing the osmotic pressure of cell membrane.
Collapse
Affiliation(s)
- Wenfeng Yang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zongda Ye
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Funing Chen
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning, Guangxi 530028, PR China; Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530029, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
11
|
Yang T, Nowack B. Formation of nanoparticles during accelerated UV degradation of fleece polyester textiles. NANOIMPACT 2024; 35:100520. [PMID: 38906250 DOI: 10.1016/j.impact.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Micro- and nanoplastics have emerged as critical pollutants in various ecosystems, posing potential environmental and human health risks. Washing of polyester textiles has been identified as one of the sources of nanoplastics. However, other stages of the textile life cycle may also release nanoparticles. This study aimed to examine nanoparticle release during UV degradation of polyester textiles under controlled and real-world conditions. Fleece polyester textiles were weathered under simulated sunlight for up to two months, either in air or submerged in water. We conducted bi-weekly SEM image analyses and quantified released nanoparticles using nanoparticle tracking analysis (NTA). At week 0, the fiber surface appeared smooth after prewashing. In the air group, nanoparticles appeared on the fiber surface after UV-exposure. In the group of textiles submerged in water, the surfaces developed more pits over time. The cumulative nanoparticle emission from the weathered textiles ranged from 1.4 × 1011 to 4.0 × 1011 particles per gram of fabric in the air group and from 1.6 × 1011 to 4.4 × 1011 particles per gram of fabric in the water group over two months. The predominant particle size fell into the 100 to 200 nm range. The estimated mass of the released nanoparticles was 0.06-0.26 g per gram of fabric, which is lower than the amount released during the washing of new textiles. Additionally, Scanning Transmission X-ray Microscopy (STXM) images indicated that the weathered nanoparticles underwent oxidation. Overall, the research offers valuable insights into nanoparticle formation and release from polyester textiles during UV degradation.
Collapse
Affiliation(s)
- Tong Yang
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
| | - Bernd Nowack
- Technology and Society Laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
12
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Ghosh S, Dave V, Sharma P, Patel A, Kuila A. Protective face mask: an effective weapon against SARS-CoV-2 with controlled environmental pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41656-41682. [PMID: 37968481 DOI: 10.1007/s11356-023-30460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Masks are face coverings that give protection from infectious agents, airborne pathogens, bacteria, viruses, surgical fog, dust, and other chemical hazards by acting as a barrier between the wearer and the environment. In the COVID-19 pandemic, this major personal protective equipment's became essential part of our daily life. The aim of this review is to analyze and discuss the different types of masks with their pros and cons, manufacturing procedures, evaluation criteria, and application with some of the sterilization process for reuse and smart mask. The review used a thorough examination of the literature to analyze the preventive effects of surgical, N95, smart mask, and potential environmental damage from those masks. Several studies and evidence were also examined to understand the efficiency of different mask on different environment. N95 respirators are capable of filtering out non-oil-based 95% air-born particles, and surgical masks act as a protective barrier between the wearer and the environment. The application of spoon bond and melt blown techniques in the fabrication process of those masks improves their protective nature and makes them lightweight and comfortable. But the high demand and low supply forced users to reuse and extend their use after sterilizations, even though those masks are recommended to be used once. Universal masking in the SARS-COV-2 pandemic increased the chance of environmental pollution, so the application of smart masks became essential because of their high protection power and self-sterilizing and reusing capabilities.
Collapse
Affiliation(s)
- Shovan Ghosh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| | - Vivek Dave
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India.
| | - Prashansa Sharma
- Department of Home Science, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, India
| | - Akash Patel
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Bihar, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Sikar, Rajasthan, 304022, India
| |
Collapse
|
14
|
Wu X, Lin L, Lin Z, Deng X, Li W, He T, Zhang J, Wang Y, Chen L, Lei Z, Liu C, Xu Z. Influencing mechanisms of microplastics existence on soil heavy metals accumulated by plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171878. [PMID: 38537832 DOI: 10.1016/j.scitotenv.2024.171878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Microplastics (MPs) and heavy metals often coexist in soil, drawing significant attention to their interactions and the potential risks of biological accumulation in the soil-plant system. This paper comprehensively reviews the factors and biochemical mechanisms that influence the uptake of heavy metals by plants, in the existence of MPs, spanning from rhizospheric soil to the processes of root absorption and transport. The paper begins by introducing the origins and current situation of soil contamination with both heavy metals and MPs. It then discusses how MPs alter the physicochemical properties of rhizospheric soil, with a focus on parameters that affect the bioavailability of heavy metals such as aggregates, pH, Eh, and soil organic carbon (SOC). The paper also examines the effect of this pollution on soil organisms and plant growth and reviews the mechanisms by which MPs affect the bioavailability and movement-transformation of heavy metals in rhizospheric soil. This examination emphasizes the roles of rhizospheric microbes, soil fauna, and root physiological metabolism. Finally, the paper outlines the research progress on the mechanisms by which MPs influence the uptake and transport of heavy metals by plant roots. Through this comprehensive review, this paper provides aims to provide environmental managers with a detailed understanding of the potential impact of the coexistence of MPs and heavy metals on the soil-plant ecosystem.
Collapse
Affiliation(s)
- Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wanli Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tao He
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan 442000, China
| | - Jiexiang Zhang
- GRG Metrology& Test Group Co., Ltd., Guangzhou 510656, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lili Chen
- Business School, Central South University of Forestry and Technology, Changsha 410004, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zexiang Lei
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chunguang Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Zhimin Xu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
15
|
Wang Z, Lee K, Feng Q, An C, Chen Z. Effect of nanobubbles on the mobilization of microplastics in shorelines subject to seawater infiltration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123950. [PMID: 38604304 DOI: 10.1016/j.envpol.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The widespread presence of microplastics (MPs) in the ocean has varying degrees of impact on ecosystems and even human health. Coastal tidal zones are crucial in controlling the movement of MPs, which are influenced by waves and tidal forces. Meanwhile, natural nanobubbles (NBs) in the ocean can affect the hydrodynamic properties of the tidal zone. The mobilization of MPs in coastal tidal zones under the effect of NBs has been less studied. In this study, we explored natural NBs' influence on the mobilization of MPs in shorelines subject to seawater infiltration. Using glass beads as a substrate, a coastal porous environment was constructed through column experiments, and the pump-controlled water flow was used to study the transport of MPs subject to seawater movement within the substrate. The infiltration of MPs under continuous and transient conditions, as well as the upward transport induced by flood tide, were considered. The role of salinity in the interactions between NBs, MPs, and substrates was evaluated. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the substrate. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under continuous and transient flow conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
16
|
Ke Y, Lin L, Zhang G, Hong H, Yan C. Aging behavior and leaching characteristics of microfibers in landfill leachate: Important role of surface mesh structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134092. [PMID: 38554515 DOI: 10.1016/j.jhazmat.2024.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.
Collapse
Affiliation(s)
- Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
17
|
Weng Y, Yan H, Nan X, Sun H, Shi Y, Zhang Y, Zhang N, Zhao X, Liu B. Potential health risks of microplastic fibres release from disposable surgical masks: Impact of repeated wearing and handling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134219. [PMID: 38615647 DOI: 10.1016/j.jhazmat.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Disposable surgical masks undeniably provide important personal protection in daily life, but the potential health risks by the release of microplastic fibres from masks should command greater attention. In this study, we conducted a microplastic fibre release simulation experiment by carrying masks in a pocket and reusing them, to reveal the number and morphological changes of microfibres released. Fourier transform infrared spectrometry, scanning electron microscopy, and optical microscopy were employed to analyse the physical and chemical characteristics of the mask fibres. The results indicated that the reuse of disposable masks led to a significant release of microplastic fibres, potentially leading to their migration into the respiratory system. Furthermore, the release of microplastic fibres increased with prolonged external friction, particularly when masks were stored in pockets. The large-scale release of microplastic fibres due to mask reuse raises concerns about potential health risks to the human respiratory system. The reuse of disposable masks should be also strictly avoided in daily life in the future. Furthermore, the current study also established a robust foundation for future research endeavours on health risks associated with microplastic fibres entering the respiratory system through improper mask usage.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Hua Yan
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xinrui Nan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yutian Shi
- 108K of Clinical Medicine, Innovation School, China Medical University, Shenyang 110122, China
| | - Yueao Zhang
- 106K of Clinical Medicine (5+3 integration), the First Clinical Medical School, China Medical University, Shenyang 110001, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Baoqin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Chen X, Huang W, Tang Y, Zhang R, Lu X, Liu Y, Zhu M, Fan X. Variation of Young's modulus suggested the main active sites for four different aging plastics at an early age time. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134189. [PMID: 38569345 DOI: 10.1016/j.jhazmat.2024.134189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Precisely determining which bonds are more sensitive when plastic aging occurs is critical to better understand the mechanisms of toxic release and microplastics formation. However, the relationship between chemical bonds with the active aging sites changes and the aging behavior of plastics at an early age is still unclear. Herein, the mechanical behavior of four polymers with different substituents was characterized by the high-resolution AFM. Young's modulus (YM) changes suggested that the cleavage of C-Cl bonds in PVC, C-H bonds in PE and PP, and C-F bonds in PTFE are the main active aging sites for plastic aging. The aging degree of the plastics followed the order of PVC > PP > PE > PTFE. Two aging periods exhibited different YM change behavior, the free radical and cross-linking resulted in a minor increase in YM during the initiation period. Numerous free radicals formed and cross-linking reaction happened, causing a significant increase in YM during the propagation period. Raman spectroscopy verified the formation of microplastics. This research develops promising strategies to quantitatively evaluate the aging degrees using AFM and establish the relationship between chemical bonds and mechanical behavior, which would provide new method to predict plastic pollution in actual environments.
Collapse
Affiliation(s)
- Xueqin Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Wenyi Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Runzhe Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xinyi Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yi Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Mude Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaoyun Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Dou Y, Wang N, Zhang S, Sun C, Chen J, Qu Z, Cui A, Li J. Electroactive nanofibrous membrane with antibacterial and deodorizing properties for air filtration. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134064. [PMID: 38513444 DOI: 10.1016/j.jhazmat.2024.134064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Water vapor from respiration can severely accelerate the charge dissipation of the face mask, reducing filtration efficiency. Moreover, the foul odor from prolonged mask wear tends to make people remove their masks, leading to the risk of infection. In this study, an electro-blown spinning electroactive nanofibrous membrane (Zn/CB@PAN) with antibacterial and deodorization properties was prepared by adding zinc (Zn) and carbon black (CB) nanoparticles to the polyacrylonitrile (PAN) nanofibers, respectively. The filtration efficiency of Zn/CB@PAN for PM0.3 was > 99% and could still maintain excellent durability within 4 h in a high-humidity environment (25 ℃ and RH = 95%). Moreover, the bacterial interception rate of the Zn/CB@PAN could reach 99.99%, and it can kill intercepted bacteria. In addition, the deodorization rate of Zn/CB@PAN in the moist state for acetic acid was 93.75% and ammonia was 95.23%, respectively. The excellent filtering, antibacterial, and deodorizing performance of Zn/CB@PAN can be attributed to the synergistic effect of breath-induced Zn/CB galvanic couples' electroactivity, released metal ions, and generated reactive oxygen species. The developed Zn/CB@PAN could capture and kill airborne environmental pathogens under humid environments and deodorize odors from prolonged wear, holding promise for broad applications as personal protective masks.
Collapse
Affiliation(s)
- Yuejie Dou
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Na Wang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Shaohua Zhang
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Caihong Sun
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Jinmiao Chen
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Zhenghai Qu
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Aihua Cui
- Weifang Yingke Marine Biological Material Co., Ltd, Weifang 262600, China
| | - Jiwei Li
- College of Textiles and Clothing, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, Qingdao 266071, China.
| |
Collapse
|
20
|
Ge W, Liang H, Gao P, Li Y, Song N, Wu J, Chai C. Exploring the release mechanism of micro/nanoplastics from different layers of masks in water: towards reduction of plastic contamination in masks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33047-33057. [PMID: 38668948 DOI: 10.1007/s11356-024-33443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
During the COVID-19 pandemic, a substantial quantity of disposable face masks was discarded, consisting of three layers of nonwoven fabric. However, their improper disposal led to the release of microplastics (MPs) and nanoplastics (NPs) when they ended up in aquatic environments. To analyze the release kinetics and size characteristics of these masks, release experiments were performed on commercially available disposable masks over a period of 7 days and micro- and nanoplastic releases were detected using fiber counting and nanoparticle tracking analysis. The study's findings revealed that there was no significant difference (p > 0.05) in the quantity of MPs released among the layers of the masks. However, the quantity of NPs released from the middle layer of the mask was 25.9 ± 1.3 × 108 to 81.3 ± 5.3 × 108 particles/piece, significantly higher than the inner and outer layers (p < 0.05). The release process of micro/nanoplastics (M/NPs) from each layer of the mask followed the Elovich equation and the power function equation, indicating that the release was divided into two stages. MPs in the range of 1-500 µm and NPs in the range of 100-300 nm dominated the release from each layer of the mask, accounting for an average of 93.81% and 67.52%, respectively. Based on these findings, recommendations are proposed to reduce the release of M/NPs from masks during subsequent use.
Collapse
Affiliation(s)
- Wei Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Liang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Gao
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan Li
- Institute of Agricultural Resource and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Chai
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
22
|
Zhao X, Gao P, Zhao Z, Wu Y, Sun H, Liu C. Microplastics release from face masks: Characteristics, influential factors, and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171090. [PMID: 38387585 DOI: 10.1016/j.scitotenv.2024.171090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Since the COVID-19 pandemic, face masks have been used popularly and disposed of improperly, leading to the generation of a large amount of microplastics. The objective of this review is to provide a comprehensive insight into the characteristics of mask-derived microplastics, the influential factors of microplastics release, and the potential risks of these microplastics to the environment and organisms. Mask-derived microplastics were predominantly transparent fibers, with a length of <1 mm. The release of microplastics from masks is mainly influenced by mask types, use habits, and weathering conditions. Under the same conditions, surgical masks release more microplastics than other types of masks. Long-term wearing of masks and the disinfection for reuse can promote the release of microplastics. Environmental media, UV irradiation, temperature, pH value, and mechanical shear can also influence the microplastics release. The risks of mask-derived microplastics to human health via inhalation cannot be neglected. Future studies should pay more attention to the release of microplastics from the masks with alternative materials and under more weathering conditions.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziqing Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
23
|
Fu X, Han H, Yang H, Xu B, Dai W, Liu L, He T, DU X, Pei X. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. J Zhejiang Univ Sci B 2024; 25:307-323. [PMID: 38584093 PMCID: PMC11009441 DOI: 10.1631/jzus.b2300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/29/2023] [Indexed: 04/09/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
24
|
Feng Q, Chen Z, Huang G, An C, Yang X, Wang Z. Prolonged drying impedes the detachment of microplastics in unsaturated substrate: Role of flow regimes. WATER RESEARCH 2024; 252:121246. [PMID: 38340454 DOI: 10.1016/j.watres.2024.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate. Intermittent flow is found to result in effluent peaks and a higher rate of MP detachment compared to steady flow. The ionic strength of inflow drops in a stepwise manner, leading to abrupt peaks followed by a tail corresponding to the arrival of each ionic strength front. Each step increase in flow rate leads to a steep peak followed by slow release over several pore volumes. Although transient flow facilitates the detachment of MPs, drying significantly impedes the detachment of MPs irrespective of flow regime. Ultraviolet weathering of MPs for 60 days weakens the inhibition effect of drying on hydrophilic polymethylmethacrylate, facilitating their detachment. Furthermore, the release of MPs decreases markedly with an increase in air-drying duration from 0 h to 72 h. Hydrus-1D two-site kinetic models are used to successfully simulate time-dependent processes, implying that drying heightens the energy barrier for MPs to detach. Our analysis confirms the significance of moisture in determining the remobilization of MPs, providing valuable insights concerning the fate of MPs in unsaturated substrate under prolonged drought conditions.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
25
|
Huang H, Shi Y, Gong Z, Wang J, Zheng L, Gao S. Revealing the characteristics of biofilms on different polypropylene plastic products: Comparison between disposable masks and takeaway boxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133400. [PMID: 38198871 DOI: 10.1016/j.jhazmat.2023.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.
Collapse
Affiliation(s)
- Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lezhou Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
26
|
Bihannic I, Gley R, Gallo L, Badura A, Razafitianamaharavo A, Beuret M, Billet D, Bojic C, Caillet C, Morlot P, Zaffino M, Jouni F, George B, Boulet P, Noûs C, Danger M, Felten V, Pagnout C, Duval JFL. Photodegradation of disposable polypropylene face masks: Physicochemical properties of debris and implications for the toxicity of mask-carried river biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133067. [PMID: 38039813 DOI: 10.1016/j.jhazmat.2023.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Collapse
Affiliation(s)
| | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Lucas Gallo
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | | | | | - David Billet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Clément Bojic
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Fatina Jouni
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Béatrice George
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
| | - Pascal Boulet
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | | |
Collapse
|
27
|
Song J, Chen X, Li S, Tang H, Dong S, Wang M, Xu H. The environmental impact of mask-derived microplastics on soil ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169182. [PMID: 38092201 DOI: 10.1016/j.scitotenv.2023.169182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
During the COVID-19 pandemic, a significant increased number of masks were used and improperly disposed of. For example, the global monthly consumption of approximately 129 billion masks. Masks, composed of fibrous materials, can readily release microplastics, which may threaten various soil ecosystem components such as plants, animals, microbes, and soil properties. However, the specific effects of mask-derived microplastics on these components remain largely unexplored. Here, we investigated the effects of mask-derived microplastics (grouped by different concentrations: 0, 0.25, 0.5, and 1 % w/w) on soil physicochemical properties, microbial communities, growth performance of lettuce (Lactuca sativa L. var. ramosa Hort.) and earthworm (Eisenia fetida) under laboratory conditions for 80 days. Our findings suggest that mask-derived microplastics reduced soil bulk density while increasing the mean weight diameter of soil aggregates and modifying nutrient levels, including organic matter, potassium, nitrogen, and phosphorus. An increase in the abundance of denitrification bacteria (Rhodanobacteraceae) was also observed. Mask-derived microplastics were found to reduce lettuce germination, and a hormesis effect of low-concentration stimulation and high-concentration inhibition was observed on biomass, chlorophyll, and root activity. While the mortality of earthworms was not significantly affected by the mask-derived microplastics, but their growth was inhibited. Collectively, our results indicate that mask-derived microplastics can substantially impact soil properties, plant growth, and earthworm health, with potential implications for soil ecosystem functionality.
Collapse
Affiliation(s)
- Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Aba 623000, Sichuan, PR China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
28
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
29
|
Sun J, Zhu Y, Yin H, Yin J. The release of polypropylene plastic from disposable face masks in different water conditions and their potential toxicity in human cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123296. [PMID: 38182010 DOI: 10.1016/j.envpol.2024.123296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Due to their extensive use during and after the COVID-19 pandemic, many disposable face masks are irresponsibly deposited into the water environment, threatening the health of people living nearby. However, the effects of water conditions on the degradation and potential hazards of these masks are generally unclear. This paper entailed the release and cellular toxicity of micro/nano plastics from disposable face masks once discarded in different waters, including soil water, river water, and tap water, with deionized (DI) water as control. At first, polypropylene (PP) was confirmed to be the major component of disposable face masks with Raman and Fourier transform infrared (FTIR) techniques. To monitor the release rate of PP from masks, a silver nanoparticle (AgNP)-based surface-enhanced Raman scattering (SERS) method was established by employing the unique Raman fingerprint of PP at 2882 cm-1. During 30-d incubation in different waters, the release rates of PP, sizes of PP aggregates, length of fibers, and proportions of plastics smaller than 100 nm were in the order of soil water > river water > tap water > DI water. All the obtained PP exhibited significant toxicity in human lung cancer (A549) cells at concentrations of 70 mg/L for 48 h, and the ones obtained in soil water exhibited the most severe damage. Overall, this paper revealed that environmental waters themselves would worsen the adverse effects of disposable face masks, and the key compounds affecting the degradation of masks remain to be clarified. Such information, along with the established methods, could be beneficial in assessing the health risks of disposable face masks in different waters.
Collapse
Affiliation(s)
- Jiaojiao Sun
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.
| | - Yan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China; Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China.
| |
Collapse
|
30
|
Kurtjak M, Maček Kržmanc M, Spreitzer M, Vukomanović M. Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action. Pharmaceutics 2024; 16:228. [PMID: 38399282 PMCID: PMC10893416 DOI: 10.3390/pharmaceutics16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.K.); (M.S.); (M.V.)
| | | | | | | |
Collapse
|
31
|
Cheng J, Wang P, Ghiglione JF, Liu L, Cai Z, Zhou J, Zhu X. Bacterial pathogens associated with the plastisphere of surgical face masks and their dispersion potential in the coastal marine environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132741. [PMID: 37827107 DOI: 10.1016/j.jhazmat.2023.132741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Huge numbers of face masks (FMs) were discharged into the ocean during the coronavirus pandemic. These polymer-based artificial surfaces can support the growth of specific bacterial assemblages, pathogens being of particular concern. However, the potential risks from FM-associated pathogens in the marine environment remain poorly understood. Here, FMs were deployed in coastal seawater for two months. PacBio circular consensus sequencing of the full-length 16S rRNA was used for pathogen identification, providing enhanced taxonomic resolution. Selective enrichment of putative pathogens (e.g., Ralstonia pickettii) was found on FMs, which provided a new niche for these pathogens rarely detected in the surrounding seawater or the stone controls. The total relative abundance of the putative pathogens in FMs was higher than in seawater but lower than in the stone controls. FM exposure during the two months resulted in 3% weight loss and the release of considerable amounts of microfibers. The ecological assembly process of the putative FM-associated pathogens was less impacted by the dispersal limitation, indicating that FM-derived microplastics can serve as vectors of most pathogens for their regional transport. Our results indicate a possible ecological risk of FMs for marine organisms or humans in the coastal and potentially in the open ocean.
Collapse
Affiliation(s)
- Jingguang Cheng
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, Banyuls sur mer 66650, France
| | - Lu Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhonghua Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; College of Ecology and Environment, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
32
|
Zhang W, Chai S, Duan C, Sun X, Zuo Q, Gong L. The Fate of Microplastics, Derived from Disposable Masks, in Natural Aquatic Environments. TOXICS 2024; 12:61. [PMID: 38251016 PMCID: PMC10819341 DOI: 10.3390/toxics12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
This paper mainly reviews the fate of microplastics, released from used face masks, in the water environment. Through previous experiments, the amount of fiber microplastics released from used face masks into aqueous environments was not negligible, with the maximum microplastics releasing amount reaching 10,000 piece·day-1 for each mask. Microplastic derived from these masks often occurred in the shape of polymeric fibers that resulted from the breakage of the chemical bonds in the plastic fibers by the force of water flow. The potential contact forces between microplastics (originating from face masks) with other pollutants, primarily encompass hydrophobic and electrostatic interactions. This critical review paper briefly illustrates the fate of microplastics derived from disposable face masks, further devising effective strategies to mitigate the environmental impact of plastic particle release from the used personal protective equipment.
Collapse
Affiliation(s)
- Wei Zhang
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (W.Z.); (S.C.)
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China;
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Zhengzhou 450000, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450001, China
| | - Senyou Chai
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (W.Z.); (S.C.)
| | - Changhui Duan
- Changzhi City Urban River Affairs Center, Changzhi 046000, China;
| | - Xueliang Sun
- China Planning Institute (Beijing) Planning and Design Co., Beijing 100044, China;
| | - Qiting Zuo
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China;
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Zhengzhou 450000, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; (W.Z.); (S.C.)
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
| |
Collapse
|
33
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Harikrishnan T, Sivakumar P, Sivakumar S, Arumugam S, Raman T, Singaram G, Thangavelu M, Kim W, Muthusamy G. Effect of microfibers induced toxicity in marine sedentary polychaete Hydroides elegans: Insight from embryogenesis axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167579. [PMID: 37797759 DOI: 10.1016/j.scitotenv.2023.167579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Presence of surgical face masks in the environment are more than ever before after the COVID-19 pandemic, and it poses a newer threat to aquatic habitats around the world due to microfibers (MFs) and other contaminants that get discharged when these masks deteriorate. The mechanism behind the developmental toxicity of MFs, especially released from surgical masks, on the early life stages of aquatic organisms are not well understood. Toxicity test were developed to examine the effects of MFs released from surgical facemask upon deterioration using the early gametes and early life stages of marine sedentary polychaete Hydroides elegans. For MFs release, cut pieces of face masks were allowed to degrade in seawater for different time points (1 day, 30 days and 120 days) after which the fibers were obtained for further toxicity studies. The gametes of H. elegans were exposed to the MFs (length < 20 μm) separately for 20 min at a concentration of 50 MFs/ml before fertilization. In addition, we also analyzed the experimental samples for heavy metals and organic substances released from face masks. Our findings demonstrated that gametes exposed to MFs affected the percentage of successful development, considerably slowed down the mitotic cell division and significantly postponed the time of larval hatching and also produced an adverse effect during embryogenesis. When the sperm were exposed fertilization rate was decreased drastically, whereas when the eggs were exposed to MFs fertilization was not inhibited but a delay in early embryonic development observed. In addition the release of heavy metals and other volatile organics from the degrading face masks could also contribute to overall toxicity of these materials in environment. Our study thus shows that inappropriately discarded face masks and MFs and other pollutants released from such face masks could pose long-term hazard to coastal ecosystems.
Collapse
Affiliation(s)
- Thilagam Harikrishnan
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India.
| | - Priya Sivakumar
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Swetha Sivakumar
- Department of Biotechnology, Prince Venkateswara Arts and Science College, Chennai 600 073, India
| | - Sriramajayam Arumugam
- Postgraduate and Research Department of Zoology, Pachaiyappa's College for Men, Chennai 600 030, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College (Autonomous), Chennai 600 004, India
| | - Gopalakrishnan Singaram
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai 600106, India
| | - Muthukumar Thangavelu
- Dept BIN Convergence Tech, Dept PolymerNano Sci & Tech, Jeonbuk National University, 567 Baekje-dearo, Deokjin, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| |
Collapse
|
35
|
Chen F, Zhang Z, Li Y, Jiang H, Zhou Y, Liu H, Pan K, Ma J. Impact of facemask debris on marine diatoms: Physiology, surface properties, sinking rate, and copepod ingestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167222. [PMID: 37734605 DOI: 10.1016/j.scitotenv.2023.167222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Discarded surgical masks have become a new source of plastic waste in seawater capable of releasing numerous micro and nano plastic fragments. However, little information is available about how this waste impacts the ecological state of marine phytoplankton. Here, we exposed two model marine diatoms (Phaeodactylum tricornutum and Thalassiosira weissflogii) to mask-released debris (MD) that is characterized by various differently-charged functional groups. Although MD could only bind loosely to diatoms, it still inhibited their growth and significantly altered cell surface physicochemical properties. At the nanoscale, MD-exposed cell walls showed enhanced roughness and modulus, besides declined electrical potential, adhesion, and proportion of oxygen-containing compounds. As a result, diatom ingestion by copepods was reduced, and the sinking rate of the carbon pool consisting of MD plus diatoms decreased as well. Our study indicated that MD effects on diatoms have the potential to slow down carbon export from surface seawater to the deep sea. Since oxidation and generation of functional groups are common during the aging process of microplastics (MPs) in nature, the interactions between the diatom cell surface and MD have important environmental significance.
Collapse
Affiliation(s)
- Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Yanfei Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei Province, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
36
|
Lyu L, Peng H, An C, Sun H, Yang X, Bi H. An insight into the benefits of substituting polypropylene with biodegradable polylactic acid face masks for combating environmental emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167137. [PMID: 37734618 DOI: 10.1016/j.scitotenv.2023.167137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
37
|
Paço A, Oliveira AM, Ferreira-Filipe DA, Rodrigues ACM, Rocha RJM, Soares AMVM, Duarte AC, Patrício Silva AL, Rocha-Santos T. Facemasks: An insight into their abundance in wetlands, degradation, and potential ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166232. [PMID: 37574074 DOI: 10.1016/j.scitotenv.2023.166232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.
Collapse
Affiliation(s)
- Ana Paço
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo A Ferreira-Filipe
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia C M Rodrigues
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Gbadamosi MR, Ogunneye AL, Jegede DO, Abdallah MAE, Harrad S. Occurrence, source apportionment, and ecological risk assessment of organophosphate esters in surface sediment from the Ogun and Osun Rivers, Southwest Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124274-124285. [PMID: 37996592 PMCID: PMC10746756 DOI: 10.1007/s11356-023-31125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Organophosphate esters (OPEs) are synthetic chemicals widely used as e.g., flame retardants and plasticisers in various consumer products. Due to the toxicity of OPEs in aquatic ecosystems, exposure of fauna and flora to these compounds is of potential concern. In this study, the concentrations, profiles, sources, and ecological risk of eight OPEs were investigated in the sediments from the two major rivers in southwest Nigeria. Concentrations of ∑OPEs in surface sediments were in the range 13.1 - 2110 ng/g dry weight (dw) (median: 378 ng/g dw) in the Ogun River and 24.7-589 ng/g dw (median: 174 ng/g dw) in the Osun River. These concentrations are broadly within the range of those reported in surface sediment in previous studies conducted in other locations around the world. Tris (2-butoxyethyl) phosphate (TBOEP) was the dominant OPE in the sediment samples with a median concentration of 337 and 126 ng/g dw for the Ogun and Osun Rivers respectively, while tri-n-butyl phosphate (TnBP) was not detected in any sample. Excluding TBOEP, the chlorinated organophosphate esters: tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were the dominant OPEs in the Osun River, while the aryl-OPEs: triphenyl phosphate (TPHP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri-m-tolyl phosphate (TMTP) were dominant in the Ogun River. Under a median exposure scenario, moderate ecological risk was predicted from exposure to TCIPP in the Osun River. In contrast, under a high exposure scenario, concentrations of TDCIPP (risk quotient, RQ = 5.33-5.37) constituted a high ecological risk in both rivers, with moderate risks observed for TBOEP (RQ = 0.022-0.18) and TCIPP (RQ = 0.097 - 0.16). Therefore, the risk to aquatic organisms from concomitant exposure to mixtures of OPEs in freshwater ecosystems requires further investigation.
Collapse
Affiliation(s)
- Muideen Remilekun Gbadamosi
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK.
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria.
| | - Adeyemi Lawrence Ogunneye
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria
| | - David Olaoluwa Jegede
- Chemistry Unit, Department of Basic Science, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
39
|
Tu C, Yang Y, Wang J, Su H, Guo J, Cao D, Lian J, Wang D. In situ effects of microplastics on the decomposition of aquatic macrophyte litter in eutrophic shallow lake sediments, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122543. [PMID: 37716693 DOI: 10.1016/j.envpol.2023.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The toxicity of microplastics (MPs) to aquatic organisms has been extensively studied recently. However, few studies have investigated the effects of MPs in sediments on aquatic ecosystem functioning. In the present study, we conducted an in situ experiment to explore the concentration-dependent effects (0.025%, 0.25%, 2.5%) and size-dependent effects (150-300 μm and 500-1000 μm) of polypropylene microplastics (PP MPs) on Vallisneria natans litter decomposition dynamics, in particular, the process associated with macroinvertebrates, microorganisms, as well as microalgae and/or cyanobacteria. The results showed that exposure to high concentrations and large sizes of PP MPs can accelerate leaf litter biomass loss and nutrition release. Moreover, microbial respiration, microalgal and/or cyanobacteria chlorophyll-a were also significantly affected by PP MPs. However, PP MPs have no effect on the abundance of associated macroinvertebrate during the experiment, despite the collection of five macroinvertebrate taxa from two functional feeding groups (i.e., collectors and scrapers). Therefore, our experiment demonstrated that PP MPs may enhance leaf litter decomposition through effected microbial metabolic activity, microalgal and/or cyanobacteria biomass in the sedimentary lake. Overall, our findings highlight that PP MPs have the potential to interfere with the basic ecological functions such as plant litter decomposition in aquatic environments.
Collapse
Affiliation(s)
- Chang Tu
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jinbo Wang
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China
| | - Hailong Su
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China
| | - Jieying Guo
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China
| | - Dandan Cao
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong Wang
- School of Life Sciences, Central China Normal University, Hubei Province, Wuhan, 430079, China; Bio-resources Key Laboratory of Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi Province, PR China.
| |
Collapse
|
40
|
Jiang A, Pei W, Zhang R, Shah KJ, You Z. Toxic effects of aging mask microplastics on E. coli and dynamic changes in extracellular polymeric matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165607. [PMID: 37474070 DOI: 10.1016/j.scitotenv.2023.165607] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Contamination of disposable medical masks has become a growing problem globally in the wake of Covid-19 due to their widespread use and improper disposal. Three different mask layers, namely the outer layer, the meltblown (MB) filler layer and the inner layers release three different types of microplastics, whose physical and chemical properties change after prolonged environmental weathering. In this study, physical and chemical changes of mask microplastics before and after aging were characterized by different characterization techniques. The toxic effect and mechanism of aged mask microplastics on Escherichia coli (E. coli) were studied by measuring the growth inhibition of mask microplastics, the change in ATPase activity, the change in malondialdehyde content and reactive oxygen species production, and the release of the chemical composition of exopolymeric substances (EPS). The microplastics of the aged MB filter layer had the most significant inhibitory effect on E. coli growth, reaching 19.2 % after 36 h. Also, under the influence of mask microplastics, ATPase activity of E. coli was inhibited and a large amount of EPS was released. The chemical composition of EPS has also changed. This study proposed the possible toxicity mechanism of mask microplastics and the self-protection mechanism of E. coli, and provided a reference for future research on the toxic effects of mask microplastics on environmental organisms.
Collapse
Affiliation(s)
- Angrui Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China; Yangtze River Innovation Center for Ecological Civilization, Nanjing, 211800, China.
| | - Wuxuan Pei
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China; Yangtze River Innovation Center for Ecological Civilization, Nanjing, 211800, China.
| | - Rui Zhang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China; Yangtze River Innovation Center for Ecological Civilization, Nanjing, 211800, China.
| | - Kinjal J Shah
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| | - Zhaoyang You
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China.
| |
Collapse
|
41
|
Lee J, Jeong S. Approach to an answer to "How dangerous microplastics are to the human body": A systematic review of the quantification of MPs and simultaneously exposed chemicals. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132404. [PMID: 37672992 DOI: 10.1016/j.jhazmat.2023.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
This review aims to facilitate future research on microplastics (MPs) in the environment using systematic and analytical protocols, ultimately contributing to assessment of the risk to human health due to continuous daily exposure to MPs. Despite extensive studies on MP abundance in environment, identification, and treatment, their negative effects on human health remain unknown due to the lack of proof from clinical studies and limited technology on the MP identification. To assess the risk of MPs to human health, the first step is to estimate MP intake via ingestion, inhalation, and dermal contact under standardized exposure conditions in daily life. Furthermore, rather than focusing on the sole MPs, migrating chemicals from plastic products should be quantified and their health risk be assessed concurrently with MP release. The critical factors influencing MP release and simultaneously exposed chemicals (SECs) must be investigated using a standardized identification method. This review summarises release sources, factors, and possible routes of MPs from the environment to the human body, and the quantification methods used in risk assessment. We also discussed the issues encountered in MP release and SEC migration. Consequently, this review provides directions for future MP studies that can answer questions about MP toxicity to human health.
Collapse
Affiliation(s)
- Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, South Korea
| | - Sanghyun Jeong
- Department of Environmental Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
42
|
Feng Q, An C, Chen Z, Lee K, Wang Z. Identification of the driving factors of microplastic load and morphology in estuaries for improving monitoring and management strategies: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122014. [PMID: 37336353 DOI: 10.1016/j.envpol.2023.122014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Estuaries are one of the primary pathways for transferring microplastics (MPs) from the land to the ocean. A comprehensive understanding of the load, morphological characteristics, driving factors, and potential risks of MPs in estuaries is imperative to inform reliable management in this critical transboundary area. Extracted from 135 publications, a global meta-analysis comprising 1477 observations and 124 estuaries was conducted. MP abundance in estuaries was tremendously variable, reaching a mean of 21,342.43 ± 122,557.53 items/m3 in water and 1312.79 ± 6295.73 items/kg in sediment. Fibers and fragments take up a majority proportion in estuaries. Polyester, polypropylene, and polyethylene are the most detected MP types. Around 68.73% and 85.51% of MPs detected in water and sediment are smaller than 1 μm. The redundancy analysis revealed that the explanatory factors influencing the morphological characteristics of MPs differed between water and sediment. Regression analysis shows that MP abundance in water is significantly inversely correlated with mesh/filter size, per capita plastic waste, and the Human Development Index, whereas it is significantly positively correlated with population density and share of global mismanaged plastic waste. MP abundance in sediment significantly positively correlated with aridity index and probability of plastic entering the ocean, while significantly negatively correlated with mesh/filter size. Analysis based on Geodector identified that the extraction method, density of flotation fluid, and sampling depth are the top three explanatory factors for MP abundance in water, while the share of global mismanaged plastic waste, the probability of plastic being emitted into the ocean, and population density are the top three explanatory factors for MP abundance in sediment. In the studied estuaries, 46.75% of the water and 2.74% of the sediment are categorized into extremely high levels of pollution, while 73.08% of the water and 43.48% of the sediment belong to class V of the potential ecological index.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
43
|
da Costa ID, Costa LL, Cordeiro CAMM, Zalmon IR. Ecological traits do not predict the uptake of microplastics by fishes in a Neotropical River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94850-94864. [PMID: 37540415 DOI: 10.1007/s11356-023-29013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Pollution by synthetic polymers is even more problematic to the environment when this material is fragmented into small portions, forming microplastics (MPs). We analyzed the contamination of ichthyofauna by MPs in an important river of the Atlantic Rainforest in regard to abundance, diversity of morphotypes, polymers, colors, and sizes of the synthetic particles in 20 species of fish. Fish were collected in November 2019 and in March 2020 in five sites along the Pomba River. Of the 101 fish analyzed, 49 (49%) presented MPs in at least one organ. Of the 20 species of fish collected 13 included individuals with at least one MP in their analyzed organs. The organs, trophic categories and feeding areas did not affect the general abundance of MPs types. Blue MPs were predominant, followed by the colors black, red, and white. MP fibers represented 91% of total MPs. Most MPs were between 2 and 3 mm in size. Polyethylene terephthalate (PET), polypropylene (PP), polyamide (PA), polyvinylidene chloride "Nylon" (PVDC), and high-density polyethylene (HDPE) were detected in the fishes. The exposure of the fish species to MPs was associated mainly with individual size and species-specific aspects, regardless of ecological traits. Considering that 55% of the fish species studied are consumed by humans, it is necessary to study the potential impact of MP ingestion on human health and to understand to what extent we may be consuming both plastic particles and contaminants that are adsorbed to MPs.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, Rio de Janeiro, 28470-000, Brazil.
- Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, Ji-Paraná, Rondônia, 76900-726, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | | | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| |
Collapse
|
44
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
45
|
Chorographic assessment on the overburden of single-use plastics bio-medical wastes risks and management during COVID-19 pandemic in India. TOTAL ENVIRONMENT RESEARCH THEMES 2023; 7:100062. [PMCID: PMC10275774 DOI: 10.1016/j.totert.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 09/03/2023]
Abstract
Amid the rapid influx of SARS‑CoV‑2 patients in various hospitals across India, the disposal of COVID-19 bio-medical wastes become a major challenging crisis in these days. As a consequence, the unexpected surge of utilizing Single-Use Plastics (SUP) from Personal Protection Equipments (PPEs) in particular protective gloves, nose masks, body aprons. is common in day to day and estimated as minimum of 730 g of waste can be generated per day/person in India. The research objectives on a national scale focuses that the document being active belongings, communications and preparations associated with hospital desecrates care and the existing facts on the physical condition and ecological risk on health care biomedical throw away which dropped during the SARS‑CoV‑2 virus disease pandemic. Based on number of confirmed COVID-19 cases 5,78,578 and 3,92,1149 health care workers as of 1st July 2020 (includes active, recovered and deaths) in India is assessed using GIS that an average 3150 tons per day of SUP waste generated only due to COVID-19 even though the hospitals make all safety measures to put away the clinical wastes. The States like Maharashtra (484.12tons/day), Tamil Nadu (337.76 tons/day), Andhra Pradesh (229.23 tons/day), Rajasthan (183.87 tons/day), Gujarat (181.41 tons/day), Karnataka, Kerala and Uttar Pradesh are over loaded with 212.73, 244.36 and 176.86 tons/day respectively greater than their normal per day bio-medical waste generated. This study finds the space in handling of Bio-Medical Waste Management of the pandemic COIVD-19 outbreaks and its’ remedial actions to improve the necessity in the future emergency in the developing countries like India.
Collapse
|
46
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
47
|
Wang L, Li S, Ahmad IM, Zhang G, Sun Y, Wang Y, Sun C, Jiang C, Cui P, Li D. Global face mask pollution: threats to the environment and wildlife, and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164055. [PMID: 37178835 PMCID: PMC10174332 DOI: 10.1016/j.scitotenv.2023.164055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Face masks are an indispensable low-cost public healthcare necessity for containing viral transmission. After the coronavirus disease (COVID-19) became a pandemic, there was an unprecedented demand for, and subsequent increase in face mask production and use, leading to global ecological challenges, including excessive resource consumption and significant environmental pollution. Here, we review the global demand volume for face masks and the associated energy consumption and pollution potential throughout their life cycle. First, the production and distribution processes consume petroleum-based raw materials and other energy sources and release greenhouse gases. Second, most methods of mask waste disposal result in secondary microplastic pollution and the release of toxic gases and organic substances. Third, face masks discarded in outdoor environments represent a new plastic pollutant and pose significant challenges to the environment and wildlife in various ecosystems. Therefore, the long-term impacts on environmental and wildlife health aspects related to the production, use, and disposal of face masks should be considered and urgently investigated. Here, we propose five reasonable countermeasures to alleviate these global-scale ecological crises induced by mask use during and following the COVID-19 pandemic era: increasing public awareness; improving mask waste management; innovating waste disposal methods; developing biodegradable masks; and formulating relevant policies and regulations. Implementation of these measures will help address the pollution caused by face masks.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxuan Li
- School of Languages and Culture, Hebei GEO University; Shijiazhuang 050031, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Guiying Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuan Jiang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
48
|
Liu YJ, Yang HY, Hu YY, Li ZH, Yin H, He YT, Zhong KQ, Yuan L, Zheng X, Sheng GP. Face mask derived micro(nano)plastics and organic compounds potentially induce threat to aquatic ecosystem security revealed by toxicogenomics-based assay. WATER RESEARCH 2023; 242:120251. [PMID: 37356160 DOI: 10.1016/j.watres.2023.120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Micro(nano)plastics widely detected in aquatic environments have caused serious threat to water quality security. However, as a potential important source of micro(nano)plastics in surface water during the COVID-19 pandemic, the ecological risks of face mask waste to aquatic environments remain poorly understood. Herein, we comprehensively characterized the micro(nano)plastics and organic compounds released from four daily used face masks in aqueous environments and further evaluated their potential impacts on aquatic ecosystem safety by quantitative genotoxicity assay. Results from spectroscopy and high-resolution mass spectrum showed that plastic microfibers/particles (∼11%-83%) and leachable organic compounds (∼15%-87%) were dominantly emitted pollutants, which were significantly higher than nanoplastics (< ∼5%) based on mass of carbon. Additionally, a toxicogenomics approach using green fluorescence protein-fused whole-cell array revealed that membrane stress was the primary response upon the exposure to micro(nano)plastics, whereas the emitted organic chemicals were mainly responsible for DNA damage involving most of the DNA repair pathways (e.g., base/nucleotide excision repair, mismatch repair, double-strand break repair), implying their severe threat to membrane structure and DNA replication of microorganisms. Therefore, the persistent release of discarded face masks derived pollutants might exacerbate water quality and even adversely affect aquatic microbial functions. These findings would contribute to unraveling the potential effects of face mask waste on aquatic ecosystem security and highlight the necessity for more developed management regulations in face mask disposal.
Collapse
Affiliation(s)
- Yan-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - He-Yun Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yan-Yun Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hao Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-Tian He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Keng-Qiang Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
49
|
Tiwari BR, Lecka J, Pulicharla R, Brar SK. Microplastic pollution and associated health hazards: Impact of COVID-19 pandemic. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 34:100480. [PMID: 37304153 PMCID: PMC10183351 DOI: 10.1016/j.coesh.2023.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic led to an increase in plastic used for medical purposes such as personal protective equipment and packaging materials. A very low share of plastics is recycled while the majority is sent to landfills. This plastic may degrade over time to form microplastics which may pollute land, air, and water sources. An increase in microplastics can increase the disease risk in human well-being's. The ultimate fate of microplastic is accumulation inside the human body posing the risk of different health conditions like cancer, diabetes, and allergic reactions. Hence, proper detection and disposal methods should be devised to deal with the rise in microplastic pollution.
Collapse
Affiliation(s)
- Bikash Ranjan Tiwari
- Institut National de La Recherche Scientifique - Centre Eau Terre Environnement, Université Du Québec, Quebec City, Canada
| | - Joanna Lecka
- Institut National de La Recherche Scientifique - Centre Eau Terre Environnement, Université Du Québec, Quebec City, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Canada
| |
Collapse
|
50
|
Li J, Wang Q, Cui M, Yu S, Chen X, Wang J. Release characteristics and toxicity assessment of micro/nanoplastics from food-grade nonwoven bags. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163642. [PMID: 37100154 DOI: 10.1016/j.scitotenv.2023.163642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Micro/nanoplastic (M/NP) contamination in food has become a global concern. Food-grade polypropylene (PP) nonwoven bags, which are widely used to filter food residues, are considered environmentally friendly and nontoxic. However, the emergence of M/NPs has forced us to re-examine the use of nonwoven bags in cooking as plastic contact with hot water leads to M/NP release. To evaluate the release characteristics of M/NPs, three food-grade PP nonwoven bags of different sizes were boiled in 500 mL water for 1 h. Micro-Fourier transform infrared spectroscopy and Raman spectrometer confirmed that the leachates were released from the nonwoven bags. After boiling once, a food-grade nonwoven bag can release 0.12-0.33 million MPs (>1 μm) and 17.6-30.6 billion NPs (<1 μm), equivalent to a mass of 2.25 - 6.47 mg. Number of M/NPs released is independent of nonwoven bag size; however, it decreases with increasing cooking times. M/NPs are primarily produced from easily breakable PP fibers, and they are not released into the water at once. Adult zebrafish (Danio rerio) were cultured in filtered distilled water without released M/NPs and in water containing 14.4 ± 0.8 mg L-1 released M/NPs for 2 and 14 days, respectively. To evaluate the toxicity of the released M/NPs on the gills and liver of zebrafish, several oxidative stress biomarkers (i.e., reactive oxygen species, glutathione, superoxide dismutase, catalase, and malonaldehyde) were measured. The ingestion of the released M/NPs by zebrafish induces oxidative stress in the gills and liver, depending on the exposure time. Food-grade plastics, such as nonwoven bags, should be used with caution in daily cooking because they release large amounts of M/NPs when heated, which can threaten human health.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xuehai Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| |
Collapse
|