1
|
Ma J, Min Y, Su J, Huang T, Ali A, Wang Y, Li X. Simultaneous removal of ammonia nitrogen, phosphate, zinc, and phenol by degradation of cellulose in composite mycelial pellet bioreactor: Enhanced performance and community co-assembly mechanism. ENVIRONMENTAL RESEARCH 2024; 252:118780. [PMID: 38555089 DOI: 10.1016/j.envres.2024.118780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
In this experiment, the prepared tea biochar-cellulose@LDH material (TB-CL@LDH) was combined with mycelium pellets to form the composite mycelial pellets (CMP), then assembled and immobilized with strains Pseudomonas sp. Y1 and Cupriavidus sp. ZY7 to construct a bioreactor. At the best operating parameters, the initial concentrations of phosphate (PO43--P), ammonia nitrogen (NH4+-N), chemical oxygen demand (COD), zinc (Zn2+), and phenol were 22.3, 25.0, 763.8, 1.0, and 1.0 mg L-1, the corresponding removal efficiencies were 80.4, 87.0, 83.4, 91.8, and 96.6%, respectively. Various characterization analyses demonstrated that the strain Y1 used the additional carbon source produced by the strain ZY7 degradation of cellulose to enhance the removal of composite pollutants and clarified the principle of Zn2+ and PO43--P removal by adsorption, co-precipitation and biomineralization. Pseudomonas and Cupriavidus were the dominant genera according to the high-throughput sequencing. As shown by KEGG results, nitrification and denitrification genes were affected by phenol. The study offers prospects for the simultaneous removal of complex pollutants consisting of NH4+-N, PO43--P, Zn2+, and phenol.
Collapse
Affiliation(s)
- Jiayao Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
2
|
Liang J, Zhang L, Li C, Mo Z, Ye M, Zhu Z, Sun S, Wong JWC. Triclocarban transformation and removal in sludge conditioning using chalcopyrite-triggered percarbonate treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132944. [PMID: 37951173 DOI: 10.1016/j.jhazmat.2023.132944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
Herein, a facile combination approach of chalcopyrite and sodium percarbonate (CuFeS2+ SPC) was established to augment both TCC removal efficiency and sludge dewatering. Results showed that utilizing the CuFeS2 dosage of 600 mg/g total solids (TS) under the optimal condition, along with the SPC dosage of 12.5 mg/g TS, an initial pH of 4.0, and a reaction duration of 40 min, led to a substantial reduction of 53.9% in the TCC content within the sludge, accompanied by a notable decrease of 36.9% in the water content. Compared to well-studied iron-based advanced oxidation processes, CuFeS2 + SPC treatment proved to be more cost-effective and environmentally friendly. Mechanistic findings demonstrated that •OH oxidation played a significant role in TCC removal, with O2•- and 1O2 acting as secondary factors. During the CuFeS2 + SPC process, the received •OH, O2•-, and 1O2 destroyed the main binding sites of extracellular polymeric substances to TCC, including tryptophan-like protein, amide, CO stretch, and -COO- functional groups. As a result, approximately 50% of TCC was partially degraded within the solid sludge phase after the attack of radicals. Meanwhile, the decreased macromolecular organic compounds in solid sludge attenuated the binding efficacy of TCC, giving rise to the transfer of partial TCC to the liquid phase. Ultimately, the TCC in sludge was successfully removed, and five transformation products were identified. This study significantly contributes to our understanding regarding TCC transformation and removal in the sludge conditioning process.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Lei Zhang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chengjian Li
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhihua Mo
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Maoyou Ye
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhi Zhu
- Institute of the Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang 212000, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Ding C, Ye C, Zhu W, Zeng G, Yao X, Ouyang Y, Rong J, Tao Y, Liu X, Deng Y. Engineered hydrochar from waste reed straw for peroxymonosulfate activation to degrade quinclorac and improve solanaceae plants growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119090. [PMID: 37793289 DOI: 10.1016/j.jenvman.2023.119090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023]
Abstract
Hydrochar from agricultural wastes is regarded as a prospective and low-cost material to activate peroxymonosulfate (PMS) for degrading pollutants. Herein, a novel in-situ N-doped hydrochar composite (RHCM4) was synthesized using montmorillonite and waste reed straw rich in nitrogen as pyrolysis catalyst and carbon source, respectively. The fabricated RHCM4 possessed excellent PMS activation performance for decomposing quinclorac (QC), a refractory herbicide, with a high removal efficiency of 100.0% and mineralization efficiency of 75.1%. The quenching experiments and electron spin resonance (ESR) detection disclosed free radicals (•OH, •SO4-, and •O2-) and non-radicals (1O2) took part in the QC degradation process. Additionally, the catalytic mechanisms were analyzed in depth with the aid of various characterizations. Moreover, the QC degradation intermediates and pathways were clarified by density functional theory calculations and HPLC-MS. Importantly, phytotoxicity experiments showed that RHCM4/PMS could efficaciously mitigate the injury of QC to Solanaceae crops (pepper, tomato, and tobacco). These findings give a new idea for enhancing the catalytic activity of hydrochar from agricultural wastes and broaden its application in the field of agricultural environment.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ye
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Zhu
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Xuemei Yao
- Shaoyang Tobacco Company of Hunan Province, Shaoyang, 422001, China
| | - Yu Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jie Rong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaocheng Deng
- College of Resource and Environment, Hunan Agricultural University, Changsha, 410082, China.
| |
Collapse
|
4
|
Wu Q, Dong C, Chen M, Zhang Y, Cai M, Chen Y, Jin M, Wei Z. Silica enhanced activation and stability of Fe/Mn decorated sludge biochar composite for tetracycline degradation. CHEMOSPHERE 2023; 328:138614. [PMID: 37023899 DOI: 10.1016/j.chemosphere.2023.138614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, SiO2-composited biochar decorated with Fe/Mn was prepared by co-pyrolysis method. The degradation performance of the catalyst was evaluated by activating persulfate (PS) to degrade tetracycline (TC). The effects of pH, initial TC concentration, PS concentration, catalyst dosage and coexisting anions on degradation efficiency and kinetics of TC were investigated. Under optimal conditions (TC = 40 mg L-1, pH = 6.2, PS = 3.0 mM, catalyst = 0.1 g L-1), the kinetic reaction rate constant could reach 0.0264 min-1 in Fe2Mn1@BC-0.3SiO2/PS system, which was 12 times higher than that in the BC/PS system (0.00201 min-1). The electrochemical, X-ray diffractometer (XRD), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that both metal oxides and oxygen-containing functional groups provide more active sites to activate PS. The redox cycle between Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) accelerated the electron transfer and sustained the catalytic activation of PS. Radical quenching experiments and electron spin resonance (ESR) measurements confirmed that surface sulfate radical (SO4•-) play a key role in TC degradation. Three possible degradation pathways of TC were proposed based on high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis, the toxicity of TC and its intermediates was analyzed by bioluminescence inhibition test. In addition to the enhanced catalytic performance, the presence of silica also improved the stability of the catalyst, as confirmed by cyclic experiment and metal ion leaching analysis. The Fe2Mn1@BC-0.3SiO2 catalyst, derived from low-cost metals and bio-waste materials, offer an environmentally friendly option to design and implement heterogenous catalyst system for pollutant removal in water.
Collapse
Affiliation(s)
- Qiong Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Maoxiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yan Chen
- Zhejiang Industrial Environmental Design and Research Institute Co., Ltd., Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Xu L, Li L, Lu W, Gu Y, Zhuang H, He Q, Zhu L. The modified properties of sludge-based biochar with ferric sulfate and its effectiveness in promoting carbon release from particulate organic matter in rural household wastewater. ENVIRONMENTAL RESEARCH 2023; 231:116109. [PMID: 37178751 DOI: 10.1016/j.envres.2023.116109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
The scarcity of carbon sources presents a significant challenge for the bio-treatment of rural domestic wastewater (RDW). This paper presented an innovative approach to address this issue by investigating the supplementary carbon source through in-situ degradation of particulate organic matter (POM) facilitated by ferric sulfate modified sludge-based biochar (SBC). To prepare SBC, five different contents of ferric sulfate (0%, 10%, 20%, 25%, and 33.3%) were added to sewage sludge. The results revealed that the pore and surface of SBC were enhanced, providing active sites and functional groups to accelerate the biodegradation of protein and polysaccharide. During the 8-day hydrolysis period, the concentration of soluble chemical oxidation demand (SCOD) increased and peaked (1087-1156 mg L-1) on the fourth day. The C/N ratio increased from 3.50 (control) to 5.39 (25% ferric sulfate). POM was degraded the five dominant phyla, which were Actinobacteriota, Firmicutes, Synergistota, Proteobacteria, and Bacteroidetes. Although the relative abundance of dominant phyla changed, the metabolic pathway remained unchanged. The leachate of SBC (<20% ferric sulfate) was beneficial for microbes, but an excessive amount of ferric sulfate (33.3% ferric sulfate) could have inhibition effects on bacteria. In conclusion, ferric sulfate modified SBC holds the potential for the carbon degradation of POM in RDW, and further improvements should be made in future studies.
Collapse
Affiliation(s)
- Linji Xu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lin Li
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Wei Lu
- Sanfeng Industry of Chongqing Iron and Steal Group Co., Ltd., Chongqing, 401258, China
| | - Yilu Gu
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Qiang He
- Faculty of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Lei Zhu
- Jiangsu Yihuan Group Co., Ltd., Yixing, Jiangsu, 214206, China.
| |
Collapse
|
6
|
Liu J, Wen Y, Mo Y, Liu W, Yan X, Zhou H, Yan B. Chemical speciation determines combined cytotoxicity: Examples of biochar and arsenic/chromium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130855. [PMID: 36708695 DOI: 10.1016/j.jhazmat.2023.130855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
As both electron donors and acceptors, biochars (BCs) may interact with multivalent metal ions in the environment, causing changes in ionic valence states and resulting in unknown combined toxicity. Therefore, we systematically investigated the interaction between BCs and Cr (Cr(III) & Cr(VI)) or As (As(III) & As(V)) and their combined cytotoxicity in human colorectal mucosal (FHC) cells. Our results suggest that the redox-induced valence state change is a critical factor in the combined cytotoxicity of BCs with Cr/As. Specifically, when Cr(VI) was adsorbed on BCs, 86.4 % of Cr(VI) was reduced to Cr(III). In contrast, As(III) was partially oxidized to As(V) with a ratio of 37.2 %, thus reaching a reaction equilibrium. Meanwhile, only As(V) was released in the cell, which could cause more As(III) to be oxidized. As both Cr(III) and As(V) are less toxic than their corresponding counterparts Cr(VI) and As(III), different redox interactions between BCs and Cr/As and release profiles between BCs and Cr/As together lead to reduced combined cytotoxicity of BP-BC-Cr(VI) and BP-BC-As(III). It suggests that the valence state changes of metal ions due to redox effects is one of the parameters to be focused on when studying the combined toxicity of complexes of BCs with different heavy metal ions.
Collapse
Affiliation(s)
- Jian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuting Wen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yucong Mo
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Yuan F, Sun Y, Jiang X, Liu T, Kang B, Freguia S, Feng L, Chen Y. Dioctyl phthalate enhances volatile fatty acids production from sludge anaerobic fermentation: Insights of electron transport and metabolic functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160102. [PMID: 36370796 DOI: 10.1016/j.scitotenv.2022.160102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.
Collapse
Affiliation(s)
- Feiyi Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yi Sun
- Downhole Technical Service Branch, Bohai Drilling Engineering Co., Ltd, National Petroleum Corporation, 8, Second Street, Economic and Technological Development Zone, Tianjin 300450, PR China
| | - Xiupeng Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Tao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bo Kang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
8
|
Zhao L, Sun ZF, Pan XW, Tan JY, Yang SS, Wu JT, Chen C, Yuan Y, Ren NQ. Sewage sludge derived biochar for environmental improvement: Advances, challenges, and solutions. WATER RESEARCH X 2023; 18:100167. [PMID: 37250290 PMCID: PMC10214287 DOI: 10.1016/j.wroa.2023.100167] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 05/31/2023]
Abstract
With the rapid growth yield of global sewage sludge, rational and effective treatment and disposal methods are becoming increasingly needed. Biochar preparation is an attractive option for sewage sludge treatment, the excellent physical and chemical properties of sludge derived biochar make it an attractive option for environmental improvement. Here, the current application state of sludge derived biochar was comprehensively reviewed, and the advances in the mechanism and capacity of sludge biochar in water contaminant removal, soil remediation, and carbon emission reduction were described, with particular attention to the key challenges involved, e.g., possible environmental risks and low efficiency. Several new strategies for overcoming sludge biochar application barriers to realize highly efficient environmental improvement were highlighted, including biochar modification, co-pyrolysis, feedstock selection and pretreatment. The insights offered in this review will facilitate further development of sewage sludge derived biochar, towards addressing the obstacles in its application in environmental improvement and global environmental crisis.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhong-Fang Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Wen Pan
- Power China Huadong Engineering Corporation Limited, China
| | - Jing-Yan Tan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie-Ting Wu
- School of Environment, Liaoning University, Shenyang, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
10
|
Liang C, Sun H, Ling C, Liu X, Li M, Zhang X, Guo F, Zhang X, Shi Y, Cao S, He H, Ai Z, Zhang L. Pyrolysis temperature-switchable Fe-N sites in pharmaceutical sludge biochar toward peroxymonosulfate activation for efficient pollutants degradation. WATER RESEARCH 2023; 228:119328. [PMID: 36413832 DOI: 10.1016/j.watres.2022.119328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis of pharmaceutical sludge (PS) is a promising way of safe disposal and to recover energy and resources from waste. The resulting PS biochar (PSBC) is often used as adsorbent, but has seldom been explored as catalyst. Herein we demonstrate that PSBC (0.4 g/L) could efficiently activate peroxymonosulfate (PMS) to 100% degrade 4-chlorophenol (4-CP) with rate constants of 0.42-1.70 min-1, outperforming other reported catalysts. Interestingly, the PMS activation pathway highly depended on PSBC pyrolysis temperature, which produced dominantly high-valent iron species (e.g., FeIVO2+) at low temperature but more sulfate radical (SO4·-) and hydroxyl radical (·OH) at higher temperature, e.g., 0.17, 0.23, 0.12 mmol/L of FeIVO2+ and 0.009, 0.038, 0.102 mmol/L of SO4·-/·OH were produced within 10 min by PSBC-600/PMS, PSBC-800/PMS, and PSBC-1000/PMS, respectively. Characterization, density functional theory (DFT) simulation and Pearson correlation analysis revealed that along with the increase of pyrolysis temperatures, the active sites of PSBC gradually shifted from atomically dispersed N-coordinated Fe moieties (FeNx) to iron nitrides (FexN), which activated PMS to produce FeIVO2+ and SO4·-/·OH, respectively. This study clarifies the structure-activity relationships of PSBC for PMS activation, and opens a new avenue for the treatment and utilization of PS as high value-added resources.
Collapse
Affiliation(s)
- Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiufan Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hua He
- Hebei North China Pharmaceutical Huaheng Pharmaceutical Co., Ltd., Shijiazhuang 051530, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Li S, Huang D, Cheng M, Wei Z, Du L, Wang G, Chen S, Lei L, Chen Y, Li R. Application of sludge biochar nanomaterials in Fenton-like processes: Degradation of organic pollutants, sediment remediation, sludge dewatering. CHEMOSPHERE 2022; 307:135873. [PMID: 35932922 DOI: 10.1016/j.chemosphere.2022.135873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.
Collapse
Affiliation(s)
- Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
12
|
Hung CM, Chen CW, Huang CP, Dong CD. Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119984. [PMID: 35985431 DOI: 10.1016/j.envpol.2022.119984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B-N, B-C, and B2O3 species). Radical quenching tests revealed SO4•-, HO•, and 1O2 being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR-CAOP combined with bioprocesses for removing STZ from aqueous environments.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
13
|
Hung CM, Chen CW, Huang CP, Hsieh SL, Dong CD. Ecological responses of coral reef to polyethylene microplastics in community structure and extracellular polymeric substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119522. [PMID: 35640726 DOI: 10.1016/j.envpol.2022.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The relationships and interactions between extracellular polymeric substances (EPS) and microplastics (MPs) in coral reef ecosystems were symmetrically investigated. The current study aims to investigate the responses of scleractinian coral (Goniopora columna) to exposure of model MPs, exemplified by polyethylene (PE), in the size range of 40-48 μm as affected by MPs concentration of MP in the range between 0 and 300 mg L-1 for 14 days. The structure of EPS-associated microbial community was studied using a series of techniques including high-throughput sequencing of 16 S rRNA, transmission electron microscopy (TEM), hydrodynamic diameter, surface charge (via zeta potential), X-ray diffraction (XRD), attenuated total reflectance‒Fourier transform infrared (ATR‒FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and fluorescence excitation-emission matrix (FEEM) spectroscopy. Microbial interactions between PE-MPs and coral caused aggregation and formation of EPS matrix, which resulted in increase and decrease in the relative abundance of Donghicola (Proteobacteria phylum) and Marivita (Proteobacteria phylum) in PE-MP-associated EPS, respectively. Particle size, electrostatic interactions, and complexation with the functional groups of the EPS-based matrix affected the humification index. FEEM spectroscopy analyses suggested the presence of humic- and fulvic-like fluorophores in EPS and dissolved organic matter (DOM) in PE-MP-derived DOM. The findings provided insights into the potential environmental implications of coral-based EPS and co-existing microbial assemblages due to EPS-PE-MP-microbiome interactions throughout the dynamic PE-MP exposure process.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
14
|
Hung CM, Chen CW, Huang CP, Dong CD. Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar. ENVIRONMENTAL RESEARCH 2022; 211:113076. [PMID: 35271836 DOI: 10.1016/j.envres.2022.113076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The contamination of marine sediments by 4-nonylphenol (4-NP) has become a global environmental problem, therefore there are necessaries searching appropriate and sustainable remediation methods for in-situ applications. Herein, water hyacinth [(WH) (Eichhornia crassipes)]-derived metal-free biochar (WHBC) prepared at 300-900 °C was used to promote the calcium peroxide (CP)-mediated remediation of 4-NP-contaminaed sediments. At [CP] = 4.37 × 10-4 M, [WHBC] = 1.5 g L-1, and pH = 6.0, the degradation of 4-NP was 77% in 12 h following the pseudo-first order rate law with rate constant (kobs) of 4.2 × 10-2 h-1. The efficient 4-NP degradation performance and reaction mechanisms of the WHBC/CP system was ascribed to the synergy between the reactive species (HO• and 1O2) at the WHBC surface on which there were abundant electron-rich carbonyl groups and defects/vacancies in the catalyst structure provides active sites, and the ability of the graphitized carbon framework to act as a medium for electron shuttling. According to microbial community analysis based on amplicon sequence variants, bacteria of the genus Solirubrobacter (Actinobacteria phylum) were dominant in WHBC/CP-treated sediments and were responsible for the biodegradation of 4-NP. The results showed great promise and novelty of the hydroxyl radical-driven carbon advanced oxidation processes (HR-CAOPs) that relies on the value-added utilization of water hyacinth for contaminated sediment remediation in achieving circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
15
|
Hung CM, Chen CW, Huang CP, Shiung Lam S, Yang YY, Dong CD. Performance and bacterial community dynamics of lignin-based biochar-coupled calcium peroxide pretreatment of waste-activated sludge for the removal of 4-nonylphenol. BIORESOURCE TECHNOLOGY 2022; 354:127166. [PMID: 35447330 DOI: 10.1016/j.biortech.2022.127166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Waste activated sludge contaminated with high levels of 4-nonylphenol (4-NP) is a major environmental concern. We have synthesized lignin-based biochar (LGBC) for use as a carbocatalyst in calcium peroxide (CP)-mediated sewage sludge pretreatment. Treatment of sewage sludge with 3.1 × 10-4 M of CP and 3.0 g L-1 of LGBC removed 76% of 4-NP in 12 h, which were 3.8 and 2.4 times higher than that with the LGBC and CP alone, respectively. There was synergy between reactive oxygen species (HO•, O2•-, and 1O2) and graphitic frameworks of LGBC. Pretreatment using the LGBC/CP system enhanced the release of biodegradable organic xenobiotics from the sludge. LGBC/CP enriched Proteobacteria and Thermostilla bacterial consortium (Planctomycetes) in the sludge and promoted 4-NP biodegradation. This work provides new insights into the chemical and biological mechanisms by which LGBC promotes 4-NP biodegradation in waste activated sludge via hydroxyl radical-driven carbon advanced oxidation pretreatment.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yan-Yi Yang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
16
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Ding DS, Hsieh S, Chen CW, Dong CD. Exposure of Goniopora columna to polyethylene microplastics (PE-MPs): Effects of PE-MP concentration on extracellular polymeric substances and microbial community. CHEMOSPHERE 2022; 297:134113. [PMID: 35227744 DOI: 10.1016/j.chemosphere.2022.134113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L-1) of polyethylene microplastics (PE-MPs; 40-48 μm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L-1, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index. Humic- and fulvic-like substances were identified as critical EPS components produced by microbial activity. The results have shed new insights into short-term responses of G. columna during exposure to different PE-MP concentrations and reveal important coral-MP-microbiome interactions in coral reef ecosystems. Results demonstrated that the coral-MPs interactions should be further evaluated to gain a deeper understanding of the underlying ecotoxicological risks.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
17
|
Hung CM, Chen CW, Huang CP, Tsai ML, Dong CD. Metal-free carbocatalysts derived from macroalga biomass (Ulva lactuca) for the activation of peroxymonosulfate toward the remediation of polycyclic aromatic hydrocarbons laden marine sediments and its impacts on microbial community. ENVIRONMENTAL RESEARCH 2022; 208:112782. [PMID: 35077714 DOI: 10.1016/j.envres.2022.112782] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potential toxic chemicals, specifically, polycyclic aromatic hydrocarbons (PAHs), are major sediment contaminants. Herein, green seaweed (Ulva lactuca) was used as a feedstock and pyrolyzed at temperature in the range between 300 and 900 °C. The metal-free carbocatalyst (GSBC) for peroxymonosulfate (PMS) activation to degrade PAHs contaminated sediments was studied. The effects of GSBC‒PMS treatment on microbial community abundance was studied as well. The pyrolysis temperature of GSBC preparation affected the PMS activation performance. Results show that GSBC700 exhibited remarkable catalytic characteristics in PAHs degradation by effective activation of PMS. The results also demonstrated that the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOP) reaction achieved 87% and apparent rate constant (kobs) of 6.3 × 10-2 h-1 of total PAHs degradation in 24 h at 3.3 g/L of GSBC, PMS dose of 1 × 10-4 M, and pH 3.0. The degradation of 2-, 3-, 4-, 5-, and 6-ring PAHs was 84, 83, 83, 80, and 89%, respectively. The synergetic effect established between GSBC and PMS enhanced the formation of ROSs, namely, SO4-, HO, and 1O2, which were major species contributing to PAHs degradation. The synergistic effect of π‒π stacking structure and graphitization of GSBC formed electron shuttle, which contributed to PAHs degradation performance. Microbial community structure analyses in the GSBC‒PMS treated sediments showed that the relative abundance of Lactobacillus_rhamnosus species, most of which belonged to the Lactobacillus genus and Firmicutes phylum, which aided in continuing PAHs biodegradation post GSBC‒PMS treatment. Therefore, GSBC can be a promising carbocatalyst produced via biomass-to-biochar conversion as biowaste-to-energy source used in the SR-CAOP-mediated process for sediment remediation.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
18
|
Wang Q, Wang B, Ma Y, Zhang X, Lyu W, Chen M. Stabilization of heavy metals in biochar derived from plants in antimony mining area and its environmental implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118902. [PMID: 35104556 DOI: 10.1016/j.envpol.2022.118902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals pollution in mining soils seriously threatens the ecological environment and human health worldwide. Phytoremediation is considered to be an ideal method to reduce the toxicity, mobility, and bioavailability of heavy metals in the soils. However, the disposal of plant-enriched heavy metals has become a thorny problem. To estimate the effect of pyrolysis on the stabilization of heavy metals in post-phytoremediation plant residues, different biochars were prepared from Conyza canadensis (CC), Gahnia tristis (GT), and Betula luminifera (BL) at different pyrolysis temperatures (300, 450, and 600 °C). Results indicated that pyrolysis was effective in the stabilization of heavy metals (Cr, Ni, As, Sb, Hg, and Pb) in plants and significantly (P < 0.05) decreased the bioavailability of most heavy metals. Among them, GT600 prepared by pyrolysis of GT at 600 °C has the best stabilization effect on Sb, which increases the residual fraction by 7.32 times, up to 82.05%. The results of environmental risk assessment show that pyrolysis of biomass at high temperature (600 °C) can effectively mitigate the environmental impact of As, Sb, and Hg. Additionally, the reutilization potential of biochar produced by post-phytoremediation plant residues as adsorbents was investigated. The results of adsorption experiments revealed that all biochars have an excellent performance to adsorb Pb(II), and the maximum adsorption capacity is 139.16 mg g-1 for CC450. The adsorption mechanism could be attributed to complexation, electrostatic attraction, and cation exchange. This study demonstrates that pyrolysis is an effective and environment-friendly alternative method to stabilize heavy metals in plants, and their pyrolysis products can be reused for heavy metal adsorption.
Collapse
Affiliation(s)
- Qian Wang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; School of Geography and Resources, Guizhou Education University, Guiyang, 550018, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, Guizhou, China.
| | - Yuena Ma
- Pu'er Research Institute of Eco-environmental Sciences, Pu'er, 665000, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Wenqiang Lyu
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang, 550018, China; School of Geography and Resources, Guizhou Education University, Guiyang, 550018, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
19
|
Patel AK, Singhania RR, Pal A, Chen CW, Pandey A, Dong CD. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153054. [PMID: 35026237 DOI: 10.1016/j.scitotenv.2022.153054] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is gaining incredible importance for remediation applications due to their attractive removal properties. Moreover, it is becoming ecofriendly, cost-effective and sustainable bioadsorbents towards replacing expensive activated carbons. Studies reveal biochar effectiveness for removal of important and potentially severe organic pollutants such as antibiotics and pesticides. Recent research advancements on biochar modification (physical, chemical and biological) opens greater opportunity to form tailored biochar with improved surface properties than their native forms for offering better removal efficiencies. Further attentions paid towards emergent new modification methods to cover broad-spectrum pollutants using tailored biochar. Current review aims to summarize recent updates upon biochar tailoring, comparative account of tailored biochars removal efficiencies with respect to their native forms and to provide in-depth discussion covering specific interactions of tailored biochars with antibiotics, polycyclic aromatic hydrocarbons (PAHs) and pesticides for their effective removals and degradation from polluted environments. Application of inducer compounds e.g., peroxymonosulfate and sodium percarbonate further improved the biochar role towards degradation of toxic organic pollutants into their less or nontoxic forms. Biochar engineered with specific metals enable them for the same role without inducer compounds. Moreover, microbial interactions with biochar not only improve the bioremediation level further but also degrade the pollutants from the environment and open up better environmental and socio-economic prospects. Application of green, cost-effective and sustainable biochar for remediation of environmentally potential organic pollutants offers economical treatment methods as well as safe environment. These benefits are inline with global trends towards developing a sustainable process for biocircular economy.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anugunj Pal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
20
|
Wang Y, Su J, Ali A, Chang Q, Bai Y, Gao Z. Enhanced nitrate, manganese, and phenol removal by polyvinyl alcohol/sodium alginate with biochar gel beads immobilized bioreactor: Performance, mechanism, and bacterial diversity. BIORESOURCE TECHNOLOGY 2022; 348:126818. [PMID: 35139430 DOI: 10.1016/j.biortech.2022.126818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 05/17/2023]
Abstract
Water pollutants, such as nitrate, heavy metals, and organics have attracted attention due to their harms to environmental and biological health. A novel polyvinyl alcohol/sodium alginate with biochar (PVA/SA@biochar) gel beads immobilized bioreactor was established to remove nitrate, manganese, and phenol. The optimum conditions for preparing gel beads were studied by response surface methodology (RSM). Notably, the removal efficiencies of nitrate, Mn(II), and phenol were 94.64, 72.74, and 93.97% at C/N of 2.0; the concentrations of Mn(II) and phenol were 20 and 1 mg L-1, respectively. Moreover, addition of different concentrations of phenol significantly affected the components of dissolved organic matter, bacterial activity, and bioreactor performance. The biological manganese oxide (BMO) with three-dimensional petal-type structure produced during Mn(II) oxidation showed excellent adsorption capacity. The removal of phenol relied on a combination of biological action and adsorption processes. High-throughput analysis showed that Zoogloea sp. was the predominant bacterial group.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|